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Abstract

We discuss the computational complexity of solving parity games in the spe-
cial case when the underlying game graph is undirected. For strictly alter-
nating games, that is, when the game graph is bipartite between the nodes
of the two players, we show that the games can be solved in linear time.
However, when strict alternation is not imposed, we show that computing
a solution is as hard in the undirected case as it is in the general, directed,
case.
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1. Introduction

Two-player parity games on finite graphs have been widely studied in
the last two decades because of their close connection with the µ-calculus
model-checking. More precisely, deciding the winner in a parity game and
deciding validity of a µ-calculus formula for a given finite Kripke structure
are two polynomially equivalent problems. So far it is only known that these
two problems are in NP ∩ co− NP; membership in PTime is still open. See
e.g. [5, 2, 4, 1] for textbooks on these topics.

Most of the research in the quest for a PTime algorithm to solve par-
ity game has been done for the general case of directed graph, and several
subclasses have been considered and shown to enjoy PTime algorithm for as-
sociated parity games (graphs of bounded clique-width [7], graphs of bounded
dag-width [3]). In all those works the measure that is considered on graphs
(clique-width, dag-width) is designed for oriented graphs, and this is mostly
explained by the general idea that considering games on undirected graphs
(i.e. graphs in which each edge comes with a back-edge) should be obvious.
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In this paper, we discuss this latter question and prove that parity games
played on undirected graphs are indeed simple to solve (linear time) if the
two players strictly alternate their moves (i.e. the graph is bipartite). Never-
theless, in the case where we no longer assume that the graph is bipartite, we
show the somehow surprising following result: solving parity games played on
undirected graph is polynomially equivalent to solving parity games played
on arbitrary graphs.

2. Definitions

In the sequel, when X is a finite set, |X| denotes its cardinal of X, X∗

the set of finite words over X, and Xω the set of infinite words over X.
A finite graph is a pair G = (V,E) where V is a finite set of vertices and

E ⊆ V ×V is a finite set of edges. An undirected graph is a graph G = (V,E)
such that (v1, v2) ∈ E iff (v2, v1) ∈ E for all v1, v2 ∈ V , i.e. whenever an
edge belongs to the graph, the back-edge as well. A dead-end is a vertex v
such that there is no vertex v′ with (v, v′) ∈ E. A path in a graph is a finite
sequence v1, v2, . . . , v` such that (vi, vi+1) ∈ E for every 1 ≤ i < `; a cycle is
a path v1, v2, . . . , v` with ` > 1 and v1 = v`. A graph that does not admit
any cycle is said to be acyclic. The size of a graph is defined to be |V |+ |E|.

An arena is a pair G = (G, VE, VA) where G = (V,E) and V = VE ] VA is
a partition of the vertices among two players, Élöıse and Abelard. The arena
is bipartite iff E ⊆ VE×VA∪VA×VE. An arena is depicted as a usual graph,
where we represent vertices in VE (resp. VA) as circles (resp. squares). See
Figure 1 for an example.

1 2 3 4 5

6 7 8

Figure 1: An undirected bipartite arena (priorities are indicated in the vertices).

A colouring function col is a mapping col : V → Col ⊂ N where Col is a
finite set of colours. An infinite two-player parity game on an arena G is a
pair G = (G, col).

Élöıse and Abelard play in G by moving a token between vertices. A play
from some initial vertex v0 proceeds as follows: the player owning v0 (i.e.
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Élöıse if v0 ∈ VE, Abelard otherwise) moves the token to a vertex v1 such
that (v0, v1) ∈ E. Then the player owning v1 chooses a successor v2 and so
on. If at some point one of the players cannot move, she/he loses the play.
Otherwise, the play is an infinite word v0v1v2 · · · ∈ V ω and is won by Élöıse
just in case lim inf(col(vi))i≥0 is even. A partial play is just a prefix of a play.

A strategy for Élöıse is a function assigning, to every partial play ending
in some vertex v ∈ VE, a vertex v′ such that (v, v′) ∈ E. Élöıse respects a
strategy ϕ during a play λ = v0v1v2 · · · if vi+1 = ϕ(v0 · · · vi), for all i ≥ 0 such
that vi ∈ VE. A strategy ϕ for Élöıse is winning from a position v ∈ V if she
wins every play that starts from v and respects ϕ. Finally, a vertex v ∈ V
is winning for Élöıse if she has a winning strategy from v, and the winning
region for Élöıse consists of all winning vertices for her. Symmetrically, one
defines the corresponding notions for Abelard. For the parity game described
in Figure 1, it is easily seen that the winning region for Élöıse is {1, 2, 6, 7}
and the one for Abelard is {3, 4, 5, 8} (we identify here a vertex with its
colour).

Of special interest are strategies that does not require memory. A posi-
tional strategy is a strategy ϕ such that for every partial play ϕ and every
vertex v one has ϕ(λ · v) = ϕ(λ′ · v), i.e. ϕ only depends on the current
vertex. It is a well known result that positional strategies are sufficient to
win in parity games [6, 8, 5].

Theorem 1 (Positional determinacy). Let G be a parity game. Then for
any vertex, either Élöıse or Abelard has a positional winning strategy.

A special class of games are reachability games and are defined as those
parity games played on arenas in which all vertices have colour 1. Hence in
such a game a play is winning for Élöıse iff it eventually reaches a dead-end
in VA. It is well known that winning regions in reachability games can be
computed in linear time in the size of the underlying graph [8, 5].

3. Solving Parity Games Played On Undirected Bipartite Arenas

In the whole section, we let G = (V,E) be an undirected graph, G =
(G, VE, VA) be a bipartite arena over G and G = (G, col) be a parity game
over G. We prove, giving a reduction to a reachability game, that the winning
regions in G can be computed in linear time in the size of G.
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We define a new graph G̃ = (V, Ẽ) by letting:

(i, j) ∈ Ã iff (i, j) ∈ A and

{
min{col(i), col(j)} is even and i ∈ VE, or

min{col(i), col(j)} is odd and i ∈ VA

and we let G̃ = (G̃, VE, VA). See Figure 2 for an example.

1 2 3 4 5

6 7 8

Figure 2: The arena G̃ associated with arena G depicted in Figure 1

Property 1. The graph G̃ is acyclic.

Proof. By contradiction, assume that G̃ contains a cycle (whose length is
necessarily even and greater than 4). Let v1, . . . , v` be such a cycle that we
choose of minimal length and let i be such that col(vi) is minimal. Assume

that vi ∈ VE. As (vi−1, vi) ∈ Ẽ and as min(col(vi−1), col(vi)) = col(vi), we

conclude that col(vi) is odd. As (vi, vi+1) ∈ Ẽ, and as min(col(vi), col(vi+1) =
col(vi), it follows that col(vi) is even, leading a contradiction. A similar
argument is applied for the case where vi ∈ VA.

Define G̃ = (G̃, c̃ol) as the reachability game over G, i.e. c̃ol(v) = 1 for
every vertex v. Then the following holds.

Property 2. Let v ∈ V be some vertex. Then v is winning for Élöıse in G
iff v is winning for Élöıse in G̃.

Proof. Let ϕ be a positional winning strategy for Élöıse in G over the full
winning region for her (such a strategy always exists). Let us prove that when

being used in G̃ the strategy ϕ is well defined provided the play start from
some initial vertex that is winning in G. Indeed, let v0 be such a vertex and
let λ = v0 · · · vn be a partial play in G̃ where Élöıse respects ϕ and such that
vn ∈ VE. Let vn+1 = ϕ(vn) and assume by contradiction that (vn, vn+1) /∈ Ẽ
(i.e. ϕ is not well defined in G̃). Therefore, min(col(vn), col(vn+1)) is odd.
Now consider the infinite play v0 · · · (vn ·vn+1)

ω: it is a play in G where Élöıse
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respects ϕ and that starts in a winning vertex for her. But the smallest
colour infinitely often visited is min(col(vn), col(vn+1)) hence is odd leading

a contradiction. Therefore ϕ is well defined in G̃, which means in particular
that if Élöıse respects ϕ she never reaches a dead-end in VE (otherwise ϕ

would give a non-valid move from this vertex). But, as G̃ is acyclic, any

play ends-up in a dead-end, hence ϕ is winning in G̃ from any vertex that is
winning in G (it leads to a dead-end which is not in VE).

Conversely, one can make exactly the same reasoning for Abelard.

Property 2 together with the fact that winning regions can be computed
in linear time in reachability games directly imply the following result.

Theorem 2. In a parity game played on an undirected bipartite arena, the
winning region can be computed in linear time in the size of the arena.

4. Solving Parity Games Played On General Undirected Arenas

In this section we provide a polynomial time reduction of the problem of
computing the winning regions in parity games played on arbitrary arenas
to the problem of computing the winning regions in parity games played on
undirected (not necessarily bipartite) arenas. Hence restricting parity games
to undirected arenas does not make them computationally simpler to solve.

In the whole section, we let G = (V,E) be an arbitrary graph, G =
(G, VE, VA) be an arena over G and G = (G, col) be a parity game over G.
We start by normalizing G (see Figure 4 for an example).

Lemma 1. There exists a graph G′ = (V ′, E ′), an arena G = (G′, V ′E, V
′
A)

and a parity game G′ = (G ′, col′) such that the following holds:

1. G′ is bipartite;

2. for every v′ ∈ V ′, col(v′) is odd iff v′ ∈ V ′E;

3. for every (v1, v2) ∈ E ′ either col(v1) = col(v2) or |col(v1)−col(v2)| ≥ 3;

4. V ⊆ V ′.

Moreover, the size of G′ is linear in the size of G and for every vertex v ∈ V ,
v is winning for Élöıse in G iff v is winning for Élöıse in G′.

Proof. In order to impose each of the properties we provide simple transfor-
mations on the arena. Hence, we proceed in three steps, one per property
(while ensuring that V ⊆ V ′ at all time).
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First, to have G′ bipartite, it suffices to insert dummy vertices having a
maximal colour. Indeed, let M be the maximal colour appearing in G. Then
for every (v1, v2) ∈ E with v1, v2 ∈ VE (resp. v1, v2 ∈ VA) we add a new vertex
x ∈ VA (resp. x ∈ VE) with colour M , remove the edge (v1, v2) and replace
it by the two edges (v1, x) and (x, v2); see Figure 3. It is straightforward to
check that winning positions are preserved by this transformation.

Then, in order to have Élöıse (resp. Abelard) vertices getting only odd
(resp. even) colour we do the following. For any vertex v ∈ VE with even
colour, one sets v to be in V ′A (then v belongs now to Abelard); adds two
vertices vin and vout both with priority 2M + 1 and belonging to V ′E together
with two edges (vin, v) and (v, vout); and replaces any edge (x, v) by an edge
(x, vin) and any edge (v, x) by an edge (vout, x). We do the dual transforma-
tion for those vertices v ∈ VA with odd colour; see Figure 3. Other vertices /
edges remain unchanged. Again, it is straightforward to check that winning
positions are preserved by this transformation.

Finally, to get the third property, it suffices to multiply all colours by 3.

v1 v2 v1

M

x v2

v1 v2 v1

M

x v2

Step 1

i

i even

2M + 1 i 2M + 1

Step 2

i

i odd

2M i 2M

Figure 3: The successive transformations used in the proof of Lemma 1.

From now on we assume that G, G and G are as G′, G ′ and G′ in Lemma 1.
We define an undirected bipartite arena G̃ = (G̃ = (Ṽ , Ẽ), ṼE, ṼA) together

with a parity game, G̃ = (G̃, c̃ol). The set of vertices Ṽ contains V and
we will prove that winning regions (when restricted to V ) coincide in both
games.

6



8

s

6

t

3

v

5

u

G: G ′: 17 8

s

17

6

t

16 3

v

16

5

u

G̃ ′: 51 24

s

33 51

18

t

48 9

v

30 48

15

u

30

Figure 4: Example of the transformation of Lemma 1 (from G to G′) and of Lemma 2

(from G′ to G̃′).

The graph G̃ is obtained from G as follows (see Figure 5).

• For every (v1, v2) ∈ E ∩ VE× VA , we let i = col(v1) and j = col(v2). If
i > j then we simply add the back-edge (v2, v1). If i < j, we pick some
even number k such that i < k < j (note that such a k always exists

thanks to point (3) in Lemma 1). Then we add a new vertex x ∈ ṼE
with colour k, we remove edge (v1, v2) and add the edges (v1, x) and
(x, v2) as well as the back-edges (x, v1) and (v2, x).

• For every (v1, v2) ∈ E ∩ VA× VE , we let i = col(v1) and j = col(v2). If
i > j then we simply add the back-edge (v2, v1). If i < j, we pick some

odd number k such that i < k < j. Then we add a new vertex x ∈ ṼA
with colour k, we remove edge (v1, v2) and add the edges (v1, x) and
(x, v2) as well as the back-edges (x, v1) and (v2, x).

Then the following holds.

Lemma 2. Let v be some vertex in V . Then v is winning for Élöıse in G
iff v is winning for Élöıse in G̃.

Proof. Let v be some vertex in V and assume that Élöıse has a (positional)
winning strategy ϕ in G from v. From ϕ, we define a new strategy ϕ̃ for
Élöıse in G̃, and we argue that this strategy is winning from v as well.
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i j
i < j

i > j

i k j with i < k < j, k even

i j

i j
i < j

i > j

i k j with i < k < j, k odd

Figure 5: The transformations to define G̃.

The strategy ϕ̃ is defined for any vertex x ∈ ṼE as follows. For any
x ∈ V ∩ ṼE we let y = ϕ(x). If col(x) > col(y) then ϕ̃(x) = y (note that the

edge (x, y) still exists in G̃). Otherwise, there is a unique vertex z ∈ Ṽ ∩ ṼE
such that (x, z) ∈ Ẽ and (z, y) ∈ Ẽ: we let ϕ̃(x) = z and ϕ̃(z) = y. Then
ϕ̃ can take any value for those vertices for which it has not yet been defined
(those will never be reached if Élöıse respects ϕ̃). Note that the strategy ϕ̃

never goes through a back-edge that was added when defining G̃.
We argue that ϕ̃ is winning from v. Indeed, assume by contradiction that

Abelard has a (positional) counter-strategy ψ̃, and let λ̃ be the play obtained

starting from v when Élöıse respects ϕ̃ and Abelard respects ψ̃. From the
definition of G̃, and from the assumption that Abelard wins in λ̃ it follows that
λ̃ does not eventually goes through a back-edge added in the construction of
G̃ (otherwise this back-edge would have been chosen by Abelard, and would
induce a loop of length two with an even minimal colour). In particular, it

means that if we remove from λ̃ all vertices not in V , we obtain a valid play
λ in G starting from v and where Élöıse respects ϕ. As ϕ is winning, λ is
won by Élöıse. But this leads a contradiction as, by construction of G̃, the
smallest colour appearing infinitely often in λ is the same as the one in λ̃.
Hence v is winning for Élöıse in G̃.

Using a similar argument, one shows that if Abelard has a winning strat-
egy in G from some vertex v then he also has one in G̃.

As G̃ is of polynomial size in the size of G Lemma 2 directly induces the
following.

Theorem 3. There is a polynomial time reduction from the problem of com-
puting the winning region in an arbitrary parity game to the problem of com-
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puting the winning region in a parity game played on an undirected arena.

References
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