
ENSC-201X-NoYYY

THÈSE DE DOCTORAT
DE L’ÉCOLE NORMALE SUPÉRIEURE DE CACHAN

Présentée par

Monsieur Romain Brenguier

Pour obtenir le grade de

DOCTEUR DE L’ÉCOLE NORMALE SUPÉRIEURE DE
CACHAN

Domaine :
Informatique

Titre :

Équilibres de Nash dans les Jeux Concurrents
– Application aux Jeux Temporisés

Nash Equilibria in Concurrent Games
– Application to Timed Games

Thèse présentée et soutenue à Cachan le 29 novembre 2012 devant le jury com-
posé de :

Christof Löding Rapporteur
Anca Muscholl Rapporteur
Hugo Gimbert Rapporteur
Kim G. Larsen Examinateur
Jean-François Raskin Examinateur
Patricia Bouyer-Decitre Directrice de thèse
Nicolas Markey Directeur de thèse

Laboratoire Spécification et Vérification
ENS Cachan, CNRS, UMR 8643
61, avenue du Président Wilson
94235 CACHAN Cedex, France

2

Contents

1 Introduction 7
1.1 Model Checking and Controller Synthesis 7
1.2 Games and Equilibria . 9
1.3 Examples . 11

1.3.1 Peer to Peer Networks . 11
1.3.2 Medium Access Control 12
1.3.3 Power Control in Cellular Networks 13
1.3.4 Shared File System . 13

1.4 Contribution . 14
1.5 Related Works . 15
1.6 Outline . 16

2 Concurrent Games 18
2.1 Definitions . 18
2.2 Value and Nash Equilibria . 24
2.3 Undecidability in Weighted Games 27
2.4 General Properties . 29

2.4.1 Nash Equilibria as Lasso Runs 29
2.4.2 Encoding Value as an Existence Problem with Constrained

Outcomes . 31
2.4.3 Encoding Value as an Existence Problem 32
2.4.4 Encoding the Existence Problem with Constrained Out-

come as an Existence Problem 34

3 The Suspect Game 36
3.1 The Suspect Game Construction 36
3.2 Relation Between Trigger Strategies and Winning Strategies of

the Suspect Game . 38
3.3 Game Simulation . 40

4 Single objectives 44
4.1 Specification of the Objectives 44
4.2 Reachability Objectives . 46
4.3 Büchi Objectives . 48

3

4.4 Safety Objectives . 53
4.5 Co-Büchi Objectives . 55
4.6 Objectives Given as Circuits . 57
4.7 Rabin and Parity objectives . 59
4.8 Objectives Given as Deterministic Rabin Automata 66

5 Ordered Objectives 70
5.1 Ordering Several Objectives . 70
5.2 Ordered Büchi Objectives . 72

5.2.1 General Case . 72
5.2.2 Reduction to a Single Büchi Objective 73
5.2.3 Reduction to a Deterministic Büchi Automaton Objective 76
5.2.4 Monotonic Preorders . 79

5.3 Ordered Reachability Objectives 85
5.3.1 General Case . 85
5.3.2 Simple cases . 92

6 Timed Games 93
6.1 Definitions . 93

6.1.1 Semantics as an Infinite Concurrent Game 95
6.2 The Region Game . 96

6.2.1 Regions . 96
6.2.2 Construction of the Region Game 97
6.2.3 Proof of Correctness . 100
6.2.4 From Timed Game G to Region Game R. 102
6.2.5 From Region Game R to Timed Game G. 107
6.2.6 Conclusion of the Proof 110

6.3 Complexity Analysis . 111
6.3.1 Size of the Region Game 111
6.3.2 Algorithm . 111
6.3.3 Hardness . 112

7 Implementation 118
7.1 Algorithmic and Implementation Details 118
7.2 Input and Output . 119
7.3 Examples . 120

7.3.1 Power Control . 120
7.3.2 Medium Access Control 121
7.3.3 Shared File System . 121

7.4 Experiments . 121

8 Conclusion 123
8.1 Summary . 123
8.2 Perspectives . 124

4

Acknowledgments

I met Patricia and Nicolas while I was in the Master Parisien de Recherche en
Informatique (MPRI). They were giving the course on real-time systems. I was
fascinated both by the subject and by the clear and rigorous way in which it was
presented. I thank them for giving me the opportunity to work on this subject
for my thesis and for all the things they taught me: write articles that are
pleasant to read, make proofs that others can read, design nice presentations,
review papers, and many other things.

My first encounter with game theory was in the MPRI course given by Olivier
Serre and Wies law Zielonka. I am thankful to them for introducing me to this
field, it has since become a central part in my work.

I thank Christof Löding, Anca Muscholl, and Hugo Gimbert for reviewing
this thesis, and for their comments. I also thank Kim G. Larsen and Jean-
François Raskin who accepted to be part of the jury of my defense.

A fundamental base for this thesis has been the work of Michael Ummels.
I had the chance of working with him, he has pointed to me some really good
ideas, and I thank him for this fruitful collaboration.

During this thesis, Ocan and I shared many interesting discussions and I
often asked for his advices. I am grateful for all the suggestions he made, it has
been of a great use while writing this thesis.

The administrative team of the LSV have always been helpful during these
three years, I would like to thank particularly Virginie and Catherine.

My office is in a remote part of the LSV called the Iris building. It was never
too lonely as I shared it with several other students along the years. For the
friendly atmosphere which has always been there, I give my thanks to all them:
Jules, Arnaud, Joe, Michael, Robert, Ocan, Steen, Rémy.

The mutual support is very strong among students of the LSV, and we shared
great moments of conviviality. I cannot cite all of them but I will mention
in particular Benjamin and Aiswarya for their great job organizing the PhD
seminar, also known as the “goûter des doctorants”.

During these two last years, I shared my flat with three friends: Antoine,
Gaël and Robin. I am grateful to them for making it a place to relax and think
about things outside of game theory and model checking. They reminded me
that games are more than just theory: there is also Mario Kart, Scrabble and
Poker.

My family, and my friends since high-school have followed my progress all

5

along and they have always been a support when I come back to my home region
of Dauphiné. They deserve all my gratitude.

Even when far from Cachan, and for every day of these three years, Öykü
has been there for me. I thank her from all my heart.

6

Chapter 1

Introduction

1.1 Model Checking and Controller Synthesis

Verification Information and communication technology are part of our daily
life. We carry hardware systems everywhere, in the form of mobile phones, lap-
top computers or personal navigation devices. We use softwares to read books,
listen to music and chat with friends. Errors in the conception of these systems
occur routinely. This is a particularly serious issue in the case of embedded sys-
tems, which are designed for specific tasks and are part of complex and critical
systems, such as cars, trains, rockets. Flaws can injure people and cost a lot of
money. Planes, nuclear power plants, life support equipments are examples of
safety critical systems. For them, mistakes can cause human, environmental or
economical disaster. Some design errors have become famous by their dramatic
consequences, such as the bug in the Ariane-5 rocket in 1996. More recently,
on the sixth of July 2012, because of a software bug, the Orange France mo-
bile network remained out of order for twelve hours. It is necessary to ensure
that the design of a safety critical system is correct, in that it possesses the de-
sired properties. The approach of formal methods is to apply the formalism of
mathematics to model and analyze them, in order to establish their correctness.

The aim of formal verification is to eliminate design errors. In software en-
gineering, the most used verification technique is testing. It consists in running
the software on sample scenarios, and in checking that the output is what is
expected. In hardware verification, one popular method is simulation. In simu-
lation, in order to save time and money, tests are performed on a model of the
hardware, given in a hardware description language such as Verilog or VHDL.
As for testing, simulation can detect errors but can not prove their absence.

Model Checking As an alternative, model checking proceeds by an exhaus-
tive exploration of the possible state space of the system. It can reveal subtle
errors that might be undiscovered by testing or simulation. It takes as input
a model of the system, and a property to verify. The model of the system

7

describes how the system works. In general, the system is modeled using finite-
state automata or an extension of this model. For example, for software, the
automaton represents the graph of the possible configurations of the program.
Finite-state automata can be generated from languages similar to C for example.
The property given to a model checker states what the system should do and
what it should not. It is in general obtained from an informal specification writ-
ten in a natural language, which should be formally translated in a specification
language or logic. For instance, temporal logics are standard formalisms for this
task. The aim of research in model checking is to design algorithms to check
that the model of the system conforms to the formal specification. In the case
the specification is not met, tools can provide counter examples, which helps in
correcting the design, the model or the specification. To be usable, the method
needs to be powerful, easy to use and efficient. The efficiency of the algorithm
is generally in opposition with the two other points. A more powerful model
requires more computational time to verify. Of course, as model checking is a
model-based method, confidence in the analysis depends on the accuracy of the
models.

Improvement in algorithms, data structures and computational power of
modern computers, have made verification techniques quickly applicable to re-
alistic designs, starting with the work of Burch, Clarke, McMillan and Dill for
circuits [11] and Holzmann for protocols [31]. Efficient tools are available, for in-
stance NuSMV [15] which is well suited for hardware verification and SPIN [32]
that can verify communicating asynchronous processes.

Real-Time Systems Embedded systems are often subject to real-time con-
straints. They are time critical: correctness depends not only on the functional
result but also on the time at which it is produced. For instance, if the un-
dercarriage of a plane is lowered too late, it can have the same catastrophic
consequences than if it were not opened at all. To express these constraints,
time has to be integrated to the model. For these tasks the model of timed
automata has been developed. It corresponds to the program graph equipped
with real valued clocks, that can only be tested and reset to 0. Model checking
has been shown decidable for this model [1]. Efficient tools such as Uppaal [5],
Kronos [55], and HyTech [29] have been implemented, making use of clever
data structures.

Controller Synthesis Reactive systems like device drivers and communica-
tion protocols, have to respond to external events. They are influenced by their
environment, which is unpredictable or would be difficult to model. It is prefer-
able not to specify precisely the environment but to give it some freedom. Such
systems are managed using controllers, which monitor and regulate the activity
of the system. The problem of controller synthesis was formulated by Ramadge
and Wonham [45]. This problem is related to program synthesis, in which a
program which satisfies the given specification should be automatically gener-
ated. Instead of looking for bugs by model checking, we want to synthesize a

8

model of a controller with no flaw. Here the generated controller has to ensure
that the system under control satisfies its specification whatever happens in the
environment. It is very convenient to see the problem as a two-player game,
where a player plays as a controller and the other one plays the environment.
The system is controllable when the first player has a strategy that is winning
for the condition given by the specification. Several algorithms have been devel-
oped, for discrete systems [54] and timed systems [22, 9]. Algorithms for timed
systems have been implemented in the tool Uppaal Tiga [4].

In the case of multiple systems, controlled by rational entities and interacting
with each other, the approach of controller synthesis is no longer satisfactory.
Each system has its own requirements and objectives, and considering worst-
case behaviors of the environment is not satisfactory. Determining the good
solutions in this context, is a classical problem in game theory. We will thus
take inspiration from the solution concepts that have been proposed in this field.
Let us first look at a brief history of game theory.

1.2 Games and Equilibria

Cournot Competition Game theory aims at understanding the decisions
made by interacting agents. The study of game theory can be traced back to
the work of Cournot, on duopolies in a book first published in 1838 [17]. This
mathematician was the first to apply mathematics to economic analysis. He was
studying the competition between two companies selling spring water. These
companies had to decide on the quantity of bottles to produce. Their intention
was to maximize their own profit. The solution Cournot proposed was that
each company uses a strategy that is a best response to the strategy played by
the opponent. This defines an equilibrium behavior for the whole system which
actually coincides with what would later be known as Nash equilibria.

Normal-Form Games The real development of the field of game theory
started with the work of Von Neumann and Morgenstern and their 1944 book
[42]. In a game, players have to choose among a number of possible strategies,
a combination of a strategy for each player gives an outcome, each player has
her own preference concerning the possible outcomes. For Von Neumann and
Morgenstern, the preferences are described in a matrix which for each combina-
tion of strategies, gives the integer payoff of all players. This representation of
the game is said to be in normal-form. Consider for example the payoff matrix
of the rock-paper-scissors game represented in Fig. 1.1. The actions of the first
player are identified with the rows and the second player’s with the columns.
The first component in row r and column c corresponds to the payoff of the
first player if she plays r and her opponent c, and the second component to
the payoff of the second player. In rock-paper-scissors the payoffs of the players
always sum up to 0, this is an instance of a two-player zero-sum game, which
was the object of the work of Von Neumann and Morgenstern. Such a game

9

is purely antagonistic, since players’ preferences are opposed. A player tries to
have the highest payoff, considering that the opponent is going to play the best
counter-strategy . The strategy that ensures the best outcome in the worst case
is called the optimal strategy . In zero-sum games, Von Neumann showed the
existence of a pair of strategies, that is optimal, in the sense that each player
minimizes her maximum loss [53]. In general, this requires mixed strategies,
which allow randomization between several different actions. Therefore, the
number of possible strategies is in fact infinite. For example in the rock-paper-
scissors game, there are three pure strategies available, but the equilibrium is
obtained by randomizing uniformly between these pure strategies.

Table 1.1: The game of rock-paper-scissors in normal-form.

Rock Paper Scissors

Rock 0 , 0 -1 , 1 1 , -1
Paper 1 , -1 0 , 0 -1 , 1

Scissors -1 , 1 1 , -1 0 , 0

Nash equilibrium When games are not zero-sum, in particular when there
are more than two players, winning strategies are no longer suitable to describe
rational behaviors. In particular when the objectives of the players are not
opposite, cooperation should be possible. Then, instead of considering that the
opponent can play any strategy, we will assume that they are, also, rational. The
notion of equilibria aims at describing rational behaviors. If we are expecting
some strategy from the adversaries then it is rational to play the best response,
that is the strategy that maximizes the payoff if the strategies of the opponents
are fixed. The solution for non zero-sum games is a strategy for each player,
such that knowing what the others are going to play, none of them is interested
in changing her own. In other terms, each strategy is a best response to the
other strategies.

For example consider the Hawk-Dove game, first presented by the biologists
Smith and Price [48]. One such game is given in matrix form in Table 1.2. Two
animals are fighting over some prey and can choose to either act as a hawk
or as a dove. If a player chooses hawk then for the opponent the best payoff
is obtained by playing dove. We say that dove is the best response to hawk.
Reciprocally the best response to dove is to play hawk. There are two “stable”
situations (Hawk,Dove) and (Dove,Hawk), in the sense that no player has an
interest in changing her strategy.

Nash showed the existence of such equilibria in any normal-form game [44],
which again requires mixed strategies. This result has revolutionized the field
of economics, where it is used to analyze competitions between firms or gov-
ernment economic policies for example. Game theory and the concept of Nash
equilibrium are now applied to very diverse fields: in finance to analyze the evo-
lution of market prices, in biology to understand the evolution of some species,

10

in political sciences to explain public choices made by parties.

Table 1.2: The Hawk-Dove game.

Hawk Dove

Hawk 0 , 0 1 , 4
Dove 4 , 1 3 , 3

Games for Synthesis We aim at using the theory of non-zero-sum games
for synthesizing complex systems in which several agents interact. Think for
instance of several users behind their computers on a shared network. When
designing a protocol, maximizing the overall performance of the system is de-
sirable, but if a deviation can be profitable to the users, it should be expected
that one of them takes advantage of this weakness. This happened for example
to the bit-torrent protocol where selfish clients became more popular. Such de-
viations can harm the global performance of the protocol. The concept of Nash
equilibrium is particularly relevant, for one’s implementation to be used.

Unlike the ones we presented so far, in the context of controller synthesis,
games are generally not presented in normal-form. Instead of being represented
explicitly, it is more convenient to use games played on graphs. The graphs
represent the possible configurations of the system. The controller can take
actions to guide the system, and the system can also be influenced by the en-
vironment. Among games played on graph we can distinguish several classes.
The simplest one are turn-based games. For these games, in each state, one
player decides alone on the next state. In concurrent games, in each state, the
players choose their actions independently and the joint move formed by these
choices determines the next state. Timed games are examples of concurrent
games, which are played on timed automata. In a given state, several players
can have actions to play, but only the player that moves first has influence on
the next state. Concurrent games and timed games are a valuable framework
for the synthesis problem, we therefore chose to study the computation of Nash
equilibria in this kind of games.

1.3 Examples

The examples we present now are going to be reused later, to illustrate the
different concepts that will be introduced. We describe the general ideas of the
problems.

1.3.1 Peer to Peer Networks

In a peer-to-peer network clients share files that might interest other clients.
Clients want to download files from other clients but sending the files uses

11

bandwidth and prefer to limit this. The interaction in this situation could be
modeled by a normal-form game, as is represented in Table 1.3 for two players.
To play this game, players have to choose independently if they are going to
send or receive a file. An agent can only receive a file if another client is sending
it. In this matrix game, the best response is never to send a file. However, this
model is not accurate since in reality the situation is repeated. Considering that
the game is repeated an infinite number of steps, players can take into account
the previous actions of others to adapt their strategies. For instance, they can
choose to cooperate and send the file in alternation. The tit-for-tat strategy,
suggests that if one defects to send at his turn, the other stops as well. The
best response is then to cooperate, since it gives a better accumulated payoff
for both players.

Table 1.3: A game of sharing on a peer to peer network.

Receive Send

Receive 0 , 0 2, -1
Send -1, 2 0, 0

1.3.2 Medium Access Control

This example was first formalized from the point of view of game theory in [41]
Several users share access to a wireless channel. During each slot, they can
choose to either transmit or wait for the next slot. The probability that a user
is successful in its transmission decreases with the number of users emitting in
the same slot. Furthermore each attempt at transmitting has its cost. The
payoff thus increases with the number of successful transmissions but decreases
with the number of attempts. The expected reward for one slot and two players,
is represented in Table 1.4, assuming a cost of 2 for each transmission, a reward
of 4 for a successful transmission, a probability 1 to be successful if only one
player emit, and of 1

4 if they both transmit at the same time.

Table 1.4: A game of medium access.

Emit Wait

Emit -1, -1 2, 0
Wait 0 , 2 0, 0

Once again, for a real situation, one step is not enough and there would be
a succession of slots and the payoff is then the accumulation of the payoff for
each slot. A better model will be presented in Section 2.1, Example 2.

12

Table 1.5: Power control as a normal-form game

p2 = 0 p2 = 1 p2 = 2

p1 = 0 0 , 0 0 , 0.6 0 , 0.4
p1 = 1 0.6 , 0 0.1 , 0.1 0.03 , 0.13
p1 = 2 0.4 , 0 0.13 , 0.03 0.05 , 0.05

1.3.3 Power Control in Cellular Networks

This game is inspired by the problem of power control in cellular networks.
Game theoretical concepts are relevant for this problem and Nash equilibria are
actually used to describe rational behaviors of the agents [39, 40].

Consider the situation where a number of cellular telephones are emitting
over a cellular network. Each agent Ai, can choose the emitting power pi of
his phone. From the point of view of agent Ai, using a stronger power results
in a better transmission, but it is costly since it uses energy, and it lowers the
quality of the transmission for the others, because of interferences. The payoff
for player i can be modeled by this expression from [47]:

R

pi

(
1− e−0.5γi

)L
(1.1)

where γi is the signal-to-interference-and-noise ratio for player Ai, R is the rate
at which the wireless system transmits the information in bits per seconds and L
is the size of the packets in bits.

The interaction in this situation could be modeled by a normal-form game,
as is represented in Table 1.5 for two players, three possible levels of emission
and some arbitrary parameters. To play this game, players have to choose
independently what power they will use, and the corresponding cell in the table
gives the payoff for each of them. What would seem the best choice to maximize
the total payoff of the player would be p1 = p2 = 1. However, knowing that
player A1 is going to choose p1, player A2’s best response to maximize its own
payoff is to choose p2 = 2. A better model for this problem, can be given as a
repeated game, where at each step, each agent Ai can choose to increase or not
its emitting power pi. We will develop on this model in Section 2.1, Example 1.

1.3.4 Shared File System

We now take the example of a network file system. The problem occurs when
several users have to share a resource. Several users on client computers can
access the same files over a network, on a file server. The protocol for this file
system can integrate file locking, like for instance NFS version 4. This prevents
two clients accessing the same file at the same time. Such a protocol is said to
be stateful, this is illustrated in Figure 1.1 for one lock and two clients. From

13

the initial configuration, one of the client can lock a file, and until it is not
unlocked the file can not be accessed by others.

To perform some task, the clients access files on the system, and try to
minimize the time until their task is completed. By maintaining a lock on a file
they need later, they might lower the time necessary for their task, but this can
have the opposite effect for other clients. We have to organize the accesses, so
that clients are not tempted to act in an unpredicted way.

initiallocked by A1 locked by A2

A1 : lock A2 : lock

A1 : unlock A2 : unlock

Figure 1.1: A simple model of a shared file with one lock.

We will come back on this example in Section 2.1, Example 3.

1.4 Contribution

In this thesis we are interested in the existence and computation of Nash equi-
libria in games played on graphs. As several Nash equilibria may coexist, it is
relevant to look for particular ones. It is interesting to look for Nash equilibria
in pure strategies, since they can be implemented using deterministic programs.
It is also important to put constraints on the outcome of the equilibrium or
on its payoff. We can for instance ask for an equilibrium where all players get
their best payoff. Another constraint we allow, is on the actions used in the
equilibria. We will see that the complexity of these different decision problems
are closely related and lie most of the time in the same complexity classes.

Our approach consists in defining a transformation from multiplayer games
to two-player zero-sum turn-based games. The search of Nash equilibria can
now be seen as a antagonistic game in itself. Two-player zero-sum turn-based
games have been much studied in computer science and efficient algorithms
have been developed for synthesizing strategies, so that we can make use of
them. With this transformation in mind, we study the complexity of finding
Nash equilibria in finite concurrent games and treat classical objectives such
as reachability, safety and other regular objectives. We describe the precise
complexity class in which the problem lies for most of them. For instance, for
Büchi objectives we show a polynomial algorithm to find equilibria, whereas for
reachability objectives we show that the decision problems are NP-hard.

These classical objectives are only qualitative, since players can either win
or lose. To be more quantitative, we combine several objectives. We propose
several ways to order the possible outcomes according to these multiple objec-
tives. In general we use preorders, allowing to model some uncertainty about

14

the preferences of the players. To describe the preorders we use Boolean circuit.
We give an algorithm for the general case and analyze the complexity of some
preorders of interest.

Finally, to allow for a more faithful representation of embedded systems we
aim at analyzing timed games. We propose a transformation, based on regions,
from timed to finite concurrent games, preserving Nash equilibria under some
restriction on the allowed actions. We apply the techniques we developed so
far to the obtained game. Our most general decision problem is EXPTIME-
complete.

1.5 Related Works

Algorithmic game theory has dealt early with the problem of finding Nash equi-
libria in normal-form games. As they always exist if mixed strategies are allowed,
this cannot be formulated as a decision problem, instead it is also possible to look
at the problem as a search problem, Daskalakis, Goldberg and Papadimitriou
showed that the total search problem of Nash equilibrium is PPAD-complete [19].
One interesting question is whether there exists an equilibrium with a partic-
ular payoff, Gilboa and Zemel showed in 1989 that this question is NP-hard
for normal-form games [25]. Another interesting problem is whether there ex-
ists a pure Nash equilibrium, Gottlob, Greco and Scarcello showed that this is
NP-hard [27]. However these results consider a particular representation of the
game in normal-form that is more succinct than the standard one. By contrast,
in this work, we assume that the transition function of the game is given ex-
plicitly. For normal-form games, this means that the game is given as a matrix,
in that case the existence of a pure Nash equilibrium is polynomial. Moreover,
unlike normal-form games which are played in one shot, the games we consider
are repeated, and are played on graphs.

A repeated game is basically a normal-form game, that is repeated for an
infinite number of steps, each player receiving an instant reward at each step.
An important result in the theory of repeated games, known as a folk theorem,
is that any possible outcome can be an equilibrium given that all the players
receive a payoff above the minimal one they can ensure. This does not apply to
the context we study since our games have internal states and players do not
get instant reward. Instead their preferences depend on the sequence that is
obtained in the underlying graph.

In games played on graphs, the number of pure strategies is infinite, and
Nash theorem no longer applies. The study of equilibria in graph games started
by proving that in any turn-based game with Borel objectives, there exists a pure
Nash equilibrium [14, 50]. In stochastic games, for some states, the successor
is chosen randomly, according to a given probability distribution. In stochas-
tic games where players take their actions simultaneously and independently at
each step, Nash equilibria might not always exist. Instead, Chatterjee, Ma-
jumdar and Jurdziński showed that there are ε-Nash equilibrium for reachability
objectives [14] and any strictly positive ε. For quantitative objectives, in turn-

15

based games, Brihaye, Bruyère and De Pril showed the existence of equilibria,
in games where players aim at minimizing the number of steps before reaching
their objectives [10].

From the point of view of computer science, the existence of an equilibrium
is not enough, we are interested in the complexity of finding a particular one.
Ummels studied the complexity of Nash equilibria for classical objectives in
turn-based games. He showed that for Streett objectives the existence of Nash
equilibria with constraints on the payoff is NP-complete while it is polynomial
for Büchi objectives [49]. With Wojtczak, they showed that adding stochastic
vertices makes the problem of finding a pure Nash equilibrium undecidable [51].
In a more quantitative setting, they also studied limit-average objectives in con-
current games. For these games, the existence of a mixed Nash equilibrium with
a constraint on the payoff is undecidable, while it is NP-complete when looking
for pure Nash equilibria [52]. Klimos, Larsen, Stefanak and Thaarup, studied
the complexity of Nash equilibria in concurrent games where the objective is to
reach a state while minimizing some price. They show that the existence of a
Nash equilibrium is NP-complete [36]. It is to note that the model of concurrent
games we study is slightly more general in that players do not observe actions.
This is sometimes called imperfect monitoring and has been discussed in other
works [46, 18].

1.6 Outline

In Chapter 2, we define concurrent games which is the central model of games
we are going to study. Together with this, we define the decision problems we
are interested in: deciding if a player can ensure a given value, the existence
of a Nash equilibrium, and the existence of a Nash equilibrium satisfying some
constraints on its outcome and some constraints on the moves it uses. We also
prove some basic properties, in particular undecidability in the general case,
and possible translations from one decision problem to another.

In Chapter 3, we show how to transform a multiplayer concurrent game
into a turn-based two-player game called the suspect game. This fundamental
transformation relies on the central notion of suspect . We show that it is correct
in the sense that finding a Nash equilibrium in the original game can be done by
finding a winning strategy with some particular outcome in the suspect game.
We also define a notion of game-simulation based on suspects, which preserves
Nash equilibria.

In Chapter 4, we apply this transformation to finite games in order to de-
scribe the complexity of the different decisions problem, for classical objectives.

In Chapter 5, we extend this result to a more quantitative setting, where
each player has several objectives. We propose several ways to order the possi-
ble outcomes from these multiple objectives and analyze the complexity of the
different decision problems in each case.

In Chapter 6, we focus on timed games. We transform timed games into finite
concurrent games, making use of a refinement of the classical region abstraction.

16

We show a correspondence between Nash equilibria in the timed game and in
the region game, and then analyze the complexity of our decision problems.

17

Chapter 2

Concurrent Games

In this chapter, we define the model of concurrent games formally, we present
the concept of Nash equilibrium and the most relevant decision problems that
arise from this notion. Finally, We give some generic properties of these different
problems in the context of concurrent games.

2.1 Definitions

A concurrent game corresponds to a transition system, over which the decision
to go from one state to another is made jointly by players of the game. It is first
necessary to recall the essential vocabulary of transition systems and introduce
the notations we will use.

Transition systems. A transition system is a couple S = 〈States,Edg〉 where
States is a set of states and Edg ⊆ States × States is the set of transitions.
A path π in S is a sequence (si)0≤i<n (where n ∈ N+∪{∞}) of states such that
(si, si+1) ∈ Edg for all i < n−1. The length of π, denoted by |π|, is n−1. The set
of finite paths (also called histories) of S is denoted by HistS , the set of infinite
paths (also called plays) of S is denoted by PlayS , and PathS = HistS ∪PlayS is
the set of all paths of S. Given a path π = (si)0≤i<n and an integer j < n: the
j-th prefix of π, denoted by π≤j , is the finite path (si)0≤i<j+1; the j-th suffix ,
denoted by π≥j , is the path (sj+i)0≤i<n−j ; the j-th state, denoted by π=j , is the
state sj . If π = (si)0≤i<n is a history, we write last(π) = s|π| for the last state
of π. If π′ as a path such that (last(π), π′=0) ∈ Edg, then the concatenation π ·π′
is the path ρ s.t. ρ=i = π=i for i ≤ |π| and ρ=i = π′=(i−1−|π|) for i > |π|. In the

sequel, we write HistS(s), PlayS(s) and PathS(s) for the respective subsets of
paths starting in state s, i.e. the paths π such that π=0 = s. If π is a play,
Occ(π) = {s | ∃j. π=j = s} is the sets of states that appears at least once
along π and Inf(π) = {s | ∀i. ∃j ≥ i. π=j = s} is the set of states that appears
infinitely often along π.

18

Players have preferences over the possible plays, and in a multiplayer games,
this preferences are in general different for each player. In order to be as general
as possible, we describe these preferences as preorders over the possible plays.
We recall here, generic definitions concerning preorders.

Preorders. We fix a non-empty set P . A preorder over P is a binary rela-
tion . ⊆ P ×P that is reflexive and transitive. With a preorder ., we associate
an equivalence relation ∼ defined so that a ∼ b if, and only if, a . b and b . a.
The equivalence class of a, written [a]., is the set {b ∈ P | a ∼ b}. We also
associate with . a strict partial order ≺ defined so that a ≺ b if, and only if,
a . b and b 6. a. A preorder . is said total if, for all elements a, b ∈ P , either
a . b, or b . a. An element a in a subset P ′ ⊆ P is said maximal in P ′ if there
is no b ∈ P ′ such that a ≺ b; it is said minimal in P ′ if there is no b ∈ P ′

such that b ≺ a. A preorder is said Noetherian (or upwards well-founded) if any
subset P ′ ⊆ P has at least one maximal element. It is said almost-well-founded
if any lower-bounded subset P ′ ⊆ P has a minimal element.

We can define formally the games we are going to study.

Concurrent games [3]. A concurrent game is a tuple G = 〈States,Agt,Act,
Mov,Tab, (-A)A∈Agt〉, where:

• States is a non-empty set of states;

• Agt is a finite non-empty set of players;

• Act is a non-empty set of actions, an element of ActAgt is called a move;

• Mov: States × Agt → 2Act \ {∅} is a mapping indicating the available
actions to a given player in a given state, we say that a move mAgt =
(mA)A∈Agt is legal at s if mA ∈ Mov(s,A) for all A ∈ Agt;

• Tab: States×ActAgt → States is the transition table, it associates, with a
given state and a given move of the players, the state resulting from that
move;

• for each A ∈ Agt, -A is a preorder over Statesω, called the preference
relation of player A, when π -A π′, we say that π′ is at least as good as π
for A and when it is not the case (i.e., π 6-A π′), we say that A prefers π
over π′.

A finite concurrent game is a concurrent game whose set of state and actions
are finite.

In a concurrent game G, whenever we arrive at a state s, the players simulta-
neously select an available action, which results in a legal move mAgt; the next
state of the game is then Tab(s,mAgt). The same process repeats ad infinitum
to form an infinite sequence of states.

In the sequel, as no ambiguity will arise, we may abusively write G for its
underlying transition system 〈States,Edg〉 where Edg = {(s, s′) ∈ States ×

19

States | ∃mAgt ∈
∏
A∈Agt Mov(A). Tab(s,mAgt) = s′}. The notions of paths

and related concepts in concurrent games follow from this identification.

Example 1. As a first example, we aim at modeling the power control problem
described in Section 1.3.3. The arena on which the game is played is represented
in Fig. 2.1 for a simple instance with two players: Agt = {A1, A2}, and three
possible levels of emission. The set of states is States = [[0, 2]] × [[0, 2]], it cor-
responds to the current level of emission of the respective players: state (1, 0)
corresponds to player A1 using 1 unit of power and player A2 not emitting.
The two actions are to either increase one’s emitting power or to stick with the
current one: Act = {+, =}. Transitions are labeled with the moves that trig-
ger them, for instance there is a transition from (0, 0) to (1, 0) labeled by 〈+, =〉,
meaning that if player A1 choose action + and player A2 action =, the game goes
from (0, 0) to (1, 0): formally Tab((0, 0), (+, =)) = (1, 0). Allowed actions from a
state are deduced from the label on outgoing edges, for instance in (2, 2) the only
outgoing edge is labeled by 〈=, =〉, so Mov((2, 2), A1) = Mov((2, 2), A2) = {=}.
We do not define a preference relation yet, but in the following we will see many
practical ways to define these.

0, 0

0, 1

1, 0

0, 2

1, 1

2, 0

1, 2

2, 1

2, 2

=, +

+, =

+,
+

=, =

Figure 2.1: A simple game-model for the power control in a cellular network

Example 2. As a second example, we model the problem of medium access
control described in Section 1.3.2. The arena on which the game is played
is represented in Fig. 2.2 for a simplified instance with two players: Agt =
{A1, A2}. The set of states States = [[0, 2]]× [[0, 2]] corresponds to the number of
successful frames that players have transmitted so far, and assuming they have
a total of 2 frames to transmit. The two actions are to either transmit or wait:

20

0, 0

0, 1

1, 0

0, 2

1, 1

2, 0

1, 2

2, 1

2, 2

w, t

t, w

t, t

w, w

Figure 2.2: A simple game-model for the medium access control

Act = {t, w}. If the two players attempt to transmit at the same time then no
frame is received.

Example 3. As a third example, we model the problem of shared file system
described in Section 1.3.4. The arena on which the game is played is represented
in Fig. 2.3 for an instance with two players: Agt = {A1, A2} and two files F1

and F2 that are shared.

Strategies. Let G be a concurrent game, and A ∈ Agt. A strategy for A
maps histories to available actions, formally it is a function σA : HistG → Act
such that σA(π) ∈ Mov(last(π), A) for all π ∈ HistG . A strategy σP for a
coalition P ⊆ Agt is a tuple of strategies, one for each player in P . We write
σP = (σA)A∈P for such a strategy. A strategy profile is a strategy for Agt.

We write StratPG for the set of strategies of coalition P , and ProfG = StratAgt
G .

Outcomes. Let G be a game, P a coalition, and σP a strategy for P . A path π
is compatible with the strategy σP if, for all k < |π|, there exists a move mAgt

such that

1. mAgt is legal at π=k,

2. mA = σA(π≤k) for all A ∈ P , and

3. Tab(π=k,mAgt) = π=k+1.

We write OutG(σP) for the set of paths in G that are compatible with strat-
egy σP of P , these paths are called outcomes of σP . We write Outf

G(σP) (resp.

21

F1 locked by A1

F2 locked by A1

F1 locked by A1

F2 locked by A1

F1 locked by A1

F2 locked by A2

initial

F1 locked by A2

F2 locked by A1

F2 locked by A2

F1 locked by A2

F1 locked by A2

F2 locked by A2

lock F2,w

unlock F1, w w, lock F1

w, w

Figure 2.3: A game-model for a network file system.

Out∞G (σP)) for the finite (resp. infinite) outcomes, and OutG(s, σP), Outf
G(s, σP)

and Out∞G (s, σP) for the respective sets of outcomes of σP with initial state s.
Notice that any strategy profile has a single infinite outcome from a given state,
thus when given a strategy profile σAgt, we identify OutG(s, σAgt) with the
unique play it contains. When G is clear from the context we simply write
Out(s, σAgt) for OutG(s, σAgt).

Note that, unless explicitly mentioned, we only consider pure (i.e., non-
randomized) strategies. Notice also that strategies are based on the sequences
of visited states, and not on the sequences of actions played by the players. This
is realistic when considering multi-agent systems, where only the global effect
of the actions of the agents is assumed to be observable. This can be seen as a
special case of imperfect information.

Remark. We could also imagine that actions are partially observable, formally
given by function obs : Act 7→ O where O is a finite set of observations. In
this case, one solution is to encode the observations in the resulting state of the
transition: if the transition function is Tab in the game with partial observ-
ability, we define Tab′ by Tab′((s, oAgt),mAgt) = (Tab(s,mAgt), o

′
Agt) where

22

o′A = obs(mA) for all agent A. The size of the game resulting from this trans-
formation is polynomial in the size of the game with partial information. This
is because the successor states of (s, oAgt) do not depend on oAgt and their num-
ber is not bigger than the number of combinations of allowed actions, hence not
bigger than the transition table.

Being able to see (or deduce) the actions of the players, would make the
various computations easier. When we can infer from the transition that was
taken, the actions of all players, we call the game action-visible, formally this is
when Tab(s,mAgt) = Tab(s,m′Agt) if, and only if, mAgt = m′Agt. A particular
case of an action-visible game is the classical notion of turn-based game, a game
is said to be turn-based if for each state s the set of allowed moves is a singleton
for all but at most one player A, this player A is said to control that state,
and she chooses a possible successor for the current state, i.e. Act = States and
Tab(s,mAgt) = s′ if, and only if, mA = s′.

Example 4. For example, the game we used in Example 2 to model medium
access control, represented in Fig. 2.2, is not action-visible: if the game stays
in the same state, it is not possible to know if it is because both players have
waited or if it is because there was a collision when they tried to transmit. On
the other hand, the game of Example 2.1 modeling power control, is action-
visible since two different legal moves will always lead to two different states.
We give an example of a turn-based game in Fig. 2.4.

s0

s1

s2

s3

s4

s5

A1

A2

A3

Figure 2.4: A simple turn-based game. It is convenient to use a different repre-
sentation for this class of game: instead of labeling the edges with actions, we
denote below each state, which player is controlling that state, so in that case
player A1 controls state s0, player A2 controls state s1 and player A3 controls
state s2.

23

2.2 Value and Nash Equilibria

A concurrent game involving only two players (A and B, say) is zero-sum if, for
any two plays π and π′, it holds π -A π′ if, and only if, π′ -B π. Such a setting
is purely antagonistic, as both players have opposite preference relations. The
most relevant concept in such a setting is that of optimal strategies where one
player has to consider the strategy of the opponent that is the worst for her,
while trying to ensure the maximum possible with respect to her preference.
The minimum outcome she can get if she plays optimally is called her value.
This is a central notion in two-player games since the minimax theorem of Von
Neumann [53], but it is also applicable in the context of multi-player games.

Value. Give a game G, we say that a strategy σA for A ensures π from s if every
outcome of σA from s is at least as good as π for A, i.e. ∀π′ ∈ Out∞G (s, σA). π -A
π′. We also say that A can ensure π when such a strategy σA exists. A
value of game G for player A from a state s is a maximal element of the set
of paths that player A can ensure, i.e. it is a path π such that there is σA,
∀π′ ∈ Out(s, σA). π -A π′.

Remark. When preference relations are described by preorders, their might be
incomparable values. Consider for example the turn-based game whose arena is
represented in Fig. 2.4, and with a preference relation for player A1 given by the
preorder represented in Fig. 2.5. By choosing s1, A1 can ensure s0 · s1 · s4, and
by choosing s2 she can ensure s0 · s2 · s4, but she cannot ensure a path that is at
least as good as both: these are two incomparable values, which are s0 · s1 · s4

and s0 · s2 · s4.

s0 · s1 · s4 s0 · s2 · s4

s0 · s1 · s3

s0 · s2 · s5

Figure 2.5: An example of a preference relation for the arena of Fig. 2.4. There
is an edge π1 → π2 when π1 ≺ π2. With this preference relation, player A1 has
two incomparable values.

The decision problem associated to the notion of value is called the value
problem and is defined as follow:

Value problem: Given a game G, a state s of G, a player A and a play π, can
A ensure π from s (i.e. is there a strategy σA for player A such that for any
outcome ρ ∈ Out∞G (s, σA), it holds π -A ρ)?

24

In non-zero-sum games, optimal strategies are usually too restricted since
they consider that one player always plays against all the others. More relevant
concepts are equilibria, which correspond to strategies on which the players can
agree. One of the most studied notion of equilibria is Nash equilibria, in which
the strategy of any player is optimal assuming the strategy of the others are
fixed. We now introduce this concept formally.

Nash equilibria. Let G be a concurrent game and let s be a state of G. Given
a move mAgt and an action m′ for some player A, we write mAgt[A 7→ m′] for
the move nAgt with nB = mB when B 6= A and nA = m′. This is extended
to strategies in the natural way. A Nash equilibrium [44] of G from s is a
strategy profile σAgt ∈ ProfG such that for all players A ∈ Agt and all strategies

σ′ ∈ StratA:
Out(s, σAgt[A 7→ σ′]) -A Out(s, σAgt)

In that context σ′A is called a deviation due to A, and A is called a deviator .

π1 π2

Figure 2.6: The notion of improvement
for a non-total order.

s0

s1

s2

1,
0

0,
1

0, 0
1, 1

0, 0

0, 0

Figure 2.7: Example of a concurrent
game with no pure Nash equilibrium

Hence, Nash equilibria are strategy profiles where no single player has an
incentive to unilaterally deviate from her strategy.

Remark. The definition of Nash equilibria we have chosen, allows to model
uncertainty about the preferences of players, by giving a partial order for the
preferences. For instance for the preorder of Fig. 2.6, the fact that it is not
known whether the player prefers π1 or π2, is modeled by these two paths being
incomparable. We have to consider that π2 is a possible improvement of π1,
and also that π1 possibly improve π2. If we want this player to play a Nash
equilibrium whose outcome is π1 we have to ensure that if she changes her
strategy, the outcome will still be in the gray area. We can in fact notice that a
Nash equilibrium for a preference relations -Agt, is also a Nash equilibrium for

25

all preference relations which refine -Agt: formally -′ refines - if for all paths
π and π′, π - π′ implies π -′ π′; then if σAgt is a Nash equilibrium, then for all
player A and strategy σ′A: Out(s, σAgt[A 7→ σ′]) -A Out(s, σAgt), therefore if
-′A refines -A, Out(s, σAgt[A 7→ σ′]) -′A Out(s, σAgt), and σAgt is also a Nash
equilibrium if we replace the preference relation -Agt by -′Agt.

Remark. Although we restrict our strategy to pure strategies, a pure Nash
equilibrium is resistant to mixed strategies.

Remark. In concurrent games, when we restrict strategies to pure one there
might not always be a Nash equilibrium. For example, in the game represented
in Fig. 2.7 and called the matching pennies, we consider that player A1 prefers
to reach state s1 while player A2 prefers to reach state s2. If the strategies are
fixed, then one of the two players can change her strategy in order to reach the
state she prefers. Hence, starting from state s0, there is no Nash equilibrium
with pure strategies in that game.

Since they do not always exist, the basic question about Nash equilibria, is
whether there exist one in from given game. We will formulate this question as
a decision problem.

Existence problem: Given a game G and a state s in G, does there exist a
Nash equilibrium in G from s?

Deciding if there exists a Nash equilibrium, is often not enough, as several can
coexist and there might exist one that is better for everyone than some other.
Thus we refine the existence problem by adding constraints on the outcome.
For instance we can ask if there is a Nash equilibrium whose outcome is the
best for every player. The constraint on outcomes will be given by two plays
π−A and π+

A for each player A ∈ Agt, giving respectively a lower and an upper
bound for the desired outcome. When the outcome π of a strategy profile σAgt

satisfies π−A -A π -A π
+
A for all A ∈ Agt, we say that σAgt satisfies the outcome

constraint (π−A , π
+
A)A∈Agt.

Existence with constrained outcomes: Given a game G, a state s in G,
and two plays π−A and π+

A for each player A, does there exist a Nash equilib-
rium σAgt in G from s satisfying the outcome constraint (π−A , π

+
A)A∈Agt (i.e.

π−A -A Out(s, σAgt) -A π
+
A for all A ∈ Agt)?

In some situations, we also want to restrict the moves that are used by the
strategies of the equilibria. For design reason, we might want to restrict the
number of actions we are going to use, in order for the strategy to be simpler
to implement. But we still want to be resistant to actions outside of the one
we chose. The constraint on the move will be formally given by a function
Allow: (States × ActAgt) → {true, false}. When Allow(s,mAgt) = true we say
that the move mAgt is allowed in s. When a strategy profile σAgt is such that for
any history h, Allow(last(h), σAgt(h)) = true, we say that σAgt satisfy the move
constraint Allow. This leads to the decision problem with constrained moves:

26

Existence with constrained moves: Given a game G = 〈States,Agt,Act,
Mov,Tab, (-A)A∈Agt〉, a state s ∈ States, two plays π−A and π+

A for each playerA,

a function Allow: (States×ActAgt)→ {true, false}, does there exist a Nash equi-
librium σAgt in G from s satisfying the outcome constraint (π−A , π

+
A)A∈Agt and

the move constraint Allow (i.e. for any history h from s, Allow(last(h), σAgt(h)) =
true) ?

In the following when talking about the constrained existence problem, we
will refer to the existence with constrained moves which is the most general
problem. It is clear that if we can solve the existence with constrained move we
can also solve the existence with constrained outcome, and if we can solve the
existence with existence with constrained outcome we can solve the existence
problem.

When studying the complexity of this problem, we will restrict the func-
tions Allow given as input to the ones that are computable in polynomial time.
To ensure this we could for example ask for a function given by a Boolean
circuit. We now see an example of such a constraint Allow, we will also see
in Chapter 6, that this constraint is useful when interpreting timed games as
concurrent games, to decide the existence problem.

Example 5. In a real situation, involving several similar devices, it would be
more practical if all devices run the same program. When the situation is
modeled as a game, this means that the strategy should to be the same for all
players. Assuming they are synchronous, we can make use of the constraint on
moves. We enforce the restriction with the function defined by Allow(s,mAgt)
if and only if mA = mB for any players A,B ∈ Agt.

The complexity of all these decision problems heavily depends on what pre-
orders we allow for the preference relation and how they are represented. Even
for finite games, in their most general form, all these problems are undecidable,
as we prove in the next section.

2.3 Undecidability in Weighted Games

A weighted game is a standard concurrent game where preference for each
player A is given by a weight function costA : States 7→ Z. The accumulated cost
of play ρ is given by the sum of the weights: costA(ρ) =

∑
i≥0 costA(ρi). The

goal of the player is then to minimize the accumulated cost. Formally, for ρ and
ρ′ two plays, ρ -A ρ′ if, and only if, costA(ρ) is finite and costA(ρ) ≤ costA(ρ′)
or costA(ρ′) is infinite.

Theorem 2.1. The existence and constrained-existence problems are undecid-
able for weighted games.

Remark. The fact that the weights can be positive and negative is required in
this proof. If only positive costs were allowed, then the problem would be made
decidable and is in fact NP-complete [36].

27

q

C

u1 q′

A1

u0 q′′

B1

. . .

. . .

. . .

Figure 2.8: Testing whether c1 = 0.

Proof. We first prove the result for the constrained existence problem. We
encode the halting problem for two-counter machines into a turn-based weighted
game with 5 players. This problem is known to be undecidable. Without loss
of generality, we will assume that the two counters are reset to zero before the
machine halts. The value of counter c1 is encoded in the following way: if its
value is c1 for a given history of the two-counter machine, then the accumulated
cost for player A1 of the corresponding history is c1 − 1 and the accumulated
cost for B1 is −c1. Having two players for one counter will make it easy to test
whether it equals 0. Similarly to code the value of c2, we have one player A2

whose accumulated cost is equal to c2−1 and B2 whose accumulated cost is equal
to −c2. To initialize the value of the counter, we visit a state whose weight is −1
for A1 and A2 before going to the initial state. And we do the opposite in the
halting state so that in a normal execution the accumulated weight for all Ai and
Bi is 0. Incrementing counter ci, consists in visiting a state whose weight is 1 for
Ai and −1 for Bi, and vice versa for decrementing this counter. More precisely,
if instruction qk of the two-counter machine consists in incrementing ci and
jumping to qk′ , then the game will have a transition from state qk to a state pk
whose weight is given by costAi(pk) = 1, costBi(pk) = −1, and costA(pk) = 0
for a player A ∈ Agt \ {Ai, Bi}, and another transition from there to qk′ .

It remains to encode the zero-test, for this the game will involve an additional
player C, the aim of this player will be to reach the state corresponding to the
final state of the two-counter machine, this is encoded by giving a negative cost
for C to the state of the game corresponding to the final state of the two-counter
machine. The equilibrium we will ask for, is one where C reaches her goal, and
A1, A2, B1 and B2 gets an accumulated cost of 0. Now, a zero-test is encoded
by a module shown in Fig. 2.8. In this module, player C will try to avoid the
two sink states (marked in grey), since this would prevent her from reaching her

28

goal.
When entering the module, player C has to choose one of the available

branches: if she decides to go to u1, then A1 could take the play into the self-
loop, which is an improvement for her if her accumulated cost in the history is
below 0, which corresponds to having ci = 0; hence player C should play to u1

only if c1 6= 0, so that A1 will have no interest in going to this self-loop.
Similarly, if player C decides to go to u0, player B1 has the opportunity to

“leave” the main stream of the game, and go to the sink state. If the accumu-
lated cost for B1 is below 0 up to that point, corresponding to a value of c1
strictly positive, then B1 has the opportunity to play in the self-loop, and to
win. Conversely, when c1 = 0, B1 has no interest in playing in the self-loop since
her accumulated cost would be 0. Hence, if ci = 0 when entering the module,
then player C should go to u0.

One can then easily show that the 2-counter machine stops if, and only if,
there is a Nash equilibrium in the resulting game, in which player C reach her
goal and players A1, B1, A2 and B2 have an accumulated cost of 0. Indeed,
assume that the machine stops, and consider the strategies where player C plays
(in the first state of the test modules) according to the value of the correspond-
ing counter, and where players A1, B1, A2 and B2 always keep the play in
the main stream of the game. Since the machine stops, player C wins, while
players A1, B1, A2 and B2 get an accumulated cost of 0. Moreover, none of
them has a way to improve their payoff: since player C plays according to the
values of the counters, players A1 and A2 would not benefit from deviating from
their above strategies. Conversely, if there is such a Nash equilibrium, then in
any visited test module, player C always plays according to the values of the
counter ci: otherwise, player Ai (or Bi) would have the opportunity to win the
game. By construction, this means that the outcome of the Nash equilibrium
corresponds to the execution of the two-counter machine. As player C wins,
this execution reaches the final state.

We can prove hardness for the existence problem as well, by adding a module
as represented in Fig. 2.9. There exists a Nash equilibrium in this game if and
only if there is one where C reaches her goal in the turn-based game. We will
use the idea of this module several time in the following. In the next section,
we will provide a generic lemma that generalizes this idea.

�

2.4 General Properties

This section contains generic lemmas that we reuse several times later.

2.4.1 Nash Equilibria as Lasso Runs

We first characterize outcomes of Nash equilibria as ultimately periodic runs in
finite games.

29

A1/C

Copy of the
turn-based
game

〈1, 1
〉, 〈2

, 2〉

〈1, 2〉, 〈2, 1〉

costA1 = 1
costC = −1

Figure 2.9: Extending the game with an initial concurrent module

Lemma 2.2. Let s be a state of a finite game G. Assume that every player has
a preference relation which only depends on the set of states that are visited and
on the set of states that are visited infinitely often (in other terms, if Inf(ρ) =
Inf(ρ′) and Occ(ρ) = Occ(ρ′), then ρ ∼A ρ′ for every player A ∈ Agt).

If there is a Nash equilibrium with outcome ρ, then there is a Nash equilib-
rium with outcome ρ′ of the form π ·τω such that ρ ∼A ρ′, and where |π| and |τ |
are bounded by |States|2.

Proof. Let σAgt be a Nash equilibrium, and ρ be its outcome from s. We define
a new strategy profile σ′Agt, whose outcome from s is ultimately periodic, and
then show that σ′Agt is a Nash equilibrium from s.

To begin with, we inductively construct a history π = π0π1 . . . πn that is not
too long and visits precisely those states that are visited by ρ.

The initial state is π0 = ρ0 = s. Then we assume we have constructed
π≤k = π0 . . . πk which visits exactly the same states as ρ≤k′ for some k′. If all
the states of ρ have been visited in π≤k then the construction is over. Otherwise
there is an index i such that ρi does not appear in π≤k. We therefore define our
next target as the smallest such i: we let t(π≤k) = min{i | ∀j ≤ k. πj 6= ρi}.
We then look at the occurrence of the current state πk that is the closest to the
target in ρ: we let c(π≤k) = max{i < t(π≤k) | πk = ρi}. Then we emulate what
happens at that position by choosing πi+1 = ρc(π≤i)+1. Then πi+1 is either the
target, or a state that has already been seen before in π≤k, in which case the
resulting π≤k+1 visits exactly the same states as ρ≤c(π≤i)+1.

At each step, either the number of remaining targets strictly decreases, or
the number of remaining targets is constant but the distance to the next target
strictly decreases. Therefore the construction terminates. Moreover, notice
that between two targets we do not visit the same state twice, and we visit only
states that have already been visited, plus the target. As the number of targets
is bounded by |States|, we get that the length of the path π constructed thus

30

far is bounded by 1 + |States| · (|States| − 1)/2.

Using similar ideas, we now inductively construct τ = τ0τ1 . . . τm, which
visits precisely those states which are seen infinitely often along ρ, and which
is not too long. Let l be the least index after which the states visited by ρ are
visited infinitely often: l = min{i | ∀j ≥ i. ρj ∈ Inf(ρ)}. The run ρ≥l is such
that its set of visited states and its set of states visited infinitely often coincide.
We therefore define τ in the same way we have defined π above, but for play ρ≥l.
As a by-product, we also get c(τ≤k), for k < m.

We now need to glue π and τ together, and to ensure that τ can be glued to
itself, so that π · τω is a real run. We therefore need to link the last state of π
with the first state of τ (and similarly the last state of τ with its first state). This
possibly requires appending some more states to π and τ : we fix the target of π
and τ to be τ0, and apply the same construction as previously. The total length
of the resulting paths π and τ is bounded by 1 + (|States| − 1) · (|States|+ 2)/2
which less than |States|2.

We let ρ′ = π · τω, and abusively write c(ρ′≤k) for c(π≤k) if k ≤ |π| and
c(τ≤k′) with k′ = (k − 1 − |π|) mod |τ | otherwise. We now define our new
strategy profile, having ρ′ as outcome from s. Given a history h:

• if h followed the expected path, i.e., h = ρ′≤k for some k, we mimic the
strategy at c(h): σ′Agt(h) = σAgt(ρc(h)). This way, ρ′ is the outcome
of σ′Agt from s.

• otherwise we take the longest prefix h≤k that is a prefix of ρ′, and define
σ′Agt(h) = σAgt(ρc(h≤k) · h≥k+1).

We now show that σ′Agt is a Nash equilibrium. Assume that one of the play-
ers changes her strategy while playing according to σ′Agt: either the resulting
outcome does not deviate from π · τω, in which case the payoff of that player is
not improved; or it deviates at some point, and from that point on, σ′Agt follows
the same strategies as in σAgt. Assume that the resulting outcome is an im-
provement over ρ′ for the player who deviated. The suffix of the play after the
deviation is the suffix of a play of σAgt after a deviation by the same player. By
construction, both plays have the same visited and infinitely-visited sets. Hence
we have found an advantageous deviation from σAgt for one player, contradict-
ing that σAgt is a Nash equilibrium. �

2.4.2 Encoding Value as an Existence Problem with Con-
strained Outcomes

In the rest of the paper, we prove several hardness results for the constrained-
existence problem. Several of them can be inferred from the hardness of the
corresponding value problem, using the following lemma:

Lemma 2.3. Let G be a two-player zero-sum game. Assume that the two players
are A and B, and that the preference relation -A for player A is total, Noethe-
rian and almost-well-founded. Assume furthermore that G is determined, i.e.,

31

for all play π:

[∃σA. ∀σB . π -A Out(σA, σB)] ⇔ [∀σB . ∃σA. π -A Out(σA, σB)]

Let G′ be the (non-zero-sum) game obtained from G by replacing the preference
relation of player B by the one where all plays are equivalent. Then, for every
state s, for every play π from s, the two following properties are equivalent:

(i) there is a Nash equilibrium in G′ from s with outcome ρ such that π 6-A ρ;

(ii) player A cannot ensure π from s in G.

Under the hypotheses of this lemma, the constrained-existence problem is
then at least as hard as the complement of the value problem.

Proof. In this proof, σA and σ′A (resp. σB and σ′B) refer to player-A (resp. player-
B) strategies. Furthermore we will write Out(σA, σB) instead of OutG(s, (σA, σB)).

We first assume there is a Nash equilibrium (σA, σB) in G′ from s such
that π 6-A Out(σA, σB). Since -A is total, Out(σA, σB) ≺A π. Consider a
strategy σ′A of player A in G. As (σA, σB) is a Nash equilibrium, it holds that
Out(σ′A, σB) -A Out(σA, σB), which implies Out(σ′A, σB) ≺A π. We conclude
that condition (ii) holds.

Assume now property (ii). As the preference relation is Noetherian, we
can select π+ which is the largest element for -A which can be ensured by
player A. Let σA be a corresponding strategy: for every strategy σB , π+ -A
Out(σA, σB). Towards a contradiction, assume now that for every strategy σ′B ,
there exists a strategy σ′A such that π+ ≺A Out(σ′A, σ

′
B). Consider the set S of

such outcomes, and define π′ as its minimal element (this is possible since the
order -A is almost-well-founded). Notice then that π+ ≺A π′, and also that
for every strategy σ′B , there exists a strategy σ′A such that π′ -A Out(σ′A, σ

′
B).

Then, as the game is determined, we get that there exists some strategy σ′A
such that for all strategy σ′B , it holds that π′ -A Out(σ′A, σ

′
B). In particular,

strategy σ′A ensures π′, which contradicts the maximality of π+. Therefore,
there is some strategy σ′B for which for every strategy σ′A, π+ 6≺A Out(σ′A, σ

′
B),

which means Out(σ′A, σ
′
B) -A π+. We show now that (σA, σ

′
B) is a witness

for property (i). We have seen on the one hand that π+ -A Out(σA, σ
′
B), and

on the other hand that Out(σA, σ
′
B) -A π+. By hypothesis, π+ ≺A π, which

yields Out(σA, σ
′
B) ≺A π Pick another strategy σ′A for player A. We have seen

that Out(σ′A, σ
′
B) -A π+, which implies Out(σ′A, σ

′
B) -A Out(σA, σ

′
B). This

concludes the proof of (i). �

Remark. Note that any finite total preorder is also Noetherian and almost-well-
founded. Any total preorder isomorphic to the set of non-positive integers is
also Noetherian and almost-well-founded.

2.4.3 Encoding Value as an Existence Problem

We prove a similar result for the existence problem. In this reduction however,
we have to modify the game by introducing a truly concurrent move at the

32

s0

s1

s Copy of G

〈1,1
〉,〈2

,2〉

〈1,2〉,〈2,1〉

Figure 2.10: Extending game G with an initial concurrent module. The label
A1/C below the initial state, means that only the choices of these two players
matters for determining the next state. Therefore only the actions on A1 and
C are shown on the outgoing transitions.

beginning of the game. This is necessary since for turn-based games with ω-
regular winning conditions, there always exists a Nash equilibrium [14], hence
the existence problem would be trivial.

From a zero-sum game G, given a state s and a play π from s, we define a
game Gπ by adding two states s0 and s1. From s0, A and B play a matching-
penny game to either go to the sink state s1, or to the state s in the game G,
as shown in Fig. 2.10. We assume the same hypotheses than in Lem. 2.3 for
the preference relation -A. Let π+ be in the highest equivalence class for -A
smaller than π (it exists since -A is Noetherian). In Gπ, player B prefers runs
that end in s1: formally, the preference relation -πB of player B is given by
π′ -πB π′′ ⇔ π′′ = s0 · sω1 ∨ π′ 6= s0 · sω1 . On the other hand, player A prefers a
path of G over going to s1, if and only if, it is at least as good as π. Formally,
the preference relation -πA for player A is given by s0 ·π′ -πA s0 ·π′′ ⇔ π′ -A π′′,
and s0 · sω1 ∼′′A s0 · π+.

Lemma 2.4. Let G be a two-player zero-sum game (with players A and B);
we require moreover that G is determined, and that the preference relation -A
for player A is total, Noetherian and almost-well-founded. Pick a state s and a
play π in G from s, and consider the game Gπ defined above. Then the following
two properties are equivalent:

1. there is a Nash equilibrium in Gπ from s0;

2. player A cannot ensure π from s in G.

If the new preference relations are definable in the class of games that is
considered, the existence problem is then at least as hard as the complement of
the value problem.

Proof. Assume that player A cannot ensure at least π from s in G, then according
to Lemma 2.3, there is a Nash equilibrium (σA, σB) in the game G′ of Lemma 2.3
with outcome ρ such that π 6-A ρ. Consider the strategy profile (σπA, σ

π
B) in Gπ

that consists in playing the same action for both players in s0, and then if the

33

path goes to s, to play according to (σA, σB). Player B gets her best possible
payoff under that strategy profile. If A could change her strategy to get a payoff
better than s0 · π+, then it would induce a strategy in G′ giving her a payoff
better than ρ (when played with strategy σB), which contradicts the fact that
(σA, σB) is a Nash equilibrium in G′. Therefore, (σπA, σ

π
B) is a Nash equilibrium

in Gπ.
Conversely, assume that A can ensure π from s in G, and assume towards

a contradiction that there is a Nash equilibrium (σπA, σ
π
B) in Gπ from s0. Then

Out(σπA, σ
π
B) does not end in s1, otherwise player A could improve by switching

to s and then playing according to a strategy which ensures π. Also, Out(σπA, σ
π
B)

cannot end in G either, otherwise player B would improve by switching to s1.
We get that there is no Nash equilibrium in Gπ from s0, which concludes the
proof. �

2.4.4 Encoding the Existence Problem with Constrained
Outcome as an Existence Problem

s0 Ai/Aj

s1

s Copy of G

〈1,1〉,〈2,2〉

〈1,2〉,〈2,1〉

Figure 2.11: Extending game G with an initial concurrent module, to obtain
game E(G, Ai, Aj , ρ).

The next lemma makes a link between the existence of a Nash equilibrium
where a player Ai gets a payoff above some bound and the (unconstrained)
existence of a Nash equilibrium in a new game E(G, Ai, Aj , ρ), where ρ is a play
in G.

The construction is similar to the previous one, for two selected players:
given a concurrent game G, a state s, a play ρ from s, and two distinct players Ai
and Aj , we define the game E(G, Ai, Aj , ρ) by adding two states s0 and s1 as
in Fig. 2.11. In s0, the two players Ai and Aj play a matching-penny game to
either go to the sink state s1, or to state s in the game G.

For player Aj , the preference relation is given by -′Aj
such that s0 · sω1 ≺′Aj

s0 · π and s0 · π -′Aj
s0 · π′ ⇔ π -Aj

π′ for any path π and π′ of G. For player

Ai the preference relation is s0 · π -′Ai
s0 · π′ ⇔ π -Ai

π′, for any path π and
π′ of G, and s0 · sω1 ∼Ai

s0 · ρ. For any other player Ak, the preference relation
is given by s0 · π -′Ak

s0 · π′ ⇔ π -Ak
π′ for any path π and π′ in G, and

s0 · sω1 ∼Ak
s0 · ρ.

34

Lemma 2.5. For any Nash equilibrium in G whose outcome π is such that
ρ -Ai π, there is a Nash equilibrium in E(G, Ai, Aj , ρ) whose outcome is s0 · π.
Reciprocally, for any Nash equilibrium in E(G, Ai, Aj , ρ), its outcome s0 · π is
such that ρ -Ai

π and there is a Nash equilibrium in G whose outcome is π.

Proof. Assume that there is a Nash equilibrium (σA)A∈Agt in G with outcome
π such that ρ -Ai

π. Then s0 · sω1 -′Ai
s0 · π. Consider the strategy profile in

E(G, Ai, Aj , ρ) that consists for Ai and Aj in playing different actions in s0 and
when the path goes to s, to play according to (σA)A∈Agt. Players Ai and Aj
have no interest in changing their strategies in s0, since for Aj all plays of G are
better than s0 · sω1 , and for Ai the play s0 · π is better than s0 · sω1 . Hence, this
is a Nash equilibrium in game E(G, Ai, Aj , ρ).

Reciprocally, if there is a Nash equilibrium in E(G, Ai, Aj , ρ), its outcome
cannot end in s1, since Aj would have an interest in changing her strategy in
s0 (all plays of G are then better for her). The strategies followed from s thus
defines a Nash equilibrium in G. �

If the new preference relations are definable in the class of games that is
considered, the existence problem is then at least as hard as the constrained
existence problem. Note however that the reduction assumes lower bounds on
the payoffs, and we do not have a similar result for upper bounds on the payoffs.
For instance, as we will see in Part II of the paper, for a conjunction of Büchi
objectives, we do not know whether the existence problem is in P (as the value
problem) or NP-hard (as is the existence of an equilibrium where all the players
are losing).

35

Chapter 3

The Suspect Game

In this chapter, we show how, from a multiplayer game G, we can construct a
two-player zero-sum game H, such that there is a correspondence between Nash
equilibria in G and winning strategies in H. This transformation is conceptually
much deeper than the reductions given in Section 2.4. It will allow us to use
algorithmic techniques from zero-sum games to solve our problems.

For this chapter, we fix a game G = 〈States,Agt,Act,Mov,Tab, (-A)A∈Agt〉.

3.1 The Suspect Game Construction

We begin with introducing a few extra definitions.

Trigger strategy. A strategy profile σAgt is a trigger strategy for an infinite
path π from some state s if, for any strategy σ′A of any player A ∈ Agt,
the path π is at least as good as the outcome of σAgt[A 7→ σ′A] from s (that is,
Out(s, σAgt[A 7→ σ′A]) -A π).

The following result is a direct consequence of the definition:

Lemma 3.1. A Nash equilibrium is a trigger strategy for its outcome. Recipro-
cally, if σAgt is a trigger strategy for its outcome, then it is a Nash equilibrium.

We now define the central notion of suspect player. In Nash equilibria,
players have to prevent deviators from improving their outcome. As our game
are not necessarily action-visible, by observing the sequence of states, it is not
always possible to know which player is responsible for the deviation. The
suspect set represent the possible identity of the deviator.

Suspects. Given two states s and s′, and a move mAgt, the set of suspect players
for (s, s′) and mAgt is the set

Susp((s, s′),mAgt) = {A ∈ Agt | ∃m′ ∈ Mov(s,A). Tab(s,mAgt[A 7→ m′]) = s′}.

36

Given a play ρ and a strategy profile σAgt, the set of suspect players for ρ
and σAgt is the set of players that are suspect along each transition of ρ, i.e.,
it is the set

Susp(ρ, σAgt) =
{
A ∈ Agt

∣∣∣ ∀i < |ρ| . A ∈ Susp
(
(ρ=i, ρ=i+1), σAgt(ρ≤i)

)}
.

Intuitively, player A ∈ Agt is a suspect for transition (s, s′) and move mAgt

if she can unilaterally change her action to activate the transition from s to s′.
Obviously, if Tab(s,mAgt) = s′, then Susp((s, s′),mAgt) = Agt. Similarly, we
easily infer that player A is in Susp(ρ, σAgt) if, and only if, there is a strategy σ′A
such that Out(s, σAgt[A 7→ σ′A]) = ρ.

Example 6. As an example, consider the simple game model for medium ac-
cess control that we gave in Example 2. From state s = (0, 0), we consider
the move (mA1

,mA2
) = (w, w). For state s′ = (1, 0), A1 is suspect since she

can change her action to m′A1
= t so that the next state is s′; A2 is not sus-

pect because if she changes her action the new state would be (0, 1). Hence
Susp((s, s′), (w, w)) = {A1}. Notice that if s′ = (0, 0) then both player are sus-
pect because they can stick to the same action: m′A = mA and the transition
will be triggered since it is the natural outcome for (mA1

,mA2
). On the con-

trary if s′ = (1, 1) then nobody is suspect since there is no transition from s to
s′. Now consider another move (mA1

,mA2
) = (t, w), the natural next state for

this move from s is (1, 0) but if A1 changes her action to w or if A2 changes her
action to t the next state would be (0, 0), therefore both player are suspect for
the transition (0, 0)→ (0, 0), hence Susp(((0, 0), (0, 0)), (t, w)) = {A1, A2}.

Suspect game. With a game G, an infinite path π and a constraint Allow on the
moves, we associate a two-player turn-based game H(G, π,Allow). We simply
write H when G, π and Allow are clear from the context. The players in H are
named Eve and Adam. SinceH is turn-based, its state space can be written as the
disjoint union of the set V∃ controlled by Eve, which is (a subset of) States×2Agt,
and the set V∀ controlled by Adam, which is (a subset of) States×2Agt×ActAgt.
The game is played in the following way:

1. from a configuration (s, P) in V∃, Eve chooses a legal move mAgt from s
such that Allow(s,mAgt) = true;

2. the next state is (s, P,mAgt);

3. then Adam chooses some state s′ in States;

4. the new state is (s′, P ∩ Susp((s, s′),mAgt)).

These four steps are repeated to form an infinite path in H. When the state s′

chosen by Adam in step 3, is such that s′ = Tab(s,mAgt), we say that Adam

obeys Eve. When this is the case, the new configuration in step 4 is (s′, P).
We define projections π1 and π2 from V∃ on States and 2Agt, resp., by

π1(s, P) = s and π2(s, P) = P . We extend these projections to plays in a

37

natural way (but only using Eve’s states in order to avoid stuttering), letting
π1((s0, P0) · (s0, P0,m0) · (s1, P1) · · ·) = s0 · s1 · · · . For any play ρ, π2(ρ) (seen
as a sequence of sets of players of G) is non-increasing, therefore its limit L(ρ)
is well defined. We notice that if L(ρ) 6= ∅, then π1(ρ) is a real infinite path
in G. An outcome ρ is winning for Eve , if for all A ∈ L(ρ), it holds π1(ρ) -A π.
The winning region W (G, π,Allow) (later simply denoted by W when G, π and
Allow are clear from the context) is the set of configurations of H(G, π,Allow)
from which Eve has a winning strategy.

Intuitively Eve tries to have the players play a Nash equilibrium constrained
by Allow, and Adam tries to disprove that it is a Nash equilibrium, by finding a
possible deviation that improves the payoff of one of the players.

At first sight, the number of states in H is exponential (in the number of
players of G). However, there are two cases for which we easily see that the
number of states of H is actually only polynomial:

• if there is a state in which all the players have several possible moves, then
the transition table (which is part of the input [38]) is also exponential in
the number of players;

• if the game is turn-based, then the transition table is “small”, but either
all the players are suspect or there is at most one suspect player, so that
the number of reachable states in H is also small.

We now prove that this can be generalized:

Lemma 3.2. The number of reachable configurations from States×{Agt} in H
is polynomial in the size of G.

Proof. The game H contains the state (s,Agt) and the states (s,Agt,mAgt),
where mAgt is a legal and allowed move from s; the number of these states
is bounded by |States|+ |Tab|. The successors of those states that are not of
the same form, are the (t,Susp((s, t),mAgt)) with t 6= Tab(s,mAgt). If some
player A ∈ Agt is a suspect for transition (s, t), then besides mA, she must have
at least a second action m′, for which Tab(s,mAgt[A 7→ m′]) = t. Thus the
transition table from state s has size at least 2|Susp((s,t),mAgt)|. The successors of
(t,Susp((s, t),mAgt)) are of the form (t′, P) or (t′, P,mAgt) where P is a subset of
Susp((s, t),mAgt); there can be no more than (|States|+ |Tab|) ·2|Susp((s,t),mAgt)|

of them, which is bounded by (|States| + |Tab|) · |Tab|. The total number of
reachable states is then bounded by (|States|+ |Tab|) · (1 + (|States|+ |Tab|) ·
|Tab|). �

3.2 Relation Between Trigger Strategies and Win-
ning Strategies of the Suspect Game

The next two lemmas state the correctness of our construction, establishing a
correspondence between winning strategies in H and Nash equilibria in G.

38

Lemma 3.3. Let π and ρ be two infinite paths in G and Allow a constraint on
the moves. The following two conditions are equivalent:

• Eve has a winning strategy in H(G, π,Allow) from (s,Agt), and its out-
come ρ′ from s when Adam obeys Eve is such that π1(ρ′) = ρ;

• there is a trigger strategy σAgt for π in G from state s whose outcome
from s is ρ, and that satisfies the move constraint Allow.

Proof. Assume there is a winning strategy σ∃ for Eve in H from (s,Agt), whose
outcome from s when Adam obeys Eve is ρ′ with π1(ρ′) = ρ. We define the
strategy profile σAgt according to the actions played by Eve. Pick a history g =
s1s2 · · · sk+1, with s1 = s. Let h be the outcome of σ∃ from s ending in a
state of V∃ and such that π1(h) = s1 · · · sk. This history is uniquely defined as
follows: the first state of h is (s1,Agt), and if its (2i+1)-st state is (si, Pi), then
its (2i+ 2)-nd state is (si, Pi, σ

∃(h≤2i+1)) and its (2i+ 3)-rd state is (si+1, Pi ∩
Susp((si, si+1), σ∃(h≤2i+1))). Now, write (sk, Pk) for the last state of h, and
let h′ = h · (sk, Pk, σ∃(h)) · (sk+1, Pk ∩ Susp((sk, sk+1), σ∃(h))). Then we define
σAgt(g) = σ∃(h′). Notice that when g ·s is a prefix of π1(ρ′), then g ·s ·σAgt(g ·s)
is also a prefix of π1(ρ′). In particular, Out(s, σAgt) = π1(ρ′) = ρ. Notice also,
that in every case Allow(last(h), σAgt(h)) = true, so that σAgt satisfies the move
constraint.

We now prove that σAgt is a trigger strategy for π. Pick a player A ∈ Agt,
a strategy σ′A for player A, and let g = Out(s, σAgt[A 7→ σ′A]). With an infinite
play g, we associate an infinite play h in H in the same way as above. Then
player A is a suspect along all the transitions of g, so that she belongs to L(h).
Now, as σ∃ is winning, π1(h) -A π, which proves that σAgt is a trigger strategy.

Conversely, assume that σAgt is a trigger strategy for π whose outcome is ρ,
and define the strategy σ∃ by σ∃(h) = σAgt(π1(h)), this is a correct strategy for
Eve, since we assume that σAgt satisfies the move constraint Allow. Notice that
the outcome ρ′ of σ∃ when Adam obeys Eve satisfies π1(ρ′) = ρ.

Let η be an outcome of σ∃ from s, and A ∈ L(η). Then A is a suspect for
each transition along π1(η), which means that for all i, there is a move mA

i such
that

π1(η=i+1) = Tab(π1(η=i), σAgt(π1(η≤i))[A 7→ mA
i]).

Therefore there is a strategy σ′A such that π1(η) = Out(s, σAgt[A 7→ σ′A]). Since
σAgt is a trigger strategy for π, it holds that π1(η) -A π. As this holds for
any A ∈ L(η), σ∃ is winning. �

Theorem 3.4. Let ρ be an infinite path in G. The following two conditions are
equivalent:

• there is a path ρ′ from (s,Agt) in H(G, ρ,Allow),

1. along which Adam always obeys Eve;

2. such that π1(ρ′) = ρ; and

39

3. such that for all index i, there is a strategy σi∃ for Eve, for which any
play in ρ′≤i ·Out(ρ′=i, σ

i
∃) is winning for Eve;

• there is a Nash equilibrium σAgt from s in G whose outcome is ρ and that
satisfies the move constraint Allow.

Proof. Let ρ′ be a path in H(G, π,Allow) and assume it satisfies all three condi-
tions. We define a strategy λ∃ that follows ρ′ when Adam obeys. Along ρ′, this
strategy is defined as follows: λ∃(ρ′≤2i) = mAgt such that Tab(π1(ρ′=i),mAgt) =
π1(ρ′=i+1). Such a legal and allowed move must exist since Adam obeys Eve

along ρ′ by condition 1 and Eve only plays allowed moves. Now, if Adam devi-
ates from the obeying strategy (at step i), we make λ∃ follow the strategy σi∃
(given by condition 3), which will ensure that the outcome is winning for Eve.

The outcomes of σ∃ are then either the path ρ′, or a path ρ′′ obtained
by following a winning strategy after a prefix of ρ′. The path ρ′′ is losing
for Adam, hence for all A ∈ L(ρ′), ρ′′ -A ρ′. This proves that σ∃ is a winning
strategy. Applying Lemma 3.3, we obtain a strategy profile σAgt in G that is a
trigger strategy for π, and which satisfies the move constraint Allow. Moreover,
the outcome of σAgt from s is π1(ρ′) (using condition 2), so that σAgt is a Nash
equilibrium.

Conversely, the Nash equilibrium is a trigger strategy, and as it satisfies the
move constraint Allow, from Lemma 3.3 we get a winning strategy σ∃ in H.
The outcome ρ′ of σ∃ from s when Adam obeys Eve is such that ρ = π1(ρ′)
is the outcome of the Nash equilibrium. Now for all prefix ρ′≤i, the strategy

σi∃ : h 7→ σ∃(ρ′≤i · h) is such that any play in ρ′≤i · Out(ρ′=i, σ
1
i) is winning for

A1. �

Remark. Assume the preference relations of each player A in G are prefix-
independent, i.e., for all plays ρ and ρ′, ρ -A ρ′ if, and only if, for all in-
dices i and j, ρ≥i -A ρ′≥j . Then the winning condition of Eve is also prefix-
independent, and condition 3 just states that ρ′ has to stay within the winning
region of Eve.

Example 7. We depict part of the suspect game for the game of Figure 2.1
with a constraint on move that impose that the player plays the same actions:
Allow(s,mAgt) = true if mA1 = mA2 . Note that the structure of H(G, ρ,Allow)
does not depend on ρ. Only the winning condition is affected by the choice of ρ.

3.3 Game Simulation

The notion of suspect is central for our study of Nash equilibria. Based on
this concept, we introduce the notion of game simulation. We now define this
concept of game simulation and prove that it has the expected properties. We
will then show that is has the property that when G′ game-simulates G, then

40

(0, 0), {A1, A2}

(0, 0), {A1, A2}, 〈+, +〉

(0, 0), {A1, A2}, 〈=, =〉

(1, 1), {A1, A2}

(0, 1), {A1}

(1, 0), {A2}

(0, 1), {A2}

(1, 0), {A1}

Eve

Adam

Adam

Eve

Eve

Eve

Eve

Eve

. . .

. . .

. . .

. . .
. . .

. . .

. . .

. . .

. . .

. . .

Figure 3.1: A part of a suspect game for our simple model of power control.
Dashed transitions correspond to Adam not obeying Eve. States where the set of
suspects is empty, i.e. P = ∅, are not represented, since these states are always
winning for Eve, it is never interesting for Adam to choose such a state.

a Nash equilibrium in the latter game gives rise to a Nash equilibrium in the
former one.

Game simulation. Consider two games G = 〈States,Agt,Act,Mov,Tab, (-A
)A∈Agt〉 and G′ = 〈States′,Agt,Act′,Mov′,Tab′, (-′A)A∈Agt〉 with the same set Agt

of players, and a constraint on moves in each game: Allow: (States×ActAgt)→
{true, false}, Allow′ : (States′×Act′

Agt
)→ {true, false}. A relation / ⊆ States×

States′ is a game simulation between G and G′ with respect to Allow and Allow′,
if s / s′ implies that for each allowed move mAgt in G there exists an allowed
move m′Agt in G′ such that

1. Tab(s,mAgt) / Tab′(s′,m′Agt), and

2. for each t′ ∈ States′ there exists t ∈ States with t / t′ and
Susp((s′, t′),m′Agt) ⊆ Susp((s, t),mAgt).

If / is a game simulation and s0 / s
′
0, we say that G′ game-simulates (or simply

simulates) G with respect to the constraints Allow and Allow′. When there are
two paths ρ and ρ′ such that ρ=i / ρ

′
=i for all i ∈ N, we will simply write ρ / ρ′.

41

A game simulation / is preference-preserving from (s0, s
′
0) ∈ States×States′

if for all ρ1, ρ2 ∈ s0 · Statesω and ρ3, ρ4 ∈ s′0 · Statesω with ρ1 / ρ3 and ρ2 / ρ4,
for all A ∈ Agt it holds that ρ1 -A ρ2 if, and only if, ρ3 -A ρ4.

As we show now, Nash equilibria are preserved by game simulation, in the
following sense:

Proposition 3.5. Let G and G′ be two games involving the same players. Fix
two states s0 and s′0 in G and G′ respectively and a constraint on moves in each

game: Allow: (States × ActAgt) → {true, false}, Allow′ : (States′ × Act′
Agt

) →
{true, false}. Assume that / is a preference-preserving game simulation from
(s0, s

′
0) with respect to the constraints Allow and Allow′. If there exists a

Nash equilibrium σAgt in G from s0 which respects the move constraint Allow,
then there exists a Nash equilibrium σ′Agt in G′ from s′0 with OutG(s0, σAgt) /

OutG′(s′0, σ
′
Agt), which respects the move constraint Allow′.

Proof. We fix a strategy profile σAgt in G which respect constraint Allow and
ρ the outcome of σAgt from s0. We derive a strategy profile σ′Agt in G′ which
respect constraint Allow and its outcome ρ′ from s′0, is such that:

(a) for every ρ′ ∈ PlayG′(s
′
0), there exists ρ ∈ PlayG(s0) s.t. ρ / ρ′ and

Susp(ρ′, σ′Agt) ⊆ Susp(ρ, σAgt);

(b) ρ / ρ′.

Assume we have done the construction, and that σAgt is a Nash equilibrium
in G. We prove that σ′Agt is a Nash equilibrium in G′. Towards a contradic-
tion, assume that some player A has a strategy σ′A in G′ for which she prefers
ρ′ = OutG′(s′, σ′Agt[A 7→ σ′A]) over ρ′. Note that A ∈ Susp(ρ′, σ′Agt). Apply-
ing (a) above, there exists ρ ∈ PlayG(s0) such that ρ / ρ′ and Susp(ρ′, σ′Agt) ⊆
Susp(ρ, σAgt). In particular, A ∈ Susp(ρ, σAgt), and there exists a strategy
σA for A such that ρ = OutG(s0, σAgt[A 7→ σ]). As ρ / ρ′ (by (b)) and / is
preference-preserving from (s0, s

′
0), ρ is preferred by player A over ρ, which

contradicts the fact that σAgt is a Nash equilibrium. Hence, σ′Agt is a Nash
equilibrium in G′ from s′0.

It remains to show how we construct σ′Agt (and ρ′). We first build ρ′ induc-
tively, and define σ′Agt along that path.

• initially, we let ρ′=0 = s′0. Since / is a game simulation containing (s0, s
′
0),

we have s0 / s′0, and there is an allowed move m′Agt associated with
σAgt(s0) compels with the definition of a game simulation. Then ρ=0 /
ρ′=0, and Susp(ρ′=0, σ

′
Agt(ρ

′
=0)) ⊆ Susp(ρ=0, σAgt(ρ=0)).

• assume we have built ρ′≤i and σ′Agt on all the prefixes of ρ′≤i, and that
they are such that ρ≤i / ρ′≤i and Susp(ρ′≤i, σ

′
Agt) ⊆ Susp(ρ≤i, σAgt) (no-

tice that Susp(ρ′≤i, σ
′
Agt) only depends on the value of σ′Agt on all the

prefixes of ρ≤i). In particular, we have ρ=i / ρ′=i, so that with the
move σAgt(ρ≤i), we can associate an allowed move m′Agt (to which we

42

set σ′Agt(ρ
′
≤i)) satisfying both conditions of the definition of a game sim-

ulation. This defines ρ′=i+1 in such a way that ρ≤i+1 / ρ
′
≤i+1; moreover,

Susp(ρ′≤i+1, σ
′
Agt) = Susp(ρ′≤i, σ

′
Agt) ∩ Susp((ρ′=i, ρ

′
=i+1),m′Agt) is indeed

a subset of Susp(ρ≤i+1, σAgt).

It remains to define σ′Agt outside its outcome ρ′. Notice that, for our purposes,
it suffices to define σ′Agt on histories starting from s′0. We again proceed by
induction on the length of the histories, defining σ′Agt in order to satisfy (a) on
prefixes of plays of G′ from s′0. At each step, we also make sure that for every
h′ ∈ HistG′(s′0), there exists h ∈ HistG(s) such that h / h′, Susp(h′, σ′Agt) ⊆
Susp(h, σAgt), and σAgt(h) and σ′Agt(h

′) satisfy the conditions of the definition
of a game simulation in the last states of h and h′, resp.

As we only consider histories from s′0, the case of histories of length zero
was already handled. Assume we have defined σ′Agt for histories h′ of length i,
and fix a new history h′ · t′ ∈ HistG′(s′0) of length i + 1 (that is not a pre-
fix of ρ). By induction hypothesis, there is h ∈ HistG(s0) such that h / h′,
and Susp(h′, σ′Agt) ⊆ Susp(h, σAgt), and σAgt(h) and σAgt(h

′) satisfy the re-
quired properties. In particular, with t′, we can associate t s.t. t / t′ and
Susp((last(h′), t′), σ′Agt(h

′)) ⊆ Susp((last(h), t), σAgt(h)). Then (h · t) / (h′ · t′).
Since t / t′, there is an allowed move m′Agt associated with σAgt(h·t) and satisfy-
ing the conditions of the definition of a game simulation. Letting σ′Agt(h

′ · t′) =
m′Agt, we fulfill all the requirements of our induction hypothesis.

We now need to lift the property from histories to infinite paths. Consider a
play ρ′ ∈ PlayG′(s

′
0), we will construct a corresponding play ρ in G. Set ρ0 = s0.

If ρ has been defined up to index i and ρi / ρ
′
i (this is true for i = 0), thanks to

the way σ′Agt is constructed, σAgt(ρ≤i) and σ′Agt(ρ
′
≤i) satisfy the conditions of

the definition of a game simulation in ρ≤i and ρ′i, respectively. We then pick ρi+1

such that ρi+1 / ρ
′
i+1 and Susp((ρi, ρi+1), σAgt(ρi)) ⊆ Susp((ρ′i, ρ

′
i+1), σ′Agt(ρ

′
i)).

This being true at each step, the path ρ that is obtained, is such that ρ / ρ′ and
Susp(ρ′, σ′Agt) ⊆ Susp(ρ, σAgt). Which is the desired property. �

43

Chapter 4

Single objectives

In this chapter, we restrict our study to finite concurrent game. We aim at
precisely describing the complexity of the Nash equilibria problems for simple
preference relations, defined by a single (ω-regular) objectives. These prefer-
ences are purely qualitative since for one player, a play is either winning or
losing. We will see how to use the suspect game construction in order to solve
the existence problem with constrained moves in this context.

4.1 Specification of the Objectives

We fix a game G = 〈States,Agt,Act,Mov,Tab, (-A)A∈Agt〉 for the rest of the
section. Each preference relation -A will be given as a single objective. An ob-
jective (or winning condition) is an arbitrary set of plays. If ΩA is the objective
for player A, the preference relation -A is defined by: ρ -A ρ′ if and only if
ρ′ ∈ ΩA (we say that ρ′ is winning for A) or ρ 6∈ ΩA (we say that ρ is losing for
A). An objective Ω can be specified in various ways. We focus on the following
standard ones:

• A reachability objective is given by a target set T ⊆ States, the corre-
sponding set of plays is Ω = {ρ ∈ Play | Occ(ρ) ∩ T 6= ∅};

• A safety objective is given by a target set T ⊆ States, the corresponding
set of plays is Ω = {ρ ∈ Play | Occ(ρ) ∩ T = ∅};

• A Büchi objective is given by a target set T ⊆ States, the corresponding
set of plays is Ω = {ρ ∈ Play | Inf(ρ) ∩ T 6= ∅};

• A co-Büchi objective is given by a target set T ⊆ States, the corresponding
set of plays is Ω = {ρ ∈ Play | Inf(ρ) ∩ T = ∅};

• A parity objective is given by a priority function p : States 7→ [[0, d]] with
d ∈ N, the corresponding set of plays is Ω = {ρ ∈ Play | min(Inf(p(ρ))) is even};

• A Streett objective is given by a tuple (Qi, Ri)i∈[[1,k]], the corresponding
set of plays is Ω = {ρ ∈ Play | ∀i. Inf(ρ) ∩Qi 6= ∅⇒ Inf(ρ) ∩Ri 6= ∅};

44

• A Rabin objective is given by a tuple (Qi, Ri)i∈[[1,k]], the corresponding set
of plays is Ω = {ρ ∈ Play | ∃i. Inf(ρ) ∩Qi 6= ∅ ∧ Inf(ρ) ∩Ri = ∅};

• A Muller objective is given by a coloring function c : States 7→ C, and a set
F ⊆ 2C , the corresponding set of plays is Ω = {ρ ∈ Play | Inf(c(ρ)) ∈ F};

• A circuit objective is given by a Boolean circuit C with the set States
as input nodes and one output node. A play ρ is winning if and only
if C evaluates to true when states in Inf(ρ) are set to true and all other
states are set to false. Figure 4.1 displays an example of a circuit for the
game of Figure 2.4;

s0 s1 s2 s3 s4 s5

¬

∨

¬

∨

∧

Figure 4.1: Example of a Boolean circuit defining a winning condition for the
arena presented in Example 4. The winning condition defined is that if s1

appears infinitely often then s3 also appears infinitely often, and if s2 appears
infinitely often then s4 also does.

• A deterministic Büchi automaton objective is given by a deterministic
Büchi automaton 〈Q,Σ, δ, q0, R〉, with Σ = States. Then Ω = L(A).

• A deterministic Rabin automaton objective is given by a deterministic
Rabin automaton 〈Q,Σ, δ, q0, (Ei, Fi)i∈[[1,k]]〉, with Σ = States. Then Ω =
L(A).

The value problem has standard solutions in game theory; they are given
in Table 4.1. In this section we solve the existence problem with constrained
moves in all the cases, and the results are summarized in the second column of
Table 4.1.

Streett and Muller objectives are not explicitly mentioned in the rest of
the section. The complexity of their respective (constrained) existence prob-
lems, which is given in Table 4.1, can easily be inferred from other ones. The
PNP
‖ -hardness for the existence problem with Streett objectives follows from the

corresponding hardness for parity objectives (parity objectives can be encoded
efficiently as Streett objectives). Hardness for the existence problem in Muller
games, is deduced from hardness of the value problem, applying Lemma 2.4.
For both objectives, membership in PSPACE follows from PSPACE membership

45

for objectives given as Boolean circuits, since they can efficiently be encoded as
Boolean circuits.

Table 4.1: Summary of the complexities for single objectives

Objective Value (Constrained) Existence

Reachability P-c [28] NP-c (Sect. 4.2)
Safety P-c [28] NP-c (Sect. 4.4)
Büchi P-c [28] P-c (Sect. 4.3)

co-Büchi P-c [28] NP-c (Sect. 4.5)
Parity UP∩ co-UP[34] PNP

‖ -c (Sect. 4.7)

Streett co-NP-c [23] PNP
‖ -h and in PSPACE

Rabin NP-c [23] PNP
‖ -c (Sect. 4.7)

Muller PSPACE-c [20] PSPACE-c
Circuit PSPACE-c [20] PSPACE-c (Sect. 4.6)

Det. Büchi Automata P-c PSPACE-h (Sect. 4.8) and in EXPTIME

Det. Rabin Automata NP-c PSPACE-h and in EXPTIME(Sect. 4.8)

An important simplification. We prove all those results using the suspect-
game construction. It is first interesting to notice that given a constraint Allow
and two plays π and π′ the games H(G, π,Allow) and H(G, π′,Allow) only dif-
fer in their winning conditions. In particular, the structure of the game only
depends on G and Allow, and has polynomial size (see Lemma 3.2). We denote
it with H(G,Allow). Moreover, as each relation -A is given by a single objec-
tive ΩA, the winning condition for Eve in H(G, π,Allow) rewrites as: for every
A ∈ L(ρ)∩Los(π), π1(ρ) is losing (in G) for player A, where Los(π) is the set of
players losing along π in G. This winning condition only depends on Los(π) (not
on the precise value of play π). Therefore in this section, the suspect game is
denoted with H(G, L,Allow), where L ⊆ Agt, and Eve wins play ρ if, for every
A ∈ L(ρ)∩L, A loses along π1(ρ) in G. In many cases we will be able to simplify
this winning condition, and to obtain simple algorithms for the corresponding
problems.

4.2 Reachability Objectives

It is known that the value problem for a reachability winning condition is P-
complete [28]. We will design an NP algorithm for solving the existence problem
with constrained moves, and will end this section with the NP-hardness of the
(constrained) existence problem.

Reduction to a safety game. We assume the preference relation of each
player A ∈ Agt is a single reachability objective which is given by the target
set TA. Given L ⊆ Agt, in the suspect game H(G, L,Allow), we show that the

46

objective of Eve reduces to a safety objective. We define the safety objective ΩL
in H(G, L,Allow) by the target set TL = {(s, P) | ∃A ∈ P ∩ L. s ∈ TA}.

Lemma 4.1. Eve has a winning strategy in game H(G, L,Allow) if, and only
if, Eve has a winning strategy in game H(G,Allow) with safety objective ΩL.

Proof. We first show that any play in ΩL is winning in H(G, L,Allow). Let
ρ ∈ ΩL, and let A ∈ L(ρ)∩L. Towards a contradiction assume that Occ(π1(ρ))∩
TA 6= ∅: there is a state (s, P) along ρ with s ∈ TA. Obviously L(ρ) ⊆ P , which
implies that A ∈ P ∩L. This contradicts the fact that ρ /∈ ΩL. We have shown
so far that any winning strategy for Eve in H(G,Allow) with safety objective
ΩL is a winning strategy for Eve in H(G, L,Allow).

Now assume that Eve has no winning strategy in game H(G,Allow) with
safety objective ΩL. Turn-based games with safety objectives being determined,
Adam has a strategy σ∀ which ensures that no outcome of σ∀ is in ΩL. If
ρ ∈ Out(σ∀), there is a state (s, P) along ρ such that there is A ∈ P ∩ L with
s ∈ TA. We now modify the strategy of Adam such that as soon as such a state is
reached we switch from σ∀ to the strategy that always obeys Eve. This ensures
that in every outcome ρ′ of the new strategy, we reach a state (s, P) such that
there is A ∈ P ∩ L with s ∈ TA, and L(ρ′) = P . This Adam’s strategy thus
makes Eve lose the game H(G, L,Allow), and Eve has no winning strategy in
game H(G, L,Allow). �

Algorithm. The algorithm for solving the existence problem with constrained
moves in a game where each player has a single reachability objective relies on
Theorem 3.4 and Lemma 2.2, and on the above analysis:

(i) guess a lasso-shaped play ρ = τ1·τω2 (with |τi| ≤ 2|States|2) inH(G,Allow),
such that Adam obeys Eve along ρ, and π = π1(ρ) satisfies the constraint
on the payoff;

(ii) compute W (G,Los(π),Allow), the set of winning states for Eve in suspect
gameH(G,Los(π),Allow), where Los(π) is the set of losing players along π;

(iii) check that ρ stays in W (G,Los(π),Allow).

First notice that this algorithm runs in NP: the witness ρ guessed in step i has
size polynomial; the suspect game H(G,Los(π),Allow) has also polynomial size
(Lemma 3.2); Step ii can be done in polynomial time using a standard attractor
computation [28] as the game under analysis is equivalent to a safety game;
finally step iii can obviously be performed in polynomial time.

Step i ensures that conditions 1 and 2 of Theorem 3.4 hold for ρ and step iii
ensures condition 3. Correctness of the algorithm then follows from Theorem 3.4
and Lemma 2.2.

47

Hardness. We prove NP-hardness of the existence problem with constrained
outcomes by encoding an instance of 3SAT as follows. We assume set of atomic
propositions AP = {p1, . . . , ph}, and we let φ =

∧k
i=1 ci where ci = `i,1∨`i,2∨`i,3

where `i,j ∈ {p,¬p | p ∈ AP}. We build the turn-based game Gφ with k + 1
players Agt = {A,C1, . . . , Ck} as follows: for every 1 ≤ j ≤ h, player A chooses
to visit either location pj or location ¬pj . Location pj is winning for the clause
players Cm if, and only if, pj is one of the literals in cm, and similarly location
¬pj is winning for Cm if, and only if, ¬pj is one of the literals of cm. The
construction is illustrated in Example 8. Now, it is easy to check that this game
has a Nash equilibrium winning for all players (Ci)1≤i≤k if, and only if, φ is
satisfiable.

We prove hardness for the existence problem by using the transformation
described in Section 2.4.4 once for each player. We define the game G0 similar
to G but with an extra player Ck+1 who does not control any state for now.
For i ∈ [[1, k]], we define Gi = E(Gi−1, Ci, Ck+1, ρ), where ρ is a winning path
for Ci. The preference relation can be expressed in any Gi by a reachability
condition, by giving to Ck+1 a target which is the initial state of G. According
to Lemma 2.5 there is a Nash equilibrium in Gi if, and only if, there is one in
Gi−1 where Ai wins. Therefore there is a Nash equilibrium in Gk if, and only if,
φ is satisfiable. This entails NP-hardness of the existence problem.

Example 8. As an example of the construction, consider the formula ϕ =
(x1∨x2∨¬x3)∧(¬x1∨¬x3). The arena of the game is represented in Figure 4.2.
The target set for the reachability objectives are defined by TC1

= {x1, x2,¬x3}
and TC2

= {¬x1,¬x3}. The formula is satisfiable and therefore there is a Nash
equilibrium that makes both C1 and C2 win. One such strategy consists in
choosing ¬x1 and then x2.

Gφ

A

x1

¬x1

A

x2

¬x2

A

x3

¬x3

Figure 4.2: Example of a reachability game for the reduction of 3SAT

4.3 Büchi Objectives

The P-completeness of the value problem for Büchi objectives is folk result [28].
In this section we design a polynomial-time algorithm for solving the existence
problem with constrained moves for Büchi objectives. The P-hardness of the
(constrained) existence problem will then be inferred from the P-hardness of the

48

value problem, applying Lemmas 2.3 and 2.4.

Reduction to a co-Büchi game. We assume the preference relation of each
player A ∈ Agt is a single Büchi objective given by target set TA. Given
L ⊆ Agt, in the suspect game H(G, L,Allow), we show that the objective of Eve
is equivalent to a single co-Büchi objective. We define the co-Büchi objective ΩL
in H(G, L,Allow) given by the target set TL = {(s, P) | ∃A ∈ P ∩ L. s ∈
TA}. Notice that the target set is defined in the same way as for reachability
objectives.

Lemma 4.2. A play ρ is winning for Eve in H(G, L,Allow) if, and only if,
ρ ∈ ΩL.

Proof. Assume ρ is winning for Eve in H(G, L,Allow). For every A ∈ L(ρ) ∩ L,
Inf(π1(ρ)) ∩ TA = ∅. Towards a contradiction, assume that Inf(ρ) ∩ TL 6= ∅.
There exists (s, P) such that there is A ∈ P ∩ L with s ∈ TA, which appears
infinitely often along ρ. In particular, P = L(ρ) (otherwise it would not ap-
pear infinitely often along ρ). Hence, we have found A ∈ L(ρ) ∩ L such that
Inf(π1(ρ)) ∩ TA 6= ∅, which is a contradiction. Therefore, ρ ∈ ΩL.

Assume ρ ∈ ΩL: for every (s, P) such that there exists A ∈ P ∩ L with
s ∈ TA, (s, P) appears finitely often along ρ. Let A ∈ L(ρ) ∩ L, and assume
towards a contradiction that there is s ∈ TA such that s appears infinitely
often along π1(ρ). This means that (s, L(ρ)) appears infinitely often along
ρ, which contradicts the above condition. Therefore, ρ is winning for Eve in
H(G, L,Allow). �

Algorithm. As for reachability objectives, the winning region for Eve in
H(G, L,Allow) can be computed in polynomial time. An NP algorithm simi-
lar to the one for reachability objectives can therefore be inferred. However
we can do better than guessing a path π by looking at the strongly connected
components of the game. This will yield a polynomial-time algorithm.

We first characterize the ‘good’ paths inH(G,Allow) in terms of the strongly-
connected components they define. This characterization can be made in a
more general context than single Büchi objectives for each player. We therefore
assume that the preference relation of each player only depends on the set of
states that are visited infinitely often, and we fix constraints given as infinite
paths uA and wA for each player A, and an initial state s in G. For each
K ⊆ States, we write vA(K) for the equivalence class of all paths π that visits
infinitely often exactly K, i.e. Inf(π) = K. We also write v(K) = (vA(K))A∈Agt.
We look for a transition system 〈K,E〉, with K ⊆ States and E ⊆ K ×K, for
which the following properties hold:

(1) uA .A vA(K) .A wA for all A ∈ Agt;

(2) 〈K,E〉 is strongly connected;

(3) ∀k ∈ K. (k,Agt) ∈W (G, v(K),Allow);

49

(4) ∀(k, k′) ∈ E. ∃(k,Agt,mAgt) ∈W (G, v(K),Allow). Tab(k,mAgt) = k′;

(5) (K × {Agt}) is reachable from (s,Agt) in W (G, v(K),Allow);

where W (G, v(K),Allow) denotes the winning region of Eve in the suspect
game H(G, v(K),Allow).1

Lemma 4.3. Under the assumption that the preference relation of each player
only depends on the set of states that are visited infinitely often, there is a tran-
sition system 〈K,E〉 satisfying conditions 1–5 if, and only if, there is a path ρ
from (s,Agt) in H(G, v(K),Allow) that never gets out of W (G, v(K),Allow),
along which Adam always obeys Eve, uA .A vA(K) .A wA for all A ∈ Agt, and
π1(Inf(ρ) ∩ V∃) = K (which implies that ρ ∈ vA(K) for all A).

Proof. The first implication is shown by building a path in W (G, v(K),Allow)
that successively visits all the states in K × {Agt} forever. Thanks to 5, 2
and 4 (and the fact that Adam obeys Eve), such a path exists, and from 3 and 4,
this path remains in the winning region. From 1, we have the condition on the
preferences. Conversely, consider such a path ρ, and let K = π1(Inf(ρ)∩V∃) and
E = {(k, k′) ∈ K2 | ∃(k,Agt,mAgt) ∈ Inf(ρ). Tab(k,mAgt) = k′}. Condition 5
clearly holds. Conditions 1, 3 and 4 are easy consequences of the hypotheses
and construction. We prove that 〈K,E〉 is strongly connected. First, since Adam
obeys Eve and ρ starts in (k,Agt), we have L(ρ) = Agt. Now, take any two
states k and k′ in K: then ρ visits (k,Agt) and (k′,Agt) infinitely often, and
there is a subpath of ρ between those two states, all of which states appear
infinitely often along ρ. Such a subpath gives rise to a path between k and k′,
as required. �

As a consequence, if 〈K,E〉 satisfies the five previous conditions, by Theo-
rem 3.4, there is a Nash equilibrium whose outcome lies between the bounds uA

and wA. Our aim is to compute in polynomial time all maximal pairs 〈K,E〉
that satisfy the conditions. We first need to compute the set W (G, v(K),Allow),
given v(K). In our particular case where each player has a single Büchi objec-
tive, this is done by computing the winning region of a co-Büchi game thanks
to Lemma 4.2.

Now, we define a recursive function SSG (standing for “solve sub-game”),
working on transition systems:

• if K × {Agt} ⊆ W (G, v(K),Allow), and for all (k, k′) ∈ E, there is a
(k,Agt,mAgt) in W (G, v(K),Allow) s.t. Tab(k,mAgt) = k′, and finally
〈K,E〉 is strongly connected, then we set SSG(〈K,E〉) = {〈K,E〉};

• otherwise, we let

SSG(〈K,E〉) =
⋃

〈K′,E′〉∈SCC(〈K,E〉)
SSG(T (〈K ′, E′〉))

1Formally the suspect game has been defined with a play as reference, and not a equivalence
class. However, if π and π′ are equivalent, the games H(G, π,Allow) and H(G, π′,Allow) are
identical.

50

where SCC(〈K,E〉) is the set of strongly connected components of 〈K,E〉
(which can be computed in linear time), and where T (〈K ′, E′〉) is the tran-
sition system whose set of states is {k ∈ K ′ | (k,Agt) ∈W (G, v(K ′),Allow)}
and whose set of edges is

{(k, k′) ∈ E′ | ∃(k,Agt,mAgt) ∈W (G, v(K ′),Allow). Tab(k,mAgt) = k′}.

Notice that this set of edges is never empty, but T (〈K ′, E′〉) might not be
strongly connected anymore, so that this is really a recursive definition.

We have to ensure that the outcome does not exceed wA. For that we need
to assume that given a constraint wA, we are able to construct (in polynomial
time) a set of states SA, such that Inf(ρ) ⊆ SA ⇔ ρ -A wA. In our particular
case of a single objective for each player, this is simply done by removing the
target set of A from States, if this player has to be losing (that is, if wA does
not satisfy the Büchi objective). We then define

Sol = SSG
(
〈
⋂

A∈Agt

SA,Edg′〉
)
∩
{
〈K,E〉 | ∀A ∈ Agt. uA . vA(K)

}
where Edg′ restricts Edg to

⋂
A∈Agt S

A.
To prove the correctness of this construction we need to assume some mono-

tonicity of the preference relation, informally, seeing more states infinitely often
is not bad for the players. This is indeed the case for the particular case of
single Büchi objectives that we consider in this section.

Lemma 4.4. Assume the preference relation for each player A is such that it
only depends on the set of states visited infinitely often, K ⊆ K ′ ⇒ vA(K) .A
vA(K ′) and Inf(ρ) ⊆ SA ⇔ ρ -A wA. Then, if 〈K,E〉 ∈ Sol then it satisfies
conditions 1 to 4. Conversely, if 〈K,E〉 satisfies conditions 1 to 4, then there
exists 〈K ′, E′〉 ∈ Sol such that 〈K,E〉 ⊆ 〈K ′, E′〉.

Proof. Let 〈K,E〉 ∈ Sol. By definition of SSG, all (k,Agt) for k ∈ K are
in W (G, v(K),Allow), and for all (k, k′) ∈ E, there is a state (k,Agt,mAgt) in
W (G, v(K),Allow) such that Tab(k,mAgt) = k′, and 〈K,E〉 is strongly con-
nected. Also, for all A, uA . vA(K) because Sol ⊆ {〈K,E〉 | uA . vA(K)}.
Finally, for any A ∈ Agt, vA(K) . wA because the set K is included in SA.

Conversely, assume that 〈K,E〉 satisfies the conditions. We show that if
〈K,E〉 ⊆ 〈K ′, E′〉 then there is 〈K ′′, E′′〉 in SSG(〈K ′, E′〉) such that 〈K,E〉 ⊆
〈K ′′, E′′〉. The proof is by induction on the size of 〈K ′, E′〉.

The basic case is when 〈K ′, E′〉 satisfies conditions 2, 3, and 4. Under these
conditions SSG(〈K ′, E′〉) = {〈K ′, E′〉}, and by letting 〈K ′′, E′′〉 = 〈K ′, E′〉 we
get the expected result.

We now analyze the other case. There is a strongly connected component
of 〈K ′, E′〉, say 〈K ′′, E′′〉, which contains 〈K,E〉, because 〈K,E〉 satisfies con-
dition 2. We have vA(K) . vA(K ′′) (because K ⊆ K ′′) for every A, and thus
W (G, v(K),Allow) ⊆ W (G, v(K ′′),Allow). This ensures that T (〈K ′′, E′′〉) con-
tains 〈K,E〉 as a subgraph. Since 〈K ′′, E′′〉 is a subgraph of 〈K ′, E′〉, the graph

51

T (〈K ′′, E′′〉) also is. We show that they are not equal, so that we can apply the
induction hypothesis to T (〈K ′′, E′′〉). For this, we exploit the fact that 〈K ′, E′〉
does not satisfy one of conditions 2 to 4:

• first, if 〈K ′, E′〉 is not strongly connected while 〈K ′′, E′′〉 is, they cannot
be equal;

• if there is some k ∈ K ′ such that (k,Agt) is not in W (G, v(K ′),Allow),
then k is not a vertex of T (〈K ′′, E′′〉);

• if there some edge (k, k′) in E′ such that there is no state (k,Agt,mAgt)
in W (G, v(K ′),Allow) such that Tab(k,mAgt) = k′, then the edge (k, k′)
is not in T (〈K ′′, E′′〉).

We then apply the induction hypothesis to T (〈K ′′, E′′〉), and get the expected
result. Now, because of condition 1, uA . vA(K) . wA. Hence, due to the

previous analysis, there exists 〈K ′, E′〉 ∈ SSG
(
〈⋂A∈Agt S

A,Edg′〉
)

such that

〈K,E〉 ⊆ 〈K ′, E′〉. This concludes the proof of the lemma. �

This lemma implies in particular the equivalence between the existence of a
Nash equilibrium and the non-emptyness of Sol.

Lemma 4.5. The set Sol can be computed in polynomial time.

Proof. Each recursive call to SSG applies to a decomposition in strongly con-
nected components of the current transition system under consideration. Hence
the number of recursive calls is bounded by |States|2. Computing the decompo-
sition in SCCs can be done in linear time. Furthermore, thanks to Lemma 4.2,
W (G, v(K),Allow) can be computed in polynomial time. SA is obtained by
removing the target of the losers (for wA) from States. Hence globally we can
compute Sol in polynomial time. �

To conclude the algorithm, we need to check that condition 5 holds for one
of the solutions 〈K,E〉 in Sol. It can be done in polynomial time by looking for a
path in the winning region of Eve in H(G, v(K),Allow) that reaches K ×{Agt}
from (s,Agt). The correctness of the algorithm is ensured by the fact that if
some 〈K,E〉 satisfies the five conditions, there is a 〈K ′, E′〉 in Sol with K ⊆ K ′
and E ⊆ E′. Since K ⊆ K ′ implies vA(K) .A vA(K ′), the winning region of
Eve in H(G, v(K ′),Allow) is larger than that H(G, v(K ′),Allow), which implies
that the path from (s,Agt) to K × {Agt} is also a path from (s,Agt) to K ′ ×
{Agt}. Hence, 〈K ′, E′〉 also satisfies condition 5, and therefore the five expected
conditions.

Hardness. We recall a possible proof of P-hardness of the value problem, from
which we will infer the other lower bounds. The circuit value problem can be
easily encoded into a deterministic turn-based game with Büchi objectives: a
circuit (which we assume w.l.o.g. has only AND- and OR-gates) is transformed
into a two-player turn-based game, where one player controls the AND-gates
and the other player controls the OR-gates. We add self-loops on the leaves.

52

Positive leaves of the circuit are the (Büchi) objective of the OR-player, and
negative leaves are the (Büchi) objective of the AND-player. Then obviously, the
circuit evaluates to true if, and only if, the OR-player has a winning strategy
for satisfying his Büchi condition, which in turn is equivalent to the fact that
there is an equilibrium with payoff 0 for the AND-player, by Lemma 2.3. We
obtain P-hardness for the existence problem, using Lemma 2.4: the preference
relations in the game constructed in Lemma 2.4 are Büchi objectives.

4.4 Safety Objectives

The value problem for safety objectives is known to be P-complete [28]. We next
show that the existence problem with constrained moves can be solved in NP,
and conclude with NP-hardness of the existence problem.

Reduction to a conjunction of reachability objectives. We assume the
preference relation of each player in A ∈ Agt is defined as a single safety objec-
tive ΩA given by target set TA. In the corresponding suspect game, we show
that the goal of Eve is equivalent to a conjunction of reachability objectives.
Let L ⊆ Agt. In suspect game H(G, L,Allow), we define several reachabil-
ity objectives as follows: for each A ∈ L, we define T ′A = TA × {P | P ⊆
Agt} ∪ States× {P | A 6∈ P}, and we write Ω′A for the corresponding reachabil-
ity objectives.

Lemma 4.6. A play ρ is winning for Eve in H(G, L,Allow) if, and only if,
ρ ∈ ⋂A∈L Ω′A.

Proof. Let ρ be a play in H(G, L,Allow), and assume it is winning for Eve.
Then, for each A ∈ L(ρ) ∩ L, ρ /∈ ΩA, which means that the target set TA is
visited along π1(ρ), and therefore T ′A is visited along ρ. If A /∈ L(ρ), then a
state (s, P) with A /∈ P is visited by ρ: the target set T ′A is visited. This implies
that ρ ∈ ⋂A∈L Ω′A.

Conversely let ρ ∈ ⋂A∈L Ω′A. For every A ∈ L, T ′A is visited by ρ. Then,
either TA is visited by π1(ρ) (which means that ρ /∈ ΩA) or A 6∈ L(ρ). In par-
ticular, ρ is a winning play for Eve in H(G, L,Allow). �

Algorithm for solving zero-sum games with a conjunction of reach-
ability objectives. We now give a simple algorithm for solving zero-sum
games with a conjunction of reachability objectives. This algorithm works in
exponential time with respect to the size of the conjunction (we will see in [8]
that the problem is PSPACE-complete). However for computing Nash equilibria
in safety games we will only use it for small (logarithmic) conjunctions. Let G
be a two-player turn-based game with a winning objective for Eve given as a
conjunction of reachability objectives Ω1, . . . ,Ωk. We assume vertices of Eve

and Adam in G are V∃ and V∀ respectively, and that the initial vertex is v0.
The idea is to construct a new game G′ that remembers the objectives that

53

have been visited so far. The vertices of game G′ controlled by Eve and Adam

are V ′∃ = V∃ × 2[[1,k]] and V ′∀ = V∀ × 2[[1,k]] respectively. There is a transition
from (v, S) to (v′, S′) if, and only if, there is a transition from v to v′ in the
original game and S′ = S ∪ {i | v′ ∈ Ωi}. The reachability objective Ω for
Eve is given by target set States × [[1, k]]. It is clear that there is a winning
strategy in G from v0 for the conjunction of reachability objectives Ω1, . . . ,Ωk
if, and only if, there is a winning strategy in game G′ from (v0, {i | v0 ∈ Ωi})
for the reachability objective Ω. The number of vertices of this new game is
|V ′∃∪V ′∀| = |V∃∪V∀| ·2k, and the size of the new transition table Tab′ is bounded
by |Tab| · 2k, where Tab is the transition table of G. An attractor computation
on G′ is then done in time O(|V ′∃ ∪ V ′∀| · |Tab′|), we obtain an algorithm for
solving zero-sum games with a conjunction of reachability objectives, running
in time O(22k · (|V∃ ∪ V∀| · |Tab|)).

Algorithm. The algorithm for solving the existence problem with constrained
moves for single reachability objectives could be copied and would then be
correct. It would however not be running in NP. We therefore propose a refined
algorithm:

(i) guess a lasso-shaped play ρ = τ1 · τω2 (with |τi| ≤ |States|2) in H(G,Allow)
such that Adam obeys Eve along ρ, and π = π1(ρ) satisfies the constraint
on the payoff;

NB: if Los(π) is the set of players losing in π, computingW (G,Los(π),Allow)
would require exponential time. We will avoid this expensive computation.

(ii) check that any Adam-deviation along ρ, say at position i (for any i), leads
to a state from which Eve has a strategy σi∃ to ensure that any play in
ρ≤i ·Out(σi∃) is winning for her.

Step (ii) can be done as follows: pick an Adam-state (s,Agt,mAgt) along ρ
and a successor (t, P) such that t 6= Tab(s,mAgt); we only need to show that
(t, P) ∈W (G, (Los(π)\Los(π≤i))∩P,Allow). We can compute this set efficiently
(in polynomial time) using the algorithm of the previous paragraph since 2|P | ≤
|Tab| (using the same argument as in Lemma 3.2).

This algorithm, which runs in NP, precisely implements Theorem 3.4, and
therefore correctly decides the existence problem with constrained moves.

Hardness. The NP-hardness for the existence problem with constrained out-
comes, can be proven by encoding an instance of 3SAT using a game similar
to that for reachability objectives, see Section 4.2. We only change the con-
straint which is now that all players Ci should be losing, and we get the same
equivalence.

The reduction of Lemma 2.4.4 cannot be used to deduce the hardness of
the existence problem, since it assumes a lower bound on the payoff. Here the
constraint is an upper bound (“each player should be losing”). We therefore
provide an ad-hoc reduction in this special case. We add some module at the

54

end of the game to enforce that in an equilibrium, all players are losing. We add
concurrent states between A and each Ci. All players Ci are trying to avoid t,
and A is trying to avoid u.

Since A has no target in Gφ she cannot lose before seeing u, and then she
can always change her strategy in the concurrent states in order to go to t.
Therefore an equilibrium always ends in t. A player Ci whose target was not
seen during game Gφ, can change her strategy in order to go u instead of t. That
means that if there is an equilibrium, there was one in Gφ where all Ci where
losing. Conversely, if there was such an equilibrium in Gφ, we can extend this
strategy profile by one whose outcome goes to t and it is an equilibrium in the
new game.

Copy of Gφs A/C1 A/C2 A/C3 t

u

〈1,1〉,〈2,2〉

〈1,2〉,〈2,1〉

〈1,1〉,〈2,2〉

〈1,2〉,〈2,1〉

〈1,1〉,〈2,2〉

〈1,2〉,〈2,1〉

Figure 4.3: Extending the game with final concurrent modules

4.5 Co-Büchi Objectives

The value problem for co-Büchi objectives is known to be P-complete since [28].
We will now prove that the existence problem with constrained moves is in NP

and then NP-hardness of the (constrained) existence problem.

Equivalence with a conjunction of Büchi conditions. We assume the
preference relation of each player A ∈ Agt is a single co-Büchi objective ΩA
given by target set TA. In the corresponding suspect game, we show that the
goal of player A1 is equivalent to a conjunction of Büchi objectives. Let L ⊆ Agt.
In suspect game H(G, L,Allow), we define several Büchi objectives as follows:
for each A ∈ L, we define T ′A = TA × {P | P ⊆ Agt} ∪ States × {P | A 6∈ P},
and we write Ω′A for the corresponding Büchi objective.

Lemma 4.7. A play ρ is winning for Eve in H(G, L,Allow) if, and only if,
ρ ∈ ⋂A∈L Ω′A.

Proof. Let ρ be a play inH(G, L,Allow), and assume it is winning for Eve. Then,
for each A ∈ L(ρ) ∩ L, ρ /∈ ΩA, which means that the target set TA is visited
along π1(ρ), and therefore T ′A is visited infinitely often along ρ. If A /∈ L(ρ),
then a state (s, P) with A /∈ P is visited infinitely often by ρ: the target set T ′A
is visited infinitely often. This implies that ρ ∈ ⋂A∈L Ω′A.

55

Conversely let ρ ∈ ⋂A∈L Ω′A. For every A ∈ L, T ′A is visited infinitely
often by ρ. Then, either TA is visited infinitely often by π1(ρ) (which means
that ρ /∈ ΩA) or A 6∈ L(ρ). In particular, ρ is a winning play for Eve in
H(G, L,Allow). �

Algorithm for solving zero-sum games with a conjunction of Büchi
objectives. We will adapt the algorithm for conjunctions of reachability ob-
jectives (page 53) to conjunctions of Büchi objectives. Let G be a two-player
turn-based game with a winning objective for Eve given as a conjunction of
Büchi objectives Ω1, . . . ,Ωk. The idea is to construct a new game G′ which
checks that each objective Ωi is visited infinitely often. The vertices of G′ con-
trolled by Eve and Adam are V ′∃ = V∃ × [[0, k]] and V ′∀ = V∀ × [[0, k]] respectively.
There is a transition from (v, k) to (v′, 0) if, and only if, there is a transi-
tion from v to v′ in the original game and for 0 ≤ i < k, there is a transition
from (v, i) to (v′, i+ 1) if, and only if, there is a transition from v to v′ in the
original game and v′ ∈ Ωi+1. In G′, the objective for Eve is the Büchi objective
Ω given by target set States×{k}, where States = V∃ ∪ V∀ is the set of vertices
of G. It is clear that there is a winning strategy in G from v0 for the conjunction
of Büchi objectives Ω1, . . . ,Ωk if, and only if, there is a winning strategy in
G′ from (v0, 0) for the Büchi objective Ω. The number of states of game G′ is
|States′| = |States| ·k, and the size of the transition table |Tab′| = |Tab| ·k. Us-
ing a standard algorithm for turn-based Büchi objectives, which works in time
O(|States′| · |Tab′|), we obtain an algorithm for solving zero-sum games with a
conjunction of Büchi objectives running in time O(k2 · |States| · |Tab|) (hence in
polynomial time).

Algorithm. The algorithm is the same as for reachability objectives. Only
the computation of the set of winning states in the suspect game is different.
Since we just showed that this part can be done in polynomial time, the global
algorithm still runs in (non-deterministic) polynomial time.

Hardness. The hardness result for the existence problem with constrained
outcomes with co-Büchi objectives was already proven in [49]. The idea is to
encode an instance of 3SAT into a game with co-Büchi objectives. For com-
pleteness we describe the reduction below, and explain how it can be modified
for proving NP-hardness of the existence problem.

Let us consider an instance φ = C1∧· · ·∧Cn of SAT, where Ci = `i,1∨`i,2∨`i,3,
and `i,j ∈ {xk,¬xk | 1 ≤ k ≤ p}. The game G is obtained from module M(φ)
depicted on Figure 4.4, by joining the outgoing edge of Cn+1 to C1. Each
module M(φ) involves a set of players Bk, one for each variable xk, and a
player A1. Player A1 controls the clause states. Player Bk control the literal
states `i,j when `i,j = ¬xk, then having the opportunity to go to state ⊥. There
is no transition to ⊥ for literals of the form xk. In M(φ), assuming that the
players Bk will not play to ⊥, then A1 has a strategy that does not visit both xk
and ¬xk for every k if, and only if, formula φ is satisfiable. Finally, the co-Büchi

56

objective of Bk is given by {xk}. In other terms, the aim of Bk is to visit xk
only a finite number of times. This way, in a Nash equilibrium, it cannot be
the case that both xk and ¬xk are visited infinitely often: it would imply that
Bk loses but could improve her payoff by going to ⊥ (actually, ¬xk should not
be visited at all if xk is visited infinitely often). Therefore setting the objective
of A1 to {⊥}, there is a Nash equilibrium where she wins if, and only if, φ is
satisfiable. This shows NP-hardness for the existence problem with constrained
outcomes.

For the existence problem, we use the transformation described in Sec-
tion 2.4.4. We add an extra player A2 to G and consider the game G′ =
E(G, A1, A2, ρ), where ρ is a winning path for A1. The objective of the players
in G′ can be described by co-Büchi objectives: A2 has to avoid seeing T = {s1}
infinitely often and keep the same target set for A1. Applying Lemma 2.5, there
is a Nash equilibrium in G′ if, and only if, there is one in G where A1 wins, this
shows NP-hardness for the existence problem.

C1 C2 Cn+1

A1 A1

`1,1

`1,2

`1,3

⊥

. . .

Figure 4.4: Module M(φ), where φ = C1 ∧ · · · ∧ Cn and Ci = `i,1 ∨ `i,2 ∨ `i,3

4.6 Objectives Given as Circuits

The value problem is known to be PSPACE-complete for turn-based games and
objectives given as circuits [20]. We will show that the (constrained) existence
problem is also PSPACE-complete in this framework.

Equivalence with a circuit objective. We assume the preference relation
of each player A ∈ Agt is given by a circuit CA. Let L ⊆ Agt. We will define
a Boolean circuit defining the winning condition of Eve in the suspect game
H(G, L,Allow).

We define for each player A ∈ Agt and each set P of players (such that
States×P is reachable in H(G, L,Allow)), a circuit DA,P which outputs true for
the plays ρ with L(ρ) = P (i.e. whose states that are visited infinitely often are
some in States × {P}), and whose value by CA is true. We do so by making a
copy of the circuit CA, adding |States| − 1 OR gates g1 · · · g|States| and one AND

57

gate h. There is an edge from (si, P) to gi and from gi−1 to gi if i < |States|
then there is an edge from the output gate of CA to h and from h to the output
gate of the new circuit. Inputs of CA are now the (s, P)’s (instead of the s’s).
The circuit DA,P is given on Figure 4.5.

(s1, P) (s2, P) (sn, P). . .

CA

∨g1

. . .

∨gn−1

∧
h

Figure 4.5: Circuit DA,P

We then define a circuit EA which outputs true for the plays ρ with A ∈ L(ρ)
and whose output by CA is true. We do so by taking the disjunction of the
circuits DA,P . Formally, for each set of players P such that States × P is
reachable in the suspect game and A ∈ P , we include the circuit DA,P and
writing oA,P for its output gate, we add OR gates so that there is an edge from
oA,P to gi and from gi to gi+1, and then from gn+1 to the output gate.

Finally we define the circuit FL, which outputs true for the plays ρ such
that there is no A ∈ L such that A ∈ L(ρ) and the output of π1(ρ) by CA is
true. This corresponds exactly to the plays that are winning for Eve in suspect
game H(G, L,Allow). We do so by negating the disjunction of all the circuits
EA for A ∈ L.

The next lemma follows from the construction:

Lemma 4.8. A play ρ is winning for Eve in H(G, L,Allow) if, and only if, ρ
evaluates circuit FL to true.

We should notice that circuit FL has size polynomial in the size of G, thanks
to Lemma 3.2.

Algorithm and complexity analysis. To solve the existence problem with
constrained moves we apply the same algorithm as for reachability objectives
(see section 4.2). For complexity matters, the only difference stands in the com-
putation of the set of winning states in the suspect game. Thanks to Lemma 4.8,

58

we know it reduces to the computation of the set of winning states in a turn-
based game with an objective given as a circuit (of polynomial-size). This can
be done in PSPACE [20], which yields a PSPACE upper bound for the existence
problem with constrained moves (and therefore for the existence problem and
the value problem 2.3). PSPACE-hardness of all problems follows from that of
the value problem in turn-based games [20], and from Lemma 2.3 and 2.4 (we
notice that the preference relations in the new games are easily definable by
circuits).

4.7 Rabin and Parity objectives

The value problem is known to be NP-complete for Rabin conditions [23] and
in UP∩ co-UP for parity conditions [34].

We then notice that a parity condition is a Rabin condition with half as
many pairs as the number of priorities: assume the parity condition is given
by p : States 7→ [[0, d]] with d ∈ N; take for i in [[0, d2]], Qi = p−1{2i} and
Ri = p−1{2j + 1 | j ≥ i}. Then the Rabin objective (Qi, Ri)0≤i≤ d

2
is equivalent

to the parity condition given by p.
We will design an algorithm that solves the existence problem with con-

strained moves in PNP
‖ for Rabin objectives. This algorithm uses a lot non-

determinism. We will then propose a deterministic algorithm which runs in
exponential time, but will be useful in Section 4.8. This section will end with
PNP
‖ -hardness of the (constrained) existence problem for parity objectives. This

will imply all expected results.

Equivalence with a Streett game. We assume that the preference relation
of each player A ∈ Agt is given by the Rabin condition (Qi,A, Ri,A)i∈[[1,kA]]. Let
L ⊆ Agt. In the suspect game H(G, L,Allow), we define the Streett objective
(Q′i,A, R

′
i,A)i∈[[1,kA]],A∈L, where Q′i,A = (Qi,A × {P | A ∈ P}) ∪ (States × {P |

A 6∈ P}) and R′i,A = Ri,A×{P | A ∈ P}, and we write ΩL for the corresponding
set of winning plays.

Lemma 4.9. A play ρ is winning for Eve in H(G, L,Allow) if, and only if,
ρ ∈ ΩL.

Proof. Assume ρ is winning for Eve in H(G, L,Allow). For all A ∈ L(ρ) ∩ L,
π1(ρ) does not satisfy the Rabin condition given by (Qi,A, Ri,A)i∈[[1,kA]]. For all
1 ≤ i ≤ kA, Inf(π1(ρ)) ∩Qi,A = ∅ or Inf(π1(ρ)) ∩ Ri,A 6= ∅. We infer that for
all 1 ≤ i ≤ kA, Inf(ρ) ∩Q′i,A = ∅ or Inf(ρ) ∩ R′i,A 6= ∅. Now, if A /∈ L(ρ) then
all Q′i,A are seen infinitely often along ρ. Therefore for every A ∈ L, the Streett
conditions (Q′i,A, R

′
i,A) is satisfied along ρ (that is, ρ ∈ ΩL).

Conversely, if the Streett condition (Q′i,A, R
′
i,A)i∈[[1,kA]],A∈L is satisfied along

ρ, then either the Rabin condition (Qi,A, Ri,A) is not satisfied along π1(ρ) or
A 6∈ L(ρ). This means that Eve is winning in H(G, L,Allow). �

59

Algorithm. We now describe a PNP
‖ algorithm for solving the existence prob-

lem with constrained moves in games where each player has a single Rabin
objective. As in the previous cases, our algorithm relies on the suspect game
construction.

Write P for the set of sets of players of Agt that appear as the second item
of a state of H(G,Allow):

P = {P ⊆ Agt | ∃s ∈ States. (s, P) is a state of H(G,Allow)}.

Since H(G,Allow) has size polynomial, so does P. Also, for any path ρ, L(ρ)
is a set of P. Hence, for a fixed L, the number of sets L(ρ) ∩ L is polynomial.
Now, as recalled on page 46, the winning condition for Eve is that the players
in L(ρ) ∩ L must be losing along π1(ρ) in G for their Rabin objective. We have
seen that this can be seen as a Streett objective.

Now, deciding whether a state is winning in a turn-based game for a Streett
condition can be decided in coNP [23]. Hence, given a state s ∈ States and a
set L, we can decide in coNP whether s is winning for Eve in H(G, L,Allow).
This will be used as an oracle in our algorithm below.

Now, pick a set P ⊆ Agt of suspects, i.e., for which there exists (s, t) ∈
States2 and mAgt s.t. P = Susp((s, t),mAgt). Using the same arguments as in
the proof of Lemma 3.2, it can be shown that 2|P | ≤ |Tab|, so that the number
of subsets of P is polynomial. Now, for each set P of suspects and each L ⊆ P ,
write w(L) for the size of the winning region of Eve in H(G, L,Allow). Then

the sum
∑
P∈P\{Agt}

∑
L⊆P w(L) is at most |States| × |Tab|2.

Assume that the exact value M of this sum is known, and consider the
following algorithm:

1. for each P ⊆ P \ {Agt} and each L ⊆ P , guess a set W (G, L,Allow) ⊆
States, which we intend to be the exact winning region for Eve in the
game H(G, L,Allow).

2. check that the sizes of those sets sum up to M ;

3. for each s /∈ W (G, L,Allow), check that Eve does not have a winning
strategy from s in H(G, L,Allow). This can be checked in NP, as explained
above.

4. guess a lasso-shaped path ρ = π ·τω in H(G,Allow) starting from (s,Agt),

with |π| and |τ | less than |States|2 (following Lemma 2.2) visiting only
states where the second item is Agt. This path can be seen as the outcome
of some strategy of Eve when Adam obeys. For this path, we then check
the following:

• along ρ, the sets of winning and losing players satisfy the original
constraint (remember that in the problem we aim at solving there
are constraints on the outcome);

60

• any deviation along ρ leads to a state that is winning for Eve. In other
terms, pick a state h = (s,Agt,mAgt) of Adam along ρ, and pick a
successor h′ = (t, P) of h such that t 6= Tab(s,mAgt). Then the
algorithm checks that t ∈W (G, L ∩ P,Allow).

The algorithm accepts the input M if it succeeds in finding the sets W and the
path ρ such that all the checks are successful. This algorithm is in NP, and will
be used as a second oracle.

We now show that if M is exactly the sum of the w(L), then the algorithm
accepts M if, and only if, there is a Nash equilibrium satisfying the constraint,
i.e. if, and only if, Eve has a winning strategy from (s,Agt) in H(G, L,Allow).

First assume that the algorithm accepts M . This means that it is able,
for each L, to find sets W (G, L,Allow) of states whose complement does not
intersect the winning region of H(G, L,Allow). Since M is assumed to be the
exact sum of w(G, L,Allow) and the size of the sets W (G, L,Allow) sum up
to M , we deduce that W (G, L,Allow) is exactly the winning region of Eve

in H(G, L,Allow). Now, since the algorithm accepts, it is also able to find a
(lasso-shaped) path ρ only visiting states having Agt as the second component.
This path has the additional property that any “deviation” from a state of Adam
along this path ends up in a state that is winning for Eve for players in L ∩ P ,
where P is the set of suspects for the present deviation. This way, if during ρ,
Adam deviates to a state (t, P), then Eve will have a strategy to ensure that
along any subsequent play, the objectives of players in L ∩ P (in G) are not
fulfilled, so that along any run ρ′, the players in L ∩ L(ρ′) are losing for their
objectives in G, so that Eve wins in H(G, L,Allow).

Conversely, assume that there is a Nash equilibrium satisfying the constraint.
Following Lemma 2.2, we assume that the outcome of the corresponding strategy
profile has the form π ·τω. From Lemma 3.3, there is a winning strategy for Eve
in H(G, L,Allow) whose outcome when Adam obeys follows the outcome of the
Nash equilibrium. As a consequence, the outcome when Adam obeys is a path ρ
that the algorithm can guess. Indeed, it must satisfy the constraints, and any
deviation from ρ with set of suspects P ends in a state where Eve wins for
the winning condition of H(G, L,Allow), hence also for the winning condition
of H(G, L ∩ P,Allow), since any path ρ′ visiting (t, P) has L(ρ′) ⊆ P .

Finally, our global algorithm is as follows: we run the first oracle for all the
states and all the sets L that are subsets of a set of suspects (we know that there
are polynomially many such inputs). We also run the second algorithm on all
the possible values for M , which are also polynomially many. Now, from the
answers of the first oracle, we compute the exact value M , and return the value
given by the second on that input. This algorithm runs in PNP

‖ and decides the
existence problem with constrained moves.

Deterministic algorithm. In the next section we will need a deterministic
algorithm to solve games with objectives given as deterministic Rabin automata.

61

We therefore present it right now. The deterministic algorithm works by succes-
sively trying all the possible payoffs, there are 2|Agt| of them. Then it computes
the winning strategies of the suspect game for that payoff. In [33] an algorithm
for Streett games is given, which works in time O(nk ·k!), where n is the number
of vertices in the game, and k the size of the Streett condition. The algorithm
has to find, in the winning region of Eve in H(G,Allow), a lasso that satisfies the
Rabin winning conditions of the winners and do not satisfy whose of the losers.
To do so it tries all the possible choices of elementary Rabin condition that are
satisfied to make the players win, there are at most

∏
A∈Agt kA possible choices.

And for the losers, we try the possible choices for whether Qi,A is visited of not,
there are

∏
A∈Agt 2kA such choices. It then looks for a lasso cycle that, when A

is a winner, does not visit QiA,A and visits RiA,A, and when A is a loser, visits
RiA,A when it has to, or does not visit QiA,A. This is equivalent to finding a
path satisfying a conjunction of Büchi conditions and can be done in polynomial
time O(n×∑A∈Agt kA). The global algorithm works in time

O

2|Agt| ·

|Tab|3
∑

A kA · (
∑
A

kA)! +

 ∏
A∈Agt

kA · 2kA
 · |Tab|3 ·

∑
A

kA

Notice that the exponential does not come from the size of the graph but from
the number of agents and the number of elementary Rabin conditions, this will
be important when in the next section we will reuse the algorithm on a game
whose size is exponential.

PNP
‖ -hardness. We now prove PNP

‖ -hardness of the existence problem with
constrained outcomes in the case of parity objectives. The main reduction is an
encoding of the ⊕SAT problem, where the aim is to decide whether the number
of satisfiable instances among a set of formulas is even. This problem is known
to be complete for PNP

‖ [26].
Before tackling the whole reduction, we first develop some preliminaries on

single instances of SAT, inspired from [13]. Let us consider an instance φ =
C1∧· · ·∧Cn of SAT, where Ci = `i,1∨`i,2∨`i,3, and `i,j ∈ {xk,¬xk | 1 ≤ k ≤ p}.
With φ, we associate a three-player game N(φ), depicted on Figure 4.6 (where
the first state of N(φ) is controlled by A1, and the first state of each N ′(Cj) is
concurrently controlled by A2 and A3). For each variable xj , players A2 and A3

have the following target sets:

TA2
2j = {xj} TA2

2j+1 = {¬xj} TA3
2j+1 = {xj} TA3

2j = {¬xj}

This construction enjoys interesting properties, given by the following lemma:

Lemma 4.10. If the formula φ is not satisfiable, then there is a strategy for
player A1 in N(φ) such that players A2 and A3 lose. If the formula φ is sat-
isfiable, then for any strategy profile σAgt, one of A2 and A3 can change her
strategy and win.

62

N(φ)

A1

N ′(C1)

N ′(C2)

...

N ′(Cn)

N ′(Ci)

A2/A3

`i,1

`i,2

`i,3

N(φ)

〈2,2〉
〈0,1〉
〈1,0〉

〈1,1〉
〈2,0〉
〈0,2〉〈0,0〉

〈2,1〉
〈1,2〉

Figure 4.6: The game N(φ) (left), where N ′(Ci) is the module on the right.

Proof. We begin with the first statement, assuming that φ is not satisfiable and
defining the strategy for A1. With a history h in N(φ), we associate a valuation
vh : {xk | k ∈ [1, p]} → {>,⊥} (where p is the number of distinct variables in φ),
defined as follows:

vh(xk) = > ⇔ ∃m. hm = xk ∧ ∀m′ > m. hm′ 6= ¬xk for all k ∈ [1, p]

We also define vh(¬xk) = ¬vh(xk). Under this definition, vh(xk) = > if the
last occurrence of xk or ¬xk along h was xk. We then define a strategy σ1 for
player A1: after a history h ending in an A1-state, we require σ1(h) to go to
N ′(Ci) for some Ci (with least index, say) that evaluates to false under vh (such
a Ci exists since φ is not satisfiable). This strategy enforces that if h ·σ1(h) · `i,j
is a finite outcome of σ1, then vh(`i,j) = ⊥, because A1 has selected a clause Ci
whose literals all evaluate to ⊥. Moreover, vh·σ1(h)·`i,j (`i,j) = >, so that for
each j, any outcome of σ1 will either alternate between xk and ¬xk (hence visit
both of them infinitely often), or no longer visit any of them after some point.
Hence both A2 and A3 lose.

We now prove the second statement. Let v be a valuation under which φ
evaluates to true, and σAgt be a strategy profile. From σA2 and σA3 , we define
two strategies σ′A2

and σ′A3
. Consider a finite history h ending in the first state

of N ′(Ci), for some i. Pick a literal `i,j of Ci that is true under v (the one with
least index, say). We set

σ′A2
(h) = [j − σA3

(h) (mod 3)] σ′A3
(h) = [j − σA2

(h) (mod 3)].

It is easily checked that, when σA2 and σ′A3
(or σ′A2

and σA3) are played simul-
taneously in the first state of some N ′(Ci), then the game goes to `i,j . Thus
under those strategies, any visited literal evaluates to true under v, which means
that at most one of xk and ¬xk is visited (infinitely often). Hence one of A2

and A3 is winning, which proves our claim. �

63

We now proceed by encoding an instance

∃x1
1, . . . x

1
k. φ

1(x1
1, . . . , x

1
k)

. . .

∃xm1 , . . . xmk . φm(xm1 , . . . , x
m
k)

of ⊕SAT into a parity game. The game involves the three players A1, A2 and A3

of the game N(φ) defined above, and it will contain a copy of N(φr) for each 1 ≤
r ≤ m. The objectives of A2 and A3 are the unions of their objectives in
each N(φr), e.g. pA2(x1

j) = pA2(x2
j) = · · · = pAm(xmj) = 2j.

For each such r, the game will also contain a copy of the game M(φr)
depicted on Figure 4.4. Each game M(φr) involves an extra set of players Brk,
one for each variable xrk. As we have seen in Section 4.5, in a Nash equilibrium,
it cannot be the case that both xrk and ¬xrk are visited infinitely often.

In order to test the parity of the number of satisfiable formulas, we then
define two families of modules, depicted on Figure 4.7 to 4.10. Finally, the
whole game G is depicted on Figure 4.11. In that game, the objective of A1 is
to visit infinitely often the initial state init.

Lemma 4.11. There is a Nash equilibrium in the game G where A2 and A3

lose and A1 wins if, and only if, the number of satisfiable formulas is even.

Proof. Assume that there is a Nash equilibrium in G where A1 wins and both A2

and A3 lose. Let ρ be its outcome. As already noted, if ρ visits module M(φr)
infinitely often, then it cannot be the case that both xrk and ¬xrk are visited
infinitely often in M(φr), as otherwise Brk would be losing and have the op-
portunity to improve her payoff. This implies that φr is satisfiable. Similarly,
if ρ visits infinitely often the states of H(φr) or G(φr) that is controlled by A2

and A3, then it must be the case that φr is not satisfiable, since from Lemma 4.10
this would imply that A2 or A3 could deviate and improve her payoff by going
to N(φr).

We now show by induction on r that if ρ goes infinitely often in module
G(φr) then #{j ≤ r | φr is satisfiable} is even, and that (if n > 1) this number
is odd if ρ goes infinitely in module H(φr).

When r = 1, since H(φ1) is M(φ1), φ1 is satisfiable, as noted above. Sim-
ilarly, if ρ visits G(φ1) infinitely often, it also visits its A2/A3-state infinitely
often, so that φ1 is not satisfiable. This proves the base case.

Assume that the result holds up to some r−1, and assume that ρ visits G(φr)
infinitely often. Two cases may occur:

• it can be the case that M(φr) is visited infinitely often, as well as H(φr−1).
Then φr is satisfiable, and the number of satisfiable formulas with index
less than or equal to r−1 is odd. Hence the number of satisfiable formulas
with index less than or equal to r is even.

• it can also be the case that the state A2/A3 of G(φr) is visited infinitely
often. Then φr is not satisfiable. Moreover, since A1 wins, the play

64

A1

M(φr) G(φr−1)

A2/A3

N(φr)

H(φr−1)

〈1,0〉
〈0,1〉

〈1,1
〉

〈0,0
〉

Figure 4.7: Module H(φr) for r ≥ 2

A1

M(φr) H(φr−1)

A2/A3

N(φr)

G(φr−1)

〈1,0〉
〈0,1〉

〈1,1
〉

〈0,0
〉

Figure 4.8: Module G(φr) for r ≥ 2

M(φ1)

Figure 4.9: Module H(φ1)

A2/A3

N(φ1)

〈0,0〉

〈1,1〉

〈1,0〉 〈0,1〉

Figure 4.10: Module G(φ1)

init G(φm)

Figure 4.11: The game G

will also visit G(φr−1) infinitely often, so that the number of satisfiable
formulas with index less than or equal to r is even.

If ρ visits H(φr) infinitely often, using similar arguments we prove that the
number of satisfiable formulas with index less than or equal to r is odd.

To conclude, since A1 wins, the play visits G(φm) infinitely often, so that
the total number of satisfiable formulas is even.

Conversely, assume that the number of satisfiable formulas is even. We build
a strategy profile, which we prove is a Nash equilibrium in which A1 wins and A2

and A3 lose. The strategy for A1 in the initial states of H(φr) and G(φr) is to
go to M(φr) when φr is satisfiable, and to state A2/A3 otherwise. In M(φr), the
strategy is to play according to a valuation satisfying φr. In N(φr), it follows
a strategy along which A2 and A3 lose (this exists according to Lemma 4.10).
This defines the strategy for A1. Then A2 and A3 are required to always play
the same move, so that the play never goes to some N(φr). In N(φr), they can
play any strategy (they lose anyway, whatever they do). Finally, the strategy

65

of Brk never goes to ⊥.
We now explain why this is the Nash equilibrium we are after. First, as A1

plays according to fixed valuations for the variables xrk, either Brk wins or she
does not have the opportunity to go to ⊥. It remains to prove that A1 wins,
and that A2 and A3 lose and cannot improve (individually). To see this, notice
that between two consecutive visits to init, exactly one of G(φr) and H(φr) is
visited. More precisely, it can be observed that the strategy of A1 enforces that
G(φr) is visited if #{r < r′ ≤ m | φr′ is satisfiable} is even, and that H(φr) is
visited otherwise. Then if H(φ1) is visited, the number of satisfiable formulas
with index between 2 and m is odd, so that φ1 is satisfiable and A1 can return
to init. If G(φ1) is visited, an even number of formulas with index between 2
and m is satisfiable, and φ1 is not. Hence A1 has a strategy in N(φ1) to make
A2 and A3 lose, so that A2 and A3 cannot improve their payoffs. �

This proves hardness for the existence problem with constrained outcomes
for parity objectives. For the existence problem we will use the construction
of Section 2.4.4, but since it can only be used to get rid of constraint of the
type “A1 is winning”, we will add to the game two players, A4 and A5, whose
objectives are opposite to A2 and A3 respectively, and one player A6 that will be
playing matching-penny games. The objectives for A4 and A5 are definable by
parity objectives, by adding 1 to all the priorities. Then, we consider game G′ =
E(E(E(G, A1, A6, ρ1), A4, A6, ρ4), A5, A6, ρ5) where ρ1, ρ4 and ρ5 are winning
paths for A1, A4 and A5 respectively. Thanks to Lemma 2.5, there is a Nash
equilibrium in G′ if, and only if, there is a Nash equilibrium in G where A1 wins
and A2 and A3 lose. We deduce PNP

‖ -hardness for the existence problem with
parity objectives.

4.8 Objectives Given as Deterministic Rabin Au-
tomata

In order to find Nash equilibria when objectives are given as deterministic Ra-
bin automata, we define the product of a game with automata (defining the
objectives of the players), and show that it game-simulates the original game.
This reduces the case of games with objectives are defined as Rabin automata
to games with Rabin objectives, which we handled at the previous section; the
resulting algorithm is in EXPTIME. We end the section by showing PSPACE-
hardness in the restricted case of Büchi automata.

Fix a game G = 〈States,Agt,Act,Mov,Tab, (-A)A∈Agt〉. Assume that some
player A has her objective given by a deterministic Rabin automaton A =
〈Q,States, δ, q0, (Qi, Ri)i∈[[1,n]]〉; this automaton reads sequences of states of G,
and accepts the paths that are winning for player A. We show how to compute
Nash equilibria in G by building a product G′ of G with the automaton A and
computing the Nash equilibria in the resulting game, with a Rabin winning
condition for A.

We define the product of the game G with the automaton A as the game

66

G nA = 〈States′,Agt,Act,Mov′,Tab′, (-′A)A∈Agt〉, where:

• States′ = States×Q;

• Mov′((s, q), Aj) = Mov(s,Aj) for every Aj ∈ Agt;

• Tab′((s, q),mAgt) = (s′, q′) where Tab(s,mAgt) = s′ and δ(q, s) = q′;

• If B = A then-′B is given by the internal Rabin conditionQ′i = States×Qi
and R′i = States×R′i.
Otherwise -′B is derived from -B , defined by ρ -′B ρ if, and only if,
π(ρ) -B π(ρ) (where π is the projection of States′ on States). Notice that
if -B is an internal Rabin condition, then so is -′B .

Given a constraint Allow on moves in G, we define the constraint Allow′ in
G′ by Allow′((s, q),mAgt) = Allow(s,mAgt).

Lemma 4.12. G nA game-simulates G with respect to constraints Allow′ and
Allow, with game simulation defined according to the projection: s / (s′, q) if,
and only if, s = s′. This game simulation is preference-preserving. Conversely,
G game-simulates G n A with respect to constraints Allow and Allow′, with
(s, q) /′ s′ if, and only if, s = s′, which is also preference-preserving.

Proof. We begin with proving that both relations are preference-preserving.
First notice that if ((sn, qn))n≥0 is a play in G nA, then its π-projection (sn)n≥0

is a play in G. Conversely, if ρ = (sn)n≥0 is a play in G, then there is a unique
path (qn)n≥0 from initial state q0 in A which reads it, and ((sn, qn))n≥0 is then
a path in G n A that we write π−1(ρ) = ((sn, qn))n≥0. That way, π defines a
one-to-one correspondence between plays in G and plays in G n A where the
second component starts in q0. For a player B 6= A, the objective is defined so
that π(ρ) has the same payoff as ρ. Consider now player A, she is winning in G
for ρ = (sn)n≥0 if, and only if, (sn)n≥0 ∈ L(A) if, and only if, the unique path
(qn)n≥0 from initial state q0 that reads (sn)n≥0 satisfies the Rabin condition
(Qi, Ri)i∈[[1,n]] in A if, and only if, π−1(ρ) satisfies the internal Rabin condition
(Q′i, R

′
i)i∈[[1,n]] in G nA. This proves that / is winning-preserving.

It remains to show that both relations are is game simulations. Assume
s / (s, q) and pick an allowed move mAgt in G. It is also allowed in GnA. Take
(s′, q′) ∈ States′, by definition s′ / (s′, q′).

• If δ(q′, s) 6= q′ then Susp(((s, q), (s′, q′)),mAgt) = ∅, and condition (2)
trivially holds.

• Otherwise δ(q, s) = q′. For any move m′Agt, we have that Tab(s,m′Agt) =

s′ if, and only if, Tab′((s, q),m′Agt) = (s′, δ(q, s)). Hence we have that
Susp(((s, q), (s′, q′)),mAgt) = Susp((s, s′),mAgt), which implies condition (2).

Condition (1) obviously holds since, (s, s′) ∈ Tab(s,mAgt) if, and only if,
((s, q), (s′, δ(q, s))) ∈ Tab′((s, q),mAgt) by definition of G nA.

We now assume (s, q) /′ s and pick an allowed move mAgt in G n A. It
is also allowed in G. Take s′ ∈ States. We define q′ = δ(q, s), and we have

67

(s′, q′) / s′ by definition of /′. As before, condition (1) obviously holds, and
we get condition (2) because Susp(((s, q), (s′, q′)),mAgt) = Susp((s, s′),mAgt).

�

Assume that for each player Ai ∈ Agt the objective in G is given by a
deterministic Rabin automaton Ai. Applying the above result inductively, we
can transform G into a game G′ where each player has an internal Rabin winning
condition. Applying Prop. 3.5 each time, we get the following result:

Proposition 4.13. Let s ∈ States. There is a Nash equilibrium σAgt in G
from s which respects the constraint on moves Allow and with outcome ρ if,
and only if, there is a Nash equilibrium σ′Agt in G′ from (s, q01, . . . , q0n) which

respects the constraint on moves Allow′ and with outcome ρ′, where q0i is the
initial state of Ai. Moreover, the projection of ρ′ on G is precisely ρ.

Algorithm

The algorithm starts by computing the product of the game with the automata.
The resulting game has size |G| × ∏j∈[[1,n]] |Aj |, which is exponential in the

number of players. For each player Aj (1 ≤ j ≤ n), the number of Rabin
pairs in the product game is that of the original specification Aj , say kj . We
apply the deterministic algorithm that we have designed for Rabin objectives
(see page 61), which yields an exponential-time algorithm in our framework.

Hardness

We prove PSPACE-hardness in the restricted case of deterministic Büchi au-
tomata, by a reduction from the (complement of the) problem of the emptiness
of the intersection of several language given by finite automata. This problem
is known to be PSPACE-complete [37].

We fix finite automata A1, . . . ,An over alphabet Σ. For every j ∈ [[1, n]], we
construct the Büchi automaton A′j from Aj as follows. The alphabet contains
Σ and two fresh special symbols i and f , Σ′ = {i, f}∪Σ. We add a state F with
a self-loop labeled by f , an initial state I with a transition labeled by i to the
original initial state. We add transitions labeled by f from every terminal states
to F . We set the Büchi condition to {F}. If Lj is the language recognized by
Aj , then the language recognized by the Büchi automaton A′j is L′j = i ·Lj ·fω.
The intersection of the languages recognized by the automata Aj is empty if,
and only if, the intersection of the languages recognized by the automata A′j is
empty.

We construct the game G, with States = Σ′. For each j ∈ [[1, n]], there is
a player Aj whose objective is given by A′j and one special player A0 whose
objective is Statesω (she is always winning). Player A0 controls all the states
and there are transitions from any state to the states of Σ ∪ {f}. Formally
Act = Σ∪{f}∪⊥, for all state s ∈ States, Mov(s,A0) = Act, and if j 6= 0 then
Mov(s,Aj) = {⊥} and for all α ∈ Σ ∪ {f}, Tab(s, (α,⊥, . . . ,⊥)) = α.

68

Lemma 4.14. There is a Nash equilibrium in game G from i where every player
wins if, and only if, the intersection of the languages recognized by the au-
tomata A′j is not empty.

Proof. If there is such a Nash equilibrium, let ρ be its outcome. The path ρ
forms a word of Σ′, it is accepted by every automata A′j since every player
wins. Hence the intersection of the languages Lj is not empty. Conversely, if a
word w = i · w1 · w2 · · · is accepted by all the automata, player A0 can play in
a way such that everybody is winning: if at each step j she plays wj , then the
outcome is w which is accepted by all the automata. It is a Nash equilibrium
since A0 controls everything and cannot improve her payoff. �

Since PSPACE is stable by complementation, this proves that the existence
problem with constrained outcomes is PSPACE-hard for objectives described by
Büchi automata.

In order to prove hardness for the existence problem we use results from Sec-
tion 2.5. Winning conditions in E(E(. . . (E(G, An, A0, ρn), . . . , A2, A0, ρ2), A1, A0, ρ1),
where ρj is a winning play for Ai, can be defined by slightly modifying automata
A′1, . . . ,A′n to take into account the new states. By Lemma 2.5, there exists a
Nash equilibrium in this game if and only if there is one in G where all the
players win. Hence PSPACE-hardness also holds for the existence problem.

69

Chapter 5

Ordered Objectives

5.1 Ordering Several Objectives

In this chapter we are interested in preference relations given as ordered objec-
tives. In a game G, an ordered objective is a pair ω = 〈(Ωi)1≤i≤n,.〉, where,
for every 1 ≤ i ≤ n, Ωi is an objective, and . is a preorder on {0, 1}n. A
play ρ is assigned a payoff vector w.r.t. that ordered objective, which is de-
fined as payoffω(ρ) = 1{i|ρ∈Ωi} ∈ {0, 1}n (where 1S is the vector v such that
vi = 1 ⇔ i ∈ S). The corresponding preference relation -ω is then defined by
ρ -ω ρ′ if, and only if, payoffω(ρ) . payoffω(ρ′).

We fix a game G = 〈States,Agt,Act,Mov,Tab, (-A)A∈Agt〉, and we as-
sume that each preference relation -A is given by an ordered objective ωA =
〈(ΩAi)1≤i≤nA

,.A〉, where all ΩAi ’s are either reachability objectives or Büchi
objectives. In the following we will write payoffA instead of payoffωA

, and if ρ
is a play, payoff(ρ) = (payoffA(ρ))A∈Agt.

Examples of preorders. We now describe the preorders on {0, 1}n that we
consider in the sequel (Figures 5.1a–5.1d display four of these preorders for
n = 3). For the purpose of these definitions, we assume that max∅ = −∞.

• Conjunction: v . w if, and only if, either vi = 0 for some 1 ≤ i ≤ n,
or wi = 1 for all 1 ≤ i ≤ n. This corresponds to the case where a player
wants to achieve all her objectives.

• Disjunction: v . w if, and only if, either vi = 0 for all 1 ≤ i ≤ n,
or wi = 1 for some 1 ≤ i ≤ n. The aim here is to satisfy at least one
objective.

• Counting : v . w if, and only if, |{i | vi = 1}| ≤ |{i | wi = 1}|. The aim
is to maximize the number of conditions that are satisfied;

• Subset : v . w if, and only if, {i | vi = 1} ⊆ {i | wi = 1}: in this
setting, a player will always struggle to satisfy a larger (for inclusion) set
of objectives.

70

• Maximize: v . w if, and only if, max{i | vi = 1} ≤ max{i | wi = 1}. The
aim is to maximize the highest index of the objectives that are satisfied.

• Lexicographic: v . w if, and only if, either v = w, or there is 1 ≤ i ≤ n
such that vi = 0, wi = 1 and vj = wj for all 1 ≤ j < i.

• Boolean Circuit : given a Boolean circuit, with input from {0, 1}2n, v . w
if, and only if, the circuit evaluates 1 on input v1 . . . vnw1 . . . wn.

• Monotonic Boolean Circuit : same as above, with the restriction that the
input gates corresponding to v are negated, and no other negation appear
in the circuit.

(0, 0, 0)

(1, 0, 0) (0, 1, 0) (0, 0, 1)

(1, 1, 0) (1, 0, 1) (0, 1, 1)

(1, 1, 1)

(a) Subset preorder

(0, 0, 0)

(1, 0, 0)

(0, 1, 0) (1, 1, 0)

(0, 0, 1) (1, 0, 1) (0, 1, 1) (1, 1, 1)

(b) Maximize preorder

(0, 0, 0)

(1, 0, 0) (0, 1, 0) (0, 0, 1)

(1, 1, 0) (1, 0, 1) (0, 1, 1)

(1, 1, 1)

(c) Counting preorder

(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

(d) Lexicographic order

Figure 5.1: Examples of preorders (for n = 3): dotted boxes represent equiv-
alence classes for the relation ∼, defined as a ∼ b ⇔ a . b ∧ b . a; arrows
represent the preorder relation ., forgetting about ∼-equivalent elements

In terms of expressiveness, any preorder over {0, 1}n can be given as a
Boolean circuit: for each pair (v, w) with v . w, it is possible to construct
a circuit whose output is 1 if and only if the input is v1 . . . vnw1 . . . wn; taking
the disjunction of all these circuits we obtain a Boolean circuit defining the
preorder. Its size can be bounded by 22n+3n, which is exponential in general,
but all the above examples can be specified with a circuit of polynomial size. In
Figure 5.2 we give a polynomial-size Boolean circuit for the subset preorder

A preorder . is monotonic if it is compatible with the subset ordering, i.e.
if {i | vi = 1} ⊆ {i | wi = 1} implies v . w. Hence, a preorder is monotonic
if fulfilling more objectives never results in a lower payoff. All our examples
of preorders except for the Boolean circuit preorder are monotonic. Moreover,
any monotonic preorder can be expressed as a monotonic Boolean circuit: for
a pair (v, w) with v . w, we can build a circuit whose output is 1 if, and only
if, the input is v1 . . . vnw1 . . . wn. We can require this circuit to have negation
at the leaves. Indeed, if the input wj appears negated, and if wj = 0, then by
monotonicity, also the input (v, w̃) is accepted, with w̃i = wi when i 6= j and

71

w̃j = 1. Hence the negated input gate can be replaced with true. Similarly for
positive occurrences of any vj . Hence any monotonic preorder can be written as
a monotonic Boolean circuit. Notice that with Definition 2.2, and Remark 2.2,
any Nash equilibrium σAgt for the subset preorder is also a Nash equilibrium
for any monotonic preorder.

v1 v2 . . . vn w1 w2 . . . wn

¬ ¬ . . . ¬

∨ ∨ . . . ∨

∧

Figure 5.2: Boolean circuit defining the subset preorder

We will focus on ordered objectives where the objectives are reachability
or Büchi objectives, since classical objectives such as Muller or parity can be
equivalently described with a preorder given by a Boolean circuit over Büchi
objectives with polynomial size.

5.2 Ordered Büchi Objectives

We begin with ordered Büchi objectives, for which we prove the results listed in
Table 5.1. We will first consider the general case of preorders given as Boolean
circuits, and then exhibit several simpler cases. We should also notice that
ordered Büchi objectives are prefix-independent: Remark 3.2 therefore applies.

5.2.1 General Case

Theorem 5.1. For ordered Büchi objectives with preorders given as Boolean
circuits, the value, existence and constrained existence problems are PSPACE-
complete.

Proof. We fix a game G = 〈States,Agt,Act,Allow,Tab, (-A)A∈Agt〉, and we
assume that for each player A, the preorder .A is given by a Boolean circuit CA.
The algorithm proceeds by trying all the possible payoffs for the players.

72

Table 5.1: Summary of the results for Büchi objectives

Preorder Value (Constrained) Existence

Maximize P-c (Sect.5.2.2) P-c (Sect.5.2.2)
Disjunction P-c (Sect.5.2.2) P-c (Sect.5.2.2)

Subset P-c (Sect. 5.2.3) P-c (Sect.5.2.2)
Conjunction,Lexicographic P-c (Sect. 5.2.3) P-h and in NP (Sect. 5.2.4) a

Counting coNP-c (Sect. 5.2.4) NP-c (Sect. 5.2.4)
Monotonic Boolean Circuit coNP-c (Sect. 5.2.4) NP-c (Sect. 5.2.4)

Boolean Circuit PSPACE-c (Sect. 5.2.1) PSPACE-c (Sect. 5.2.1)

aThe constrained existence problem is actually NP-complete.

Fix such a payoff (vA)A∈Agt, with vA ∈ {0, 1}nA for every player A. We will
build a circuit DA which will represent a single objective for player A. Inputs
to circuit DA will be states of the game. This circuit is constructed from CA
as follows: We set all input gates w1 · · ·wn of circuit CA to the value given by
payoff vA; The former input vi receives the disjunction of all the states in Ωi; We
negate the output. It is not hard to check that the new circuit DA is such that
for every play ρ, DA[Inf(ρ)] evaluates to true if and only if payoffA(ρ) 6.A vA,
i.e. if ρ is an improvement for player A.

Circuit DA is now viewed as a single objective for player A, we write G′ for
the new game. We will look for Nash equilibria in this new game, with payoff
0 for each player. Indeed, a Nash equilibrium σAgt in G with payoff (vA)A∈Agt

will be a Nash equilibrium in game G′ with payoff (0, . . . , 0). Conversely a Nash
equilibrium σAgt in game G′ with payoff (0, . . . , 0) will be a Nash equilibrium in
G as soon as the payoff of its outcome (in G) is (vA)A∈Agt.

We use the algorithm described in Section 4.6 for computing Nash equilibria
with single objectives given as Boolean circuits, and we slightly modify it to
take into account the constraint that it has payoff vA for each player A. This
can be done in polynomial space, thanks to Lemma 2.2: it is sufficient to look
for plays of the form π · τω with |π| ≤ |States|2 and |τ | ≤ |States|2.

PSPACE-hardness was proven for single objectives given as a Boolean circuits
(the circuit evaluates by setting to true all states that are visited infinitely often,
and to false all other states) in Section 4.6. This kind of objective can therefore
be seen as an ordered Büchi objective with a preorder given as a Boolean circuit.
This was actually a consequence of the PSPACE-hardness of the value problem
in turn-based games [20]. �

5.2.2 Reduction to a Single Büchi Objective

For some ordered objectives, the preference relation can (efficiently) be reduced
to a single objective. For instance, a disjunction of several Büchi objectives can
obviously be reduced to a single Büchi objective, by considering the union of the

73

target sets. Formally, we say that an ordered Büchi objective ω = 〈(Ωi)1≤i≤n,.〉
is reducible to a single Büchi objective if, given any payoff vector v, we can
construct in polynomial time a target set T̂ (v) such that for all paths ρ, v .
payoffω(ρ) if, and only if, Inf(ρ) ∩ T̂ (v) 6= ∅. It means that securing payoff v
corresponds to ensuring infinitely many visits to the new target set. Similarly,
we say that ω is co-reducible to a single Büchi objective if for any vector v we
can construct in polynomial time a target set T̂ (v) such that payoffω(ρ) 6. v if,

and only if Inf(ρ)∩ T̂ (v) 6= ∅. It means that improving on payoff v corresponds
to ensuring infinitely many visits to the new target

We will prove the following proposition, which exploits (co-)reducibility for
efficiently solving the various problems.

Proposition 5.2. For ordered Büchi objectives which are reducible to single
Büchi objectives, and where the preorders are non-trivial and monotonic, the
value problem is P-complete. For ordered Büchi objectives which are co-reducible
to single Büchi objectives, and where the preorders are non-trivial and monotonic
the existence and constrained existence problems are P-complete.

First note that hardness results follow from hardness of the same problems
for single Büchi objectives, proven in Section 4.3.

We now prove the two upper bounds.

Reducibility to single Büchi objectives.

Lemma 5.3. For ordered Büchi objectives which are reducible to single Büchi
objectives, and where the preorders are monotonic, the value problem is in P.

Proof. We transform the ordered Büchi objectives of the considered player into
a single Büchi objective, and use a polynomial-time algorithm [28] to solve the
resulting zero-sum Büchi game. �

Co-reducibility to single Büchi objectives.

In the case where the ordered objectives are all co-reducible to single Büchi
objectives, we will show how one can adapt the algorithm for single Büchi
objectives, which was presented in Section 4.3.

Let G be a game. We write 〈(ΩAi)1≤i≤nA
,.A〉 for the ordered Büchi objective

of player A. We assume that those ordered objectives are all co-reducible to
single Büchi objectives.

For every K ⊆ States, we write vA(K) for the player A payoff of any play π
where Inf(π) = K. We set v(K) = (vA(K))A∈Agt. We can first notice that the
winning condition of the suspect game H(G, π,Allow) only depends on Inf(π),
we therefore simply write H(G,K,Allow).

In Section 4.3, we gave a characterization of Nash equilibria based on strongly-
connected subgraphs of the arena of G, when the preference relations only de-
pend on the set of states that are visited infinitely often (Lemma 4.3). Then we

74

proposed a recursive algorithm to compute ‘all’ such strongly-connected sub-
graph (Lemma 4.4), and proved (Lemma 4.5) constrained existence problem in
polynomial time, provided each set W (G, v(K),Allow) can be computed in poly-
nomial time and for every player-A payoff wA, we can construct in polynomial
time a set of states SA such that for every play ρ, Inf(ρ) ⊆ SA if, and only if,
ρ -A wA. This last condition obviously holds, since the ordered objectives are
co-reducible to single Büchi objectives. The first condition also holds, as stated
below.

Lemma 5.4. The set W (G, v(K),Allow) can be computed in polynomial time.

Proof. As the ordered objectives are co-reducible to single Büchi objectives, we
can construct in polynomial time target sets T̂A(v(K)) for each player A. The
objective of Eve in the suspect game H(G,K,Allow) is equivalent to a co-Büchi

objective with target set {(T̂A(v(K), P) | A ∈ P}. The winning region can then
be determined using the polynomial time algorithm of Lemma 5.3 for Büchi
games. �

We therefore deduce the following result:

Corollary 5.5. For ordered Büchi objectives which are co-reducible to single
Büchi objectives, the constrained existence problem is in P.

Applications.

We will give preorders to which the above applies, allowing to infer several
P-completeness results in Table 5.1 (those written with reference “Sect.5.2.2”).

We first show that reducibility and co-reducibility coincide when the preorder
is total.

Lemma 5.6. Let ω = 〈(Ωi)1≤i≤n,.〉 be an ordered Büchi objective, and assume
that . is total. Then, ω is reducible to a single Büchi objective if, and only if,
ω is co-reducible to a single Büchi objective.

Proof. Let u ∈ {0, 1}n be a vector. If u is a maximal element, the new target
set is empty, which satisfies the property for co-reducibility. Otherwise we pick
a vector v among the smallest elements that is strictly larger than u. Since
the preorder is reducible to a single Büchi objective, there is a target set T̂
that is reached infinitely often whenever the payoff is greater than v. Since the
preorder is total and by choice of v, we have w 6. u ⇔ v . w. Thus the target

set T̂ is visited infinitely often when u is not larger than the payoff. Hence ω is
co-reducible to a single Büchi objective.

The proof of the other direction is similar (we only distinguish the case where
u is minimal, and then pick v that is the smallest among those that are larger
than u). �

Lemma 5.7. Ordered Büchi objectives with disjunction or maximize preorders
are reducible to single Büchi objectives. Ordered Büchi objectives with disjunc-
tion, maximize or subset preorders are co-reducible to single Büchi objectives.

75

Proof. Let ω = 〈(Ωi)1≤i≤n,.〉 be an ordered Büchi objective. Assume Ti is the
target set for Ωi.

Assume . is the disjunction preorder. If the payoff v is different from 0 then

we define T̂ (v) as the union of all the target sets: T̂ (v) =
⋃n
i=1 Ti. Then, for

every run ρ,

v . payoffω(ρ) ⇔ there is some i for which Inf(ρ) ∩ Ti 6= ∅
⇔ Inf(ρ) ∩ T̂ (v) 6= ∅

If the payoff v is 0 then we get the expected result with T̂ (v) = States. Dis-
junction being a total preorder, it is also co-reducible (from Lemma 5.6).

We assume now that . is the maximize preorder. Given a payoff v, consider

the index i0 = max{i | vi = 1}. We then define T̂ (v) as the union of the target

sets that are above i0: T̂ (v) =
⋃
i≥i0 Ti. The following four statements are then

equivalent, if ρ is a run:

v . payoffω(ρ) ⇔ v . 1{i|Inf(ρ)∩Ti 6=∅}
⇔ i0 ≤ max{i | Inf(ρ) ∩ Ti 6= ∅}
⇔ ∃i ≥ i0. Inf(ρ) ∩ Ti 6= ∅

Hence ω is reducible, and also co-reducible as it is total, to a single Büchi
objective.

Finally, we assume that . is the subset preorder, and we will show that ω is
then co-reducible to a single Büchi objective. Given a payoff v, the new target is
the union of the target sets that are not reached infinitely often for that payoff:
T̂ (v) =

⋃
{i|vi=0} Ti. Then the following statements are equivalent, if ρ is a run:

payoffω(ρ) 6. u ⇔ 1{i|Inf(ρ)∩Ti 6=∅} 6. u
⇔ ∃i. Inf(ρ) ∩ Ti 6= ∅ and ui = 0

⇔ Inf(ρ) ∩ T̂ (v) 6= ∅

�

Remark. Note that we cannot infer P-completeness of the value problem for the
subset preorder since the subset preorder is not total, and ordered objectives
with subset preorder are not reducible to single Büchi objectives. Such an
ordered objective is actually reducible to a generalized Büchi objective (several
Büchi objectives should be satisfied).

5.2.3 Reduction to a Deterministic Büchi Automaton Ob-
jective

For some ordered objectives, the preference relation can (efficiently) be reduced
to the acceptance by a deterministic Büchi automaton. Formally, we say that
an ordered objective ω = 〈(Ωi)1≤i≤n,.〉 is reducible to a deterministic Büchi

76

automaton whenever, given any payoff vector u, we can construct in polyno-
mial time a deterministic Büchi automaton over States which accepts exactly
all plays ρ with u . payoffω(ρ). For such preorders, we will see that the value
problem can be solved efficiently by constructing the product of the determin-
istic Büchi automaton and the arena of the game. This construction does not
help for solving the (constrained) existence problems since the number of play-
ers is a parameter of the problem, and the size of the resulting game will then
be exponential.

Proposition 5.8. For ordered Büchi objectives which are reducible to deter-
ministic Büchi automata, the value problem is in P.

Proof. Given the payoff vA for player A, the algorithm proceeds by constructing
the automaton that recognizes the plays with payoff higher than vA. By per-
forming the product with the game as described in Section 4.8, we obtain a new
game, in which there is a winning strategy if and only if there is a strategy in
the original game to ensure payoff vA. In this new game, player A has a single
Büchi objective, so that the existence of a winning strategy can be decided in
polynomial time. �

We now give preorders to which the above result applies, that is, which are
reducible to deterministic Büchi automata objectives.

Lemma 5.9. An ordered objective where the preorder is the conjunction is
reducible to a deterministic Büchi automaton objective.

Proof. Let ω = 〈(Ωi)1≤i≤n,.〉 be an ordered Büchi objective, where . is the
conjunction. For every 1 ≤ i ≤ n, let Ti be the target set defining the Büchi
condition Ωi. There are only two possible payoffs: either all objectives are
satisfied, or one objective is not satisfied. For the second payoff case, any
play has a larger payoff: hence the trivial automaton (which accepts all plays)
witnesses the property. For the first payoff case, we construct a deterministic
Büchi automaton B as follows. There is one state for each target set, plus one
accepting state: Q = {q0, q1, . . . , qn}; the initial state is q0, and the unique

repeated state is qn. For all 1 ≤ i ≤ n, the transitions are qi−1
s−→ qi when

s ∈ Ti and qi−1
s−→ qi−1 otherwise. There are also transitions qn

s−→ q0 for every
s ∈ States. Automaton B describes the plays that goes through each set Ti
infinitely often, hence witnesses the property. It can furthermore be computed
in polynomial time. The construction is illustrated in Figure 5.3. �

Lemma 5.10. An ordered objective where the preorder is the subset preorder is
reducible to a deterministic Büchi automaton objective.

Proof. Let ω = 〈(Ωi)1≤i≤n,.〉 be an ordered Büchi objective, where . is the
subset preorder. For every 1 ≤ i ≤ n, let Ti be the target set defining the Büchi
condition Ωi. Fix a payoff u. A play ρ is such that u . payoffω(ρ) if, and only
if, ρ visits infinitely often all sets Ti with ui = 1. This is then equivalent to
the conjunction of all Ωi’s with ui = 1. We therefore apply the construction of
Lemma 5.9 and get the expected result. �

77

Lemma 5.11. An ordered Büchi objective where the preorder is the lexicographic
preorder is reducible to a deterministic Büchi automaton objective.

Proof. Let ω = 〈(Ωi)1≤i≤n,.〉 be an ordered Büchi objective, where . is the
lexicographic preorder. For every 1 ≤ i ≤ n, let Ti be the target set defining
the Büchi condition Ωi. Let u ∈ {0, 1}n be a payoff vector. We construct the
following deterministic Büchi automaton which recognizes the runs whose payoff
is greater than or equal to u.

In this automaton there is a state qi for each i such that ui = 1, and a
state q0 that is both initial and repeated: Q = {q0} ∪ {qi | ui = 1}. We write
I = {0} ∪ {i | ui = 1}. For every i ∈ I, we write succ(i) = min(I \ {j | j ≤ i}),
with the convention that min∅ = 0. The transition relation is defined as follows:

• for every s ∈ States, there is a transition q0
s−→ qsucc(0);

• for every i ∈ I \ {0}, we have the following transitions:

– qi
Ti−→ qsucc(i);

– qi
Tk\Ti−−−−→ q0 with k < i and uk = 0;

– qi
s−→ qi for every s ∈ States \ (Ti ∪

⋃
k<i,uk=0 Tk).

An example of the construction is given in Figure 5.4.

We now prove correctness of this construction. Consider a path that goes
from q0 to q0: if the automaton is currently in state qi, then since the last
occurrence of q0, at least one state for each target set Tj with j < i and uj = 1
has been visited. When q0 is reached again, either it is because we have seen all
the Tj with uj = 1, or it is because the run visited some target Ti with ui = 0
and all the Tj such that uj = 1 and j < i; in both cases, the set of targets that
have been visited between two visits to q0 describes a payoff greater than u.
Assume the play π is accepted by the automaton; then there is a sequence of qi
as above that is taken infinitely often, therefore payoffω(π) is greater than or
equal to u for the lexicographic order.

Conversely assume v = payoffω(π) is greater than or equal to u, that we
already read a prefix π≤k for some k, and that the current state is q0. Reading
the first symbol in π after position k, the run goes to the state qi where i is
the least integer such that ui = 1. Either the path visits Ti at some point, or
it visits a state in a target Tj , with j smaller than i and vj = 0, in which case
the automaton goes back to q0. Therefore from q0 we can again come back to q0

while reading the following of π, and the automaton accepts. �

Corollary 5.12. For ordered Büchi objectives with either of the conjunction,
the lexicographic or the subset preorders, the value problem is P-complete.

Proof. The upper bound is a consequence of all the results proven above. Hard-
ness in P already holds for games with a single Büchi objective. �

78

q0 q1 q2

q3

T1 T2

T3

States

Figure 5.3: The automaton for
the conjunction preorder, n =
3

q2 q5 q6

q0

T2 T5

T1, T3, T4, T6

T1, T3, T4

T1

States

Figure 5.4: The automaton for the lexico-
graphic order, n = 7 and u = (0, 1, 0, 0, 1, 1, 0)

5.2.4 Monotonic Preorders

We will see in this part that monotonic preorders will lead to more efficient
algorithms.

When monotonicity implies memorylessness.

We say that a strategy σ is memoryless (resp. from state s0) if there exists a
function f : States → Act such that σ(h · s) = f(s) for every h ∈ Hist (resp.
for every h ∈ Hist(s0)). A strategy profile is said memoryless whenever all
strategies of single players are memoryless. We show that when the preorders
(in ordered Büchi objectives) are monotonic, our problems are also easier than
in the general case. This is because we can find memoryless trigger strategies:
we recall that a strategy profile σAgt is a trigger strategy for a play π from state s
if, for any strategy σ′A of any player A ∈ Agt, the path π is at least as good as
the outcome of σAgt[A 7→ σ′A] from s (that is, Out(s, σAgt[A 7→ σ′A]) -A π).

Lemma 5.13. Let H be a turn-based two-player game. Call Eve one player,
and let σ∃ be a strategy for Eve, and s0 be a state of H. There is a memoryless
strategy σ′∃ such that for every ρ′ ∈ OutH(s0, σ

′
∃), there exists ρ ∈ OutH(s0, σ∃)

such that Inf(ρ′) ⊆ Inf(ρ).

Proof. This proof is by induction on the size of the set S(σ1) = {(s,m) | ∃h ∈
Hist(σ1). σ1(h) = m and last(h) = s}. If its size is the same as that of {s | ∃h ∈
Hist(σ1). last(h) = s} then the strategy is memoryless. Otherwise, let s be a
state at which σ1 takes several different actions (i.e., |({s}×Act)∩S(σ1)| > 1).

We will define a new strategy σ′1 that takes fewer different actions in s and
such that for every outcome of σ′1, there is an outcome of σ1 that visits (at least)
the same states infinitely often.

If σ is a strategy and h a history, we let σ◦h : h′ 7→ σ(h·h′) for any history h′.
For every m such that (s,m) ∈ S(σ1) we define the set Hm = {h ∈ Hist(σ1) |
last(h) = s and σ1(h) = m}, and for every h, h−1 ·Hm = {h′ | h · h′ ∈ Hm}.

We pick m such that Hm is not empty.

• Assume that there is h0 ∈ Hist(σ1) with last(h0) = s, such that h−1
0 ·Hm

is empty. We define a new strategy σ′1 as follows. If h is an history which
does not visit s, then σ′1(h) = σ1(h). If h is an history which visits s, then

79

decompose h as h′ · h′′ where last(h′) = s is the first visit to s and define
σ′1(h) = σ1(h0 · h′′). Then, strategy σ′1 does not use m at state s, and
therefore at least one action has been “removed” from the strategy. More
precisely, |({s}×Act)∩S(σ′1)| ≤ |({s}×Act)∩S(σ1)|−1. Furthermore the
conditions on infinite states which are visited infinitely often by outcomes
of σ′1 is also satisfied.

• Otherwise for any h ∈ Hist(σ1) with last(h) = s, h−1 ·Hm is not empty.
We will construct a strategy σ′1 which plays m at s. Let h be an history,
we first define the extension e(h) inductively in that way:

– e(ε) = ε, where ε is the empty history;

– e(h · s) = e(h) · h′ where h′ ∈ (e(h))−1 ·Hm;

– e(h · s′) = e(h) · s′ if s′ 6= s.

We extend the definition of e to infinite outcomes in the natural way:
e(ρ)i = e(ρ≤i)i. We then define the strategy σ′1 : h 7→ σ1(e(h)). We show
that if ρ is an outcome of σ′1, then e(ρ) is an outcome of σ1. Indeed
assume h is a finite outcome of σ′1, that e(h) is an outcome of σ1 and
last(h) = last(e(h)). If h · s is an outcome of σ′1, by construction of
e, e(h · s) = e(h) · h′, such that last(h′) = s, and h′ is an outcome of
σ1 ◦ e(h) and as e(h) is an outcome of σ1 by hypothesis, that means that
e(h · s) is an outcome of σ1. If h · s′ with s′ 6= s is an outcome of σ′1,
e(h · s′) = e(h) · s′, s′ ∈ Tab(last(h), σ′1(h)), and σ′1(h) = σ1(e(h)). Using
the hypothesis last(h) = last(e(h)), and e(h) is an outcome of σ1, therefore
e(h ·s′) is an outcome of σ1. This shows that if ρ is an outcome of σ′1 then
e(ρ) is an outcome of σ1. The property on states visited infinitely often
follows. Several moves have been removed from the strategy at s (since
the strategy is now memoryless at s, playing m).

In all cases we have S(σ′1) strictly included in S(σ1), and an inductive reasoning
entails the result. �

Lemma 5.14. For ordered Büchi objectives with monotonic preorders, if there
is a trigger strategy that respect the constraint Allow for some play π from s,
then there is a memoryless winning strategy for Eve in H(G, π,Allow) from
state (s,Agt).

Proof. Assume there is a trigger strategy for π. We have seen in Lemma 3.3
that there is then a winning strategy σ∃ in game H(G, π,Allow) for Eve. Con-
sider the memoryless strategy σ′∃ constructed as in Lemma 5.13. Let ρ′ be an
outcome of σ′∃, there is an outcome ρ of σ∃ such that Inf(ρ′) ⊆ Inf(ρ). As
σ∃ is winning in H(G, π,Allow), for every A ∈ L(ρ), π1(ρ) -A π. We assume
the Büchi conditions are given by the target sets (TAi)A,i. For each player A,
{i | Inf(π1(ρ′)) ∩ TAi } ⊆ {i | Inf(π1(ρ)) ∩ TAi }. As the preorder is monotonic
the payoff of π1(ρ′) is smaller than that of π1(ρ): π1(ρ′) -A π1(ρ). So the play
is winning for any player A and σ′∃ is a memoryless winning strategy in game
H(G, π,Allow) for Eve. �

80

Lemma 5.15. For ordered Büchi objectives with monotonic preorders given by
monotonic Boolean circuits, given a path π, we can decide in polynomial time
if a memoryless strategy for Eve in H(G, π,Allow) is winning.

Proof. Let σ∃ be a memoryless strategy in H(G, π,Allow) for Eve. By keeping
only the edges that are taken by σ∃, we define a subgraph of the game. We can
compute in polynomial time the strongly connected components of this graph.
If one component is reachable and does not satisfy the objective of Eve, then the
strategy is not winning. Conversely if all the reachable strongly connected com-
ponents satisfy the winning condition of Eve, since the preorder is monotonic,
σ∃ is a winning strategy. Notice that since the preorder is given as a Boolean
circuit, we can check in polynomial time whether a strongly connected compo-
nent is winning or not. Globally the algorithm is therefore polynomial-time.

�

Main general result.

The previous analysis allows to get the following results.

Proposition 5.16. For ordered Büchi objectives with monotonic given by mono-
tonic Boolean circuits, the value problem is in coNP, and the existence and con-
strained existence problems are in NP. Completeness holds in both cases for
preorders given by monotonic Boolean circuits or for the counting preorder. NP-
completeness also holds for the constrained existence problem for preorders .
with furthermore an element v such that for every v′, v′ 6= 1⇔ v′ . v,1

Proofs of the upper bounds.

We show that the value problem is in coNP for ordered Büchi objectives with
monotonic preorders given by monotonic Boolean circuits.

For the value problem, we can make the concurrent game turn-based: since
player A must win against any strategy of the coalition P = Agt \ {A}, she
must also win in the case where the opponents’ strategies can adapt to what A
plays. This turn-based game is determined, so that there is a strategy σ whose
outcomes are always better (for A) than vA if and only if, for any strategy σ′ of
coalition P , there is an outcome with payoff (for A) better than vA. If there is
a counterexample to this fact, then thanks to Lemma 5.13 there is one with a
memoryless strategy σ′. The coNP algorithm proceeds by checking that all the
memoryless strategies of coalition P have an outcome better than vA, which is
achievable in polynomial time, with a method similar to Lemma 5.15.

We show now that the constrained existence problem is in NP for ordered
Büchi objectives given by monotonic Boolean circuits.

The algorithm for the constrained existence problem proceeds by guessing:

1To be fully formal, the preorder . is in fact a family (.n)n∈N (where .n compares
two vectors of size n), and this condition should be stated as “if, for all n, there is an
element vn ∈ {0, 1}n, vn, such that for all v′ ∈ {0, 1}n, it holds v′ 6= 1⇔ v′ . vn ”.

81

• the payoff for each player,

• a play of the form π · τω, where |π| ≤ |States|2 and |τ | ≤ |States|2,

• an under-approximationW of the set of winning states inH(G, π·τω,Allow)

• a memoryless strategy profile σAgt in H(G, π · τω,Allow).

We check that σAgt is a witness for the fact that the states in W are winning;
thanks to Lemma 5.15, this can be done in polynomial time. We also verify that
the play π · τω has the expected payoff, that the payoff satisfies the constraints,
and that it never gets out of W . If these conditions are fulfilled, then the play
π ·τω meets the conditions of Theorem 3.4, and there is a Nash equilibrium with
outcome π · τω. Lemmas 5.14 and 2.2 ensure that if there is a Nash equilibrium,
we can find it this way.

Proofs of the hardness results.

Lemma 5.17. For ordered Büchi objectives with the counting preorder, the
value problem is coNP-hard.

Proof. We reduce (the complement of) 3SAT into the value problem for two-
player turn-based games with Büchi objectives with the counting preorder. Con-
sider an instance

φ = C1 ∧ · · · ∧ Cm
with Cj = `j,1 ∨ `j,2 ∨ `j,3, over a set of variables {x1, . . . , xn}. With φ, we as-
sociate a two-player turn-based game G. Its set of states is made of

• a set containing the unique initial state V0 = {s0},
• a set of two states Vk = {xk,¬xk} for each 1 ≤ k ≤ n,

• and a set of three states Vn+j = {tj,1, tj,2, tj,3} for each 1 ≤ j ≤ m.

Then, for each 0 ≤ l ≤ n+m, there is a transition between any state of Vl and
any state of Vl+1 (assuming Vn+m+1 = V0).

The game involves two players: player B owns all the states, but has no
objectives (she always loses). Player A has a set of Büchi objectives defined
by TA2·k = {xk} ∪ {tj,p | `j,p = xk}, TA2·k+1 = {¬xk} ∪ {tj,p | `j,p = ¬xk}, for
1 ≤ k ≤ n. Notice that at least n of these objectives will be visited infinitely
often along any infinite play. We prove that if the formula is not satisfiable,
then at least n+ 1 objectives will be fulfilled, and conversely.

Assume the formula is satisfiable, and pick a witnessing valuation v. We
define a strategy σB for B that “follows” valuation v: from states in Vk−1, for
any 1 ≤ k ≤ n, the strategy plays towards xk if v(xk) = true (and to ¬xk
otherwise). Then, from a state in Vn+l−1 with 1 ≤ l ≤ m, it plays towards one
of the tj,p that evaluates to true under v (the one with least index p, say). This
way, the number of targets of player A that are visited infinitely often is n.

Conversely, pick a play in G s.t. at most (hence exactly) n objectives of A
are fulfilled. In particular, for any 1 ≤ k ≤ n, this play never visits one of xk

82

and ¬xk, so that it defines a valuation v over {x1, . . . , xn}. Moreover, any state
of Vn+l, with 1 ≤ l ≤ p, that is visited infinitely often must correspond to a
literal that is made true by v, as otherwise this would make one more objective
that is fulfilled for A. As a consequence, each clause of φ evaluates to true
under v, and the result follows. �

s0

x1

¬x1

x2

¬x2

x3

¬x3

t1,1

t1,2

t1,3

t2,1

t2,2

t2,3

Figure 5.5: The game G associated with formula φ of 5.1

Example 9. We illustrate the construction of the previous proof in Figure 5.5
for the formula

ϕ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) . (5.1)

The targets for playerA are T1 = {x1, t1,1}, T2 = {¬x1, t2,1}, T3 = {x2, t1,2, t2,2},
T42 = {¬x2}, T5 = {x3}, T6 = {¬x3, t1,3, t2,3}. Player A cannot ensure visiting
infinitely often four target sets, therefore the formula is satisfiable.

Lemma 5.18. For ordered Büchi objectives with the counting preorder, the
existence problem is NP-hard.

Proof. Let G be the game we constructed for Lemma 5.17. We construct the
game G′′ from G as described in Section 2.4.3. The preference in G′ can still
be described with ordered Büchi objectives and the counting preorder: the only
target set of B is {s1} and we add s1 to n different targets of A, where n is
the number of variables as in Lemma 5.17. From Lemma 2.4 there is a Nash
equilibrium in G′′ from s0 if, and only if, A cannot ensure visiting at least n+ 1
targets infinitely often. Hence the existence problem is NP-hard. �

This proves also NP-hardness for the constrained existence problem for or-
dered Büchi objectives with the counting preorder. Hardness results for pre-
orders given by monotonic Boolean circuits follow from the above since the
counting preorder is a special case of preorder given as a monotonic Boolean
circuit.

Lemma 5.19. For ordered Büchi objectives with a monotonic preorder for which
there is an element v such that for every v′, v′ 6= 1 ⇔ v′ . v, the existence
problem with constrained outcomes for turn-based games is NP-hard.

83

Proof. Let us consider a formula φ = C1∧· · ·∧Cm For each variable xi, our game
has one player Bi and three states si, xi and ¬xi. The objectives of Bi are the
sets {xi} and {¬xi}. Transitions go from each si to xi and ¬xi, and from xi
and ¬xi to si+1 (with sn+1 = s0). Finally, an extra player A has full control
of the game (i.e., she owns all the states) and has n objectives, defined by
TAi = {`i,1, `i,2, `i,3} for 1 ≤ i ≤ n. The construction is illustrated in Figure 5.6.

s1

x1

¬x1

s2

x2

¬x2

s3

x3

¬x3

s4

x4

¬x4

Figure 5.6: The Büchi game for a formula with 4 variables

We show that formula φ is satisfiable if, and only if, there is a Nash equilib-
rium where each player Bi gets payoff βi satisfying βi . v (hence βi 6= (1, 1)),
and player A gets payoff 1.

First assume that the formula is satisfiable, and pick a witnessing valuation u.
By playing according to u, player A can satisfy all of her objectives (hence
she cannot improve her payoff, since the preorder is monotonic). Since she
alone controls all the game, the other players cannot improve their payoff, so
that this is a Nash equilibrium. Moreover, since A plays memoryless, only one
of xi and ¬xi is visited for each i, so that the payoff βi for Bi satisfies βi .
v. Conversely, if there is a Nash equilibrium with the desired payoff, then by
hypothesis, exactly one of each xi and ¬xi is visited infinitely often (so that
the payoff for Bi is not (1, 1)), which defines a valuation u. Since in this Nash
equilibrium, player A satisfies all its objectives, one state of each target is visited,
which means that under valuation u, formula φ evaluates to true.

�

Applications.

We now describe examples of preorders which satisfy the conditions on the
existence of an hypotheses of an element v such that v′ 6= 1⇔ v′ . v.

Lemma 5.20. Conjunction, counting and lexicographic preorders have an ele-
ment v such that v′ 6= 1⇔ v′ . v.

Proof. Consider v = (1, . . . , 1, 0), and v′ 6= 1. For conjunction, there is i such
that v′i = 0, so v′ . v. For counting, |{i | v′i = 1}| < n, so v′ . v. For the
lexicographic preorder, let i be the smallest index such that v′i = 0, and either
vi = 1 and vj = v′j for all j < i, or for all j ∈ {1, . . . , n}, vj = v′j . In both cases
v′ . v. �

84

As a consequence, the result of Lemma 5.19 applies in particular to the
conjunction and lexicographic preorders, for which the constrained existence
problem is thus NP-complete.

5.3 Ordered Reachability Objectives

We now assume that all considered objectives are reachability objectives, that
is, if we consider an ordered objective 〈(Ωi)1≤i≤n,.〉, then all Ωi’s are reacha-
bility objectives. In the general case where the preorders are given as Boolean
circuits, we show that the various decision problems are PSPACE-complete, and
we even notice that the hardness result holds for several simpler preorders. We
then improve this result in a number of cases. The results are summarized in
Table 5.2.

Table 5.2: Summary of the results for reachability objectives

Preorder Value (Constrained) Existence

Disjunction, Maximize P-c (Sect. 5.3.2) NP-c (Sect. 5.3.2)
Subset PSPACE-c (Sect. 5.3.1) NP-c (Sect. 5.3.2)

Conjunction PSPACE-c (Sect. 5.3.1) PSPACE-c (Sect. 5.3.1)
Counting PSPACE-c (Sect. 5.3.1) PSPACE-c (Sect. 5.3.1)

Lexicographic PSPACE-c (Sect. 5.3.1) PSPACE-c (Sect. 5.3.1)
(Monotonic) Boolean Circuit PSPACE-c (Sect. 5.3.1) PSPACE-c (Sect. 5.3.1)

5.3.1 General Case

Reduction to a game with ordered Büchi objectives.

We show how to transform a game G with preferences given by Boolean cir-
cuits over reachability objectives into a new game G′, with preferences given by
Boolean circuits over Büchi objectives. Although the size of G′ will be expo-
nential, circuit order with Büchi objectives define prefix-independent preference
relations and thus checking condition 3 of Theorem 3.4 can be made more effi-
cient.

States of G′ remember the states of G which already occurred. Its set of states
is States′ = States× 2States. The transitions are (s, S)→ (s′, S′) when there is
a transition s→ s′ in G and S′ = S ∪ {s′}. We keep the same circuits to define
the preference relations, but the reachability objectives are transformed into
Büchi objectives: a target set T is transformed into T ′ = {(s, S) | S ∩ T 6= ∅}.
Although the game has exponential size, the preference relations only depend
on the strongly connected components the path ends in, so that we will be able
to use a special algorithm, that we will describe after this lemma.

We define the relation s / s′ over states of G and G′ if, and only if, s′ = (s, S)
with S ⊆ States.

85

We define Allow′((s, S),mAgt) = Allow(s,mAgt) and we prove that / is a
game simulation, in the sense of Section 3.3.

Lemma 5.21. The relation / (resp. /−1) is a game simulation between G and G′
with respect to the constraints Allow and Allow′, and it is preference-preserving
from (s0, (s0, {s0})) (resp. ((s0, {s0}), s0)).

Proof. LetmAgt be an allowed move from s, thenmAgt is also allowed from (s, S),
let t = Tab(s,mAgt), Tab′((s, S),mAgt) = (t, S ∪ {t}), therefore Tab(s,mAgt) /
Tab′(s′,mAgt). Let (t, S′) be a state of G′, we have that t / (t, S′). If S′ =
S ∪ {t} then Susp((s, t),mAgt) = Susp(((s, S), (t, S′)),mAgt), and otherwise
Susp(((s, S), (t, S′)),mAgt) = ∅. In both cases, condition (2) that defines a
game simulation is obviously satisfied.

In the other direction, let (s′, S ∪ {s′}) = Tab((s, S),mAgt), we have that
s′ / (s′, S ∪ {s′}). Let t ∈ States, t / (t, S ∪ {t}) and Susp((s, t),mAgt) =
Susp(((s, S), (t, S ∪ {t})),mAgt).

Let ρ and ρ′ be two paths, from s0 and (s0, {s0}) respectively, and such that
ρ / ρ′. We show preference preservation, by showing that ρ reaches target set
T if and only if ρ′ visits infinitely often T ′. If ρ visits some state s ∈ T , then
from that point, states visited by ρ′ are of the form (s′, S′) with s ∈ S′, all these
states are in T ′, therefore ρ′ visits infinitely often T ′. Conversely, if ρ′ visits
infinitely often T ′, some state of T ′ have been visited by ρ. �

As a corollary, and thanks to Proposition 3.5, we get that there is a corre-
spondence between Nash equilibria in G and Nash equilibria in G′.

Corollary 5.22. If there is a Nash equilibrium σAgt in G from s0 which re-
spects the constraint Allow , then there is a Nash equilibrium σ′Agt in G′ from

(s0, {s0}) which respect the constraint Allow′ and such that OutG(s0, σAgt) /
OutG′((s0, {s0}), σ′Agt). And vice-versa: if there is a Nash equilibrium σ′Agt in

G′ from (s0, {s0}) which respect the constraint Allow′ , then there is a Nash
equilibrium σAgt in G from s0 which respect the constraint Allow and such that
OutG′((s0, {s0}), σ′Agt) /

−1 OutG(s0, σAgt).

Note that, if OutG(s0, σAgt) / OutG′((s0, {s0}), σ′Agt), then OutG(s0, σAgt)
satisfies the reachability objective defined with target set T if, and only if,
OutG′((s0, {s0}), σ′Agt) satisfies the Büchi objective with target set T ′ = {(s, S) |
S ∩ T 6= ∅}. From this strong correspondence between G and G′, we get that it
is sufficient to look for Nash equilibria in game G′.

How to efficiently solve the suspect game of G′

In game G′, preference relations are prefix-independent. Applying Remark 3.2
the preference relation in the suspect game is then also prefix-independent, and
the payoff of a play only depends on which strongly-connected component the
path ends in. We now give an alternating algorithm which runs in polynomial
time and solves the game H(G′, π′,Allow′), where π′ is an infinite path in G′.

86

Lemma 5.23. The winner of H(G′, π′,Allow′) can be decided by an alternating
algorithm which runs in time polynomial in the size of G.

Proof. Let CA be the circuit defining the preference relation of player A. Let ρ =
(si, Si)i≥0 be a path in G′, the sequence (Si)i≥0 is non-decreasing and converges
to a limit S(ρ). We have payoffA(ρ) = 1{i|T i

A∩S(ρ)=∅}. Therefore the winning

condition of Eve in H(G′, π′,Allow′) for a play ρ only depends on the limits
L(ρ) and S(π1(ρ)). It can be described by a single Büchi condition given by the
target set T = {((s, S), P) | ∀A ∈ P. CA[vA(S), wA] evaluates to true} where
vA(S) = 1{i|T i

A∩S=∅} and wA = payoffA(π′). We now describe the algorithm.

Initially the current state is set to ((s0, {s0}),Agt). We also keep a list of the
states which have been visited, and we initialize it with Occ← {(s0, {s0}),Agt}.
Then,

• if the current state is ((s, S), P), the algorithm existentially guesses a
move mAgt of Eve and we set t = ((s, S), P,mAgt);

• otherwise if the current state is of the form ((s, S), P,mAgt), it universally
guesses a state s′ which corresponds to a move of Adam and we set t =
((s′, S ∪ {s′}), P ∩ Susp((s, s′),mAgt)).

If t was already seen (that is, if t ∈ Occ), the algorithm returns true when t ∈ T
and false when t /∈ T , otherwise the current state is set to t, and we add t to
the list of visited states: Occ← Occ∪{t}, and we repeat this step. Because we
stop when the same state is seen, the algorithm stops after at most `+ 1 steps,
where ` is the length of the longest acyclic path. Since the size of S can only
increase and the size of P only decrease, we bound ` by |States|2 · |Agt|.

We now prove the correctness of the algorithm. First, H(G′, π′,Allow′)
is a turn-based Büchi game, which is a special case of parity game. Parity
games are known to be determined with memoryless strategies [43, 24], hence
H(G′, π′,Allow′) is determined with memoryless strategies.

If the algorithm answers true, then there exist a strategy σ∃ of Eve such that
for all the strategies σ∀ of Adam, any outcome ρ of Out(σ∃, σ∀) is such that there
exist i < j ≤ ` + 1 with ρi = ρj ∈ T and all ρk with k < j are different. We
extend this strategy σ∃ to a winning strategy σ′∃ for Eve. We do so by ignoring
the loops we see in the history, formally we inductively define a reduction r of
histories by:

• r(ε) = ε;

• if ((s, S), P) does not appear in r(h) then r(h·((s, S), P)) = r(h)·((s, S), P);

• otherwise r(h ·((s, S), P)) = r(h)≤i where i is the smallest index such that
r(h)i = ((s, S), P).

We then define σ′∃ for any history h by σ′∃(h) = σ∃(r(h)).
We show by induction that if h is a history compatible with σ′∃ from the

state ((s0, {s0}),Agt) then r(h) is compatible with σ∃ from ((s0, {s0}),Agt) .
It is true when h = ((s0, {s0}),Agt), now assuming it holds for all history of

87

length ≤ k, we show it for history of length k + 1. Let h · s be a history of
length k + 1 compatible with σ′∃. By hypothesis r(h) is compatible with h and
since σ′∃(h) = σ∃(r(h)), r(h) · s is compatible with σ∃. If r(h · s) = r(h) · s then
r(h ·s) is compatible with σ∃. Otherwise r(h ·s) is a prefix of r(h) and therefore
of length ≤ k, we can apply the induction hypothesis to conclude that r(h · s)
is compatible with σ∃.

We now show that the strategy σ′∃ that we defined, is winning. Let ρ be
a possible outcome of σ′∃, let i < j be the first indexes such that ρi, ρj ∈
(States×S(ρ))×L(ρ) and ρi = ρj . Because there is no repetition between i and
j − 1: r(ρ≤j−1) = r(ρ≤i−1)ρi · · · ρj−1. We have that σ∃(r(ρ≤i−1)ρi · · · ρj−1) =
σ′∃(ρj−1). From this move, ρj is a possible next state, so r(ρ≤i−1)ρi · · · ρj is a
possible outcome of σ∃. As ρi = ρj and all other states are different, by the
hypothesis on σ∃ we have that ρj ∈ T . This shows that ρ ultimately loops in
states of T and therefore ρ is a winning run for Eve.

Reciprocally, if Eve has a winning strategy, she has a memoryless one σ∃
since this is a Büchi game. We can see this strategy as an oracle for the various
existential choices in the algorithm. Consider some universal choices in the
algorithm, it corresponds to a strategy σ∀ for Adam. The branch corresponding
to (σ∃, σ∀) ends the first time we encounter a loop, we write this history h ·
h′ with last(h′) = last(h). Since the strategy σ∃ is memoryless, h · h′ω is a
possible outcome. Since it is winning, last(h′) is in T and therefore the branch
is accepting. This being true for all the branches given by the choices of σ∃, the
algorithm answers true. �

Main general result when preorders are given as Boolean circuits

Proposition 5.24. For ordered reachability objectives with preorders given by
Boolean circuits, the value, existence and constrained existence problems are in
PSPACE. For ordered reachability objectives with preorders having 1 as a unique
maximal element, the value problem is PSPACE-hard (even for two-player turn-
based games). If moreover the preorders have an element v such that for every
v′, v′ 6= 1 ⇔ v′ . v, then the existence and constrained existence problems are
PSPACE-hard (even for two-player games).

PSPACE-completeness therefore holds for conjunction, counting and lexico-
graphic preorders (thanks to the fact that 1 is the unique maximal element for
theses orders and to Lemma 5.20). As conjunction (for instance) can easily
be encoded using a (monotonic) Boolean circuit in polynomial time, the hard-
ness results are also valid if the preorder is given by a (monotonic) Boolean
circuit. On the other hand, the disjunction and maximize preorders do not have
a unique maximal element, so the hardness result does not carry over to these
preorders. In the same way, for the subset preorder, there is no v such that
v′ 6= 1 ⇔ v′ . v, so the hardness result does not apply. We prove later (in
Section 5.3.2) that in these special cases, the complexity is actually lower.

It remains to complete the proof of proposition 5.24. We do so in the next
paragraphs.

88

Proof of the PSPACE upper bounds.

We describe a PSPACE algorithm for solving the constrained existence problem.
The algorithm proceeds by trying all plays π in G of the form described in
Lemma 2.2. This corresponds to a (unique) play π′ in G′. We check that π′ has
a payoff satisfying the constraints, and that there is a path ρ inH(G′, π′,Allow′),
whose projection is π′, along which Adam obeys Eve, and which stays in the win-
ning region of Eve. This last step is done by using the algorithm of Lemma 5.23
on each state ρ goes through. All these conditions are satisfied exactly when the
conditions of Theorem 3.4 are satisfied, in which case there is a Nash equilibrium
within the given bounds.

The PSPACE upper bound for the value problem can be inferred from Lemma 2.3.

Proof of PSPACE-hardness for the value problem.

We show PSPACE-hardness of the value problem when the preorder has 1 as a
unique maximal element.

We reduce QSAT to the value problem, where QSAT is the satisfiability
problem for quantified Boolean formula. For an instance of QSAT, we assume
without loss of generality that the Boolean formula is a conjunction of disjunc-
tive clauses2.

Let φ = Q1x1 . . . Qnxn. φ
′, where Qi ∈ {∀,∃} and φ′ = C1 ∧ · · · ∧ Cm with

Cj =
∧

1≤k≤p `j,k and `j,k ∈ {xi,¬xi | 1 ≤ i ≤ n} ∪ {>,⊥}. We define a
turn-based game G(φ) in the following way (illustrated in Example 10 below).
There is one state for each quantifier, one for each literal, and two additional
states > and ⊥:

States = {Qi | 1 ≤ i ≤ n} ∪ {xj ,¬xj | 1 ≤ j ≤ m} ∪ {>,⊥}.

The game involves two players, A andB. Both states> and⊥, the existential-
quantifier states and the literal states are controlled by A, while the universal-
quantifier states belong to player B. The state corresponding to quantifier Qi
has two outgoing transitions, going to xi and ¬xi respectively. The literal states
only have one transition to the next quantifier state, or to the final state for the
last literal state. Finally, states > and ⊥ both carry a self-loop (notice that ⊥
is not reachable, while > will always be visited).

Player A has one target set for each clause: if Cj =
∧

1≤k≤p `j,k then TAj =

{`j,k | 1 ≤ k ≤ p}. The j-th objective ΩAj is to reach target set TAj . The
following result is then straightforward:

Lemma 5.25. Formula φ is valid if, and only if, player A has a strategy whose
outcomes from state Q1 all visit each target set TAj .

Proof. We begin with the direct implication, by induction on n. For the base
case, φ = Q1x1.

∧
j Cj where Cj only involves x1. We consider two cases:

2With the convention that en empty disjunction is equivalent to ⊥.

89

• Q1 = ∃: since we assume φ be true, there must exist a value for x1 which
makes all clauses true. If this value is >, consider the strategy σ> of
Player A such that σ>(s1) = x1. Then each clause Cj must have xi as
one of its literals, so that the objective ΩAj is satisfied with this strategy.
The same argument applies if the value for x1 were ⊥.

• Q1 = ∀: in that case, Player A has only one strategy. For both x1 and ¬x1

all the clauses are satisfied. It follows that each clause Cj must contain
x1 and ¬x1, so that objective ΩAj is satisfied for any strategy of player B.

Now, assume that the result holds for all QSAT instances with at most n−1
quantifiers.

• ifQ1 = ∃, then one ofQ2x2 . . . Qnxnφ
′[x1 ← >] andQ2x2 . . . Qnxnφ

′[x1 ←
⊥] is valid. We handle the first case, the second one being symmetric. For
a literal `i, we write L`i for the set of clauses containing `i as a literal,
and T`i for the corresponding set of target sets.

Assume Q2x2 . . . Qnxnφ
′[x1 ← >] is valid; by induction we know that

there exists a strategy σx1 such that all the targets in T`i are visited
along any outcome from state Q2 (because G(Q2x2 . . . Qnxnφ

′[x1 ← >])
is the same game as G(φ), but with Q2 as the initial state, and with the
targets in Tx1

containing {>} in place of x1). We define the strategy σ by
σ(Q1) = x1 and σ(Q1 · x1 · ρ) = σx1(ρ). An outcome of σ will necessarily
visit x1, hence visiting all the targets in Tx1

; because σ follows σx1 , all the
objectives not in Tx1 are met as well.

• if Q1 = ∀, then Q2x2 . . . Qnxnφ
′[x1 ← >] is valid. Using the induction

hypothesis we know that from Q2 there is a strategy σx1 that enforces a
visit to all the targets in Tx1

. Similarly, Q2x2 . . . Qnxnφ
′[x1 ← ⊥] is valid,

and there is a strategy σ¬x1 that visits all the objectives not in T¬x1 .
We define a new strategy σ as follows: σ(s1 · x1 · ρ) = σx1(ρ) and σ(Q1 ·
¬x1 · ρ) = σ¬x1(ρ). Consider an outcome of σ: if it visits x1, then all
the objectives in Tx1

are visited, and because the path follows σx1 , the
objectives not in Tx1

are also visited. The other case is similar.

We now turn to the converse implication. Assume the formula is not valid.
We prove that for any strategy σ of player A, there is an outcome ρ of this
strategy such that some objective ΩAj is not satisfied. We again proceed by
induction, beginning with the case where n = 1.

• if Q1 = ∃, then both Q2x2 . . . Qnxnφ
′[x1 ← >] and Q2x2 . . . Qnxnφ

′[x1 ←
⊥] are false. This entails that one of the clauses only involves ⊥ (no other
disjunction involving x1 and/or ¬x1 is always false), and the corresponding
reachability condition is ⊥, which is not reachable.

• ifQ1 = ∀, then one ofQ2x2 . . . Qnxnφ
′[x1 ← >] andQ2x2 . . . Qnxnφ

′[x1 ←
⊥] is false. In the first case, one of the clauses contains ¬x1, or only con-
tains ⊥. Then along the run Q1 · x1 · >ω, the objective Cj is not visited.
The other case is similar.

90

Now, assuming that the result holds for formulas with n− 1 quantifiers, we
prove the result with n quantifiers.

• if Q1 = ∃, then both φ′[x1 ← >] and φ′[x1 ← ⊥] are false; using the
induction hypothesis, any run from Q2 fails to visit some objective not
in Tx1 ∪ T¬x1 . Hence no strategy from Q1 can enforce a visit to all the
objectives.

• if Q1 = ∀, then one of φ′[x1 ← >] and φ′[x1 ← ⊥] is false. We handle the
first case, the second one being symmetrical. By induction hypothesis,
for any strategy σ of player A in the game G(φ′[x1 ← >]), one of the
outcome fails to visit all the objective not in Tx1 . Then along the path
ρ = Q1 · x1 · ρ′, some objectives not in Tx1 are not visited.

�

We can directly conclude from this lemma that the value of the game for A
is 1 (the unique maximal payoff for our preorder) if, and only if, the formula φ
is valid, hence this problem is PSPACE-hard.

Example 10. As an example of the construction, let us consider the formula

φ = ∀x1. ∃x2. ∀x3. ∃x4. (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1 ∨ x2 ∨ x4) ∧ ¬x4 (5.2)

The target sets for playerA are given by TA1 = {x1;¬x2;¬x3}, TA2 = {x1;x2;x4},
and TA3 = {¬x4}. The structure of the game is represented in Figure 5.7.
Player B has a strategy that falsifies one of the clauses whatever A does, which
means that the formula is not valid.

player A

player B

∀1

x1

¬x1

∃2

x2

¬x2

∀3

x3

¬x3

∃4

x4

¬x4

z

Figure 5.7: Reachability game associated with the formula (5.2)

Proof of PSPACE-hardness for the (constrained) existence problem.

We will now prove PSPACE-hardness for the existence problem, under the con-
ditions specified in the statement of Proposition 5.24, using Lemma 2.4. We
specify the new preference relation for the construction of Section 2.4.3. We
give B one objective, which is to reach s1 (s1 is the sink state introduced by
the construction). In terms of preferences for A, going s1 should be just below
visiting all targets. For this we use the statement in Proposition 5.24, that there
is v such that for every v′, v′ 6= 1⇔ v′ . v, and add s1 as a target to each TAi

91

such that vi = 1. This defines a preference relation equivalent to the one in the
game constructed in Section 2.4.3, therefore we deduce with Lemma 2.4 that
the existence problem is PSPACE-hard.

5.3.2 Simple cases

As for ordered Büchi objectives, for some ordered reachability objectives, the
preference relation can be (efficiently) (co-)reduced to a single reachability ob-
jective. We do not give the formal definitions, they can easily be inferred from
that for Büchi objectives on page 73.

Proposition 5.26. For ordered reachability objectives which are reducible to
single reachability objectives, and where the preorders are non-trivial, the value
problem is P-complete. For ordered reachability objectives which are co-reducible
to single reachability objectives, and where these preorders are non-trivial, the
existence and constrained existence problems are NP-complete.

Proof. Since P-hardness (resp. NP-hardness) already holds for the value (resp.
existence) problem with a single reachability objective (see [28]), we only focus
on the upper bounds.

We begin with the value problem: given a payoff vector u for player A,
we build the new target set T̂ in polynomial time, and then use a classical
algorithm for deciding whether A has a winning strategy (see [28, Chapter 2]).
If she does, then she can secure payoff u.

Consider now the constrained existence problem, and assume that the pref-
erence relation for each player A is given by target sets (TAi)1≤i≤nA

. The NP-
algorithm consists in guessing the payoff vector (vA)A∈Agt and an ultimately
periodic play ρ = π · τω with |π|, |τ | ≤ |States|2, which, for each A, visits TAi if,

and only if, vAi = 1. We then co-reduce the payoff to a new target set T̂A(vA)
for each player A.

The run ρ is the outcome of a Nash equilibrium with payoff (vA)A∈Agt for the
original preference relation if, and only if, ρ is the outcome of a Nash equilibrium
with payoff 0 with the single reachability objective T̂A(vA) for each A ∈ Agt.
Indeed, in both cases, this is equivalent to the property that no player A can
enforce a payoff greater than vA. Thanks to the algorithm presented in Sec-
tion 4.2 this condition can be checked in polynomial time. �

We will now see to which ordered objectives this result applies. It is not
difficult to realize that the same transformations as those made in the proof of
Lemma 5.7 can be made as well for reachability objectives. We therefore get
the following lemma, from which we get the remaining results in Table 5.2.

Lemma 5.27. Ordered reachability objectives with disjunction or maximize pre-
orders are reducible to single reachability objectives. Ordered reachability objec-
tives with disjunction, maximize or subset preorders are co-reducible to single
reachability objectives.

92

Chapter 6

Timed Games

In this chapter we will apply our procedure to timed games, which was our
original motivation. We begin with some definitions.

6.1 Definitions

Clocks. We consider a finite set of clocks denoted by X. A valuation over X
is an application v : X → R+. If v is a valuation and t ∈ R+, then v + t is the
valuation that assigns to each x ∈ X the value v(x) + t. If v is a valuation and
Y ⊆ X, then [Y ← 0]v is the valuation that assigns 0 to each y ∈ Y and v(x)
to each x ∈ X \Y . We write 0 for the valuation that assigns 0 to all the clocks.

A clock constraint over X is a formula built on the following grammar:

C(X) 3 g ::= x ∼ c | g ∧ g

where x ranges over X, ∼ ∈ {<,≤,=,≥, >}, and c is an integer. The interpre-
tation of clock constraints over valuations is given inductively by:{

v |= x ∼ c if v(x) ∼ c
v |= g1 ∧ g2 if v |= g1 and v |= g2

When v |= g we say that the valuation v satisfies the clock constraint g.

We now define the classical notion of timed games, following that of [21].

Timed game. A timed game is a 8-tuple G = 〈Loc, X, Inv,Trans,Agt,Owner,
(≤`)`∈Loc, (-A)A∈Agt〉 where:

• Loc is a finite set of locations;

• X is a finite set of clocks;

• Inv: Loc→ C(X) assigns an invariant to each location;

• Trans ⊆ Loc× C(clocks)× 2X × Loc is the set of transitions;

93

• Agt is the finite set of players;

• Owner: Trans→ Agt assigns a player to each transition, if Owner(t) = A
we will say that A owns t;

• for each ` ∈ Loc, ≤` is a total order1 over Agt, it is the priority order of
the players at that location;

• for each A ∈ Agt, -A is a preorder over (Loc×RX+)ω, it is the preference
relation of player A.

Remark. A problem with the classical definition of timed games, is to decide
what happens when two players choose the same delay. In the two player zero-
sum case, a solution is to consider that the opponent always has the priority.
There is no such solution in multiplayer games. In previous works [6, 7], we con-
sidered that such a situation would be resolved by non-determinism. However
the concept of Nash equilibrium does not apply in the resulting game since a
given strategy profile can have several different outcomes. To extend Nash equi-
librium to non-deterministic games, we proposed the concept of pseudo Nash
equilibrium. However, in this work, we decided to focus on the time aspect
of the model and not on non-determinism. We consider a simple and natural
solution by introducing a priority order among the players which depend on the
current state. This avoids the problem of collision after choosing a delay, and
we can use the previous results on the computation of Nash equilibria in this
context.

A timed game is played as follows: a state of the game is a pair (`, v)
where ` is a location and v is a clock valuation, provided that v |= Inv(`). From
each state (starting from an initial state s0 = (`,0)) each player A chooses a
non-negative real number d and a transition δ = (`, g, z, `′), with the intended
meaning that she wants to delay for d time units and then fire transition δ, this
forms a timed action mA = (d, δ). There are several (natural) restrictions on
these choices:

• spending d time units in ` must be allowed2 i.e. v |= Inv(`) and v + d |=
Inv(`);

• δ belongs to player A, i.e. Owner(δ) = A;

• the transition is firable after d time units, i.e. v + d |= g;

• the invariant is satisfied when entering `′, i.e. [z ← 0](v + d) |= Inv(`′).

If (and only if) there is no such possible choice for some player A (for instance
if no transition from ` belongs to A), then she chooses a special move, denoted
by ⊥. When these conditions are respected we say that the action is legal .

Given a set of legal choices mAgt for all the players, the shortest delay will
be selected. If mA 6= ⊥, we write mA = (dA, δA). Let d(mAgt) = min{dA |

1Recall that a total order is a transitive, antisymmetric and total relation.
2Formally, this should be written v + d′ |= Inv(`) for all 0 ≤ d′ ≤ d, but this is equivalent

to having only v |= Inv(`) and v + d |= Inv(`) since invariants are convex.

94

A ∈ Agt and mA = (dA, δA)} be the shortest delay that was chosen by a player.
Among the players who chose the shortest delay, we select the one with the high-
est priority, we do this according to the priority order of the current state ≤`,
that is Select(mAgt) = max≤`

{A ∈ Agt | mA = (dA, δA) and dA = d(mAgt)}.
We say that Select(mAgt) is selected from the action profile mAgt. Then, all
the clocks grow at the same rate during d(mAgt) time unit, and the transi-
tion δSelect(mAgt) = (`, g, z, `′) of the selected player is applied, resetting the
clocks of z to 0. This leads to a new state (`′, [z ← 0](v + d(mAgt))).

In the following, and to simplify notations, we define for each location ` a
total order ≤2

` over pairs of R+ ×Agt, defined by (dA, A) ≤2
` (dB , B) when:

• either dA < dB ;

• or dA = dB and A ≥` B;

This way, if we write for each player A ∈ Agt her action mA = (dA, δA), then
the selected player Select(mAgt) is the player A for which the pair (dA, A) is
minimal with respect to ≤2

` . We also define the associated strict total order <2
` ,

which is defined by (dA, A) <2
` (dB , B) if, and only if, (dA, A) ≤2

` (dB , B) and
(dA, A) 6= (dB , B).

6.1.1 Semantics as an Infinite Concurrent Game

To formalize the way timed games are played, we express their semantics in
terms of an infinite-state concurrent game. With a timed game G = 〈Loc, X, Inv,
Trans,Agt,Owner, (≤`)`∈Loc, (-A)A∈Agt〉 we associate the infinite concurrent
game G′ = 〈States,Agt,Act,Mov,Tab, (-A)A∈Agt〉 such that

• the set of states is the set of configurations of the timed game: States =
{(`, v) | ` ∈ Loc, v : X → R+ such that v |= Inv(`)};

• s0 = (`0,0) is the initial state;

• the set of actions is Act = {(d, δ) | d ∈ R+, δ ∈ Trans} ∪ {⊥};
• an action (d, δ) is allowed to player A in state (`, v) if, and only if, writing
δ = (`, g, z, `′), the following conditions hold:

– v + d |= Inv(`);

– Owner(δ) = A;

– v + d |= g;

– [z ← 0](v + d) |= Inv(`′).

Then Mov((`, v), A) is the set of actions available to player A when this
set is non empty, and it is {⊥} otherwise;

• finally, given a state (`, v) and a legal move mAgt, Tab((`, v),mAgt) =
(`′, v′) such that if A = Select(mAgt) is the selected player, writing mA =
(dA, δA), we have that δA = (`, g, z, `′) and v′ = [z ← 0](v + dA);

• the preference relations (-A)A∈Agt are inherited from G.

95

Timed games inherit the notions of history, play, path, strategy, profile, outcome
and Nash equilibrium from concurrent games via this correspondence.

In the sequel, we consider only non-blocking timed games, i.e., timed games
in which, for any reachable state (`, v), at least one player A has an available
action, i.e. Mov((`, v), A) 6= {⊥}.

6.2 The Region Game

In this section, we explain how Nash equilibria can be computed in timed games
with region invariant preferences. This result is based on the construction that
we explain now.

6.2.1 Regions

The construction relies on the classical notion of regions [2].

Regions. If M ∈ N, we write CM (X) for the set of constraints in C(X) in which
constants are integers within the interval [[0;M]]. Let G be a timed game, and M
be the maximal constant appearing in G: M = max{c | x ∼ c constraint in G}.
For a real number δ, we write bδc the integral part of δ and fr(δ) its fractional
part. We define the equivalence relation ≡X,M over RX+ by v ≡X,M v′ if, and
only if:

1. for all clocks x ∈ X, either bv(x)c and bv′(x)c are the same, or both v(x)
and v(x) exceed M ;

2. for all clocks x, y ∈ X with v(x) ≤ M and v(y) ≤ M , fr(v(x)) ≤ fr(v(y))
if, and only if, fr(v′(x)) ≤ fr(v′(y));

3. for all clocks x ∈ X with v(x) ≤M , fr(v(x)) = 0 if, and only if, fr(v′(x)) =
0;

This equivalence relation naturally induces a partition RX,M of RX+ . This
partition has the following properties:

• it is compatible with constraints in CM (X), i.e. for every r ∈ RX,M , and
constraint g ∈ CM (X) either all valuations in r satisfy the clock constraint
g, or no valuation in r satisfies it.

• it is compatible with time elapsing, i.e. if there is v ∈ r and t ∈ R+ such
that v + t ∈ r′, then for all v′ ∈ r there is t′ such that v′ + t′ ∈ r′;

• it is compatible with resets, i.e. if z ⊆ X then if [z ← 0]r ∩ r′ 6= ∅ then
[z ← 0]r ⊆ r′.

Elements of RX,M are called regions. We denote [v]X,M the region contain-
ing valuation v, or simply [v] if X and M are clear from the context. A region r
is said to be time-elapsing , if for any v ∈ r there is t > 0 such that v+ t ∈ r. We

96

write Succ(r) the successors of r by time elapsing, it is defined by r′ ∈ Succ(r)
if there is v ∈ r and t ∈ R+ such that (v + t) ∈ r′.

The number of region is bounded by |X|! · (4M + 4)|X|, note that this is
exponential both in the number of clocks in X and in the size of the maximal
constant, if constants are encoded in binary.

In the following, we will use an abstraction of the timed game, which is
based on regions. For this to be correct, we need the preference of the players
to be preserved by the region abstraction. This is expressed by the following
definition:

Region-invariance. A preorder . over (Loc × RX+)ω is said to be region-
invariant when the following holds: for any two plays ρ = (`i, vi)i≥0 and
ρ′ = (`′i, v

′
i)i≥0, if for all i ∈ N, `i = `′i and vi and v′i belong to the same

region, then ρ and ρ′ are equivalent for ., i.e. ρ . ρ′ and ρ′ . ρ.

6.2.2 Construction of the Region Game

Let G = 〈Loc, X, Inv,Trans,Agt,Owner, (≤`)`∈Loc, (-A)A∈Agt〉 be a timed game,
where all preference relations -A for A ∈ Agt are region invariant. Let M be
the maximal constant appearing in G. We define a finite concurrent game, that
we call the region game, R = 〈StatesR,Agt,ActR,MovR,TabR, (4RA)A∈Agt〉.
We first give the idea of the construction, emphasizing the differences with a
classical region construction.

Concerning the actions, instead of giving a real delay, players will specify a
region and an integer index p in the interval [[0, 4]]. In the equilibrium we will
constrain the strategies to use only integers 1, 2 and 3. Roughly, the index p
allows the players to say if they want to play first (p = 1), second (p = 2) or
later (p = 3) if their region is selected. In time-elapsing regions, deviators will
have the possibility to use indexes p = 0 and p = 4 to play before or after
everyone else. This correspondence is illustrated in Fig. 6.1.

Concerning the states of the game, they will be composed by a tuple (`, r, q, p),
with ` ∈ Loc, r ∈ R, q ∈ R and p ∈ [[0, 4]]. The first two components ` and r
correspond to the current location and the region containing the current valu-
ation as is classically done in region automaton construction, they characterize
which actions are available to the players. The last two are needed to preserve
information on the delay selected in the last transition. We illustrate the use of
this two last components with two examples.

Consider Fig. 6.2 as part of a timed game with two players. We aim at finding
an equilibrium which goes through location `1. If one of the players changes
her strategy in order to go to `2, it may be useful to know which of the two did
so. Starting in `0, with a valuation v : x→ 0, y → 0.5, player A1 can wait for a
delay shorter than 0.5 and take a transition, and player A2 can wait for a delay
in]0.5, 1[for instance. These two possibilities are represented in Fig. 6.3. In the
timed game, thanks to the final value of x, we are able to determine in which
region the transition was taken and so which player deviated: if the valuation

97

d

(r,p)

r1 r2 r3

(r1,0) (r1,1) (r1,2) (r1,3) (r1,4) (r2,1) (r3,0) (r3,1) (r3,2) (r3,3) (r3,4)

Figure 6.1: A correspondence of actions between the timed game and the region
game. Indexes 0 and 4 are to be used only by deviators and not in the equilibria.
Regions r1 and r3 are time-elapsing in contrast with r2.

is on the left of the dotted line then the unique suspect is A1 and if it is on the
right the suspect is A2. Let us look at what happens in the region game: as y
is reset, for transitions of both players the final valuation will be in the same
region where x ∈]0, 1[and y = 0. This information is not enough to know in
which region the transition was taken and who is suspect. To remedy this, we
added the component q ∈ R that gives the information of the region in which
the last transition happened.

`0
x← 0

`1

`2

y > 3

y < 1; y ← 0 x < 1; y > 1; y ← 0

Figure 6.2: Part of a timed game.
Player A1 controls the plain transi-
tions, and A2 the dashed one.

x

y

y = 1

x = 1

v

Susp=A1 Susp=A2

Figure 6.3: Two possible deviations

Now let us look at transitions fired in the same region, for another game,
represented in Fig. 6.4. The timing information in the timed game can help us
discriminate between two kinds of deviations represented in Fig. 6.5. Assume
the original strategy is to play a delay of 0.2 for player A1 and of 0.6 for player
A2. For a deviation that goes to `2 instead of `1, we can recover from the

98

valuation of x which of the players deviated. If x is smaller than 0.2 then A2

is the suspect, and if x is greater than 0.2, A1 is the suspect. Since the region
reached is always the same, we again need to add some information in the state
of the region game. This is the role of the p component, that allows to recover
the index played by the selected player during the last transition. Assume that
in the region game A1 is playing with an index p = 1, and A2 with an index
p = 2. The first deviation when A2 plays before the player that was supposed
to play first will correspond to p = 0, and the second deviation when A1 plays
after the second player will correspond to p = 3 or p = 4.

`0
x← 0

`1

`2

0 < x < 1

0 < x < 1

Figure 6.4: Part of a timed game.
Player A1 controls the plain transitions,
and A2 the dashed one.

d

A1 A2

0.2 0.6

d

A1 A2

Figure 6.5: Two possible deviations.

Region game. The region game is formally defined as follows:

• StatesR = Loc × R × R × [[0, 4]], where R = RX,M is the set of clock
regions;

• ActR = R× [[0, 4]]× Trans;

• MovR((`, r, q, p), A) is the set composed of all (r′, p′, δ) such that writing
(`, g, z, `′) for δ we have that:

– r′ ∈ Succ(r);

– r′ |= Inv(`);

– p′ ∈ [[0, 4]] if r′ is time-elapsing, and p′ = 1 otherwise;

– Owner(δ) = A;

– r′ |= g;

– [z ← 0]r′ |= Inv(`′).

if this set is not empty. If there is no such (r′, p′, δ) then MovR((`, r, q, p), A)
is equal to {⊥};

• Given a state (`, r, q, p) ∈ StatesR and an action profile legal at that
state nAgt ∈

∏
A∈Agt MovR((`, r, q, p), A), we write nA = (rA, pA, δA) for

actions different from ⊥ and:

99

– r(nAgt) = min{rA | A ∈ Agt} the first (w.r.t. time elapsing) region
that was chosen by a player;

– p(nAgt) = min{pA | A ∈ Agt and rA = r(nAgt)}, the smallest index
that was chosen together with the region r(nAgt);

– Select(nAgt) = max≥`
{A ∈ Agt | rA = r(nAgt) and pA = p(nAgt)}

the player with the highest priority among those who chose the min-
imal pair of region and index;

Then TabR((`, r, q, p), nAgt) = (`′, r′, q′, p′) such that:

– δSelect(nAgt) = (`, g, z, `′);

– r′ = [z ← 0]r(nAgt);

– (q′, p′) = (r(nAgt), p(nAgt)) if z 6= X and (q′, p′) = ([0], 1) otherwise.
This distinction is important since if one clock was not reset during
the last transition we can deduce the exact time that was spent before
the transition actually happened.

• For a player A, we define the preference relation4RA by (`i, ri, qi, pi)i≥0 4RA
(`′i, r

′
i, q
′
i, p
′
i)i≥0 if there exist two runs (`i, vi)i≥0 and (`′i, v

′
i)i≥0 such that

vi ∈ ri and v′i ∈ r′i for all i ≥ 0, and (`i, vi)i≥0 4A (`′i, v
′
i)i≥0.

In order to simplify notations, similarly as we did for the timed game, we
define for each location a partial orders ≤3

` over triples of R × [[0, 4]] × Agt. It
is defined by (rA, pA, A) ≤3

` (rB , pB , B) when:

• either rA < rB ;

• or rA = rB and pA < pB ;

• or rA = rB , pA = pB and A ≥` B.

This way, if we write for each player A ∈ Agt her action nA = (rA, pA, δA), then
the selected player Select(nAgt) is the player A for which the triple (rA, pA, A) is
minimal with respect to ≤3

` . We also define <3
` the associated strict total order.

In the next section, we show how the region game relates to the original
timed game. Roughly Nash equilibria with a specific constraint on the action
allowed, will correspond to Nash equilibria in the timed game.

6.2.3 Proof of Correctness

The correctness of the construction is captured by the next proposition.

Proposition 6.1. Let G be a timed game with region-invariant preference re-
lations, and R its associated region game. Then there is a Nash equilibrium in
G from (s,0) if, and only if, there is a Nash equilibria in R from (s, [0]), with
constraint Allow on the moves, where Allow is defined for every state (`, r, q, p)
by Allow((`, r, q, p), (rA, pA, δA)A∈Agt) = true if, and only if, for all A ∈ Agt,
pA ∈ [[1, 3]]. Furthermore, this equivalence is constructive.

100

To establish this result, we rely on the notion of game simulation we defined
in Section 3.3. This proof is quite long and several cases have to be distinguished,
so it will be split in several lemmas.

We make a first remark which will be useful when establishing a relationship
between the suspects in one game and the other one.

Lemma 6.2. Let G be a timed game, (`, v) be a configuration and mAgt a legal
move. Let A0 be the selected player in mAgt, then if A 6= A0, for any m′A the
selected player from mAgt[A 7→ m′A], is either A or A0. Similarly, in the region
game R, let (`, r, q, p) be a state and nAgt a legal move. Let A0 is the selected
player in nAgt, if A 6= A0, for any n′A the selected player from nAgt[A 7→ n′A],
is either A or A0.

Proof. A0 is the player that minimizes (dA, A) for the order ≤2
` We write (d′B , δ

′
B)

for the action of a player B in the profile mAgt[A 7→ m′A]. In mAgt[A 7→ m′A]
only the action of A is changed, so

min
≤2

`

{(d′B , B) | B ∈ Agt} = min
≤2

`

({(dB , B) | B ∈ Agt \A} ∪ {(d′A, A)})

If A0 6= A, then min≤2
`
{(dB , B) | B ∈ Agt \ A} = (dA0

, A0). Therefore

min≤2
`
{(d′B , B) | B ∈ Agt} is either (dA0 , A0) or (d′A, A) and the selected player

in mAgt[A 7→ m′A] is either A or A0.
Similarly, writing (r′B , p

′
B , δ

′
B) for the action of a player B in the profile

nAgt[A 7→ n′A], only the action of A can change in that profile, and so

min
≤3

`

{(r′B , p′B , B) | B ∈ Agt} = min
≤3

`

({(rB , pB , B) | B ∈ Agt \A} ∪ {(r′A, p′A, A)})

Therefore, if A0 6= A, the selected player in nAgt[A 7→ n′A] is either A or A0.
�

In the remaining of this section we will show that a timed game and its
associated region game simulate each other in the sense of Section 3.3. This is
achieved by considering the relation / given by (`, v) / (`, r, q, p) for any q and
p if r is the region containing v, and showing that / is a simulation. Since the
preference relations in G are region invariant and by definition of the preference
relations in R, the relation / is preference preserving. We will then define two
functions λ and µ. The function λ maps moves in G to equivalent moves in R,
furthermore the index p used in the image of λ are restricted to [[1, 3]]. The
function µ, maps moves in R that use the indexes in [[1, 3]], to equivalent moves
in G.

For this, we use a partial function f : RX+ ×R× [[0, 4]]→ R+. We pick it such
that for every valuation v, and every region r, if there is some t ∈ R+ such that
v + t ∈ r, then

• if r is time-elapsing this function is defined at (v, r, p) for all p ∈ [[0, 4]],
and we require that v+f(v, r, p) ∈ r for all p ∈ [[0, 4]], and that f(v, r, 0) <
f(v, r, 1) < f(v, r, 2) < f(v, r, 3) < f(v, r, 4);

101

• if r is not time-elapsing this function is defined at (v, r, p) for p = 1, and
f(v, r, 1) is the unique delay t such that v + t ∈ r.

If no such t exists, the function is undefined at (v, r, p).

6.2.4 From Timed Game G to Region Game R.

For any configuration (`, v) and any move vector mAgt in G, we define the move
vector λAgt in R, using only indexes in [[1, 3]], as follows. For all A ∈ Agt,
if mA = ⊥ then λA = ⊥; otherwise we write mA = (dA, δA), and rA the
region corresponding to valuation v + dA. If dA = d(mAgt), or if rA is not
time-elapsing then λA = (rA, 1, δA); otherwise we write d2 = min{d | A ∈
Agt, mA = (d, δ) and d > d(mAgt)} the second shortest delay, this is well
defined since d(mAgt) < dA. Then, we let,

• if d = d2, then λA = (rA, 2, δA);

• if d > d2, then λA = (rA, 3, δA).

If (dA, δA) is allowed to A in (`, v), then λA is allowed to A in (`, r, p) where
r is the region containing v, since it corresponds to the same transition played
in the correct region.

Let first remark that this construction selects the same player in the following
sense:

Lemma 6.3. Select(mAgt) = Select(λAgt)

Proof. Let A = Select(mAgt), the delay dA is minimal among the delays dA =
d(mAgt), hence its corresponding region v+ dA = rA is also minimal among the
regions played in λAgt, rA = r(λAgt). Now dA = d1 hence λA = (rA, 1, δA), pA
is minimal among the index pA = p(λAgt). Any player B such that (rB , pB) =
(rA, pA), also played a delay dB = d1. Since A was selected in mAgt, it is that
A ≥` B and therefore A is also selected in λAgt. �

The following two lemmas will show that the region game R with action
profile limited to indexes in [[1, 3]] simulates the timed game G.

Lemma 6.4. Let (`, v) and (`′, v′) be two configurations in the timed game G,
mAgt be a legal move from (`, v) and λAgt be the corresponding move in the
region game. If Tab((`, v),mAgt) = (`′, v′), then for any q ∈ R and p ∈ [[0, 4]],
TabR((`, r, q, p), λAgt) = (`′, r′, q′, 1), where r and r′ are the regions containing v
and v′ respectively.

Proof. Assuming Tab((`, v),mAgt) = (`′, v′), let A = Select(mAgt) be the se-
lected player in mAgt, as showed in Lemma 6.3, she is also selected in λAgt.
Hence, writing for each player A ∈ Agt her action λA = (rA, pA, δA), we have
that TabR((`, r, q, p), λAgt) = (`′, r′, q′, pA) where r′ = [zA ← 0]rA, and pA = 1
by construction of λAgt. It is the case that r′ contains [zA ← 0](v + dA) = v′

since regions are compatible with clock resets. �

We now compare the suspects players in G and R.

102

Lemma 6.5. Let (`, r, q, p) and (`′, r′, q′, p′) be two states in the region game.
If v ∈ r, mAgt is an allowed move from (`, v), and λAgt is the corresponding
move in the region game, then there is a valuation v′ ∈ r′ such that:

SuspR(((`, r, q, p), (`′, r′, q′, p′)), λAgt) ⊆ SuspG(((`, v), (`′, v′)),mAgt)

Proof. If SuspR(((`, r, q, p), (`′, r′, q′, p′)), λAgt) is empty then the property is
trivially true, otherwise we first need to decide on valuation v′. For any playerA ∈
Agt, we write her action (rA, pA, δA) = λA in the move λAgt, and (dA, δA) = nA
in the move nAgt. Let A0 be the selected player from λAgt, we have pA0 = 1
by construction of λAgt. Let A be the suspect with the smallest priority in
SuspR(((`, r, q, p), (`′, r′, q′, p′)), λAgt). There is a move λ′A = (r′A, p

′
A, δ
′
A) such

that TabR((`, r, q, p), λAgt[A 7→ λ′A]) = (`′, r′, q′, p′). Let C be the selected
player from λAgt[A 7→ λ′A], we write her action (r′C , p

′
C , δ

′
C) in the strategy

profile λAgt[A 7→ λ′A], it is equal to λ′A if C = A, and to λC otherwise.
The valuation v′ will be decided by choosing a delay d′. Notice that from

Lemma 6.2, if A 6= A0 then C is either A or A0, we distinguish the following
cases:

• if C 6= A0 = A we let d′ = dC ;

• if C = A0 6= A, we let d′ = dA0 ;

• if C = A and there is E ∈ Agt such that (r′A, p
′
A) = (rE , pE), we let

d′ = dE . This delay is uniquely defined in this way because by construction
of λAgt, if (rE , pE) = (rF , pF) for two players E and F then this means
that dE = dF ;

• if C = A and (r′A, p
′
A) < (rA0

, pA0
), it is possible to find a delay d′ < dA0

such that v + d′ ∈ r′A;

• otherwise C = A, (r′A, p
′
A) > (rA0

, pA0
), and (r′A, p

′
A) 6= (rE , pE) for all

E ∈ Agt, it is possible to find a delay d′ > dA0 and d′ < dE for all E 6= A,
such that v + d′ ∈ r′A;

We write δC = (`, gC , zC , `
′). We then take v′ as the valuation resulting from

the transition taken by C after delay d′, that is: [z′C ← 0](v+d′). The valuation
v′ belongs to r′ = [z′C ← 0]r′C . Also notice that the valuation v + d′ belongs to
r′C .

Now let B be any suspect in SuspR(((`, r, q, p), (`′, r′, q′, p′)), λAgt), there is
a move λ′B such that TabR((`, r, q, p), λAgt[B 7→ λ′B]) = (`′, r′, q′, p′). Let D be
the selected player from λAgt[B 7→ λ′B], we write her action (r′D, p

′
D, δ

′
D) in the

profile λAgt[B 7→ λ′B] and δ′D = (`, g′D, z
′
D, `
′). We want an action (d′B , δ

′
B) such

that Tab((`, v),mAgt[B 7→ (d′B , δ
′
B)]) = (`′, v′). For that it is enough to find a

delay d′B such that the same player gets selected in mAgt[B 7→ (d′B , δ
′
B)] than in

λAgt[B 7→ λ′B], and that d′D = d(mAgt[B 7→ (d′B , δ
′
B)]) is such that the valuation

after the reset [z′D ← 0](v + d′D) is the same than v′. We make a distinction
according to whether all the clocks are reset or not.

First consider the case where not all the clocks are reset, i.e. z′D 6= X. In
that case we have r′D = q′ = r′C , p′D = p′ = p′C . Notice that by Lemma 6.2

103

C 6= A0 = A
(r, p)A = A0 C

C = A0 6= A
AA0

C = A and (r′A, p
′
A) = (rE , pE)

AE

C = A and (r′A, p
′
A) < (rA0 , pA0)

AA0

C = A and (r′A, p
′
A) > (rA0

, pA0
)

A = A0

Figure 6.6: Five kinds of deviations

if B 6= A0 then D is either B or A0, so will select the delay by distinguishing
these different cases:

• if D = B, we consider delay d′B = d′. First, we notice that playing (d′B , δB)
is allowed to B, this is because v + d′ ∈ r′C = r′B and (r′B , δ

′
B) is allowed

to B in R. We now show that [z′B ← 0](v + d′B) = v′. Consider a clock
x ∈ X, let us write v′′ = [z′B ← 0](v + d′B). If v′′(x) = 0, then all the
valuations in the region containing v′′ also evaluates x to 0. The region
containing v′′ is r′ and in particular v′ ∈ r′, so v′(x) = 0. Similarly if
v′(x) = 0 then v′′(x) = 0. Now if v′′(x) 6= 0, then also v′(x) 6= 0, this
means that this clock was not reset by z′B or z′C , so v′′(x) = (v+ d′)(x) =
v′(x). Therefore [z′B ← 0](v + d′B) = v′. It remains to show B is also
selected in mAgt[B 7→ (d′B , δ

′
B)], for this we examine the 5 different kinds

of deviations:

– if C = A0 6= A, then d′B = dA0
. We have the following equalities:

∗ (r′B , p
′
B) = (r′D, p

′
D) because B = D;

∗ (r′D, p
′
D) = (r′C , p

′
C) because z′D 6= X;

∗ (r′C , p
′
C) = (rC , pC) because C 6= A;

∗ (rC , pC) = (rA0
, pA0

) because C = A0.

From this, we deduce that (r′B , p
′
B) = (rA0

, pA0
). Now, since B is

selected in λAgt[B 7→ λ′B], it is that B ≥` A0. As d′B = dA0
, B is also

selected in mAgt[B 7→ (d′B , δ
′
B)].

– if C 6= A0 = A, then d′ = dC . We have the following (in)equalities:

∗ (r′B , p
′
B) = (r′D, p

′
D) because B = D;

104

∗ (r′D, p
′
D) = (r′C , p

′
C) because z′D 6= X;

∗ (r′C , p
′
C) = (rC , pC) because C 6= A;

∗ (rC , pC) ≥ (rA0
, pA0

) because A0 is selected in λAgt;
∗ (rA0

, rA0
) ≥ (r′B , p

′
B) because B = D.

From this we deduce that all these couples are equal. Notice from
the construction of λAgt that if pC = pA0

(which is the case here)
then dC = dA0

. Hence d′B = d′ = dC = dA0
. Moreover, because A

is minimal among the suspects and A = A0, the player B has the
priority over A0, so B is selected in mAgt[B 7→ (d′B , δ

′
B)].

– if C = A and there is a player E such that (r′A, p
′
A) = (rE , pE), then

d′ = dE . Hence d′B = d′ = dE . Since A is selected in λAgt[A 7→ λ′A]
this means that A ≥` E. Since A is minimal among the suspects
B ≥` E, so B is selected in mAgt[B 7→ (d′B , δ

′
B)].

– if C = A and (r′A, p
′
A) < (rA0

, pA0
), then d′ < dA0

. Therefore d′B =
d′ < dA0

, so B is selected in mAgt[B 7→ (d′B , δ
′
B)].

– If C = A and (r′A, p
′
A) > (rA0

, pA0
) and (r′A, p

′
A) 6= (rE , pE) for all

E, then d′ is smaller than dE for all E 6= A. If B 6= A0, we have the
following (in)equalities:

∗ (rA0 , pA0) ≥ (r′B , p
′
B) because B is selected in λAgt[B 7→ λ′B],

∗ (r′B , p
′
B) = (r′D, p

′
D) because B = D;

∗ (r′D, p
′
D) = (r′C , p

′
C) because z′D 6= X;

∗ (r′C , p
′
C) = (r′A, p

′
A) because C = A.

Hence (r′A, p
′
A) ≤ (rA0

, pA0
), which is a contradiction;

If A 6= A0, then (r′A, p
′
A) ≤ (rA0 , pA0) because A is selected in

λAgt[A 7→ λ′A], this is again a contradiction;

Otherwise C = A = B = D = A0, and d′B is smaller than all d′E for
E 6= B, therefore B is selected in mAgt[B 7→ (d′B , δ

′
B)]

• if D = A0 6= B, then we take d′B > dA0 when B >` A0, d′B ≥ dA0 when
B <` A0, this is possible since B is not selected in λAgt[B 7→ λ′B], and A0

is selected in mAgt[B 7→ (d′B , δ
′
B)]. It remains to show that dA0

= d′ in
order to obtain the correct valuation after the transition. Notice that we
have that p′C = p′D = pA0

and r′C = r′D = rA0
,

– if C = A0 6= A, then d′ = dA0
;

– if C 6= A0 = A, then (r′D, p
′
D) = (rA0 , pA0) and (rC , pC) = (r′C , p

′
C) =

(r′D, p
′
D) therefore (rA0

, pA0
) < (rC , pC) is not possible, which means

that (rA0
, pA0

) = (rC , pC), by construction of λAgt, as we already
noticed before, this means dA0

= dC and therefore d′ = dA0
;

– otherwise C = A and then (r′A, p
′
A) = (rA0

, pA0
), and therefore d′ =

dA0
;

• otherwise D 6= A0 = B, we take for B a delay d′B > dD if B ≥` D or
d′B ≥ dD if B <` D, this is possible since B is selected in λAgt[B 7→ λ′B].
We have to show that dD = d′,

105

– if C = A0 6= A, then d′ = dA0 . We have the following equalities:

∗ (rA0 , pA0) = (rC , pC) because C = A0;
∗ (rC , pC) = (r′C , p

′
C) because C 6= A;

∗ (r′C , p
′
C) = (r′D, p

′
D) because z′D 6= X;

∗ (r′D, p
′
D) = (rD, pD) because B 6= D.

Therefore (rA0
, pA0

) = (rD, pD), so by construction of λAgt, as we
already noticed before, dD = dA0 and therefore dD = d′;

– if C 6= A0 = A, then d′ = dC . We have that A = A0 = B.
(rC , pC , C) = min{(rE , pE , E) | E ∈ Agt \ {A}} because C is se-
lected in λAgt[A 7→ λ′A] and C 6= A. Likewise, since D 6= A,
(rD, pD, D) = min{(rE , pE , E) | E ∈ Agt \ {A}}. Therefore C = D
and dD = d′;

– if C = A then:

∗ (rD, pD) = (r′D, p
′
D) because B 6= D;

∗ (r′D, p
′
D) = (r′C , p

′
C) because z′D 6= X;

∗ (r′C , p
′
C) = (r′A, p

′
A) because C = A;

therefore (r′A, p
′
A) = (rD, pD). Hence d′ = dD.

Now, if all the clocks are reset by the transition, i.e. z′D = X, only the fact
that the correct player (i.e. D) is selected matters (and not the exact delay).

• if D = B, we have for all E 6= B that (r′B , p
′
B , B) ≤3

` (rE , pE , E), it is
possible to take d′B such that v + d′B ∈ r′B and (d′B , B) ≤2

` (dE , E), for all
E:

– if r′B < rE then any d′B such that v + d′B ∈ r′B works;

– if r′B = rE and p′B < pE , then it means the region is time elapsing
since otherwise the only available choice for p′B and pE would be 1,
therefore it is possible to take a delay shorter than dE and still end
in region r′E ;

– if r′B = rE , p′B < pE and B >` E; then we can take a delay d′B ≤ dE ;

Hence we can select a delay such that (d′B , B) ≤2
` (dE , E), for all E, and

then B is selected in λAgt[B 7→ λ′B];

• if D = A0 6= B, we take d′B such that v + d′B ∈ r′B and (dA0
, A0) <2

`

(d′B , B), similarly to the previous case we can show that this possible
since (rA0

, pA0
, A0) <3

` (r′B , p
′
B , B). Then A0 is selected in λAgt[B 7→ λ′B];

• if D 6= A0 = B, we take d′B such that v+d′B ∈ r′B and (dD, D) <2
` (d′B , B),

this is possible since (rD, pD, D) <3
` (r′B , p

′
B , B), Then D is selected in

λAgt[B 7→ λ′B]; �

Thanks to the two last lemmas, we showed that the relation we defined
complies with the definition of a game simulation.

Corollary 6.6. The region game R from state (`0, [0], [0], 1) with constraint
Allow on the moves, simulates the game G from configuration (`0,0).

106

6.2.5 From Region Game R to Timed Game G.

We will now prove simulation in the other direction. For this we consider a move
nAgt in R and a clock valuation v, and define the move µAgt in G as follows:

• if nA = ⊥, then µA = ⊥;

• if nA = (rA, pA, δA), then µA = (f(v, rA, pA), δA).

If nA is allowed to player A in (`, r), then µA is also allowed to A in (`, v), since
it corresponds to playing the same transition in the same region.

A first step towards the correctness of this construction is that the selected
players are the same for both profiles.

Lemma 6.7. Select(nAgt) = Select(µAgt)

Proof. Let A = Select(nAgt), (rA, pA, A) = min≤3
`
{(rB , pB , B) | B ∈ Agt}. Let

B be a player different from A, we have that (rA, pA, A) <3
` (rB , pB , B), there

are three possibilities:

• if rA < rB then f(v, rA, pA) < f(v, rB , pB) because f(v, rA, pA) ∈ rA and
f(v, rB , pB) ∈ rB ;

• if rA = rB and pA < pB then by construction of f we have that f(v, rA, pA) <
f(v, rB , pB);

• if rA = rB , pA = pB and B <` A then f(v, rA, pA) = f(v, rB , pB);

Writing µB = (dB , δB) for each player B, we have dB = f(v, rB , pB), and in all
cases (dA, A) = min≤2

`
{(dB , B) | B ∈ Agt}, hence A is selected in µAgt. �

Lemma 6.8. Let (`, r, q, p) be a state in R, v be a valuation in r, nAgt be a
move in R and µAgt be the corresponding move in G. If TabR((`, r, q, p), nAgt) =
(`′, r′, q′, p′) then Tab((`, v), µAgt) = (`′, v′) for some v′ in the region r′.

Proof. Since TabR((`, r, q, p), nAgt) = (`′, r′, q′, p′), the action (rA, pA, δA) of the
selected player A = Select(nAgt) is such that:

• δA = (`, gA, zA, `
′);

• r′ = [zA ← 0]rA;

• v + f(v, rA, pA) ∈ rA by definition of f ;

• v′ = [zA ← 0](v + f(v, rA, pA)) because A is also selected in µAgt by
Lemma 6.7.

Therefore Tab((`, v), µAgt) = (`′, v′) with v′ ∈ r′. �

Lemma 6.9. Let G be a timed game, (`, v) and (`′, v′) be two configurations, q
be a region and p an index in [[0, 4]]. We write r and r′ for the region containing v
and v′ respectively. If nAgt is legal and allowed by Allow in (`, r, q, p), let µAgt

be the corresponding move from (`, v) in G, then there is a region q′ and an
index p′ ∈ [[0, 4]] such that

SuspG(((`, v), (`′, v′)), µAgt) ⊆ SuspR(((`, r, q, p), (`′, r′, q′, p′)), nAgt)

107

Proof. We first need to select the right index p′. Let A be the minimal (with
respect to ≤`) suspect in SuspG(((`, v), (`′, v′)), µAgt), and µ′A = (d′A, δ

′
A) be

such that Tab((`, v), µAgt[A 7→ µ′A]) = (`′, v′). We write A0 the player selected
in µAgt and C the player selected in µAgt[A 7→ µ′A], we also write (d′C , δ

′
C) the

action of C in the action profile µAgt[A 7→ µ′A]. We distinguish three cases
according to the way A deviates:

• if C 6= A then p′ = pC ;

• if C = A and there is a player E such that d′A = dE then p′ = pE . This
index is uniquely defined by construction of µAgt because if dE = dF for
two players E and F then this means that pE = pF ;

• otherwise p′ = 0 if the region is time elapsing and p′ = 1 otherwise;

C 6= A
dA C

C = A and d′A = dE
AE

C = A and d′A 6= dA0

AA0

Figure 6.7: Three kinds of deviations.

Now let B be any suspect in SuspG(((`, v), (`′, v′)), µAgt), there is an ac-
tion µ′B = (d′B , δ

′
B) such that Tab((`, v), µAgt[B 7→ µ′B]) = (`′, v′). We look for

an action n′B = (r′B , p
′
B , δ

′
B) for player B such that TabR((`, r, p), nAgt[B 7→

n′B]) = (`′, r′, p′). In all cases r′B is the region containing v + d′B . Then we
choose p′B . Let D be the selected player in µAgt[B 7→ µ′B], we write (d′D, δ

′
D)

her action in the profile µAgt[B 7→ µ′B], and δ′D = (`, g′D, z
′
D, `
′).

First consider the case where z′D 6= X. In that case, we show d′D = d′C , this
is because timing information is kept during the transition. Let c ∈ X \ z′D be
a clock that is not reset, then v′(c) = [zD ← 0](v + d′D)(c) = v(c) + d′D, so
d′D = v′(c)− v(c) and similarly this is also equal to d′C , hence d′D = d′C .

• if B = D, we take p′B = p′, we show that B is selected in nAgt[B 7→ n′B],

– if C 6= A, then p′ = pC . First we have:

∗ d′B = d′D because B = D;
∗ d′D = d′C because z′D 6= X;
∗ d′C = dC because C 6= A.

So d′B = dC and since B is selected in µAgt[B 7→ µ′B] this means that
B ≥` C. Now we will distinguish two cases:

108

If B = A then : (rC , pC) ≤ (rE , pE) for all E 6= A because C is
selected in µAgt[A 7→ µ′A] and A 6= C. Therefore, as (r′B , p

′
B) =

(rC , pC), B = A and B ≥` C, B is selected in nAgt[B 7→ n′B].

If B 6= A then: dA ≥ d′B because B is selected in µAgt[B 7→ µ′B] and
A 6= B. As we showed dC = d′B , this means dA ≥ dC . Moreover, for
all E 6= A, (dC , C) <2

` (dE , E) because C is selected in µAgt[A 7→ µ′A].
By construction of µAgt we have that for any player E, (rC , pC) ≤
(rE , pE) and (rC , pC) < (rE , pE) if C <` E 6= A. As (r′B , p

′
B) =

(rC , pC), B ≥` C and B >` A, for any player E, (r′B , p
′
B) ≤ (rE , pE)

and (r′B , p
′
B) < (rE , pE) if B <` E, so B is selected in nAgt[B 7→ n′B].

– if C = A and d′A 6= dE for any E then:

If the region is time-elapsing p′ = 0. For all the players E 6= B,
d′B ≤ dE because B is selected in µAgt[B 7→ µ′B]. Therefore r′B ≤ rE ,
and as these players are restricted to play indexes pE ∈ [[1, 3]], we
also have p′B < pE . Hence B is selected in nAgt[B 7→ n′B].

Otherwise the region is not time-elapsing, then for all E 6= B:

∗ if d′B = dE and B >` E, then r′B = rE , p′B = pE and we have
(r′B , p

′
B , B) <3

` (rE , pE , E);
∗ otherwise d′B < dE , and then r′B < rE .

Hence B is selected in nAgt[B 7→ n′B].

– if C = A and d′A = dA0
then p′ = pA0

. As A is selected in
µAgt[A 7→ µ′A], it means that A ≥` A0 and as A is minimal among the
suspect B ≥` A0. Moreover p′B = p′ = pA0

, therefore B is selected
in nAgt[B 7→ n′B];

• otherwise, B 6= D, we take p′B = 4 if the region is open, and p′B = 1
otherwise, then D is selected in nAgt[B 7→ n′B], we show that pD = p′:

– if C 6= A, then p′ = pC .

∗ dD = d′D because B 6= D;
∗ d′D = d′C because z′D 6= X;
∗ d′C = dC because C 6= A.

Hence dD = dC and by construction of µAgt this means that pD =
pC = p′;

– if C = A 6= A0, then:

∗ dA0
≤ dD because A0 is selected in µAgt;

∗ dD = d′D because D 6= B;
∗ d′D = d′C because z′D 6= X;
∗ d′C ≤ d′A0

because C is selected in µAgt[A 7→ µ′A];
∗ d′A0

= dA0
because A 6= A0;

Hence all these delays are equal and d′A = dA0 and then p′ = pA0 .
Moreover dD = dA0 , and by construction of µAgt this means that
pD = pA0

. Therefore pD = p′.

– Otherwise C = A = A0,

109

∗ dD = d′D because D 6= B;
∗ d′D = d′C because z′D 6= X;
∗ d′C = d′A because C = A;

Hence dD = d′A and p′ = pD by construction of p′.

Now, if z′D = X, only the fact that the correct player (i.e. D) is selected
matters, and not the chosen index, since p′ will be equal to 1 anyway.

• if D = B, then:

– if r′B is time elapsing, we take p′B = 0. SinceB is selected in µAgt[B 7→
µ′B], for all E 6= B, d′B ≤ dE , hence we also have that r′B ≤ rE and
therefore (r′B , p

′
B , B) <3

` (rE , pE , E);

– otherwise r′B is not time elapsing, we have to take p′B = 1. Since B is
selected in µAgt[B 7→ µ′B], for all E 6= B, (d′B , B) <2

` (dE , E). If d′B =
dE then B >` E and (r′B , p

′
B , B) <3

` (rE , pE , E). Otherwise r′B < rE
because r′B is not time elapsing, and we also have (r′B , p

′
B , B) <3

`

(rE , pE , E).

In both cases B is selected;

• if D 6= B, then:

– if r′B is time elapsing, we take p′B = 4. Since D is selected in
µAgt[B 7→ µ′B], dD ≤ d′B , we also have that rD ≤ r′B . Since D is re-
stricted to actions with pD ∈ [[1, 3]], pD < p′B . Hence (rD, pD, D) <3

`

(r′B , p
′
B , B), and

– otherwise r′B is not time elapsing, we have to take p′B = 1. Since
D is selected in µAgt[B 7→ µ′B], (dD, D) ≤2

` (d′B , B). If d′B = dD
then r′B = rD, p′B = pD = 1 and B <` D, hence (rD, pD, D) <3

`

(r′B , p
′
B , B). Otherwise rD < r′B because r′B is not time elapsing, and

we also have (r′B , p
′
B , B) <3

` (rE , pE , E).

By construction of µAgt we also have that (rD, pD, D) <3
` (rE , pE , E) for

all E ∈ Agt \ {B,D} so in this case D is selected. �

We conclude from the two last lemmas, the simulation in this direction.

Corollary 6.10. The region game G from configuration (`0,0) simulates the
game R from state (`0, [0], [0], 1) with constraint Allow on the moves in R.

6.2.6 Conclusion of the Proof

We now conclude the proof of Proposition 6.1.

Proof. Lemmas 6.4, 6.5, 6.8, and 6.9 show that the relation / between the timed
game G and its associated region game R is a simulation in both directions when
actions in the region game are restricted to use indexes p ∈ [[1, 3]]. Since the
preference relation is region invariant, the simulation is preference preserving.

110

Hence by the Proposition 3.5 there is a Nash equilibrium in G from (s,0) if, and
only if, there is a Nash equilibria in R from (s, [0]), with constraint Allow on
the moves. �

6.3 Complexity Analysis

6.3.1 Size of the Region Game

The region game R has size exponential in the size of G:

|R| = |X|! · (4M + 4)|X|

|States| = 5 · |Loc| · |R|2
Act	= 5 ·	R	·	Trans		
Mov	≤	States	·	Agt	·	Act
Tab	≤	States	2 ·	Act		Agt

It is exponential both because the number of regions is exponential, and because
the size of the transition table can be exponential in the number of agents.
If for instance, for one location, each player has 2 outgoing edges, then the
number of edges in the timed games is 2 · |Agt| but in the transition table of the
corresponding region game there must be 2|Agt| cells: one for all possible moves.

6.3.2 Algorithm

We will consider in this part objectives given by deterministic Rabin automata
reading the locations of the timed game G. We recall that deterministic Rabin
automata can describe any ω-regular condition and we presented in Section 4.8
an exponential algorithm to decide the constraint existence problem in concur-
rent games.

Theorem 6.11. The existence problem with constrained outcomes, in timed
game with objectives given by deterministic Rabin automata can be solved in
EXPTIME.

Proof. The algorithm consists in constructing the region game and solving the
constrained existence problem on the region game. Thanks to Prop. 6.1, we can
recover Nash equilibria in the original timed game. The execution time of the
algorithm we gave for Rabin automata, was only exponential in the number of
agents and the number of Rabin pairs, but not in the size of the arena. The
blow-up induced by the region transformation is therefore orthogonal and the
global execution time remains a simple exponential. To be precise the execution

111

time is bounded (up to constant factor) by the following expression:

2|Agt| ·
(
|Loc|2 · |R|4+|Agt| · |Trans||Agt|

)3
∑

A kA ·
(∑

A

kA

)
!

+2|Agt| ·

 ∏
A∈Agt

kA · 2kA
 · (|Loc|2 · |R|4+|Agt| · |Trans||Agt|

)3

·
∑
A

kA

where kA is the number of Rabin pairs describing the objective of player A.
�

6.3.3 Hardness

From the point of view of complexity classes, our algorithm is optimal, as we
will prove EXPTIME-hardness for the restricted case of Büchi conditions. This
is proved by encoding countdown games [35], that we now introduce.

Countdown games. A countdown game C is played on a weighted graph (N,E),
whose edges are labeled with positive integer weights encoded in binary. A move
of the game from configuration (n, c) ∈ N × Z is determined jointly by both
players, as follows. First, Eve chooses a number d such that (n, d, n′) ∈ E for
some node n′. Then Adam chooses a node n′ ∈ N such that (n, d, n′) ∈ E.
The resulting configuration is (n′, c− d). If a configuration (n, c) with c = 0 is
reached, then the game stops and Eve wins.

Example 11. An example of a countdown game is represented in Fig. 6.8. In
node n1, Eve chooses an integer among 3 and 5, then Adam has to choose one
of the outgoing edges which is labeled by this integer. For instance, if Eve

chooses 5, Adam has the choice to either go to n2 or n4, and then the counter is
decremented by 5. Eve wins if the counter reaches exactly 0.

n1 n2

n3 n4

5

5
3

2

2

1
3

Figure 6.8: A countdown game C.

112

Given a countdown game, we express its semantics in terms of a (infinite)
turn-based game with a Büchi objective. We only give the function Mov for legal
actions, and as the game is turn-based, this is enough to deduce the transition
table Tab.

• Agt = {Eve, Adam};
• States = States∃ ∪ States∀ ∪ {w∃} where the states controlled by Eve are

States∃ = N × Z, the states controlled by Adam are States∀ = {(n, c, d) |
c ∈ Z and ∃(n, d, n′) ∈ E}, and the state w∃ corresponds to Eve winning
and the game being stopped;

• Owner(s) = Eve if s ∈ States∃ ∪ {w∃} and Owner(s) = Adam otherwise;

• if c 6= 0, Mov((n, c), Eve) = {(n, c, d) | ∃(n, d, n′) ∈ E};
• if c = 0, Mov((n, c), Eve) = {w∃};
• Mov(w∃, Eve) = {w∃};
• Mov((n, c, d), Adam) = {(n′, c− d) | ∃(n, d, n′) ∈ E};
• the preference relation is given by a Büchi objective for Eve, with the

target T∃ = {w∃}.
Given an initial configuration (n, c), if we forget about those with c < 0

which are always winning for Adam, then the number of reachable configurations
is finite. To be more precise, it is exponential, because integer constants like c
and labels of transitions are written in binary. We note that given a countdown
game and an initial configuration, the existence of a winning strategy for Eve is
EXPTIME-complete [35].

We first prove the result for the value problem and reachability objectives.
EXPTIME-hardness of this problem was already known for timed games in gen-
eral [30]. Using a reduction from countdown games, we provide here a simpler
proof which only uses two clocks.

Proposition 6.12. The value problem for timed games with Büchi objectives
and only two clocks is EXPTIME-hard.

Proof. Let C be a countdown game, (n0, c0) be a configuration C. We build a
timed game G such that there is a winning strategy for Eve in G from initial state
(n0,0) if, and only if, there is a winning strategy for Eve in C from configuration
(n0, c0). It is defined as follow:

• Loc = N ∪ {(n, d) ∈ N × N | ∃(n, d, n′) ∈ E} ∪ {w∃}, the locations in N
correspond to the nodes of the countdown game and will be controlled by
Eve, the locations of the form (n, d) are controlled by Adam is the winning
state for Eve;

• X = {x, y}, the counter of the game will be encoded in the valuation of
clock y by c0 − v(y), clock x will be used to decrement the value of the
counter by the integer corresponding to the selected transition;

• Agt = {Adam, Eve};

113

• Trans = Trans∃ ∪ Trans∀, where :

Trans∃ ={(s, (x = 0 ∧ y 6= c0),∅, (s, d)) | ∃(s, d, s′) ∈ T}
∪ {(s, (x = 0 ∧ y = c0),∅, w∃)}
∪ {(w∃, true,∅, w∃)}

Trans∀ ={((s, d), (x = d), {x}, s′) | (s, d, s′) ∈ T}

• Owner(t) =

{
Eve if t ∈ Trans∃
Adam if t ∈ Trans∀

• The preference relation is given by a Büchi objective for Eve, with the
target T∃ = {w∃}.

Remark. Compared to the configurations of C we do not keep the values of the
counter in the locations, since there are an exponential number of possible value
for it, we will encode it in the clock valuation.

This construction is illustrated in Fig. 6.9, for the game we presented in
Example 11.

n1 n1, 5 n2

n2, 2n1, 3

n3 n3, 1 n4

n4, 3

w∃

x = 0, y 6= c0

x = 0, y 6= c0

x = 5, x← 0

x
=

5, x←
0x = 3, x← 0

x = 0, y 6= c0

x = 2, x← 0

x = 2, x←
0

x = 0, y 6= c0 x = 1, x← 0

x = 0, y 6= c0x = 3, x← 0

Figure 6.9: The encoding of the countdown game C as a timed game. Locations
controlled by Eve are represented with circles and those controlled by Adam with
rectangles. All the dotted transitions are labeled by x = 0 ∧ y = c.

114

We will show that these two games simulate each other in the sense of Sec-
tion 3.3, although game simulation was define for Nash equilibrium we can
deduce from Prop. 3.5, this simple corollary.

Corollary 6.13 (of Prop. 3.5). Let G and G′ be two zero-sum games involv-
ing the same players Eve and Adam with a reachability objective for Eve. Fix
two states s0 and s′0 in G and G′ respectively. Assume that / is a preference-
preserving game simulation from (s0, s

′
0). If Eve has a winning strategy in G

from s0 then she has a winning strategy in G′ from s′0.

Proof. Eve has a winning strategy in G corresponds to the fact that there is
a Nash equilibrium where she wins in the game where Adam has the opposite
objective. Hence this equivalence is a direct consequence of Prop. 3.5. �

Moreover, when the games are turn-based, which is the case of C and G here,
we can simplify the definition of a game simulation as follows. If G and G′ are
two turn-based games, a relation / is a game simulation between G and G′, if
s / s′ implies that:

1. Owner(s) = Owner(s′);

2. for each t successor of s there is t′ successor of s′ with t / t′;

3. for each t′ successor of s′ there is t successor of s with t / t′.

We then define the relation / between C and G in the following manner. For
the states controlled by Eve, (n, c) / (n′, v) if, and only if, n = n′, v(x) = 0 and
v(y) = c0 − c. For the states controlled by Adam, (n, c, d) / ((n′, d′), v) if, and
only if, n = n′, d = d′ and v(x) = 0 and v(y) = c0 − c, and w∃ / (w∃, v) for any
valuation v.

First remark that / is preference preserving. Let ρ be a path in C and ρ′

be a path in G such that ρ / ρ′. In C, ρ is winning if, and only if, it reaches
w∃ which if and only if, ρ′ reaches w∃ since they are equivalent, and then ρ′ is
winning in G.

We now prove that it is a game simulation.

Lemma 6.14. The relation / is a game simulation between C and G.

Proof. For a configuration (n, 0) in C, the corresponding configuration in G is
(n, v) with v(x) = 0 and v(y) = c0, then the only available transition goes to
w∃ in both cases.

Let (n, c) with c 6= 0 be a configuration controlled by Eve in C, and (s, v) the
corresponding configuration in G, v(x) = 0 and v(y) = c0 − c. For a successor
configuration (n, c, d), there is a transition (n, (x = 0 ∧ y 6= c0),∅, (n, d)) in
G. We note that v(y) 6= c0 since c 6= 0, hence there is a successor ((n, d), v′)
of (n, v) such that v′(y) = c0 − c, so that it is equivalent to (n, c, d). Now for
the configuration (n, c, d) controlled by Adam, let ((n, d), v) be the corresponding
configuration in G. For a successor (n′, c− d), there is a transition ((n, d), (x =

115

d), {x}, n′) in G. Hence there is a successor (n′, v′) of ((n, d), v) such that v′(y) =
v(y) + d = c0 − (c− d), so that it is equivalent to (n′, c− d).

Now in the other direction, let (n, v) be a configuration controlled by Eve

in G, and (n, c) the corresponding configuration in C: we have v(x) = 0 and
v(y) = c0 − c. For a transition to a location (n, d), there exists (n, d, n′) in
E. The constraint ensures that the valuation does not change, so (n, c, d) is
equivalent to the next state of G. For a state ((n, d), v) controlled by Adam, and
a new location n′, we have that (n, d, n′) ∈ E, and because of the constraint
on x the new valuation is v′ such that v′(y) = v(y) + d, hence (n′, c − d) is a
successor of (n, c, d) and it is equivalent to the new state of G. �

From this lemma, and as (n0, c0) / (n0,0), we deduce that there is a winning
strategy for Eve in C from the configuration (n0, c0) if, and only if, there is a
winning strategy for Eve in G from location n0 and valuation 0. This proves the
EXPTIME-hardness of the value problem for timed games with Büchi objectives.

�

We now prove the result for existence problems.

Proposition 6.15. The existence problem for timed games with Büchi objec-
tives, only two clocks and two players is EXPTIME-hard.

Proof. Note that we cannot directly apply Lem. 2.4, since timed games do not
encode concurrent games in general. However, in this special case we will replace
the initial concurrent module by a timed one, as is shown in Fig. 6.10. Let G
be a two-player two-clocks turn-based zero-sum game. If Eve has a winning
strategy in G then there is no equilibrium, since her interest is to play before
Adam and play her winning strategy in G, but then Adam can change his strategy
to play a shorter delay from `0 and win. If Eve has no winning strategy in
G then Adam has one, since turn-based Büchi games are determined. Then a
strategy profile that consists in going to w∀ in the initial state, and for Adam to
play his winning strategy in G, forms a Nash equilibrium. Hence the existence
problem for timed games with Büchi objectives is at least as hard as the value
problem. �

We conclude this section by the following corollary that summarizes the
results.

Corollary 6.16. The value problem, the existence problem, the existence prob-
lem with constrained outcomes and the existence problem with constrained moves
for timed games with Büchi objectives or objectives given by deterministic Rabin
automata, are EXPTIME-complete.

116

`0

w∀

` Copy of G

0 <
x <

1

0 <
x <

1

Figure 6.10: Extending game G with an initial module. The plain transition
is controlled by Eve and the dotted one by Adam. Eve wins if she reaches the
winning state of game G, Adam wins if the winning state of Eve is never reached.

117

Chapter 7

Implementation

In this chapter, we present the implementation we made of some of the algo-
rithms presented in this thesis. They are available as a tool called Praline, that
can be downloaded from http://www.lsv.ens-cachan.fr/Software/praline/.

7.1 Algorithmic and Implementation Details

Praline is implemented in Ocaml1. The first version of Praline works on
explicit graphs and implements the polynomial algorithm of Section 5.2.2. To
represent and manipulate graphs we use the ocamlgraph library [16]. The game
files are imported into the ocamlgraph representation, and then analyzed using
the algorithm of Section 5.2.2 for Büchi games with maximize order. The prod-
uct of the arena with deterministic Büchi automata is also implemented. The
tool can thus handle objectives given by deterministic Büchi automata, and in
particular reachability and safety objectives.

As explained in Section 4.3, a strongly connected component of the game
defines a payoff. It is the payoff that is obtained by visiting all states of the com-
ponent infinitely often. The algorithm looks for a strongly connected component
of the suspect game, whose states are in the winning region of Eve with respect
to its payoff. The algorithm works in polynomial time by recursively looking at
the intersection of the strongly connected component with Eve’s winning region.

A difference between the algorithm we presented and its implementation, is
that the suspect game is not computed explicitly. Instead it works on copies of
the arena. We have one such copy for each possible set of suspects P such that
a set (s, P) is accessible in the suspect game. There is a direct correspondence
between a state (s, P) controlled by Eve in the suspect game and state s in
the copy corresponding to the set P . There is also a correspondence between
a state (s, P,mAgt) controlled by Adam and the outgoing edge of s with label
mAgt in the copy corresponding to the set P . The computation of Eve’s winning

1http://caml.inria.fr/

118

http://www.lsv.ens-cachan.fr/Software/praline/
http://caml.inria.fr/

region corresponds to what we called the repellor transition system in an earlier
version of the work [6, 7].

7.2 Input and Output

Praline looks for pure Nash equilibria in concurrent games. Objectives for the
players are given by reachability, safety and Büchi objectives, or by deterministic
Büchi automata. Each player can have several objectives; they are ordered
according to an integer index. The goal for a player is then to satisfy the
objective with the highest index.

The whole game is given to the tool in a file as the one in Fig. 7.1a, which
describes the payoffs and the arena. The arena can either be given by a GML2

or a Graphviz3 file as in Fig. 7.1b,. The edges of this graph should be labeled
by a tuple composed of the actions for each player. If the game contains a Nash
equilibrium with some payoff v, then Praline returns at least one equilibrium
with payoff w such that for every player i, vi ≤ wi. For each solution, the
tool outputs a file containing the full strategy profile. The profile is represented
as an automaton indicating the actions that should be played by each player,
one example is given in Fig. 7.2c. As can be seen on the figure those graphs
are usually big. A more readable view of the equilibrium is the shape of the
solution, which represents the outcome of the equilibrium, as in Fig. 7.2a and
7.2b. This gives an overview of what the evolution of the system should be.

arena "power_control.dot"
start "0,0"
objective 1 buchi
 "1,0" -> 140 ;
 "1,1" -> 44 ;
 "1,2" -> 21 ;
 "2,0" -> 73 ;
 "2,1" -> 38 ;
 "2,2" -> 23
objective 2 buchi
 "0,1" -> 140 ;
 "0,2" -> 73 ;
 "1,1" -> 44 ;
 "1,2" -> 38 ;
 "2,1" -> 21 ;
 "2,2" -> 23

(a) Game file “power control.game”

0,0 =,=

0,1

=,+

1,0

+,=

1,1

+,+=,=

0,2

=,+ +,=

1,2

+,+=,=

+,=

=,=

=,+

2,0

+,=

2,1

+,+=,=

=,+ +,=

2,2

+,+=,=

+,=

=,=

=,+

=,=

=,+

=,=

(b) Arena file “power control.dot”

Figure 7.1: Example of an input game for Praline

2http://www.infosun.fim.uni-passau.de/Graphlet/GML/
3http://www.graphviz.org/

119

http://www.infosun.fim.uni-passau.de/Graphlet/GML/
http://www.graphviz.org/

7.3 Examples

7.3.1 Power Control

We consider the problem of power control. At each step of the game, each
agent i can choose to increase or not its emitting power pi. The payoff for each
state is given by the expression from [47]:

R

pi

(
1− e−0.5γi

)L
(7.1)

The arena on which the game is played is represented in Fig. 7.1b for an instance
with two agents, three possible levels of emission and some arbitrarily chosen
parameters. The objectives of the game are described on Fig. 7.1a: each state is
assigned a payoff according to Equation (7.1). This reads as follows: assuming
p1 = 1 and p2 = 2, the current configuration corresponds to the node labeled
by (1, 2) and its payoff is 21 for player 1 and 38 for player 2. The states that
are not mentioned in the file have payoff 0 by default.

For this example, our tool gives two solutions, one Nash equilibrium with
payoff 44 for each player and another one with payoff 23 for each. We give the
shape of the two solutions in Fig. 7.2a and 7.2b. The first solution suggests that
the players should limit their power to 1. Now if one player does not behave as
expected, for instance she raises her power to 2, then the strategy for the other
one is to use her maximal power to emit, which can be read only from the full
strategy in Fig. 7.2c. This prevents the former player from achieving a payoff
better than 23.

0,0 1,1
+,+

=,=

(a) Shape of solution 1

0,0 1,1
+,+

2,2
+,+

=,=

(b) Shape of solution 2

initial

on_path 0,0

0,0

 +,+ (on_path 0,0) 1,1

+,+

loop 1,1 1,1

1,1

out 1,0, {2}, 4

1,0

out 0,1, {1}, 4

0,1

 =,= (loop 1,1 1,1) 1,1

=,=

 +,+ (out 1,0, {2}, 4) 2,1

+,+

 +,= (out 1,0, {2}, 4) 2,0

+,=

 =,+ (out 1,0, {2}, 4) 1,1

=,+

 =,= (out 1,0, {2}, 4) 1,0

=,=

 +,+ (out 0,1, {1}, 4) 1,2

+,+

 +,= (out 0,1, {1}, 4) 1,1

+,=

 =,+ (out 0,1, {1}, 4) 0,2

=,+

 =,= (out 0,1, {1}, 4) 0,1

=,=

 =,= (out 2,2, {2}, 1) 2,2

out 2,2, {2}, 1

2,2=,=

 +,= (out 1,2, {2}, 1) 2,2

2,2

 =,= (out 2,2, {1}, 1) 2,2

out 2,2, {1}, 1

2,2=,=

 =,+ (out 2,1, {1}, 1) 2,2

2,2

 =,= (out 2,2, {2}, 2) 2,2

out 2,2, {2}, 2

2,2 =,=

 +,= (out 1,2, {2}, 2) 2,2

2,2

 =,= (out 1,2, {2}, 2) 1,2

out 1,2, {2}, 1

1,2

+,=

 =,= (out 2,2, {1}, 2) 2,2

out 2,2, {1}, 2

2,2=,=

 =,+ (out 2,1, {1}, 2) 2,2

2,2

 =,= (out 2,1, {1}, 2) 2,1

out 2,1, {1}, 1

2,1

=,+

 =,= (out 2,2, {2}, 3) 2,2

out 2,2, {2}, 3

2,2=,=

 +,= (out 1,2, {2}, 3) 2,2

2,2

 =,= (out 1,2, {2}, 3) 1,2

out 1,2, {2}, 2

1,2

+,= =,=

 =,= (out 2,2, {1}, 3) 2,2

out 2,2, {1}, 3

2,2=,=

 =,+ (out 2,1, {1}, 3) 2,2

2,2

 =,= (out 2,1, {1}, 3) 2,1

out 2,1, {1}, 2

2,1

=,+ =,=

 =,= (out 2,2, {2}, 4) 2,2

out 2,2, {2}, 4

2,2=,=

 =,+ (out 2,1, {2}, 4) 2,2

2,2

out 2,1, {2}, 4

2,1=,+

 =,= (out 2,1, {2}, 4) 2,1

=,=

2,2

2,1

 =,+ (out 2,0, {2}, 4) 2,1

2,1

out 2,0, {2}, 4

2,0 =,+

 =,= (out 2,0, {2}, 4) 2,0

=,=

2,1

2,0

 +,= (out 1,2, {2}, 4) 2,2

2,2

 =,= (out 1,2, {2}, 4) 1,2

out 1,2, {2}, 3

1,2

+,= =,=

 +,+ (out 1,1, {2}, 4) 2,2

2,2

2,1

 +,= (out 1,1, {2}, 4) 2,1

2,2

2,1

 =,+ (out 1,1, {2}, 4) 1,2

1,2

out 1,1, {2}, 4

1,1+,+ +,= =,+

 =,= (out 1,1, {2}, 4) 1,1

=,=

1,2

1,12,1

2,0

2,1

2,0

1,0

1,1

1,0

1,1

 =,= (out 2,2, {1}, 4) 2,2

out 2,2, {1}, 4

2,2=,=

 =,+ (out 2,1, {1}, 4) 2,2

2,2

 =,= (out 2,1, {1}, 4) 2,1

out 2,1, {1}, 3

2,1

=,+ =,=

 +,= (out 1,2, {1}, 4) 2,2

2,2

out 1,2, {1}, 4

1,2 +,=

 =,= (out 1,2, {1}, 4) 1,2

=,=

2,2

1,2

 +,+ (out 1,1, {1}, 4) 2,2

2,2

1,2

 +,= (out 1,1, {1}, 4) 2,1

2,1

out 1,1, {1}, 4

1,1+,+ +,=

 =,+ (out 1,1, {1}, 4) 1,2

=,+

 =,= (out 1,1, {1}, 4) 1,1

=,=

2,2

1,2 2,1

1,1

 +,= (out 0,2, {1}, 4) 1,2

1,2

out 0,2, {1}, 4

0,2+,=

 =,= (out 0,2, {1}, 4) 0,2

=,=

1,2

0,2 1,2

0,2

0,1

1,1

1,2

0,2

0,1

1,1

1,1

out 2,1, {1}, 4

2,1

out 1,2, {2}, 4

1,2

=,+ =,=

+,=

=,=

(c) Strategies for solution 1

Figure 7.2: Solutions for the power control game

120

7.3.2 Medium Access Control

The second example is based on the problem of medium access control. We
consider that if more than one player is trying to emit in a given slot then no
frame is transmitted during that slot. We also assume that each player has a
limited energy and can therefore only emit on the network a limited number
of times. Each of them is then trying to maximize the number of successful
attempts. In the experiments, we considered as a parameter their initial level
of energy.

7.3.3 Shared File System

Our last example models a shared file system with locks. In this games, once
a file is locked by a player it can no longer be accessed by the other until it is
unlocked. The objective for each player is then given by a deterministic Büchi
automaton to describe the order in which the files should be accessed by the
player. We experimented with different numbers of players and files. We also
tried Büchi automata of different sizes; the number of states and edges indicated
in Table 7.1 are those of the product.

7.4 Experiments

In order to show the influence of the size of the graph on the time taken to
compute Nash equilibria, we ran our tool on several sets of examples. The
experimental results are given in Table 7.1.

We observe from these experiments that our prototype works well for games
up to one hundred states. The execution time then quickly increases. This
is because the procedure as described in Section 4.3, requires computation of
the winning regions in a number of subgames that might be quadratic in the
number of states of the game. The computation of the winning region in itself is
done in time quadratic with respect to the size of the suspect game. For future
implementations, we hope to improve that part of the computation by using
symbolic methods, instead of enumerative methods.

121

Table 7.1: Experiments

Power Control

Players Emission Levels States Edges Solutions Time (sec.)
2 2 9 25 2 0.01
2 5 36 121 19 0.54
3 2 27 125 5 0.43
3 5 216 1331 83 162.75
4 2 81 625 6 18.56
5 2 243 3125 17 941.73

Medium Access Control

Players Initial Energy States Edges Solutions Time (sec.)
2 2 14 35 1 0.01
2 4 55 165 1 0.37
3 2 99 339 1 1.72
3 4 1359 6295 1 1209.85
4 2 756 3661 1 335.39

Shared File System

Players Number of files States Edges Solutions Time (sec.)
2 2 9 47 1 0.01
2 2 33 175 1 0.01
2 2 121 652 1 0.07
3 2 16 132 1 0.03
3 2 196 1759 1 0.77
4 2 25 333 1 0.70
4 3 125 3656 1 27.01

122

Chapter 8

Conclusion

8.1 Summary

In this work, we reduced the computation of Nash equilibria in concurrent mul-
tiplayer semi-quantitative games to the computation of winning strategies in
turn-based qualitative two-player games. This transformation is based on the
notion of suspect. We showed that the size of the resulting game is polynomial.

This suspect game is a powerful tool. We used it to describe the precise
complexity classes of the different problems in many cases. The algorithms
are often simple thanks to this transformation. For instance the NP algorithm
for reachability objective is obtained simply by guessing a path in the winning
region of the suspect game. The computation of the winning region itself is done
by an attractor computation, since the suspect game turns out to be a simple
safety game. The complexity for internal objectives in general, lies between
PTIME and PSPACE, the “simplest” being Büchi objectives and the most difficult
are objectives defined by Boolean circuits, which can encode Muller winning
conditions. For objectives described by automata, we only have an exponential-
time algorithm.

We extended the approach to a more quantitative context by allowing several
reachability or Büchi objectives for each player. We analyzed the complexity
with respect to the order that was chosen. In the general case where the order
is given by a Boolean circuit we showed PSPACE-completeness for both Büchi
and reachability objectives. An interesting restriction is the case of monotonic
orders over Büchi objectives for which we showed NP-completeness.

Finally, we applied our results to timed games, through a refinement of
the region abstraction, that allowed to reduce these games to finite concurrent
games. The region game is exponential, and we showed that all the decisions
problem are EXPTIME-complete, for objectives given by Büchi conditions and
objectives given by Rabin automata.

123

8.2 Perspectives

The perspectives of this work are multiple. From the point of view of prefer-
ences of the players, it is natural next to consider a more quantitative setting,
such as mean-payoff and discounted-games. For these games, we do not know
yet whether the constrained existence problem is decidable. For instance for
mean-payoff, in the suspect game, the objective of Eve is a multidimensional
mean-payoff game. Chatterjee, Doyen, Henzinger, and Raskin studied this mul-
tidimensional games and gave an algorithm for the value problem [12]. However
this is not sufficient in our framework, since there is an infinite number of pos-
sible values, it makes it impossible to guess the payoff of the Nash equilibrium.
We would first need a way to find all the values of the game. A restriction
that would elude this problem is that of action-visible. In that case, for any
deviation there is only one suspect and therefore the game is a simple mean-
payoff game. Ummels and Wojtczak already showed that for these games, the
constraint existence problem is NP-complete [52].

Concerning the solution concepts, notions other than Nash equilibria have
been proposed in game theory to represent rational behaviors. In particular,
subgame perfect equilibria are relevant for repeated games. In a subgame perfect
equilibrium, we require that the strategy profile is a Nash equilibrium starting
from any history. Ummels showed results similar to Nash equilibria for turn-
based and stochastic games [50]. We expect a refinement of the suspect game
to be useful in that case. Moreover, other solution concepts may have to be
defined in order to answer problems specific to computer science.

Among other extensions of Nash equilibria are resilient and immune equilib-
ria. In a k-resilient equilibrium, a coalition of k-players can change its strategy,
and we have to ensure that none of the players can improve her outcome. In a
t-immune equilibria, we allow t players to be irrational and the payoff of the oth-
ers should not be harmed by deviation of the irrational players. We believe that
a transformation similar to the suspect game could help solve these problems.
However the size of that construction might no more be polynomial.

Concerning our model of games, it is not well suited in some situations where
players do not have access to the same information. However, in general adding
imperfect information makes the problems we are studying undecidable. This is
due to the problem of information fork . There is still hope that some interesting
restrictions make the problem decidable. In our context for instance, players
do not see each others actions, allowing to model a bit of imperfect information
while preserving decidability.

124

Bibliography

[1] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time.
Information and computation, 104(1):2–34, 1993.

[2] R. Alur and D. L. Dill. A theory of timed automata. TCS, 126(2):183–235,
1994.

[3] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal
logic. Journal of the ACM, 49(5):672–713, September 2002.

[4] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and
D. Lime. UPPAAL-Tiga: Time for playing games! In CAV’07, volume
4590 of LNCS, pages 121–125. Springer, 2007.

[5] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. Uppaal—a
tool suite for automatic verification of real-time systems. Hybrid Systems
III, pages 232–243, 1996.

[6] P. Bouyer, R. Brenguier, and N. Markey. Nash equilibria for reachabil-
ity objectives in multi-player timed games. In Paul Gastin and François
Laroussinie, editors, Proceedings of the 21st International Conference on
Concurrency Theory (CONCUR’10), volume 6269 of Lecture Notes in Com-
puter Science, pages 192–206. Springer-Verlag, September 2010.

[7] P. Bouyer, R. Brenguier, N. Markey, and M. Ummels. Nash equilibria
in concurrent games with Büchi objectives. In Supratik Chakraborty and
Amit Kumar, editors, Proceedings of the 31st Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS’11),
volume 13 of Leibniz International Proceedings in Informatics, pages 375–
386, Mumbai, India, December 2011. Leibniz-Zentrum für Informatik.

[8] P. Bouyer, R. Brenguier, N. Markey, and M. Ummels. Pure Nash equilibria
in concurrent games – part II: Ordered objectives, 2012. In preparation.

[9] P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with
partial observability. In Warren A. Hunt, Jr and Fabio Somenzi, editors,
Proceedings of the 15th International Conference on Computer Aided Ver-
ification (CAV’03), volume 2725 of Lecture Notes in Computer Science,
pages 180–192, Boulder, Colorado, USA, July 2003. Springer.

125

[10] T. Brihaye, V. Bruyère, and J. De Pril. Equilibria in quantitative reacha-
bility games. In Farid Ablayev and Ernst Mayr, editors, Computer Science
– Theory and Applications, volume 6072 of Lecture Notes in Computer
Science, pages 72–83. Springer Berlin / Heidelberg, 2010.

[11] J.R. Burch, E.M. Clarke, K.L. McMillan, and D.L. Dill. Sequential circuit
verification using symbolic model checking. In Design Automation Confer-
ence, 1990. Proceedings., 27th ACM/IEEE, pages 46–51. IEEE, 1990.

[12] K. Chatterjee, L. Doyen, T.A. Henzinger, and J.F. Raskin. Generalized
mean-payoff and energy games. Arxiv preprint arXiv:1007.1669, 2010.

[13] K. Chatterjee, T. A. Henzinger, and N. Piterman. Generalized parity
games. In Proceedings of the 10th International Conference on Founda-
tions of Software Science and Computation Structure (FoSSaCS’07), vol-
ume 4423 of Lecture Notes in Computer Science, pages 153–167. Springer-
Verlag, 2007.

[14] K. Chatterjee, R. Majumdar, and M. Jurdziński. On Nash equilibria in
stochastic games. In Jerzy Marcinkowski and Andrzej Tarlecki, editors,
Proceedings of the 18th International Workshop on Computer Science Logic
(CSL’04), volume 3210 of Lecture Notes in Computer Science, pages 26–40.
Springer-Verlag, September 2004.

[15] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. Nusmv: A new
symbolic model verifier. In Computer Aided Verification, pages 682–682.
Springer, 1999.

[16] S. Conchon, J.C. Filliâtre, and J. Signoles. Designing a generic graph
library using ml functors. TFP, 7:124–140, 2008.

[17] A.A. Cournot and I. Fisher. Researches into the Mathematical Principles
of the Theory of Wealth. Macmillan, 1897.

[18] J. Cristau, C. David, and F. Horn. How do we remember the past in
randomised strategies? Electronic Proceedings in Theoretical Computer
Science, 25, 2010.

[19] C. Daskalakis, P.W. Goldberg, and C.H. Papadimitriou. The complexity of
computing a nash equilibrium. In Proceedings of the thirty-eighth annual
ACM symposium on Theory of computing, pages 71–78. ACM, 2006.

[20] A. Dawar, F. Horn, and P. Hunter. Complexity bounds for Muller games.
Theoretical Computer Science, 2011. Submitted.

[21] L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and M. Stoelinga.
The element of surprise in timed games. In Roberto Amadio and Denis
Lugiez, editors, Proceedings of the 14th International Conference on Con-
currency Theory (CONCUR’03), volume 2761 of Lecture Notes in Com-
puter Science, pages 142–156. Springer-Verlag, August-September 2003.

126

[22] L. De Alfaro, T. Henzinger, and R. Majumdar. Symbolic algorithms for
infinite-state games. Proceedings of the 12st International Conference on
Concurrency Theory (CONCUR’01), pages 536–550, 2001.

[23] E. A. Emerson and C. S. Jutla. The complexity of tree automata and logics
of programs. In Proceedings of the 29th Annual Symposium on Foundations
of Computer Science (FOCS’88), pages 328–337. IEEE Comp. Soc. Press,
October 1988.

[24] E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus and determi-
nacy. In Foundations of Computer Science, 1991. Proceedings., 32nd An-
nual Symposium on, pages 368–377. IEEE, 1991.

[25] I. Gilboa and E. Zemel. Nash and correlated equilibria: Some complexity
considerations. Games and Economic Behavior, 1(1):80 – 93, 1989.

[26] G. Gottlob. NP trees and Carnap’s modal logic. Journal of the ACM,
42(2):421–457, March 1995.

[27] G. Gottlob, G. Greco, and F. Scarcello. Pure nash equilibria: hard and
easy games. In Proceedings of the 9th conference on Theoretical aspects of
rationality and knowledge, TARK ’03, pages 215–230, New York, NY, USA,
2003. ACM.

[28] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infi-
nite Games, volume 2500 of Lecture Notes in Computer Science. Springer-
Verlag, 2002.

[29] T.A. Henzinger, P.H. Ho, and H. Wong-Toi. Hytech: A model checker for
hybrid systems. International Journal on Software Tools for Technology
Transfer (STTT), 1(1):110–122, 1997.

[30] T.A. Henzinger and P.W. Kopke. Discrete-time control for rectangular
hybrid automata. Theoretical Computer Science, 221(1-2):369–392, 1999.

[31] G.J. Holzmann. Design and validation of protocols: a tutorial. Computer
Networks and ISDN Systems, 25(9):981–1017, 1993.

[32] G.J. Holzmann. The model checker spin. Software Engineering, IEEE
Transactions on, 23(5):279–295, 1997.

[33] F. Horn. Streett games on finite graphs. In Marcin Jurdziński and Rupak
Majumdar, editors, Proceedings of the 2nd Workshop on Games in Design
and Verification (GDV’05), July 2005.

[34] M. Jurdziński. Deciding the winner in parity games is in UP∩co-UP. In-
formation Processing Letters, 68(3):119–124, November 1998.

127

[35] M. Jurdziński, F. Laroussinie, and J. Sproston. Model checking prob-
abilistic timed automata with one or two clocks. In Orna Grumberg
and Michael Huth, editors, Proceedings of the 13th International Confer-
ence on Tools and Algorithms for Construction and Analysis of Systems
(TACAS’07), volume 4424 of Lecture Notes in Computer Science, pages
170–184. Springer, March 2007.

[36] M. Klimoš, K. Larsen, F. Štefaňák, and J. Thaarup. Nash equilibria in con-
current priced games. Language and Automata Theory and Applications,
pages 363–376, 2012.

[37] D. Kozen. Lower bounds for natural proof systems. In Proceedings of the
18th Annual Symposium on Foundations of Computer Science (FOCS’77),
pages 254–266. IEEE Comp. Soc. Press, October-November 1977.

[38] F. Laroussinie, N. Markey, and G. Oreiby. On the expressiveness and
complexity of ATL. Logicical Methods in Computer Science, 4(2), May
2008.

[39] A.B. MacKenzie, S. Wicker. Game theory and the design of self-configuring,
adaptive wireless networks. Communications Magazine, IEEE, 39(11):126–
131, 2001.

[40] A.B. MacKenzie, S. Wicker. Game theory in communications: Motivation,
explanation, and application to power control. In Global Telecommunica-
tions Conference, 2001. IEEE, volume 2, pages 821–826. IEEE, 2001.

[41] A.B. MacKenzie, S. Wicker. Stability of multipacket slotted aloha with
selfish users and perfect information. IEEE INFOCOM, 3:1583–1590, 2003.

[42] O. Morgenstern and J. Von Neumann. Theory of games and economic
behavior. 1953.

[43] A.W. Mostowski. Games with forbidden positions. UG, 1991.

[44] J. F. Nash, Jr. Equilibrium points in n-person games. Proc. National
Academy of Sciences of the USA, 36(1):48–49, January 1950.

[45] PJ Ramadge and WM Wonham. Supervisory control of a class of discrete
event processes. SIAM Journal on Control and Optimization, 25(1):206–
230, 1987.

[46] D. Rosenberg, E. Solan, and N. Vieille. Stochastic games with imperfect
monitoring. Advances in Dynamic Games, pages 3–22, 2006.

[47] C.U. Saraydar, N.B. Mandayam, and D.J. Goodman. Pareto efficiency of
pricing-based power control in wireless data networks. In Wireless Com-
munications and Networking Conference, 1999. WCNC. 1999 IEEE, pages
231–235. IEEE, 1999.

128

[48] J.M. Smith and G.R. Price. The logic of animal conflict. Nature, 246:15,
1973.

[49] M. Ummels. The complexity of Nash equilibria in infinite multiplayer
games. In Roberto Amadio, editor, Proceedings of the 11th International
Conference on Foundations of Software Science and Computation Structure
(FoSSaCS’08), volume 4962 of Lecture Notes in Computer Science, pages
20–34. Springer-Verlag, March-April 2008.

[50] M. Ummels. Stochastic multiplayer games: Theory and algorithms. Pallas
Publications, 2010.

[51] M. Ummels and D. Wojtczak. The complexity of nash equilibria in sim-
ple stochastic multiplayer games. Automata, Languages and Programming,
pages 297–308, 2009.

[52] M. Ummels and D. Wojtczak. The complexity of nash equilibria in limit-
average games. Proceedings of the 22st International Conference on Con-
currency Theory (CONCUR’11), pages 482–496, 2011.

[53] J. von Neumann. Zur theorie der gesellschaftsspiele. Mathematische An-
nalen, 100(1):295–320, 1928.

[54] N. Wallmeier, P. Hütten, and W. Thomas. Symbolic synthesis of finite-
state controllers for request-response specifications. Implementation and
Application of Automata, pages 113–127, 2003.

[55] S. Yovine. Kronos: A verification tool for real-time systems. International
Journal on Software Tools for Technology Transfer (STTT), 1(1):123–133,
1997.

129

Index

j-th prefix, 18
j-th state, 18
j-th suffix, 18

accumulated cost, 27
action, 19
action-visible, 23
allowed, 26
almost-well-founded, 19
at least as good, 19
available actions, 19

Büchi objective, 44
Boolean circuit, 71

can ensure, 24
circuit objective, 45
clock, 93
clock constraint, 93
co-Büchi objective, 44
co-reducible, 74
compatible, 21
concatenation, 18
concurrent game, 19
conjunction, 70
control, 23
countdown game, 112
counting, 70

deterministic Büchi automaton objec-
tive, 45

deterministic Rabin automaton objec-
tive, 45

deviation, 25
deviator, 25
disjunction, 70

ensure, 24

equivalence class, 19
equivalence relation, 19

finite concurrent game, 19

game simulation, 40, 41
game-simulate, 41

history, 18

invariant, 93

legal, 19, 94
length, 18
lexicographic, 71
location, 93

maximize, 71
monotonic, 71
monotonic Boolean circuit, 71
move, 19, 112
move constraint, 26
Muller objective, 45

Nash equilibrium, 25
Noetherian, 19
non-blocking, 96
non-zero-sum, 25

obey, 37
objective, 44
outcome constraint, 26
own, 94

parity objective, 44
path, 18
payoff vector, 70
play, 18

130

player, 19, 94
prefer, 19
preference relation, 19, 94
preference-preserving, 42
preorder, 19
priority order, 94

Rabin objective, 45
reachability objective, 44
reducible, 74, 76
region, 96
region game, 97
region-invariant, 97
repeated game, 15

safety objective, 44
selected, 95
shortest delay, 95
signal-to-interference-and-noise ratio, 13
simulate, 41
state, 19
strategy, 21
strategy profile, 21
Streett objective, 44
strict partial order, 19
subset, 70
successor, 97
suspect players, 36

time-elapsing, 96
timed action, 94
timed game, 93
total, 19
transition, 18, 93
transition system, 18
transition table, 19
trigger strategy, 36
turn-based game, 23

valuation, 93
value, 24

weight function, 27
winning condition, 44
winning region, 38

zero-sum, 24

131

	Introduction
	Model Checking and Controller Synthesis
	Games and Equilibria
	Examples
	Peer to Peer Networks
	Medium Access Control
	Power Control in Cellular Networks
	Shared File System

	Contribution
	Related Works
	Outline

	Concurrent Games
	Definitions
	Value and Nash Equilibria
	Undecidability in Weighted Games
	General Properties
	Nash Equilibria as Lasso Runs
	Encoding Value as an Existence Problem with Constrained Outcomes
	Encoding Value as an Existence Problem
	Encoding the Existence Problem with Constrained Outcome as an Existence Problem

	The Suspect Game
	The Suspect Game Construction
	Relation Between Trigger Strategies and Winning Strategies of the Suspect Game
	Game Simulation

	Single objectives
	Specification of the Objectives
	Reachability Objectives
	Büchi Objectives
	Safety Objectives
	Co-Büchi Objectives
	Objectives Given as Circuits
	Rabin and Parity objectives
	Objectives Given as Deterministic Rabin Automata

	Ordered Objectives
	Ordering Several Objectives
	Ordered Büchi Objectives
	General Case
	Reduction to a Single Büchi Objective
	Reduction to a Deterministic Büchi Automaton Objective
	Monotonic Preorders

	Ordered Reachability Objectives
	General Case
	Simple cases

	Timed Games
	Definitions
	Semantics as an Infinite Concurrent Game

	The Region Game
	Regions
	Construction of the Region Game
	Proof of Correctness
	From Timed Game G to Region Game R.
	From Region Game R to Timed Game G.
	Conclusion of the Proof

	Complexity Analysis
	Size of the Region Game
	Algorithm
	Hardness

	Implementation
	Algorithmic and Implementation Details
	Input and Output
	Examples
	Power Control
	Medium Access Control
	Shared File System

	Experiments

	Conclusion
	Summary
	Perspectives

