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From a luxury available only to a select few, computers and embedded systems have
turned into an omnipresent technology. This evolution has made us highly dependant on
the correct behaviour of these systems: without even considering the possibility of a failure
in a critical system like a nuclear power plant or an airplane, any hiccup in a major search
engine or in the stock market protocols would have disastrous consequences. Therefore, it
has become more and more important to check that systems will not fail, even under unusual
circonstances.

An important step in any verification of a real-world system is to define a model of it, on
which one will be able to run algorithms that check if the required properties are fulfilled. If
this step is generally feasible when the system can only be in a finite number of states, those
that can have an infinite number of states give rise to important challenges. Indeed, one
will often face the barrier of undecidability: there is some models (the canonical one being
Turing machines) on which there is no algorithm that can check if a non-trivial property is
fulfilled. Moreover, even if some algorithms do exist, their running time might make them
unusable in practice.

Well Structured Transition Systems

Well Structured Transition Systems (WSTS) are a general class of infinite-state systems that
enjoy monotonicity properties [28]. These properties allow many problems to be decidable
[33, 6] like control state reachability (is a specific line of the program reachable?), termi-
nation (is there an infinite execution of the program?), and with additionnal assumptions,
boundedness (is the set of reachable states finite?).

The interest of this class is threefold:

• Some important classes of infinite-state systems are directly WSTS. Petri Nets (that
we will describe later) are for example a widely used model of concurrency, that is a
WSTS. Many results on Petri Nets are thus obtained directly from the framework of
WSTS.

• Some systems may not have the required monotonicity, but can be over-approximated
in order to be a WSTS. If this means new behaviors of the system are introduced, any
negative answer for control state reachability and positive answer for termination or
boundedness will still be valid for the original system. This is an approach used for
example in [1], [3] or [2].

• Finite-state automata are a particular kind of WSTS, and algorithms designed for
WSTS can be applied to finite automatas. This can yield surprisingly effective new
algorithms. See for example [22].

There are two main classes of algorithms on WSTS, both relying heavily on the monotony:

• backward algorithms, that start from a final state, then compute progressively an over-
approximation of the predecessor states. These algorithms generally allow to decide
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safety properties like control state reachability. The properties of WSTS allow for a
simple representation of the approximation of predecessor states.

• forward algorithms, that start from an initial state, then compute progressively an
over-approximation of the reachable states. These algorithms generally allow to decide
liveness properties like termination or properties related to the full set of reachable
states like boudedness [6, 33]. However, the representation of the approximation of
reachable states is not immediate and that makes deciding properties more precise
than boundedness difficult. Recently, a procedure to decide such properties has been
proposed by Finkel and Goubault-Larrecq [29, 30], but its termination was not guar-
anteed.

Petri Nets

A simple class of infinite-state systems are counter systems, in which states are given by a
set of counter values (integers, generally required to be non-negative) while the transitions
of the system perform various operations on these counters. Of course, the set of allowed
operations is of great importance for the modeling power and decidability of the class. For
example, as soon as two counters can be tested for emptyness, incremented and decremented,
one gets the class of Minsky machines [51], that are Turing-powerful systems, which make
all non-trivial properties undecidable.

If only increments and decrements are allowed, one gets the class of Vector Addition
Systems. This class is equivalent to Petri Nets [52], which are a widely used model for
concurrent programs, where each counter correponds to a place containing undistingishable
tokens such that the value of the counter correponds to the number of tokens inside the
place. Reachability for Petri Nets is decidable [49, 42, 47] as is termination and boundedness
by the WSTS framework [33, 6]. Among the various algorithms designed to check properties
on Petri Nets, let us mention the Karp-Miller tree [41], which explores the reachable states
in a forward manner, performing acceleration when possible in order to compute an over-
approximation of the reachability set, and is an instance (and a precursor) of the forward
algorithm for WSTS.

Many alterations of Petri Nets have been defined, aiming either to restrict their power in
order to obtain more efficient algorithms, or to extend it in order to find up to what point
the decidability can be preserved:

• A first category of extensions is one where new kind of transitions are allowed. For
example, on top of increments and decrements (token creation and suppression in
Petri Net terms), one can allow transitions to apply affine functions on the counters
(transfering/copying/emptying whole places in Petri Net terms). Depending on the
coefficients allowed in the matrix associated to the function, this gives the class of Self-
Modifying Nets [61] (relative integers), Reset Nets [23] (diagonal matrix with only 0
and 1), Affine Nets [31] (non-negative integers) or Post-Self-Modifying Nets / strongly
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increasing Affine Nets [61, 31] (non-negative integers + positive integers on the diag-
onal). Another possibility is to allow the transitions to check whether a counter value
is zero (whether a place is empty in Petri Net terms) [55] as long as some restriction
on these transition is used to avoid being Turing-powerful.

• A second category of extensions is obtained by attaching data to individual tokens, for
example time values ([12]), but also abstract values ([56, 45]). For such extensions, a
place can no longer be considered as a counter, but given a suitable representation of
the configurations, one can hope to be able to extend the algorithms used for Petri
Nets without extensions.

In this work, we are mostly interested in finding the frontier of decidability: we know
that Petri Nets enjoy very good decidability properties, but how much can we extend these
in order to maintain these decidability properties? And on a side note, are these extensions
meaningful? (i.e. do they allow to model systems that could not be modelled without them).

Outline

• In chapter 1, we will recall some facts about Well Structured Transition Systems and
Petri Nets. After introducing the usual verification problems for these systems, we will
provide a summary of the decidability results currently available.

• In chapter 2, we will consider the problem of computing a finite representation of the
cover (an over-approximation of the reachability set), that would allow to solve the open
problems presented at end of chapter 2. We will present an extension of the works of
Finkel and Goubault-Larrecq on complete WSTS ([29, 30]) by introducing acceleration
strategies, that allow to reach the maximal elements of this cover. The most important
result of this chapter is quite surprising: for complete WSTS, if cover is recursively
enumerable, then it is recursive and admits a computable finite representation. We
illustrate this method on strictly monotonic WSTS.

• Chapter 3 will focus on the question of expressiveness of WSTS, specifically of Petri
Net extensions. As many extensions of Petri Nets have been designed, it is a natural
question to ask whether these extensions allow to express more behaviours than the
basic model. We provide (with some conditions) a very simple result: if an extension
of a Petri Net changes the underlying state space, it is highly likely that this increases
expressiveness.

• After these general results, we will turn on a specific VAS extension, which are VAS with
two resets. In chapter 4, we will show that one can use the witnesses of unboudedness
described by Dufourd et al. in [24] in order to enumerate the elements of the cover,
which by our previous results, entails the computability of a finite representation of
this cover.

7



• We end this work by another VAS extension, which are VAS with hierarchical zero-
tests, described in chapter 5. We show in section 5.2 that the proof of reachability for
VAS of Leroux [47] can be adapted to this model, yielding a new proof of reachability
as an alternative to the original proof of Reinhardt [54, 55]. Our new reachability
proof relies heavily on a well order on runs of VAS with hierarchical zero-tests, that we
recycle in section 5.3 in order to enumerate the maximal elements of the cover, again
obtaining computability of the cover. Then, in section 5.4, we use the two previous
results to derive decidability of LTL model-checking and of regularity.
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We denote by N, Z and Q the usual sets of natural integers, relative integers and rationals.
We write ≤ the canonical ordering on these sets. We also define Q≥0 = {x ∈ Q | x ≥ 0},
Q>0 = {x ∈ Q | x > 0}, N>0 = {x ∈ N | x > 0} and Nω by N ∪ {ω}. The addition and
substraction on Nω is extended by ω ± x = ω for all x ∈ N and ω + ω = ω (ω will never be
substracted).

Given a set X, we write P(X) (resp. Pfin(X)) its set of subsets (resp. finite subsets). We
write X ⊆ Y (resp. X ⊆fin Y ) if X is a subset (resp. finite subset) of Y . The cardinal of a
finite set is written card(X). Finally, a singleton set {x} is written x when it is clear from the
context that we are speaking of a set. Addition and multiplication are extended on sets by,
givenX and Y two subsets of Q, X+Y = {x+y | x ∈ X∧y ∈ Y } andX∗Y = {x∗y | x ∈ X}.
With the singleton notation, we also get, given k ∈ Q, k ∗ X = {k ∗ x | x ∈ X}. Given
k ∈ N, we define k ⋆ X by: 0 ⋆ X = {0} and (k + 1) ⋆ X = (k ⋆ X) +X. Finally, we have
N ⋆ X =

⋃

k∈N k ⋆ X. Note that k ∗X and k ⋆ X will be in general different sets.

Given two sets X and Y , we write f : X → Y when f is a partial function from X to Y .
The domain of f is written dom(f) and a function f : X → Y is total if dom(f) = X. We also
call total functions mappings. We will mostly consider partial functions, so we will call simply
function any partial function, and we will precise when we want to speak specifically of total
functions. An injection is a function f : X → Y if f(x) = f(x′) implies x = x′. If X ′ ⊆ X,
we write f(X ′) = {f(x) | x ∈ X ′}. Similarly, for Y ′ ⊆ Y , f−1(Y ′) = {x ∈ X | f(x) ∈ Y ′}.
The set of partial (resp. total) functions from X to Y is written X → Y (resp. Y X). Given
f : X → Z and f ′ : Z → Y , the composition of f and f ′ is written f ′ ◦ f or ff ′ (be careful
to the change of order) and defined by y = ff ′(x) = (f ′ ◦ f)(x) if there exists z ∈ Z such
that z = f(x) and y = f ′(z).

A relation on X is a subset R ⊆ X × X. Like for functions, given X ′ ⊆ X, we write
R(X) = {y | ∃x ∈ X ′. (x, y) ∈ R}. The composition of relations is also written R′◦R or RR′

and defined by (x, y) ∈ R′ ◦R = RR′ if there exists z such that (x, z) ∈ R and (z, y) ∈ R′. A
relation is identified to a function if for every x ∈ X, R(x) is either empty or a singleton. In
this case, all notions defined here for relations and functions coincides by treating R(x) = {y}
as y. Given a relation R, we define its inverse R−1 by (y, x) ∈ R−1 ⇐⇒ (x, y) ∈ R and its
reflexive transitive closure R∗ by R∗ =

⋃

k∈NR
k.

We consider vectors of length d as a special kind of total functions with domain {0, . . . , d−
1} and we shortenX{0,...,d−1} asXd. We also write any vector ofXd as x = (x(0), x(1), . . . , x(d−
1)) with x(i) ∈ X. Finally, we define the subvectors x(k . . . ℓ) = (x(k), . . . , x(ℓ)). We also
call a vector of any length a finite sequence and we call total functions from N to X infinite
sequences. The set of finite sequences is written X<ω while XN, the set of infinite sequences,
is also written Xω. The set of all sequences (finite and infinite) is thus written X≤ω. When
we are speaking of sequences, we will use the notation u = (ui)0≤i<ℓ where ℓ ∈ Nω is the
length of the sequence, or simply u = (ui) when we don’t care about the length. Given
(ui)0≤i<ℓ a sequence, a subsequence is a sequence (vi)1≤i<ℓ′ such that there exists a strictly
increasing mapping ϕ from {i ∈ N | i < ℓ′} to {i ∈ N | i < ℓ} with vi = uϕ(i). We also use
the vector notation u(i) to denote the i-th element of the sequence and u(k . . .) to denote
the subsequence (u(k + n))n∈N.
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We also call finite sequences words, and when speaking about words, we use the alternate
notation u = x0 . . . xℓ−1 and write the set of all words X∗. The length of a word u is written
|u|. The concatenation of two words u and v is simply written uv and the empty word is
denoted ε with εa = aε = a. In this formalism, if v would be a subsequence of u, we say
that v is a subword of u. Given a set of words X∗, a language on X is a subset of X∗.
The concatenation of two languages is given by LL′ = {uv | u ∈ L ∧ v ∈ L′}. We will use
especially often the singleton shortcut defined earlier when defining concatenated languages,
for example uL = {uv | v ∈ L}.

Given a set X, we denote by X⊕ the set of finite multisets of X, that is the set of total
functions m : X → N with a finite support sup(m) = {x ∈ X | m(x) > 0}. We use the
set-like notation {| ... |} for multisets when convenient, with {| xn |} describing the multiset
containing x n times. We use ∪ and − for multiset operations where:

(m ∪m′)(x) = m(x) +m′(x)
(m−m′)(x) = max(m(x) −m′(x), 0)

1.1 Orderings

A partial ordering � on X is a reflexive, transitive and anti-symmetric relation on X. It
is a total ordering if for any x, y ∈ X, we either have x � y or y � x. Total orderings are
also called linear orderings. If � is a partial (resp. total) ordering on X, we write that that
(X,�) is a partially (resp. totally) ordered set. We write x ≺ y if x � y and y 6� x. An
antichain of (X,�) is a subset Y ⊆ X such that elements of Y are pairwise incomparable
(i.e. for all y, y′ ∈ Y , y 6= y′ =⇒ y 6� y′). As we will mostly use partial orderings in
this work, we will call partial orderings simply orderings and specify when we require the
order to be total. If there is no ambiguity possible on the order used (see section 1.1.2 for
the default orderings on the sets will we use), we simply write that X is a partially (resp.
totally) ordered set. Also, when considering a generic ordered set, we shorten (X,≤) as X.

Given (X,�) an ordered set, the upward closure of a set E ⊆ X is ↑E = {y ∈ X | ∃x ∈
E, x � y} and conversely the downward closure of E is ↓E = {y ∈ X | ∃x ∈ E, y � x}. E
is upward-closed (resp. downward-closed) if E = ↑E (resp. E = ↓E). A downward-closed
(resp. upward-closed) set E has a basis B if E = ↓B (resp. E = ↑B). E has a finite basis
if B can be chosen finite. An upper bound x ∈ X of E ⊆ X is such that y � x for every
y ∈ E. The least upper bound of a set E, if it exists, is written lub(E). We write Max E
(resp. Min E) the set of maximal elements (resp. minimal elements) of E. We define the
notion of increasing for sequences, functions and relations by:

• A sequence (xn)n∈N is increasing (respectively strictly increasing, decreasing, strictly
decreasing) if for every n ∈ N, we have xn � xn+1 (respectively xn ≺ xn+1, xn � xn+1,
xn ≻ xn+1).

• If (Y,�Y ) is an ordered set, a function f : X → Y is increasing (resp. strictly increas-
ing) if dom(f) is upward closed and x ≤ x′ implies f(x) �Y f(x′) (resp. x ≺ x′ implies
f(x) ≺Y f(x′)) for all x, x′ ∈ dom(f).
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• A relation R ⊆ X ×X is increasing (resp. strictly increasing) if for all (x, y) ∈ R, and
x � x′ (resp. x ≺ x′), there exists (x′, y′) ∈ R such that y � y′ (resp. y ≺ y′).

Finally, a total function f : X → Y is an order embedding if x � x′ ⇐⇒ f(x) �Y f(x′).

1.1.1 Well orderings

An ordering � on X is well founded if there is no infinite strictly decreasing sequence. It is
well if there is also no infinite antichain. There are equivalent formulations for this definition,
as given by the following proposition:

Proposition 1.1. [44] Given an ordered set (X,�), the following propositions are equivalent:

• � is well founded and there is no infinite antichain in (X,�).

• For any infinite sequence (xi) in Xω, one can find i ≺ j such that xi � xj.

• For any infinite sequence (xi) in Xω, one can extract an infinite increasing subsequence.

• Any upward closed subset of X admits a finite basis.

The fourth characterization of well-ordered sets will be of particular interest in the sequel.
Indeed, it means that any upward closed set can be finitely represented by its set of minimal
elements.

1.1.2 Default Orderings

Unless otherwise stated, we equip these sets with the following orderings:

• N, Z and Q are ordered by the canonical ordering.

• The order on Nω is the extension of the order on N by considering ω as strictly larger
than any integer.

• The order on X × Y , given orders on X and Y is the product ordering given by:

(x, y) ≤ (x′, y′) ⇐⇒ x ≤ x′ ∧ y ≤ y′

• The order on Xd, given an order on X, is the pointwise ordering given by:

x ≤ y ⇐⇒ ∀i ∈ {0, . . . , d− 1}. x(i) ≤ y(i)

• If X is ordered, the order on X⊕, is the multiset embedding ordering given by:

{| x0, . . . , xp−1 |} ≤emb {| y0, . . . , yq−1 |}
⇐⇒

∃ a total injection ϕ : {0, . . . , p− 1} → {0, . . . , q − 1}.
∀i ∈ {0, . . . , p− 1}, xi ≤ yϕ(i)

If m ≤emb m′, we say that m is embedded in m′.
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• If X is ordered, the order on X∗, is the word embedding ordering given by:

u ≤emb v
⇐⇒

∃ a strictly increasing mapping ϕ : {0, . . . , |u| − 1} → {0, . . . , |v| − 1}.
∀i ∈ {0, . . . , p− 1}. ui ≤ vϕ(i)

If u ≤emb v, we say u is embedded in v. Note that this is different from u being a
subword of v, unless X is ordered by equality.

Most of these orders are well-orders, as given by the following propositions:

Proposition 1.2. N is well-ordered.

Proposition 1.3. (Dickson’s lemma)
If X and Y are well-ordered, then X×Y , ordered by the product ordering and Xd, ordered

by the pointwise ordering are well-ordered.

Proposition 1.4. (Higman’s lemma)
If X is well-ordered by ≤, then X⊕ and X∗ ordered by ≤emb are well-ordered.

Finally, given an ordered set X, we will use in some rare cases the lexicographic ordering
≤lex on Xd that is defined by:

(x0, . . . , xd−1) ≤lex (y0, . . . , yd−1) ⇐⇒ ∃k ∈ {0, . . . , d− 1}.

{

xk < yk
∀0 ≤ i ≤ k − 1. xi ≤ yi

Proposition 1.5. If X is well-ordered by ≤, then Xd is well-ordered by ≤lex.

1.2 Transition Systems

We will consider many kinds of transition sytems in this work. The simplest kind we will
study is the following:

Definition 1.1. A Transition System (shortly: TS) is a tuple S = 〈X,−→〉 where:

• X is a set of states.

• −→⊆ X ×X is the transition relation.

The reflexive transitive closure of −→ is written −−։. The sets of immediate successors,
immediate predecessors and the reachability set are defined by:

PreS(y) = −→ (X) = {x ∈ X | x −→ y}

PostS(x) = −→
−1

(X) = {y ∈ X | x −→ y}
ReachS(x) = −−։ (X) = {y ∈ X | x −−։ y}
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A transition system is finite-branching if for every x ∈ X, PostS(x) is finite. It is
infinite-branching otherwise. Most transition systems in this work will be finite-branching.

Moreover, if X is ordered, we define the cover by:

CoverS(x) = ↓ReachS(x)

Sometimes, studying the reachability set (or one of its variation like the cover) won’t
be enough to answer our questions. For example, one might be interested in whether some
specific transition is used, the usual example being "whenever a ’request’ transition is used,
an ’answer’ transition must be used sometime after". This will be done by labelling the
transition with a finite set of actions. We allow there a transition to be labelled by more
than one action (or by none). This might make some problems harder to answer (for example
the regularity of the trace language, see section 5.4.2), so we will sometimes require that each
transition is labelled by a single action.

Moreover, when we work on purely state problems (and hence labels are meaningless),
we will allow ourselves to use an infinite set of actions in order to provide to the reader
informations about what transitions are used (this will be the case mainly in section 5.3).
However, the sections that deal with results relying on labels (chapter 3 and section 5.4.2)
will only use finite set of actions.

Definition 1.2. A Labelled Transition System (shortly: LTS) is a tuple S = 〈X,A,−→〉
where:

• X is a set of states.

• A is a set of labels.

• −→⊆ X ×A∗ ×X is the transition relation.

We write x u
−→ y if (x, u, y) ∈−→. We define

.
−−։ as a kind of transitive reflexive closure

of .
−→, i.e. by the smallest relation satisfying:

• x
ε
−−։ x for any x ∈ X.

• x
u
−−։ y if x u

−→ y.

• x
uv
−−−։ z if there exists y ∈ X such that x

u
−−։ y

v
−−։ z.

Note that in general x
a
−−։ y doesn’t imply x a

−→ y as x
a
−−։ y might have been obtained

by x a
−→ x′

ε
−→ y.

For S = 〈X,A,−→〉 a LTS and given L a language on A, we define L
−→=

⋃

u∈L
u
−→ and

L
−−։=

⋃

u∈L

u
−−։. We write −→=

A∗

−→ and −−։=
A∗

−−−։.

A (finite or infinite) run ρ of a LTS S is a (finite or infinite) sequence x0.a1.x1.a2 . . . an.xn . . .
alternating states and actions such that ∀i. xi−1

ai−→ xi. We write ρ = x0
a1−→ x1

a2−→ · · ·
an−→
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xn · · · . Given such a run ρ, we define src(ρ) = x0, acts(ρ) = a1 . . . an . . . and if ρ is finite,
tgt(ρ) = xn where xn is the last element of the sequence.

A labelled transition system equipped with an initial state and a final state recognizes a
reachability language, that is the set of words that allow to go from the initial state to the
final state. If X is ordered, we also define the coverability language, that is the set of words
that allow to go from the initial state to a state greater than the final state:

Lr(S, x, y) = {u ∈ A∗ | x
u
−−։ y}

Lc(S, x, y) = {u ∈ A∗ | ∃y′ ≥ y. x
u
−−։ y′}

We also define the finite trace language and the infinite trace language that contain
respectively all finite transition sequences and all infinite transition sequences that can be
obtained from an initial state:

Lt(S, x) = {u ∈ A∗ | ∃y. x
u
−−։ y}

Lωt (S, x0) = {u ∈ Aω | ∃(xk)k>1. ∀k ∈ N. xk
u(k)
−−−−։ xk+1}

A LTS S = 〈X,A,−→〉 can be relabelled by a function γ : A → B∗. This gives raise to
the LTS Sγ = 〈X,B,−→γ〉 where −→γ= {(x, γ(u), y) | (x, u, y) ∈−→} where γ is extended
by morphism on A∗.

1.2.1 Functional Transition Systems

It will be sometimes be more practical to split the transition relation into a (finite) number
of functions. We define an alternate formalism for this case (a similar idea can be found in
[30]).

Definition 1.3. A functional Transition System (shortly: f-TS) is a tuple S = 〈X,F 〉 where:

• X is a set of states

• F is a set of partial functions from X to X.

A functional Transition System S = 〈X,F 〉 induces a Transition System S ′ = 〈X,−→〉
by:

(x, y) ∈−→ ⇐⇒ ∃f ∈ F, f(x) = y

Moreover, one can label a functional Transition System by a set of labels A and a function
γ : F → A∗. This gives birth to a f-LTS 〈X,F,A, γ〉 and a LTS 〈X,A,−→〉 where −→ is
defined by:

x
u
−→ y ⇐⇒ ∃f ∈ F.

{

f(x) = y
γ(f) = u

We assimilate a functional (Labelled) Transition System to its associated TS (LTS) and
we port all notations defined for TS (LTS) to f-TS (f-LTS).
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1.2.2 Well Structured Transition Systems

The most important class of transition systems that we will consider are Well Structured
Transition Systems (shortly: WSTS), on which many properties are known to be decidable.
There is different monotony properties that the transition relation can fulfill. We define here
the two most important ones, as in [33].

Definition 1.4. [28], [6], [33]

A TS 〈X,−→〉 is a Well Structured Transition System with strong monotonicity (resp.
weak monotonicity) if:

• X is a well-ordered set.

• −→ is an increasing relation (resp. −−։ is an increasing relation)

A LTS 〈X,A,−→〉 is a Well Structured Transition System with strong monotonicity
(resp. weak monotonicity) if:

• X is a well-ordered set.

• For any u ∈ A∗,
u
−→ is an increasing relation (resp.

u
−−։ is an increasing relation).

One can check that any WSTS with strong monotony is also a WSTS with weak monotony.
Unless otherwise stated, our WSTS are using the strong monotonicity condition.

A sufficient condition for a f-LTS or f-TS to be a WSTS is that all its functions are
increasing (this corresponds to the definition of WSTS in [30]) even if this not a necessary
condition.

Example 1.1. Let S = 〈X,A, F, γ〉 be a f-LTS defined by:

• X = {x1, x3, x′1, x
′
2, x

′
3} with x′1 ≥ x1 and x′3 ≥ x3

• A = {a, b}

• F = {f, g, h} with:

dom(f) = {x1} f(x1) = x3 γ(f) = ab
dom(g) = {x′1} f(x′1) = x′2 γ(g) = a
dom(h) = {x′2} f(x′2) = x′3 γ(h) = b

x1 x3

x′1 x′2 x′3

≤ ≤

ab

a b

f is not increasing, because its domain is not upward closed. However, S is a WSTS with

weak monotony. It doesn’t have strong monotony, because x′1 6
ab
−→ x′3.
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Figure 1.1: Firing a Petri Net transition (here t2)

1.3 Petri Nets

One of the most studied kind of Well Structured Transition Systems is the class of Petri
Nets [52]. Intuitively, a Petri Net is made of some finite number of places that can contain
indistinguishable tokens and some finite number of transitions that are linked to places by
oriented arcs. A transitions can be fired (see figure 1.1) by consuming one token from each
place where there is an arc from the place to the transition, and producing one token in each
place where there is an arc from the transition to the place.

A usual formal definition is:

Definition 1.5. A Petri Net is a tuple 〈P, T, F,H〉 where:

• P is a finite set of places

• T is a finite set of transitions

• F ⊆ (P × T )→ N is the multiset of arcs from places to transitions.

• H ⊆ (T × P )→ N is the multiset of arcs from transitions to places.

A Petri Net induces a LTS lts(N ) = 〈NP , T,−→〉 where −→ is defined by:

x
t
−→ y iff ∀p ∈ P.

{

x(p) ≥ F (p, t)
y(p) = x(p) +H(t, p)− F (p, t)

There is two main ways of extending Petri Nets:

• By adding new types of arcs, that will perform other operations than adding or re-
moving a token. Some possible arcs are reset (that remove all tokens from one place),
transfer (that transfer all tokens from one place to another) and inhibitory (that pre-
vent the firing of the transition if a place is non-empty). Petri Nets with resets and
transfers are still WSTS, but inhibitory arcs break the monotony.

17



• By adding data to tokens, which may be abstract data [45] or some time information
[12]. Such an extension will change the state space of the associated transition system
to include the additionnal data. We are considering here only extensions that are still
WSTS. A definition of some of these extensions is available in section 3.4.

We will study some of these extensions in more detail in the remainder of this work.
Of particular interest will be the reset arcs, as their presence or absence will make a major
difference in decidability.

1.4 Vector Addition Systems

We present now an alternate formulation for Petri Nets that we will use in the remainder of
this work:

Definition 1.6. A Vector Addition System (shortly: VAS) of dimension d is a tuple 〈A, δ〉
where:

• A is the finite set of actions.

• δ : A→ Zd provides the effect of an action on the counters.

To a Vector Addition System, one associates a f-LTS 〈Nd, A, A, γ〉 where:

• the functions a are defined by:

dom(a) = {x ∈ Nd | x+ δ(a) ≥ 0}
a(x) = x+ δ(a)

• γ is defined by:
γ(a) = a

δ is extended by morphism on A∗. If x ∈ dom(u), we say that u is fireable from x. An
important property of Vector Addition Systems is that the effect of a sequence of transitions is
independent from the starting state (that only determines whether the sequence of transitions
is fireable) : if x u

−→ y, then y = x+ δ(u).

1.4.1 Vector Addition Systems with States

There is many ways of enriching Vector Addition Systems to make them more expressive or
more practical. One that doesn’t add expressive power but that will be quite practical is to
add control states:

Definition 1.7. A Vector Addition System with States (shortly: VASS) of dimension d is a
tuple 〈Q,A, δ, tr〉 where:

• Q is the finite set of control states.
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• A is the finite set of actions.

• δ : A→ Zd provides the effect of an action on the counters.

• tr : A→ Q×Q provides the effect of an action on the control state.

To a Vector Addition System with States, one associates a f-LTS 〈Q×Nd, A, A, γ〉 where:

• a is defined by, if tr(a) = (q, q′):

dom(a) = {q} × {x ∈ Nd | x+ δ(a) ≥ 0}
a(q, x) = (q′, x+ δ(a))

• γ is defined by:
γ(a) = a

One can simulate a VASS by a VAS, for example by this way:

Proposition 1.6. Let V1 = 〈{q1, . . . , qk}, A, δ, tr〉 be a VASS of dimension d and V2 = 〈A, δ′〉
be a VAS of dimension d+ k where δ′ is defined by:

δ′(a)(i) = δ(a)(i) if 0 ≤ i < d
δ′(a)(d+ i) = −1 if 0 ≤ i < k and tr(a) = (qi, q) with q 6= qi
δ′(a)(d+ i) = 1 if 0 ≤ i < k and tr(a) = (q, qi) with q 6= qi
δ′(a)(d+ i) = 0 if 0 ≤ i < k otherwise

Then if we define ϕ : Q× Nd → Nd+k by ϕ(qi, x) = xei,k (the concatenation of x and the

i-th unitary vector of length k), given S1 = 〈X,A,−→1〉 and S2 = 〈X,A,−→2〉 the transition
systems associated to V1 and V2, we have:

x
a
−→1 y ⇐⇒ ϕ(x)

a
−→2 ϕ(y)

It is also possible to simulate a VASS by a VAS by only increasing the dimension by 3.
See for example [40].

Thus adding states doesn’t add any expressive power. However, adding transfer, resets or
other operations does, and we will see in section 1.8 that such operations have a significant
impact on decidability.

1.5 Lossy Transition Systems

One of the possible ways to get a well-structured transition system is to approximate a
transition system by allowing states to "lose value":

Definition 1.8. A labelled transition system S = 〈X,A,−→〉 where X is ordered is lossy if

for every x, y ∈ X such that y ≤ x, we have x
ε
−−։ y.

A labelled transition system S− = 〈X,A,−→−〉 is a lossy closure of S = 〈X,A,−→〉 if
S− is lossy and x

u
−→− y implies either x

u
−→ y or u = ε with y ≤ x.
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The lossy closure of a labeled transition system is a WSTS with the same cover:

Proposition 1.7. Let S = 〈X,A,−→〉 be a labeled transition system. Then, S− is a well
structured transition system such that for any x ∈ X, CoverS−(x) = CoverS(x).

Other properties of the transition system like the reachability set or the recognized lan-
guages are not preserved by this approximation. However, in the case the original transition
system was already a WSTS, the lossy closure preserves the coverability languages:

Proposition 1.8. Let S = 〈X,A,−→〉 be a well-structured transition system. Then, for any
x, y ∈ X, we have Lc(S−, x, y) = Lc(S, x, y).

Note that if a VAS isn’t lossy, its lossy closure (obtained by adding transitions that can
decrease any counter) is still a VAS.

1.6 Usual problems for VAS and WSTS

We define here formally the problems that are most often considered for VAS and VAS ex-
tensions (more generally for WSTS). We will describe in this section some of these problems,
and tell whether they are decidable for VAS. The next section will recall results for the
general case of WSTS.

1.6.1 Reachability

The central problem for the verification of transition systems is reachability, which simply
asks whether a state (say: an error state) is reachable from the initial state.

Decision Problem: REACHABILITY

Input: a TS S = 〈X,−→〉
x, y ∈ X

Question: is y ∈ ReachS(x)?

REACHABILITY for VAS is decidable. It is notable however that the decidability of this
problem doesn’t rely at all on the fact that VAS are WSTS but on proofs specific to the
semantics of VAS. While the first proof was provided by Mayr and Kosaraju in the early 80’s
([49], [42]), one can mention the recent proof by Leroux ([46], [47]) which is significantly easier
to apprehend than the original one. The complexity of reachability is unknown (EXPSPACE

lower bound by [19] but no upper bound).

1.6.2 Coverability

A problem related to reachability is coverability, a generally easier question:

Decision Problem: COVERABILITY

Input: a TS S = 〈X,−→〉 with X ordered
x, y ∈ X

Question: is y ∈ CoverS(x)?
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It is straightforward to reduce COVERABILITY to REACHABILITY for VAS by adding tran-
sitions that decrease the counters (this reduction is generally available for most classes of
systems). It is also possible to show the decidability of COVERABILITY directly through WSTS
theory (see theorem 1 on page 26). Finally, a third separate proof by Rackoff [53] provides
the result by bounding the length of possible covering sequences, providing an EXPSPACE

algorithm. By combining this upper bound with the EXPSPACE lower bound of [19], this
makes COVERABILITY EXPSPACE-complete.

It is notable that control state reachability is a special case of COVERABILITY, which
makes it of particular interest for verification purposes, as it corresponds to checking whether
a particular line of a program can be executed:

Decision Problem: CONTROL STATE REACHABILITY

Input: a TS S = 〈Q×X,−→〉
q, q′ ∈ Q and x ∈ X

Question: ∃x′ ∈ X. (q, x′) ∈ ReachS(q, x)?

1.6.3 Boundedness and Termination

Reachability and coverability are safety problems, i.e. that require only to look at finite
transition sequences. We can also look at liveness problems. One of these problems is
termination, that is closely related to boundedness:

Decision Problem: TERMINATION

Input: a TS S = 〈X,−→〉
x0 ∈ X

Question: is there (xn) ∈ Xω such that:

∀n ∈ N. xn −→ xn+1

Decision Problem: BOUNDEDNESS

Input: a TS S = 〈X,−→〉
x ∈ X

Question: is ReachS(x) finite?

Of course, a system can be unbounded only if it doesn’t terminate. Moreover, assuming
one can "count" the number of steps (this is the case for VAS), termination reduces to
boundedness by adding a counter that goes unbounded on any infinite trace. This means
that TERMINATION reduces to BOUNDEDNESS. However, the opposite is not true as one can
find WSTS for which termination is decidable but boundedness is not, for example VAS
extended with resets [23].

These problems are decidable for WSTS that enjoy some additionnal properties, see
theorem 1 on page 26. In the case of VAS, one can either apply the general result on WSTS,
or use the specific proof of Rackoff [53] to get that these problems are EXPSPACE-complete
(needing [19] for the lower bounds)
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1.6.4 Place-Boundedness

A generalization of boundedness for counter systems is place-boundedness, where we ask if
a specific place is unbounded:

Decision Problem: PLACE-BOUNDEDNESS

Input: a TS S = 〈Nd,−→〉
x ∈ Nd

i ∈ {0, . . . , d− 1}
Question: is {y(i) | y ∈ ReachS(x)} finite?

It is clear that BOUNDEDNESS reduces to PLACE-BOUNDEDNESS. However, the inverse is
false: for VAS with transfers, PLACE-BOUNDEDNESS is undecidable while BOUNDEDNESS is
decidable [23]. This is due to the fact that VAS with transfers is a class that is not stable by
projecting away counters (the closure by projection is VAS with resets). For Vector Addition
Systems, PLACE-BOUNDEDNESS has been shown decidable (and EXPSPACE) by a generalization
of the Rackoff proof ([64, 21, 13]).

In chapter 2, we will look at a problem called CLOVERABILITY, that can be seen as
a generalization of PLACE-BOUNDEDNESS to transition systems using state spaces different
from Nd.

1.6.5 Repeated Control State Reachability

A generalization of termination is repeated control state reachability: does there exists a run
that visits infinitely often a control state. This problem is generally equivalent to repeated
coverability, that can be defined even in the absence of control states in the model.

Decision Problem: REPEATED COVERABILITY

Input: a TS S = 〈X,−→〉
x0 ∈ X, y ∈ X

Question: is there (xn)n ∈ Xω such that:

∀n ∈ N. xn −→ xn+1

{n ∈ N | xn ≥ y} infinite

Decision Problem: REPEATED CONTROL STATE REACHABILITY

Input: a TS S = 〈Q×X,−→〉
(q0, x0) ∈ Q×X
q ∈ Q

Question: is there (qn, xn)n ∈ (Q×X)ω such that:

∀n ∈ N, (qn, xn) −→ (qn+1, xn+1)
{n ∈ N | qn = q} infinite

A common mistake1 is to think that REPEATED CONTROL STATE REACHABILITY can be
reduced to PLACE-BOUNDEDNESS by adding a counter that is increased whenever the place

1... which the author made himself more than once
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q1 q2

x(1)++ x(1)--; x(2)++

Figure 1.2: x2 is unbounded, but q2 can’t be visited infinitely often

is visited. However, this reduction is not sound: the counter will be unbounded if for any
n ∈ N, one can find a run that visits the state n times, but this doesn’t mean there exists a
run that visits the state infinitely often. Figure 1.2 pictures such a Vector Addition System.

Proofs of decidability of REPEATED CONTROL STATE REACHABILITY usually rely on the
detection of an increasing loop (q, x) −−։ (q, x′) with x′ ≥ x. This problem was shown to
be originally decidable by Esparza [25, 26], and EXPSPACE later by Habermehl [39]. One can
also note that this problem can be expressed in the logic of [13] (shown to have EXPSPACE

model checking).

1.6.6 LTL Model Checking

Linear-time logic is a widely used logic in order to express safety and liveness properties that
is strongly related to REPEATED CONTROL STATE REACHABILITY.

Definition 1.9. Given a set A, the set of LTL formulae is given by the following grammar,
where a ranges over A :

ϕ ::= true | a | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1Uϕ2

Formulas are interpreted on infinite sequences over the alphabet A. We denote that
w = (an)n∈N satisfies a formula ϕ by w |= ϕ. This relation is defined inductively on the
structure of ϕ by:

w |= true
w |= a ⇐⇒ a0 = a
w |= ¬ϕ ⇐⇒ w 6|= ϕ
w |= ϕ1 ∧ ϕ2 ⇐⇒ w |= ϕ1 and w |= ϕ2

w |= Xϕ ⇐⇒ w(1 . . .) |= ϕ
w |= ϕ1Uϕ2 ⇐⇒ ∃i ∈ N. w(i . . .) |= ϕ2 ∧ ∀j ∈ {0, . . . , i}. w(j . . .) |= ϕ1

This allows us to define the following problem:
Decision Problem: LTL MODEL CHECKING

Input: a LTS S = 〈X,A,−→〉
x0 ∈ X
ϕ a LTL formula on A

Question: is there an infinite run σ of S such that:
src(σ) = x0
acts(σ) |= ϕ
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LTL formulas can be represented by Büchi automatas:

Definition 1.10. A Buchi automaton is a tuple 〈Q,−→, F 〉 where 〈Q,−→〉 is a finite au-
tomaton and F ⊆ Q.

An infinite run (q0, x0)
a1−→ (q1, x1) · · ·

ak−→ (qk, xk) · · · of a Buchi Automata is accepted iff
{i ∈ N | qi ∈ F} is infinite. Given a LTL formula ϕ, one can build a Buchi automaton Bϕ
such that the set of infinite words satisfying ϕ is exactly the infinite words accepted by Bϕ.
We refer to the abundant literature on this subject for the construction (Proposition 4.1 of
[25], but also [36] and [34]).

Given a labelled transition system S and a formula ϕ, one can build S × Bϕ. Then, a
state in F is covered infinitely often in S × Bϕ iff ϕ is satisfied by S. This the idea behind
the following well known result, that we won’t describe more here:

Proposition 1.9. Let S be a class stable by product with a finite automata. Then, LTL

MODEL CHECKING on S reduces to REPEATED CONTROL STATE REACHABILITY on S

Thus, LTL is EXPSPACE for Vector Addition Systems [25, 26, 39]. A related logic, called
CTL, is however undecidable, as is LTL if predicates on states are added. We mention
again [64], [21] and [13] as works that define some other decidable logics on Vector Addition
Systems.

1.7 Decidability of WSTS problems

In order to be able to decide in general the previously defined problems for WSTS, we need
to require that the transition functions have some effectiveness properties.

The most basic requirement is to require every function f ∈ F to be computable (in the
functional setting), or −→ to be decidable (in the usual setting). This is the classic definition
of effective for finite-branching WSTS, so we will say in that case that S is effective.

However, this requirement won’t be enough to have any decidability result if we look at
infinite-branching WSTS. Indeed, if we define the reasonable problem of testing membership
in the ↓PostS(x) set, we have:

Decision Problem: POST MEMBERSHIP

Input: a WSTS 〈X,−→〉
x, y ∈ X

Question: is y ∈ ↓PostS(x)?

Proposition 1.10. There exists a class of effective WSTS such that POST-MEMBERSHIP is
not decidable.

Proof. We will encode Turing machines into effective WSTS. Let M be a Turing machine
with an accepting state. A finite run of M is accepted if it ends in the accepting state and
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rejected otherwise. It is well-known that one can not decide if a Turing machine has an
accepting run.

To every Turing machine M , we associate a f-TS SM = 〈X,F 〉 defined as follows:

X = {init, accept, reject}
F = {δρ | ρ is a finite run of M}

δρ(init) = accept if ρ is accepting, reject otherwise

This is a WSTS if X is ordered by the equality. It is effective, because given a run, one
can look at the final state to see if it is accepting or not. However, one can not check if
accept ∈ PostSM

(init).

Therefore, a stronger requirement for our infinite-branching WSTS would be to require
that POST-MEMBERSHIP is decidable. Indeed, we will see in the next sections that some of
our decidability results will require this one. However, in the general settings, this is still
not enough to get the decidability of the usual problems on WSTS:

Proposition 1.11. There is a class of WSTS with decidable POST-MEMBERSHIP such that
TERMINATION and COVERABILITY are undecidable.

Proof. We reduce again this problem to acceptance for Turing machine.
To every Turing machine M , we associate a f-TS SM = 〈X,F 〉 defined as follows:

X = {init} ∪ ({ready, accept, reject} × N)
F = {falloc(n) | n ∈ N} ∪ {frun(n) | n ∈ N} ∪ {floop}

falloc(n)(init) = (ready, n)

frun(n)(ready, n) =

{

(accept, n) if there exists an accepting run of length n
(reject, n) otherwise

floop(accept, n) = (accept, n)

Because one can decide whether there exists an accepting run of a Turing machine of
bounded length, POST-MEMBERSHIP is decidable. However, whether (accept, 0) ∈ CoverSM

(init)
is undecidable, and there is an infinite run of SM if and only if (accept, 0) ∈ CoverSM

(init).

If one wants to get the decidability of COVERABILITY and TERMINATION for infinite-
branching WSTS, one needs even stronger properties. Let us recall the PRED BASIS property
[33] and define the symetrical POST BASIS property.

Decision Problem: PRED BASIS for a class of WSTS S

Input: S = 〈X,−→〉
x, y ∈ X

Output: Min PreS(↑x)

Computation Problem: POST BASIS for a class of WSTS S

Input: S = 〈X,−→〉 ∈ S

x ∈ X
Output: Max PostS(↓x) =Max PostS(x)
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Note that POST BASIS is only meaningful when Max PostS(x) is finite (for example in the
case of a finite-branching WSTS, for which it is equivalent to effectiveness). In the sequel,
when we say that POST BASIS is computable, we imply it also exists. Let us recall the main
results about WSTS:

Theorem 1. ([28, 33, 6])

• COVERABILITY is decidable for WSTS with decidable PRED BASIS.

• TERMINATION is decidable for WSTS with decidable POST BASIS.

A system with decidable POST BASIS can be considered as a finite branching WSTS for
most problems. Indeed, because of the monotony of the system, we can ignore all transitions
from x that don’t go towards a maximum element of Max PostS(x). This gives us the
following definition (originally found in [8]):

Definition 1.11. A WSTS S is essentially finite-branching if for any x ∈ States(S),
Max PostS(x) is finite.

1.8 Summary of results for extensions of VAS

The decidability status of the various extensions of VAS have been extensively studied, and
only a few results remain. A lot of results can be derived from the general publications
on WSTS [6, 33]. There is also works aimed at some specific extensions. Among the most
important of these results, one can note:

• The works of Dufourd et al. on reset arcs [23, 24] that showed that most problems
turn to be undecidable with 3 resets, while boundedness is still decidable with 2 resets.

• A summary by Mayr [50] on results on counter machines, that include a proof of
undecidability of repeated coverability with 2 resets or transfers.

• The works of Reinhardt [55] that showed that reachability was decidable with hierar-
chical zero-tests.

Moreover, one can note the following reductions:

• One reset arc or transfer arc can be simulated by one zero-test for any problem.

• Abstract data can simulate any number of reset arcs, for most problems (with the
notable exception of boudedness) [56, 45].

• Reset arcs and transfer arcs can simulate zero-tests for reachability.

26



This allows to draw the following picture of the known decidability results:

VAS
transfers resets abstract

data
zero-tests

1 2 ≥ 3 1 2 ≥ 3 1 hier.

reachability yes yes no no yes no no no yes yes

coverability yes yes yes yes yes yes yes yes yes yes

termination yes yes yes yes yes yes yes yes yes ?

boundedness yes yes yes yes yes yes no yes yes ?

place-boundedness yes ? ? no ? ? no no ? ?

repeated coverability yes ? no no ? no no no ? ?

We aim in the next chapters to complete this view.
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Theory of Well Structured Transition
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Chapter 2

Forward Analysis

This chapter is joint work with Alain Finkel, unpublished.

The well-known Karp and Miller algorithm [41] constructs the coverability tree of a
Vector Addition System by using regular accelerations. The information provided by such
an algorithm is greater than the one provided by the backward algorithm of WSTS [33]:
it doesn’t only solve the COVERABILITY problem, but provides a finite representation of
the cover. This finite representation can be used to answer other problems, for example
BOUNDEDNESS or its refinement PLACE-BOUNDEDNESS.

Thus, we are interested in computing a finite representation of the cover. Typically, this
representation is the set of maximal elements of Lim CoverS(x) (for a suitable notion of
limits, to be defined in next section), written CloverS(x) [30] when it is finite. This gives
the following problem:

Computation problem: CLOVER SET

Input: S = 〈X,F 〉
x ∈ X

Output: CloverS(x)

q1 q2

x(1)++ x(1)--; x(2)++

Clover(q1, 0, 0) = {(q1, ω, 0), (q2, ω, ω)}
Cover(q1, 0, 0) = ↓Clover(q1, 0, 0) ∩Q× N2

Figure 2.1: A VASS and the finite representation of its cover

As an example, let us consider the VASS of figure 2.1. Its cover can be adequately
represented by using Nω, the completion of N.

When one wants to extend the Karp-Miller tree to WSTS with a larger state space, one
is faced with three main difficulties:
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• Defining the notion of completion and limits for sets greater than N.

• Extending the transition system (in a sensible way) to work on the completion instead
of the normal state space.

• Making sure that the procedure terminates.

Unfortunately, there is no hope of having a general algorithm that provides such a repre-
sentation for any WSTS. Indeed, BOUNDEDNESS is undecidable for some WSTS, for example
VAS with resets [23]. Even if we require the WSTS to have strict monotonicity, which makes
BOUNDEDNESS decidable [33], we can still have PLACE-BOUNDEDNESS undecidable, for exam-
ple for ν-Petri Nets [56]. Despite this, Finkel and Goubault-Larrecq described a possible
generalization in two steps:

• In [29], they established a theory of finite representations of closed sets (a restriction
of downward-closed sets), so that such sets can be seen as the elements below a finite
number of limit elements. Moreover, for an algebra that includes most of the state
spaces used in WSTS, they provided a precise description of these limits.

• In [30], they proposed a systematic way to turn a WSTS in a complete WSTS, that
has the same cover, and in which a conceptual Karp and Miller procedure can be run,
computing the closure of the cover. However, this procedure was not guaranteed to
terminate.

In [30], as in the original Karp-Miller algorithm, only regular accelerations were consid-
ered: when one detects a state x and a finite sequence of increasing functions g ∈ F ∗ such
that x < g(x), one computes the limit l = lub {gn(x) | n ∈ N}. However, there might
exist limits that can not be reached by such patterns. For example, the following VASS with
(two) resets, first shown in [24] and also used in [?] is unbounded, but no regular acceleration
would be able to show it:

q1 q2

f1: x1 := 0
x2 ++

f2: x2 := 0

g1: x1 −−
x2 ++

g2: x1 ++
x2 −−

(q1, 0, 0)
∏n

k=1 f1g
k
2f2g

k
1−−−−−−−−→ (q1, 0, n)

From the initial state (q1, 0, 0), the infinite non-regular word
∏∞

k=1 f1g
k
2f2g

k
1 is the unique

possibility to obtain an unbounded counter x2. Because regular expressions are not the only
languages that can be enumerated, one can look, for models where these expressions are
insufficient, at other possibility of accelerations. This will be the topic of this chapter.
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After having recalled more formally the main results from [29] and [30], we will show a
surprising result: with reasonable hypothesis, in order to be able to compute the maximal
elements of the clover, it is sufficient to be able to enumerate its elements. We will then
introduce a notion of acceleration strategy, and apply our results on a few models: strictly
monotonic complete WSTS (section 2.6), VAS with 2 resets (chapter 4) and VAS with
hierarchical zero-tests (section 5.3).

2.1 A bit of Order Theory

Directed subsets. A directed subset of X is a non-empty subset D such that every pair of
elements of D has an upper bound in D. Chains, i.e. totally ordered subsets, are examples
of directed subsets. A directed complete partial ordering (shortly: dcpo) is an ordering in
which every directed subset has a least upper bound. The way below relation ≪ on a dcpo
is defined by x ≪ y iff, for every directed subset D such that y ≤ lub(D), there is z ∈ D
such that x ≤ z. We define ↓↓E = {y ∈ X | ∃x ∈ E, y ≪ x}. X is continuous iff for
every x ∈ X, ↓↓x is a directed subset, and has x as least upper bound. If ≤ is a well order
on X and turns X into a continuous dcpo, we say that X is a continuous directed complete
well-ordering (shortly: cdcwo). Most of the sets in this section will be cdcwo.
Open and Closed sets. Given a dcpo X, and E ⊆ X, we define Lim E = {lub(D) | D
directed subset of E}. Note that E ⊆ Lim E. Lim E can be thought of E plus all limits
from elements of E. A subset D of a dcpo X is (Scott)-closed iff D is downward-closed and
Lim D ⊆ D. An open subset is the complement of a closed subset. Particular cases of closed
subsets that we will use are ↓B (in any dcpo, for any finite set B) and Lim D (in cdcwo
only, for any downward closed subset D – see [29], proposition 3.5). Finally, we have the
important property that, in a cdcwo X, any closed subset Y has a finite basis, i.e. a finite
set B ⊆ X such that Y = ↓B (see [29], proposition 3.3).
Completions In [29] and [30], Finkel and Goubault-Larrecq showed that the usual state
spaces of WSTS can be completed in a cdcwo in different ways, but that these are all
equivalent. One of these construction is the ideal completion that associates to any ordered
set X the set Idl(X) made of the directed downward closed sets of X, ordered by inclusion.
Idl(X) is always a continuous dcpo ([9], Proposition 2.2.22), but might not be well-ordered
([30], Lemma 1). However, if we restrict ourselves to sets built from integers and finite sets
by cartesian product, disjoint union, multiset, words, and trees, then this ideal completion
will yield a cdcwo ([29], Theorem 5.3). X is embedded in Idl(X) by η : x→ ↓x, so one can
see this construction as "adding limit elements".

Example 2.1. Idl(N) = {↓x | x ∈ N} ∪ N.
In this case, we have N isomorphic to {↓x | x ∈ N} through η, and Idl(N) contains an

extra element greater than all others, usually written ω.

We give here another example of this completion, that we will need in a later proof:

Proposition 2.1. ([29], Theorem 5.3)
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Let I ∈ Idl(X⊕). I can be written as {| Iω1 , · · · , I
ω
p , J1, · · · , Jq |} with I1, ..., Ip, J1, ..., Jq ∈

Idl(X), and where:

M ∈ {| Iω1 , · · · , I
ω
p , J1, · · · , Jq |}

⇐⇒






M =M1 ∪ ... ∪Mp ∪M ′
1 ∪ ... ∪M

′
q

∀1 ≤ k ≤ p, x ∈ Mk =⇒ x ∈ Ik
∀1 ≤ k ≤ q, Mk = ∅ ∨ (Mk = {| x |} ∧ x ∈ Jk)

Example 2.2. {| 2ω, 5, ω |} ⊆ N⊕ contains all multisets that have at most:

• One element of any value.

• One element of value 5 or lower.

• Any number of elements of value 2 or lower.

2.2 Effectivity of orderings

We will require our cdcwo (X,≤) to be effective, i.e. to satisfy the following properties:

• X is recursively enumerable.

• Decidability: Given x, y ∈ X, one can decide whether x ≤ y.

• Effective complement of open sets: Given a finite subset B such that U = ↑B is open,
one can compute a finite subset B′ such that ↓B′ = X\U

(1) and (2) are natural requirement. If (3) is less standard, most ordered set will satisfy
this property. Actually, all data types presented in [29] (sets built from finite sets and integers
by disjoint union, cartesian products, words and multisets) even have effective complement
of upward closed sets ([38], Definition 5 and Section 4), i.e. the complement of any upward
closed set (not necessarily open) is computable 1.

From the effectivity of the complement of open sets, we get the effectivity of the comple-
ment of closed sets.

Proposition 2.2. Let (X,≤) be an effective cdcwo. Then, for every finite subset B ⊆ X such
that ↓B is closed, one can compute a finite subset B′ ⊆ X such that ↑B′ is the complement
of ↓B (i.e., ↑B′ = X\ ↓B).

Proof. The complement of ↓B is an open set U . Now, if we guess a basis B′ of U (i.e. a
finite subset B′ ⊆ X such that ↑B′ = U), one can get a basis B′′ of the complement of ↑B
(with property (3) of effective ordered sets) and we may check whether ↓B′′ is equal to ↓B
(it suffices to check that for any b′′ ∈ B′′, there exists b ∈ B such that b′′ ≤ b, and that for

1Note however that the complement of an upward closed set may not have a finite basis, hence the
question of representing it is non-trivial. We will not need such representations here, as we will manipulate
only closed sets
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any b ∈ B, there exists b′′ ∈ B′′ such that b ≤ b′′) and this is possible since ≤ is decidable.
Hence, since X is recursively enumerable, one can enumerate all possible finite basis B′ ⊆ X
of U , until a correct one is found.

This allows us to have this important proposition, that will be our main tool to turn
computation problems into decision problems:

Proposition 2.3. If Y is an open or closed subset of an effective cdcwo X, a finite basis of
Y can be computed iff membership in Y is decidable.

Proof. If a basis is computable, membership is decidable by decidability of the order, so let
us look at the other direction.

We consider a closed subset Y of a dcpo X such that membership in Y is decidable. As
the finite subsets of Y are recursively enumerable, we only need to have a decision procedure
to check whether, given a finite subset B of Y , if Y = ↓B. We note that Y = ↓B if and only
if:

(1) ↓B ⊆ Y .

(2) (Y \ ↓B) ∩ Y = ∅

(1) corresponds to checking that all elements of B are in Y (because Y is downward
closed), and this is decidable by hypothesis. Moreover, (2) is equivalent to checking that
all minimal elements of (Y \ ↓B) are not in Y , which is another finite set of instances of
membership in Y . Note that one can compute the minimal elements of Y \ ↓B by our
assumptions on the effectivity of the orderings (proposition 2.2).

The case of an open subset is symetrical.

For example, this proposition allows to confuse the notions of computable POST BASIS and
effective POST MEMBERSHIP that were described in section 1.7 (we recall that our definition
of a computable POST BASIS includes the fact that this basis exists and thus that the system
is essentially finite branching).

Proposition 2.4. Let S be a class of complete WSTS on an effective cdcwo. POST BASIS is
computable if and only if S is essentially finite branching and POST MEMBERSHIP is decidable.

Proof. This is a corollary of proposition 2.3.

In the remainder of this chapter, we assume that all our cdcwo are effective.

2.3 Complete WSTS

Given a WSTS 〈X,F 〉, if X is a cdcwo, we can guarantee that CloverS(x) exists, as
Lim CoverS(x) is a closed set, and hence has a finite basis.
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2.3.1 Continuous Transition Functions

However, simply requiring that our WSTS has a cdcwo as state space is not enough. Indeed,
as we are trying to build an algorithm exploring Lim CoverS(x) in a forward manner, we
should hope that PostS(Lim CoverS(x)) ⊆ Lim CoverS(x). However, this won’t be the
case in general:

Proposition 2.5. There exists a WSTS S and x ∈ States(S) such that: PostS(Lim CoverS(x)) 6⊆
Lim CoverS(x)

Proof. We define S = 〈N ∪ {ω, ω2}, {f}〉 by:

f(x) = x+ 1 for x ∈ N
f(ω) = ω2

f(ω2) = ω2

and where ≤ is defined by: x < x+ 1 < ω < ω2 for x ∈ N .

We have CoverS(0) = N, and hence that Lim Cover(S) = N ∪ {ω}. This means that
PostS(Lim CoverS(0)) 6⊆ Lim CoverS(0).

To avoid this problematic case, [30] required that the functions commute with the limits.
We recall that a monotonic function f : X → Y is continuous if dom(f) is an open subset of
X and for any directed subset U ⊆ X, lub(f(U)) = f(lub(U)). Note that the composition
of continuous functions is continuous.

Definition 2.1. [30] A WSTS S = 〈X,F 〉 is complete if (1) X is a cdcwo, and, (2) every
function f in F is continuous.

In such complete WSTS S, we will consider the different ways to access the elements of
Lim CoverS(x). Of course, it will happen that we want to consider the composition of such
constructions, which will be made possible by the following proposition:

Proposition 2.6. Let S = 〈X,F 〉 be a complete WSTS and x, y, z ∈ X such that y ∈
Lim CoverS(x) and z ∈ Lim CoverS(y). Then, z ∈ Lim CoverS(x).

Proof. First, we have by induction on k that Postk+1
S (Lim U) ⊆ PostkS(Lim PostS(U)) ⊆

Lim CoverS(CoverS(U)) ⊆ Lim Post∗S(U). Thus, we get CoverS(Lim U) ⊆ Lim CoverS(U).
By taking U = Cover(x), this leads to Lim Cover(Lim Cover(U)) ⊆ Lim Cover(U) which
is another formulation of the proposition.

2.3.2 Completions of Vector Addition Systems

The completion of a Vector Addition System is straightforward: one just has to allow ω’s in
the states.

Definition 2.2. Let V = 〈A, δ〉. The complete transition system associated to V is 〈Nd
ω, A〉

where:

dom(a) = {x ∈ Nd | x+ δ(a) ≥ 0}
a(x) = x+ δ(a)
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There is no specific difficulty in allowing ω’s in the states. Indeed, if a state has an
ω in some component, then all its successors will also have an ω in the same component.
Moreover, this component can’t prevent transitions to be fired, so everything happens as if
we have projected away this component. Thus, all properties that are known decidable on
the normal transition system of a Vector Addition System are also true for its completion.

Let us note that some care must be taken when looking at the completions of Vector
Addition Systems extensions. If the completion of a Vector Addition System with resets is
still a Vector Addition System with resets (we will show a close result in section 4.3), and the
same is true for Vector Addition Systems with hierarchical zero-tests (for the same reasons
as in basic Vector Addition Systems), this is not the case for Vector Addition Systems with
transfers, that are strictly monotonic transition systems whose completions are not strictly
monotonic: If a transfers the first component in the second, we have:

(1, ω)
a
−→ (0, ω)

< =

(0, ω)
a
−→ (0, ω)

Indeed, one can notice (we won’t give a formal proof) that the completions of Vector
Addition Systems with transfers actually behave in the same way as Vector Addition Systems
with resets.

2.4 Computation of the Clover

We first note that we can relate CLOVER SET to a decision problem:

Decision problem: CLOVERABILITY

Input: a WSTS 〈X,F 〉
x, y ∈ X

Question: is y ∈ ↓CloverS(x)?

Indeed, by taking Y = Lim CoverS(x0) in proposition 2.3, this means that CLOVER SET

is computable iff CLOVERABILITY is decidable. However, in our case we may strengthen this
result by replacing the decidability of cloverability by the semi-decidability of cloverability.
We first show an easy lemma.

Lemma 2.7. Let S = 〈X,F 〉 be a complete WSTS, and V a closed subset of Lim CoverS(x)
with x ∈ V . We have V ( Lim CoverS(x) if and only there exists y ∈ Max V , z ∈
Min (X\V ) such that z ∈ ↓PostS(y).

Proof. ⇒ Let’s assume that for any y ∈ Max V , we have ↓PostS(y) ⊆ V . Then, we have
↓PostS(V ) ⊆ V , which leads by induction (V is an invariant of the transition relation)
to ↓ReachS(V ) ⊆ V . As x ∈ V , this contradicts V ( Lim CoverS(x). Hence, there
exists z 6∈ V , z ∈ ↓PostS(x). Because this last set is downward closed, we can assume
z to be minimal among the elements not in V , so z ∈ Min (X\V ) and we have our
result.
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⇐ Let’s assume that V = Lub CoverS(x). Then, if we take y ∈ Max V , we have that
↓PostS(y) ⊆ ↓PostS(Lim CoverS(x)) which leads by proposition 2.6 to ↓PostS(y) ⊆
Lim CoverS(x) = V . Of course, this means that there cannot exist z 6∈ V , z ∈
↓PostS(y).

Theorem 2. Let S be a class of complete WSTS with decidable POST MEMBERSHIP. If
CLOVERABILITY is semi-decidable in S, CLOVER SET is computable in S.

Proof. Since CLOVERABILITY is semi-decidable and the state space X is recursively enu-
merable, there is an algorithm enumerating an infinite sequence x0 = x, x1, x2, . . ., xi,
. . . of all elements of Lim CoverS(x). This yields an increasing (for ⊆) sequence Vi =
⋃

0≤j≤i ↓xj of underapproximations of Lim CoverS(x). This sequence will eventually stabi-
lize to Lim CoverS(x) since all the maximal elements of Lim CoverS(x) will eventually be
found.

Now, we need to be able to detect when we have reached the index i such that Vi =
Lim CoverS(x). To do this, we note that we have Vi ( Lim CoverS(x) if and only if there
exist y ∈Max Vi and z ∈Min (X\Vi) such that z ∈ ↓PostS(y) (by lemma 2.7). As the Vi are
closed subsets of Lim CoverS(x), our problem reduces to deciding whether z ∈ ↓PostS(y) for
a finite number of y, z ∈ X, which are instances of POST MEMBERSHIP. Thus, we can check
when we have reached Vi = Lim CoverS(x), and this makes our algorithm terminates.

Note that the hypothesis of this theorem aren’t restrictive at all. First, [29] (Section
6) showed that from most WSTS, one can build a complete WSTS with the same Cover.
Secondly, in the most often encountered case of finite-branching WSTS, having computable
transitions functions is enough to have decidable POST MEMBERSHIP.

This means the only difficuly part in order to show that a WSTS has a computable
CLOVER SET is to show that CLOVERABILITY is semi-decidable. We will propose in the next
section some ideas to show this in the general case while specific cases will be considered in
chapters 4 and 5.

2.5 Acceleration Strategies

Theorem 2 tells us that in order to compute CLOVER SET, it is enough to find a way to
enumerate the maximal elements of Lub CoverS(x). A way to do this is to find a collection
of potential witnesses, and enumerate these candidates, for example regular expressions built
on the alphabet F . However, regular expressions are not the only possibility, and we define a
more general notion of acceleration strategy, intended to be used for finite-branching WSTS,
by:

Definition 2.3. An acceleration strategy for a complete WSTS S = 〈X,F 〉 is a recursively
enumerable set STRAT of computable and monotonic relations2 h ⊆ X ×X such that, for all
x ∈ X, we have:

2We use the function notation for these relations, as defined in chapter 1. When it is clear that h is a
function from X to X , we will treat h(x) as an element of X and not as a singleton subset of X .
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• h(x) ⊆ Lim CoverS(x)

• h(x) is finite.

For STRAT an acceleration strategy for S, we define AccSTRAT
S (x) = {y ∈ h(x) | h ∈

(STRAT ∪ F )∗}. This set defines a transitive relation: if we have y ∈ AccSTRAT
S (x) and

z ∈ AccSTRAT
S (y), then we would also have z ∈ AccSTRAT

S (x). Moreover, because we
have that Lim CoverS(Lim CoverS(x)) = Lim CoverS(x) (by proposition 2.6), we get
that AccSTRAT

S (x) ⊆ Lim CoverS(x). Hence, this set corresponds to the element of the
Lim CoverS(x) which are reachable thanks to the acceleration strategy.

As a first example of an acceleration strategy, we look at the traditional accelerations
used in a Karp and Miller tree. They consist, from a state x ∈ Nd

ω, in iterating a finite
sequence g ∈ F ∗ of transitions. In this case, one adds to the Karp-Miller tree a new node
labeled by lub {gn(x) | n ∈ N}. This is possible because (gn(x))n is an increasing sequence
in a cdcwo, hence it has a lub. We generalize this construction to any complete WSTS: given
g ∈ F ∗, we define g∞ : X → X by dom(g∞) = dom(g) and g∞(x) = lub {gn(x) | n ∈ N} if
x < g(x), and g(x) otherwise. The function g∞ is well-defined as (gn(x))n∈N is an increasing
sequence. This function g∞ is monotonic if g is monotonic, and for a set F of monotonic
functions, we define ITER(F ) = {g∞ | g ∈ F ∗}, ITER

k(F ) = ITER(ITER
k−1(F ) ∪ F ), and

ITER
∞(F ) =

⋃

k∈N ITER
k(F ).

If the functions g∞ are computable for VAS, nothing guarantees that they will be com-
putable for any other WSTS. For this reason, [30] defines∞-effective WSTS that are WSTS,
where for any x ∈ X and g ∈ F ∗ with g(x) > x, lub {gn(x) | n ∈ N} is computable. Hence,
ITER(F ) is an acceleration strategy for any ∞-effective complete WSTS.

A first question one can ask is whether ITER
∞(F ) is more powerful than ITER(F ) (i.e.

when running a Karp-Miller tree, is it useful to consider any ancestor on a branch, or only
ancestors that are not separated from the current node by an acceleration). The answer is
that in the particular case of VAS, these strategies are equivalent, but this correspondance
is not verified in general:

Proposition 2.8. For S = 〈Nd
ω, F 〉 the labeled transition system of a VAS, and x ∈ Nd

ω, we

have Acc
ITER(F )
S (x) = Acc

ITER∞(F )
S (x).

Proof. We have x ∈ Nd
ω and h ∈ (ITER

∞(F ) ∪ F )∗, and we need to show that there exists
h′ ∈ (ITER(F ) ∪ F )∗ such that h(x) = h′(x).

We have h = f0g
∞
1 f1g

∞
2 . . . g∞n fn with fi ∈ F ∗ and gi ∈ ITER

∞(F ). We define xk =
f0g

∞
1 f1 . . . g

∞
k fk(x). We can consider that gk+1(xk) ≥ xk, otherwise we would have xk+1 =

gk+1fk+1(xk) and hence a simpler decomposition. Thus, the only effect of gk is to add ω to
some components of xk. Because gk(xk) ∈ Lub CoverS(xk), we consider a sequence g′k,ℓ ∈ F

∗

such that lub (g′k,ℓ(xk))ℓ∈N = gk(xk). But, because g′k,ℓ(xk) has the same component equal to
ω than xk, and that gk(xk) ≥ xk, there exists pk such that we get g′k,pk(xk) ≥ xk, and for each
i ∈ {1, . . . , d}, xk(i) < gk(xk)(i) ⇐⇒ xk(i) < g′k,pk(xk). Then, we have g′∞k,pk(xk) = g∞k (xk),
and this concludes our proof, by taking h′ = f0g

′∞
1,p1

f1 . . . g
′∞
n,pn

fn with fk, g
′
k,pk
∈ F ∗.

Proposition 2.9. There exists a complete WSTS S = 〈X,F 〉 and x ∈ States(S) such that

Acc
ITER(F )
S (x) ( Acc

ITER∞(F )
S (x).

37



Proof. We consider the following system (a VASS with two resets):

q1 q2

f1: x1 := 0
x3 ++

f2: x2 := 0

g1: x1 −−
x2 ++

g2: x1 ++
x2 −−

Then, we have (g∞1 f1g
∞
2 f2)

∞(ω, 0, 0) = (ω, 0, ω), but there exists no h ∈ ITER(F ) such
that h(ω, 0, 0) = (ω, 0, ω) (there must be a loop using the two resets, but this loop can’t
preserve the ω in the first two component, because its transitions are only normal transitions).

Another more abstract system that will even require to go up to ITER
k(F ) is the WSTS

〈Nd
ω, F,≤lex〉 where ≤lex is the lexicographic ordering on vectors, F = {f1, . . . , fd} and fi

with dom(fi) = Nd
ω is defined by:

fi(x)(i+ 1) = x(i+ 1) + 1
if x(i) ≥ x(i+ 1): fi(x)(i) = 0

fi(x)(j) = x(i) for j 6∈ {i, i+ 1}

otherwise: fi(x) = x

The condition (C) : x(i) ≥ x(i + 1) looks unusual in the definition of a WSTS, but
it doesn’t prevent monotony here. Indeed, we consider x ≤lex y. Four cases might occur
depending on whether x and y fulfill the condition (C). The two where x and y have the
same status is immediate, so we look at the two others.

• x satisfies C and y doesn’t. Then, it means that we have y(i + 1) ≥lex x(i + 1) + 1,
as increasing this component is the only way to deactivate C. But, this means that
y ≥lex fi(x).

• x doesn’t satisfy C and y does. Then, we have that fi(y) ≥lex y ≥ x and fi(x) = x.

Now, one can check by induction on k that functions of ITER
k(F ) can only add up to k

ω.

However, iterating a single sequence and computing the exact lub is not the only way to
compute the clover.

• We may consider other languages than the regular language L = g∗ of the iteration of
a sequence g. For instance, we may consider non-regular languages L, for example the
set of finite prefixes of the infinite word aba2b2a3b3...anbn... and we may use functions
of the form hL(x) = lub {g(x) | g ∈ L} if the set {g(x) | g ∈ L} is directed or even
relations hL(x) =Max Lim {g(x) | g ∈ L}.
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• We may also under-approximate the lub when it is non-computable. For example, the
strongly increasing ω-well-structured nets were defined in [31], and the set UNDER-ITER(F ) =
{hg | g ∈ F ∗} with dom(hg) = {x ∈ Nd

ω | x < g(x)} where hg is defined by hg(x)(i) = ω
if x(i) < g(x)(i) and otherwise hg(x)(i) = g(x)(i), was shown to be an acceleration
strategy, and sufficient to compute the clover, while the functions of ITER(F ) could be
non-computable.

Those acceleration strategies allow us to define procedure 1, which is a Karp-Miller tree
parameterized by an acceleration strategy. This algorithm explores the reachability set,
stopping branches on states that are lower than a state already present in the tree 3 (lines 4
to 6). We iterate on all the nodes (lines 7 to 11), and try the various acceleration strategies
on these in a fair way: if line 9 is executed infinitely often for the same node n, then any
h ∈ STRAT is chosen infinitely often.

Procedure 1 A parameterized Karp-Miller tree
Inputs: S = 〈X,F 〉, a complete WSTS

STRAT, an acceleration strategy on S
x0 ∈ X, the initial state

1: T ← a tree with a single root n0, labeled by x0. N ← {n0}
2: while N 6= ∅ do

3: Remove a node n of label x from N
4: for all x′ ∈ PostS(x) do

5: if ¬∃na a node of T of label xa with xa ≥ x′ then

6: Add a new child n′, of label x′, to n in T and add n′ to N
7: for all n, node of T do

8: x← label(n)
9: Pick fairly h ∈ STRAT and y ∈ h(x)

10: if ¬∃na a node of T of label xa with xa ≥ y then

11: label(n) ← y. Add n to N
12: return Max {label(n) | n ∈ T }

This procedure cannot be guaranteed to terminate when applied to complete WSTS since
it would allow to decide the boundedness problem for Reset Petri nets which is undecidable.
Moreover, for the same reason (developed in [30] for a similar clover procedure), one cannot
decide whether this procedure terminates, even when the strategy parameter is fixed to be
ITER(F ).

The following lemma describes the invariant fulfilled by the branches of the tree during
the execution of the procedure, and comes directly from the transitivity of Acc:

Lemma 2.10. At any point of the procedure, let n and n′ be two nodes such that n′ is a
descendant of n. Moreover, let x be the initial label of n (before any update), and x′ the
current label of n′. Then, x′ ∈ AccSTRAT

S (x).

3Unlike traditionnal Karp-Miller, we are not comparing only to the ancestor nodes. This doesn’t change
correctness, but may improve termination in some case. See [30] for an example.
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This lemma allows to prove the correctness of the procedure, in a similar way as for the
usual Karp-Miller tree:

Proposition 2.11. If procedure 1 terminates with output B, then B = CloverS(x0).

Proof. We get directly ↓B ⊆ Lim CoverS(x0) from lemma 2.10, so let us show that Lim CoverS(x0) ⊆
↓B. We take y ∈ CoverS(x0) and we reason by induction on the length n of the number of
functions f1, f2, . . . , fn ∈ F such that y ≤ f1f2 . . . fn(x0). The induction hypothesis implies
that there exists x′0 ∈ ↓B such that y ∈ PostS(x′0). Note that whenever a node is updated
or created, it is added to N , which means that because x′0 ∈ ↓B, the loop of lines 4 to 6 is
executed for a node n of label x with x ≥ x′0. Thus there exists y′ ≥ y, with y′ ∈ PostS(x),
and we either have that there exists a node of T whose label is greater than y′, or a node
of label y′ is added. As the labels of nodes can only increase, this concludes this part of the
demonstration.

If the procedure is not guaranteed to terminate, one can relate its termination to the
closure properties of AccSTRAT

S (x):

Lemma 2.12. Let S be a complete WSTS and STRAT an acceleration strategy for S. If, for
any strictly increasing sequence (yn)n∈N with yn+1 ∈ AccSTRAT

S (yn), we have lub {yn | n ∈
N} ∈ AccSTRAT

S (y0), then procedure 1 terminates on input S, STRAT and any x0 ∈ States(S).

Proof. Let us assume the procedure does not terminate. First, we prove that if x is the label
of a node at some point of the algorithm, for any y ∈ AccSTRAT

S (x), eventually a label y′ ≥ y
will be present in the tree (and because labels only increase, the existence of such a label
stays true from that point). We do this by induction on the length of h = f1 . . . fn such
that y ∈ h(x). By induction hypothesis, at some point a label greater than f1 . . . fn−1(x)
appears. The node with this label is added to N , so if fn ∈ F , the loop of lines 4 to 6 will be
executed, which means that a label greater than y will be added if it is not already present.
Similarly, if fn ∈ STRAT, the loop of lines 7 to 11 is executed infinitely often, which means
by fairness that fn will eventually be picked.

Now, we consider the following two cases:

• A node is updated infinitely often. This means that during the execution of the pro-
cedure, the node has been successively updated to values (xn)n∈N with xn+1 = fn(xn),
fn ∈ STRAT. Let y = lub{xn | n ∈ N}. Since xn+1 ∈ AccSTRAT

S (xn), one deduces from
the hypothesis of the lemma that there exists y ∈ ↓AccSTRAT

S (x0), which means that a
label ≥ y would eventually be present in the tree, and which contradicts the fact that
the node continues to be update to values xn ≤ y.

• No node is updated infinitely often. This means that each node is added to N only
a finite number of times, and hence go through the loop of lines 4 to 6 only a finite
number of times. Hence, the generated tree is finitely-branching. By Konig’s lemma,
this means that if the procedure doesn’t terminate, there is an infinite branch being
created. In this branch, by the well-ordering on X, we can find a strictly increasing
subsequence of labels (xi)i∈N. But, by lemma 2.10, we have xn+1 ∈ AccSTRAT

S (xn) and
by the initial remark, this would violate the fact that y = lub {xn | n ∈ N} would
eventually be present in the tree.

40



Note that if ↓AccSTRAT
S (x) is closed for any x, the condition of this lemma is verified.

Moreover, if the condition of the lemma is verified, the algorithm terminates, which means
that ↓AccSTRAT

S (x) = Lub CoverS(x) (because of lemma 2.10). Hence, ↓AccSTRAT(x) closed
for any x is another possible sufficient condition for the termination of the algorithm.

2.6 Application on Strictly Monotonic Complete WSTS

In [30], the authors defined the notion of clover-flattable, that is equivalent to the termination
of a conceptual Karp-Miller like procedure they introduced, and that is an instance of our
procedure with STRAT = ITER(F ). However, they showed that determining if a system is
clover-flattable is undecidable. This prompts us to search for a simpler criteria, that can be
checked directly by looking at the state space and the functions.

It is known that strictly monotonic WSTS enjoy additionnal decidability properties:
BOUNDEDNESS is guaranteed to be decidable. When the WSTS is complete, ∞-effective and
in a "small" state space, we get an additionnal result:

Theorem 3. For ∞-effective strictly monotonic complete WSTS S = 〈X,F 〉 such that
X = Nd

ω, the procedure 1 terminates on inputs (S, ITER(F ), x).

Proof. We consider S = 〈Nd
ω, F,≤〉 and we want to show ↓AccITER(F )

S (x) = Lub CoverS(x).
We take x ∈ Nd

ω and ℓ ∈ Max Lub CoverS(x). We want to show that there exists h ∈
(ITER(F ) ∪ F )∗ such that h(x) ≥ ℓ. We will assume that ℓ 6∈ CoverS(x), or the result is
immediate.

Without loss of generality, we’ll only consider runs γ : x
f1−→ x1

f2−→ x2...
fn
−→ xn such that

for all i 6= j, xi 6= xj .
For such runs, we define α(γ) = (x, x1)(x1, x2)...(xn−1, xn) ∈ (Nd

ω × Nd
ω)

∗, that we order
by ⊑emb with ⊑ defined by:

(x, y) ⊑ (x′, y′) ⇐⇒ x < x′ or,
{

x = x′

y = y′

Let’s show that ⊑ is a well-ordering on the pairs that might appear in a run. Indeed,
assume that we have an infinite sequence of Nd

ω × Nd
ω. By well-ordering on Nd

ω, we can
extract an infinite subsequence such that the first component is increasing. From that point,
either we extract an infinite subsequence such that the first component is strictly increasing
(which leads to an increasing subsequence for⊑), or an infinite subsequence such that the first
component is stationnary. But, the number of possible xk+1 for a given xk, k ∈ {0, . . . , n−1},
is finite, hence we get an increasing subsequence for ⊑. This leads to ⊑emb well-ordering on
runs.

Now, back at our initial problem, we know that there exists runs (γi)i∈N with src(γi) = x,
tgt(γi) strictly increasing (we can find it strictly increasing because ℓ 6∈ CoverS(x)) and
lub{tgt(γi)} = ℓ. Hence, we can extract an infinite increasing subsequence of such runs
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for ⊑emb. Let x −→ x1 −→ x2 . . . −→ xk be the smallest common prefix of these runs in
this sequence. This means there exists two runs γi and γj, i < j such that γi = x −→

. . . xk −→ xk+1γ
′
i and γj = x −→ . . . xk −→ x′k+1γ

′
j with xk+1 6= x′k+1. By well-ordering,

because (xk, xk+1) 6⊆ (xk, x
′
k+1), we have (xk, xk+1)α(γ

′
i) ⊑

emb α(γ′j). Hence, γ′j = x′k+1 −→

. . . −→ x′k+r −→ x′k+r+1 . . . with xk ≤ x′k+r. This means we have xk
f
−→ x′k+r with xk < x′k+r.

(because, by our earlier condition on the runs, xk 6= x′k+r). We define ℓ′ = f∞(xk). Because,
xk < ℓ′ and we had runs sourcing from xk and whose set of targets had ℓ has least upper
bound, we still have ℓ ∈ Lub CoverS(ℓ′), and because ℓ was a maximal element of the cover,

this is still true, leading to ℓ ∈ Max Lub CoverS(ℓ
′). So we have x

f1...fk−−−→ xk
f∞

−−→ ℓ′. If
ℓ ∈ CoverS(ℓ′), we have shown our result. If not, we can restart this construction, starting
from ℓ′ instead of x. Let’s show that this procedure will end in at most d steps.

Assume that the previous procedure had built sequences y1, . . . yd+1 ℓ1, ℓd+1, with yi < ℓi
such that there exists gi, hi ∈ F ∗ (1 ≤ i ≤ d+ 1), with:

x
g1−→ y1

h∞1−−→ ℓ1
g2−→ y2

h∞2−−→ ℓ2 · · ·
gd+1
−−→ yd+1

h∞
d+1
−−→ ℓd+1

By continuity, if yd+1 ∈ dom(h∞d+1), there exists zd+1 ∈ Nd, zd+1 < yd+1 such that
zd+1 ∈ dom(h∞d+1). We define md+1 = hd+1(zd+1). Again by continuity, because any sequence
converging toward yd+1 will eventually be greater than zd+1, this means that there exists
md ∈ Nd, md < ℓd such that md

gd+1
−−→ zd. Continuing the same reasoning, there exists

zd ∈ Nd, zd < yd such that md ≤ g∞d (zd). Because md ∈ Nd, there exists k such that

md ≤ gkd(zd). Without loss of generality, we will assume that zd
gk
d−→ md (for example by

increasing zd+1 and md+1 in a suitable way). Iterating this construction, this builds the
following run (for 1 ≤ i ≤ d+ 1, ri ∈ N):

x
g1
−→ z1

h
r1
1−−→ m1

g2
−→ · · ·

gd+1
−−→ zd+1

h
rd+1
d+1
−−−→ md+1

Now, let us consider replacing hr11 by h∞1 in the previous run. By strict monotony, each
time we add an iteration of the loop, we increase strictly md+1. As we can do this an
unbounded number of times, this would add at least one ω to md+1. Then, we can iterate
the second loop, adding at least another ω, and as we can do this d + 1 times, we get a
contradiction.

Hence the procedure of the first part terminates in at most d steps, and we get a run

x
g1h

∞
1 g2h

∞
2 ···gnh∞n gn+1

−−−−−−−−−−−−−→ ℓ.

Petri nets and Post-Self-Modifying nets [61] are ∞-effective strictly monotonic complete
WSTS with a state space equal to Nd

ω. The clover is non-computable for strictly monotonic
non-complete WSTS (example: Transfer Nets, whose completions are identical to the com-
pletions of Reset Nets) and for non-strictly monotonic complete WSTS, (see Theorem 5.14
in [31]) both with Nd

ω as state space. A result similar to Theorem 3 can be found in [28]
(Theorem 4.18) but the completeness hypothesis was missing and the effectivity hypothesis
were not sufficiently explicited. [31] considers also strongly increasing complete WSTS and
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uses the strategy UNDER-ITER(F ) described above to show the computability of the cover
for these systems. However, strongly increasing is a stronger requirement than just strictly
increasing, so theorem 3 is the first result on the computability of the clover for ∞-effective
strictly monotonic complete WSTS
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Chapter 3

Expressiveness

This chapter is joint work with Alain Finkel, Serge Haddad and Fernando Rosa Vellardo,
originally published in [16].

As we have seen in the previous chapters, many classes of WSTS have been defined.
A lot of these classes are (syntaxic) extensions of other ones, for example Petri Nets can
be extended by adding new types of arcs. A natural question that arise is whether these
extensions are useful, i.e. if the new class can exhibit behaviours that the basic class could
not.

In order to answer this question, we need to precise what we mean by behaviours, as
various definitions have been used in related work [4, 5, 58]. The four usual ones are the
languages Lr (reachability), Lc (coverability), Lt (finite traces) and Lωt (infinite traces) that
we defined earlier. Thus, we have four ways to compare expressiveness of WSTS classes. Let
us explain that two of these are unsuitable for our study. Indeed, reachability is generally
undecidable in Petri Nets extensions [23], and such extensions will be able to recognize any
recursively enumerable language if we consider reachability languages. Similarly, repeated
coverability is undecidable for these extensions, which makes membership in Lωt undecidable.
For these reasons, it is sensible to compare WSTS based on their coverability languages or
trace languages. These two languages are strongly related:

• The trace language is the finite union of the coverability languages where the final
states are the minimum elements of the set.

• Assuming one can define transition sequences u that test whether the current state is
greater than xf (which is the case for most WSTS classes), we have Lc(S, x0, xf) =
Lt(S, x0) ∩ A

∗u.

Because of this, classes of WSTS will often recognize the same trace languages and
coverability languages (if they are stable by finite union and product by a finite automata).
For technical reasons, we will focus in this chapter on coverability languages, which are also
those that are studied in [35, 4, 5, 58]. This gives us the following definition:

Definition 3.1. Let S1 and S2 be two classes of WSTS. We write S1 � S2 whenever for
every language Lc(S1, x1, x

′
1) with S1 ∈ S1, and x1, x

′
1 two states of S1, there exists another

system S2 ∈ S2 and x2, x
′
2 two states of S2 such that Lc(S2, x2, x′2) = Lc(S1, x1, x′1).
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Thus, we will try to compare the coverability languages that can be obtained by various
models. It is important to see that the expressive power of a WSTS comes from two natural
sources: from the structure of the state space and from the semantics of the transition
relation. These two notions were often extremely interwined in the proofs, which meant one
specific proof was required for each model. The aim of this chapter is to separate them in
order to have a formal and generalizable method.

We will look more specifically at the state spaces. Such a study is related to the rel-
evance of resources: does adding additional resources (counters, channels, tapes, clocks,
stacks, etc...) actually yield an increase in expressiveness. For example, if we look at Timed
Automata, clocks are a strict resource: Timed Automata with k clocks are less expres-
sive that Timed Automata with k + 1 clocks [10]. Surprisingly, no similar results exist for
well-known models like Petri Nets (with respect to the number of places) or Lossy Channel
Systems (with respect to the number of channels, or number of symbols in the alphabet)
except in some particular recent works [27]. Thus, we aim to prove some results that will
provide us with tools to establish strict relations between classes of WSTS that have distinct
state spaces.

To be as general as possible, we consider in this chapter WSTS with weak monotonicity.
These WSTS will be labelled by an alphabet A, with any word of A∗ being allowed to be a
single transition label.

3.1 A bit of ordinal theory

We will use in this chapter set theoretical ordinals. Let us recall a few properties of these
objects. The class of ordinals is totally ordered by inclusion, and each ordinal α is equal to
the set of ordinals {β | β < α} below it. Every totally well ordered set X is isomorphic to a
unique ordinal ot(X), called the order type of X.

In the context of ordinals, we identity 0 with ∅, n with {0, ..., n − 1} and ω with N,
ordered by the usual order. Moreover, given α and α′ ordinals, we define α+α′ as the order
type of ({0}×α)∪ ({1}×α′) ordered by ≤lex. In the same way, α ∗α′ is defined as the order
type of α′ × α ordered by ≤lex. Note that these operations are not commutative: we have
1 + ω = ω 6= ω + 1. This definition of + and ∗ coincides with the usual operations on N for
ordinals below ω and we have α +

k
· · · + α = α ∗ k. We can also define exponentiation by

having αβ be the order type of the set of functions from β to α, ordered by the generalized
lexicographic ordering ≤lex defined by:

f <lex g ⇐⇒ ∃x ∈ β.

{

f(x) < g(x) and,
∀y < x. f(y) = g(y)

As expected, we have α0 = 1 and α1 = α for any ordinal α. We define the ordinal ǫ0, (also
called the first fixed point of the exponentiation) by ǫ0 = lub {αk | α0 = 0 ∧ ∀k ∈ N. αk =
ωαk−1}. In this chapter, we will only need ordinals less than ǫ0, that is, those that can be

bounded by a finite tower ωω
··
·ω

. These can be represented by the hierarchy of ordinals in
Cantor Normal Form (CNF) that is recursively given by the following rules:
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• C0 = {0}.

• Cn+1 =
{

ωα1 + · · ·+ ωαp | p ∈ N, α1, . . . , αp ∈ Cn and α1 ≥ · · · ≥ αp
}

ordered by:

ωα1 + · · ·+ ωαp ≤ ωα
′
1 + · · ·+ ωα

′
q

⇐⇒
(α1, . . . , αp) ≤lex (α′

1, . . . , α
′
q)

Each ordinal below ǫ0 has a unique CNF. If α = ωβ1 + · · ·+ωβn, we denote by Cantor(α)
the multiset {| β1, . . . , βn |}.

3.2 A method for comparing WSTS

3.2.1 A new tool: order reflections

We recall that an order embedding is a mapping ϕ : X → Y such that for all x, x′ ∈ X,
x ≤ x′ ⇐⇒ ϕ(x) ≤ ϕ(x′). We define here a weaker version of order embeddings:

Definition 3.2. Let X and Y be two ordered sets. A mapping ϕ : X → Y is an order
reflection (shortly: reflection) if for all x, x′ ∈ X:

ϕ(x) ≤ ϕ(x′) =⇒ x ≤ x′

We will write X ⊑ Y if there is an order embedding from X to Y and X ⊑refl Y if there
is a reflection from X to Y . We will use 6⊑ and 6⊑refl for their negation and ⊏ and ⊏refl for
their antisymmetric version (i.e. X ⊏ Y ⇐⇒ X ⊑ Y ∧ Y 6⊑ X). It should be noted that
every reflection is injective, as ϕ(x) = ϕ(x′) =⇒ x = x′ and that any injective mapping to
a set equipped with the identity is a reflection. Moreover, the composition of two reflections
is a reflection (making ⊑refl a transitive relation).

If ϕ is an embedding from X to Y then X is isomorphic to ϕ(X) and hence can be
identified to it. The existence of an embedding from a set to another is a stronger requirement
than the existence of a reflection. In particular, it can be the case that a set cannot be
embedded in another, even if reflections exist, as implied by the following result:

Proposition 3.1. The following properties hold:

• Nk ⊑refl N⊕, for any k ∈ N.

• Nk 6⊑ N⊕ for any k ≥ 3 (but N2 ⊑ N⊕).

Proof. We first show that Nk ⊑refl N⊕ for any k ∈ N.
Let us take a fixed k ∈ N. There is a finite number of possible relative orders of x1, ..., xk.

Let Nk be this number, and let ok be a mapping that associates to each tuple (x1, ..., xk) a
number between 0 and Nk − 1 such that ok(x1, ..., xk) = ok(x

′
1, ..., x

′
k) means that x1, ..., xk

and x′1, ..., x
′
k are in the same relative order.
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We define ac : N → N⊕ by ac(n) = {| 2Nk − (n + 1), n |}. Note that ac(m) and ac(n)
are incomparable with respect to the multiset embedding ordering if m and n are different
numbers between 0 and Nk − 1.

Now we define ϕ by :

ϕ(x1, ...xk) = {| (2Nk + x1), (2Nk + x2), · · · , (2Nk + xk) |} ∪ ac(ok(x1, ...xk))

We claim this is an order reflection.

Indeed, let us take X = (x1, ..., xk) and X ′ = (x′1, ..., x
′
k) and assume that we have

ϕ(X) ≤emb ϕ(X ′). Then, there is a bijective mapping σ:

σ : ϕ(X)→ ϕ(X ′)
with :

ϕ(X) = {| 2Nk + x1, ..., 2Nk + xk, 2Nk − (ok(X) + 1), ok(X) |}
ϕ(X ′) = {| 2Nk + x′1, ..., 2Nk + x′k, 2Nk − (ok(X

′) + 1), ok(X
′) |}

∀x ∈ ϕ(X). x ≤ σ(x)

The cardinality of ϕ(X) and ϕ(X ′) are the same, and the elements of the form 2Nk + xi
can only be mapped to elements also of the form 2Nk + x′j , so we have

σ(2Nk − (ok(X) + 1)) = 2Nk − (ok(X
′) + 1)

σ(ok(X)) = ok(X
′)

This means that ok(X) = ok(X
′). The components of X and X ′ are thus in the same

relative order. Without loss of generality, we will assume this order is x1 ≤ x2 ≤ ... ≤ xk.
Let us assume that there exists i such that xj ≤ x′j for all j > i and xi > x′i. Because
σ(xi) 6= x′i, this means we have σ(xi) = x′j for some j 6= i.

Two cases may occur:

• j > i : Then by cardinality, we have an element xp in {xi+1, ..., xk} that is mapped
to an element x′p′ with p′ ≤ i. Thus, we have xi ≤ xp ≤ x′p′ ≤ x′i, contradicting our
hypothesis that x′i < xi.

• j < i : Then, we have xi ≤ x′j ≤ x′i, contradicting again our hypothesis.

Thus, we have xi ≤ x′i for all i, concluding our demonstration.

In order to show that for all k, we have Nk 6⊑ N⊕, it suffices to show that N3 6⊑ N⊕.
We now show the absence of order embedding from N3 to N⊕. To do that, we consider the
following sets:

• Ax = {(n, 0, 0) | n ∈ N}

• Ay = {(0, n, 0) | n ∈ N}

• Az = {(0, 0, n) | n ∈ N}
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For any α ∈ {x, y, z}, ϕ(Aα) is an infinite chain of N⊕ so ↓ϕ(Aα) is a directed downward
closed subset. Because ϕ is an order embedding, and ↓Aα 6= N3, we have ↓ϕ(Aα) 6= N⊕.

By using the form of the elements in the completion of N⊕ (proposition 2.1 on page 31),
we get that lub(ϕ(Aα)) = {| ωkα, k′α

ω |}+Bα for some kα ∈ N, k′α ∈ N and Bα ∈ N⊕.
We remark that for any three pairs of integers, we can choose one of these pairs that is

less or equal than the lub of the two others. This means, that we can find α, β and γ, such
that:

(kα, k
′
α) ≤ (max{kβ , kγ}, max{k

′
β, k

′
γ})

Without loss of generality, we will assume α = x, β = y and γ = z. Then, we define
Ay,z[a] = {(a, n, n)|n ∈ N}.

In the same way as before, ϕ(Ay,z[a]) is an infinite chain of N⊕. Let ϕ(Ay,z[a]) =
{| ωky,z[a], (k′y,z[a])

ω |} + By,z[a]. Because ϕ is an order embedding, for any a ∈ N, this
limit is greater or equal than both {| ωky , k′y

ω |}+By and {| ωkz , k′z
ω |} ∪Bz, implying that

for all a ∈ N:

kx ≤ max(ky, kz) ≤ ky,z[a]
k′x ≤ max(k′y, k

′
z) ≤ k′y,z[a]

As we have lub {ϕ(n, 0, 0) | n ∈ N} = ωkx.k′x
ω.Bx, we can find an a0 such that ϕ(a0, 0, 0) =

{p1, · · · , pkx , q1, · · · , qr} ∪ Bx with:

• r ∈ N

• ∀1 ≤ i ≤ kx, pi ≥ max(k′x,M), where M is the greatest value in Bx

• ∀1 ≤ i ≤ r, qi ≤ k′x

We define P = {| p1, · · · , pkx |} and Q = {| q1, · · · , qr |}. We have:

P ∪Q ∪ Bx ≤ {ω
ky,z[a0], k′y,z[a0]

ω
} ∪ By,z[a0]

Elements of P are bigger than all elements in Q and B0, thus:

Q ∪ Bx ≤ {ω
ky,z[a0]−kx , k′y,z[a0]

ω
} ∪By,z[a0]

Because k′x ≤ k′y,z[a0], we have :

{k′x
ω} ∪Bx ≤ {ωky,z[a0]−kx, k′y,z[a0]

ω} ∪ By,z[a0]
⇒ {ωkx, k′x

ω} ∪ Bx ≤ {ωky,z[a0], k′y,z[a0]
ω} ∪ By,z[a0]

This means that for each M ∈ Ax, we can find M ′ ∈ Ay,z[a0] such that ϕ(M) ≤ ϕ(M ′).
But this would mean if ϕ was an order reflection that Ax ∈ ↓Ay,z[a0]. As this is not the case,
we got our contradition.

To conclude the demonstration, it only remains to show that N2 ⊑ N⊕. This is done by
noticing that the following function is an embedding:
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ϕ :
N2 → N⊕

(a, b) → {| a+ 2, 1b |}

3.2.2 Expressiveness of WSTS and order reflections

We will now show that reflections are appropriate for the comparison of WSTS. In particular,
the existence of a reflection implies the relation between the corresponding classes of WSTS.
We write WSTSX the class of WSTS with state space X, and we get:

Theorem 4. Let X and Y be two well-ordered sets. We have:

X ⊑refl Y =⇒ WSTSX �WSTSY

Proof. This is shown by taking a WSTS of state space X, looking at its lossy closure through
the order reflection, and realizing this is another WSTS which recognizes the same language.

Formally, let L = Lc(S, x0, xf ) for some WSTS S = 〈X,A,−→〉. Because coverability
languages are preserved by lossy closure (proposition 1.8), we can assume that S is a lossy
WSTS. Let ϕ be a reflection from X to Y . Since ϕ is an injection, we can consider the
labelled transition system Sϕ = 〈ϕ(X), A,−→ϕ〉 where −→ϕ is defined by:

ϕ(x)
u
−→ϕ ϕ(y) ⇐⇒ x

u
−→ y

We show that Sϕ ∈ WSTSY . Indeed, if we take ϕ(x1), ϕ(x′1) and ϕ(x2) such that
ϕ(x1)

u
−−։ϕ ϕ(x

′
1) and ϕ(x2) ≥ ϕ(x1), then we have by definition of Sϕ, and because ϕ is

a reflection, that x1
u
−−։ x′1 and x2 ≥ x1, which means, by well-structure of S, that there

exists x′2 ≥ x′1 such that x2
u
−−։ x′2. By the lossiness property of S, we have x′2

ε
−−։ x′1,

and thus ϕ(x′2)
ε
−−։ϕ ϕ(x

′
1), which leads to ϕ(x2)

u
−−։ϕ ϕ(x

′
1). We have shown that Sϕ is a

WSTS.
Moreover, we clearly have Lc(S, x, y) = Lc(Sϕ, ϕ(x), ϕ(y)), which concludes our proof.

We would like to obtain the converse of the previous result: X 6⊑refl Y =⇒ WSTSX 6�
WSTSY . First, we only present this result for “simple" state spaces. The case of more
complex state spaces will be handled in later sections.

Given an alphabet A = {a1, ..., ak}, we define A by A = {a1, · · · , ak} where ai’s are
fresh symbols (i.e. A ∩ A = ∅). This notation is extended to words by u = a1 · · ·ak for
u = a1 · · · ak ∈ A

∗. In the same way, given L ⊆ A∗, we have L = {u | u ∈ L} ⊆ A
∗
.

Definition 3.3. Let X be a well-ordered set and A a finite alphabet. A surjective partial
function from A∗ to X is called a A-representation of X. Given a A-representation η of
X, we define Lη = {uv | u, v ∈ dom(η) and η(v) ≤ η(u)}. A language L ∈ (A ∪ A)∗ is a

η-witness (shortly: witness) of X if L ∩ dom(η)dom(η) = Lη.
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In particular, Lη is a witness of X for any A-representation η of X. Intuitively, given a
witness L ofX, the fact that a WSTS can recognize L witnesses that the WSTS can represent
the structure of X: it is capable of accepting all words starting with some u (representing
some state η(u)), followed by some v that represents η(v) ≤ η(u). Witness languages are
useful in proving strict relations between classes of WSTS:

Theorem 5. Let L be a witness of X. If X 6⊑refl Y then there are no y, y′ ∈ Y and no
S ∈WSTSY such that L = Lc(S, y, y′).

Proof. Assume by contradiction that L is a covering language of a WSTS S whose state
space is Y with y and y′ as initial and final states, respectively. For each x ∈ X, let us take
ux ∈ A∗ such that η(ux) = x. The word uxux is recognized by S, hence we can find yx and
y′x such that

y0
ux
−−−։ yx

ux
−−−։ y′x ≥ yf

We define ϕ(x) = yx. Let us see that ϕ is an order reflection from X to Y , thus reaching
a contradiction. Assume that ϕ(x) ≤ ϕ(x′). Since S is a WSTS any sequence fireable from
ϕ(x) is also fireable from ϕ(x′) and the state reached by this subsequence is greater or equal
than the one reached from ϕ(x). Hence, the state reached after ux′ux is bigger than the one
reached after uxux, which means that ux′ux ∈ L ∩ dom(η)dom(η), implying x ≤ x′, so that
ϕ is an order reflection.

The simple state spaces we mentioned before, will be the ones produced by the following
grammar (Q and A finite sets ordered by equality):

Γ ::= Q
| N
| A∗

| Γ× Γ

As N is isomorphic to A∗ when A is a singleton, any set produced by Γ is isomorphic to
a set Q× A∗

1 × · · · × A
∗
k where Q and each Ai are finite sets.

Proposition 3.2. Let X be a set produced by the grammar Γ. Then, there is a witness of
X that is recognized by a WSTS of state space X.

Proof. We have X = Q×A∗
1× · · ·×A

∗
k, ordered by its canonic order (which is the cartesian

product of equality on Q and word embedding ordering on A∗
i for all i). Without loss of

generality, we will assume that the Ai’s are disjoint. We also define A =
⋃

1≤i≤k Ai and we
choose arbitrarily a q0 ∈ Q. Finally, we define B = {bq | q ∈ Q}, also assumed disjoint from
A.

We define a functionnal labelled WSTS S = 〈X,Σ, F, γ〉 by:

• Σ = A ∪B ∪A ∪ B

• F = {fσ | σ ∈ Σ}

50



• For σ ∈ Σ, γ(fσ) = σ.

• For a ∈ A:

fa(q, u1, ..., uk) = (q′, u′1, ..., u
′
k) ⇐⇒







q = q′

u′i = uia if a ∈ Ai
u′j = uj otherwise

• For a ∈ A:

fa(q, u1, ..., uk) = (q′, u′1, ..., u
′
k) ⇐⇒







q = q′

ui = au′i if a ∈ Ai
uj = u′j otherwise

• For bp ∈ B:

fbp(q, u1, ..., uk) = (q′, u′1, ..., u
′
k) ⇐⇒







q = q0
q′ = p
u′i = ui

• For bp ∈ B:

fbp(q, u1, ..., uk) = (q′, u′1, ..., u
′
k) ⇐⇒







q = p
q′ = q0
u′i = ui

We define η(x) = (q, u1, ..., uk) iff x ∈ bq||u1|| · · · ||uk, where || denotes the shuffling
operation (i.e. z ∈ u||v ⇐⇒ z = u1v1u2 · · ·upvp with u = u1u2 · · ·up and v = v1v2 · · · vp,
with ui, vi ∈ A∗). η is a (A ∪ B)-representation of X.

We consider S− the lossy closure of S and we define L = Lc (S−, (q0, ε, ..., ε), (q0, ε, ..., ε))
and we have:

L ∩ dom(η)dom(η) = {uv | u, v ∈ dom(η) and η(v) ≤ η(u)}

This concludes the demonstration.

When a WSTS can recognize a witness of its own state space the following holds:

Proposition 3.3. Let X be a well-ordered set produced by Γ and Y any well-ordered set.
Then,

X ⊑refl Y ⇐⇒ WSTSX �WSTSY

Proof. The direction from left to right is given by Theorem 4. Hence, we have to prove that
X 6⊑refl Y ⇒ WSTSX � WSTSY . To do that, we take a witness L of X recognized by a
WSTS of state space X (proposition 3.2). By theorem 5, this language can not be recognized
by a WSTS of state space Y , hence the result.
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3.2.3 Self-witnessing WSTS classes

The reason we were able to build our equivalence between the existence of a reflection from
X to Y and WSTSX �WSTSY for any well-ordered set X produced by Γ was proposition
3.2. However, we conjecture that for any state space X that embeds N⊕, there is no WSTS
of state space X that can recognize a witness of X. This prompts us to define a new notion:

Definition 3.4. Let X be a class of well-ordered sets and S a class of WSTS whose state
spaces are included in X. (X,S) is self-witnessing if, for all X ∈ X, there exists S ∈ S that
recognizes a witness of X.

We will shorten (X,S) as S when the state space is not explicitly needed. We extend
the relation ⊑refl to classes of well-ordered sets by X ⊑refl X′ if for any X ∈ X, there exists
X ′ ∈ X

′ such that X ⊑refl X ′.

Proposition 3.4. Let (X,S) be a self-witnessing WSTS class and S
′ a WSTS class using

state spaces inside X
′. Then:

S � S
′ =⇒ X ⊑refl X

′

Moreover, if S′ = WSTSX′:
S � S

′ ⇐⇒ X ⊑refl X
′

Proof. Let us show the first implication. Let X ∈ X. Since (X,S) is self-witnessing, there
is S ∈ S that recognizes L, a witness of X. Because S � S

′, there is S ′ ∈ S
′ recognizing L.

S ′ has state space X ′ ∈ X
′, and by theorem 5, X ⊑refl X ′.

For the second implication, for any X ∈ X, there exists X ′ ∈ X
′ such that X ⊑refl X ′.

From theorem 4, we deduce WSTSX �WSTSX′ . Hence, WSTSX �WSTSX′.

We will see in sections 3.3 and 3.4 that many usual classes of WSTS, even those outside
the algebra Γ, are self-witnessing.

3.2.4 How to prove the non-existence of reflections?

Because of propositions 3.3 and 3.4, the non existence of reflections will be a powerful tool to
prove strict relations between WSTS. We provide here a simple way from order theory. Let
us recall that a linearization of a partial order ≤X on X is a linear order ≤′

X on X such that
x ≤X y =⇒ x ≤′

X y. A linearization of a well order is a well total order, hence isomorphic
to an ordinal. We extend the definition of order types to non-total well orders:

Definition 3.5. Let (X,≤X) be a well ordered set. The maximal order type (shortly: order
type) of (X,≤X) is:

ot(X,≤X) = lub {ot(X,≤′
X) | ≤

′
X linearization of ≤X}

The existence of the lub comes from ordinal theory. De Jongh and Parikh [20] even show
that this lub is actually attained. Let Down(X) be the set of downward closed subsets of
X. Then, another possible characterization of the maximal order type is the following:
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Proposition 3.5.

ot(X) + 1 = lub {α | ∃f : α→ Down(X). f strictly increasing}

Proof. We first prove that ot(X) + 1 ≤ lub {α | ∃f : α→ Down(X). f strictly increasing}
Let ≤′ be a linearization of ≤ of order type ot(X). Let ϕ be an isomorphism from ot(X)

to (X,≤′). We define f : ot(X) + 1→ Down(X) by:

f(β) = {x ∈ X | x <′ ϕ(β)} for β < ot(X)
f(ot(X)) = X

f is strictly increasing, which means that:
ot(X) + 1 ∈ {α | ∃f : α → Down(X), f strictly increasing} and concludes the first part of
the proof.

We then prove that ot(X) + 1 ≥ lub {α | ∃f : α→ Down(X). f strictly increasing}
Let α be an ordinal and f be a strictly increasing mapping from α to Down(X). We

define the quasi order ≤f on X by:

x ≤f y iff ∀β < α. y ∈ f(β) =⇒ x ∈ f(β)

≤f is clearly reflexive and transitive. Let ≤tie be a linearization of ≤X . We define the
order ≤′

f by:

x ≤′
f y ⇐⇒

{

x ≤f y ∧ y 6≤f x or,
x ≤f y ∧ y ≤f x ∧ x ≤tie y

≤′
f is clearly reflexive and antisymmetric. Let’s show transitivity. Assume that x ≤′

f y
and y ≤′

f z. If they are all three in the same equivalent class (resp. in three different
equivalent classes) of ≡≤f

, x ≤′
f z comes from transitivity of ≤tie (resp. ≤f ). If x and y are

≤f -equivalent, and y <f z we immediately get x <′
f z. The last case is similar.

Let us prove that ≤′
f is a linear order. Pick any x and y. If they are equivalent w.r.t. ≤f ,

we get the result by linearity of ≤tie. So assume by symmetry that there exists β, x ∈ f(β)
and y /∈ f(β). Then for any β ′ such that y ∈ f(β ′), β < β ′ since f is strictly increasing.
Thus x ∈ f(β ′). Since β ′ is arbitrary, this shows that x ≤′

f y.
Let us prove that ≤′

f is a linearization of ≤X . Pick any x ≤X y (and thus x ≤tie y).
Because for all β, f(β) is downward closed, we have x ≤f y, which leads to x ≤′

f y.
Choose some xmax 6∈ X, and X ′ = X ∪ {xmax}. We extend ≤′

f on X ′ by x ≤′
f xmax for

all x ∈ X. We define ϕ : α→ (X ′,≤′
f) by:

ϕ(β) = min
≤′

f

{x ∈ X ′ | x 6∈ f(β)}

The min is defined because X ′ is well-ordered and at least xmax 6∈ f(β) for any β. Because
f is increasing, ϕ is also increasing.

Let us show that ϕ is an order embedding. Assume β < β ′. Then there exists y such
that y ∈ f(β ′) and y 6∈ f(β). This means ϕ(β) ≤′

f y. As y ∈ f(β ′) and f(β ′) is downward
closed, ϕ(β) ∈ f(β ′), which implies ϕ(β) < ϕ(β ′).

We have an order embedding from α to (X ′,≤′
f ) which means α ≤ ot(X ′) = ot(X)+1.
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We also show a simple lemma, that states order reflections preserve strict inclusion of
downward closed sets:

Lemma 3.6. Let X and Y be two well-ordered sets and ϕ a reflection from X to Y . Let
D ( X with D = ↓D. Then ↓ϕ(D) ( Y

Proof. Let us assume that ↓ϕ(D) = Y . Let us take x ∈ X, x 6∈ D. Since ϕ(x) ∈ Y and
↓ϕ(D) = Y , there is x′ ∈ D such that ϕ(x) ≤ ϕ(x′). Since ϕ is a reflection we have x ≤ x′

and since D is downward closed, we get x ∈ D, hence the contradiction.

This leads us to the proposition that we use to separate many classes of WSTS:

Proposition 3.7. [63] Let X and Y be two well-ordered sets. We have:

X ⊑refl Y =⇒ ot(X) ≤ ot(Y )

Proof. Let ϕ : X → Y be a reflection and let us consider an ordinal α and a mapping
f : α → Down(X), strictly increasing. We define g : α → Down(Y ) by g(β) = ↓ϕ(f(β)).
By lemma 3.6, g is strictly increasing. By the characterization of order type in proposition
3.5, we have ot(X) ≤ ot(Y ).

The order types of the usual state spaces used for WSTS are known. We will recall some
classic results on these order types, but we need the following definitions of addition and
multiplication on ordinals to be able to characterize the order types of X ⊎ Y and X × Y .
Remember (Section 3.1) that an ordinal α below ε0 is uniquely determined by Cantor(α),
hence the validity of the following definition.

Definition 3.6. (Hessenberg 1906, [20]) The natural addition, denoted ⊕, and the natural
multiplication, denoted ⊗, are defined by:

Cantor(α⊕ α′) = Cantor(α) ∪ Cantor(α′)
Cantor(α⊗ α′) = {| β ⊕ β ′ | β ∈ Cantor(α), β ′ ∈ Cantor(α′) |}

(Note that Cantor(α) is a multiset and that the previous union is to be understood as multiset
union)

We already know that the order type of a finite set (with any order) is its cardinality
and that the order type of N is ω. De Jongh and Parikh [20], and Schmidt [59] have shown
how to compose order types with the disjoint union, the cartesian product, and the Higman
ordering. A more recent and difficult result, by Weiermann [63], provides us with the order
type of multisets. These results are summed up here:

Proposition 3.8. ([20], [59], [63])

• ot(X ⊎ Y ) = ot(X)⊕ ot(Y )

• ot(X × Y ) = ot(X)⊗ ot(Y )

• ot(X∗) =

{

ωω
ot(X)−1

if X finite

ωω
ot(X)

otherwise (for ot(X) < ǫ0)
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• ot(X⊕) = ωot(X) for ot(X) < ǫ0

Formulas exist even for ot(X) ≥ ǫ0. We refer the interested reader to [20] and [63] for the
complete formulas. With these general results we can obtain many strict relations between
well-ordered sets.

Corollary 3.9. The following strict relations hold for any k > 0:

(1) Nk ⊏refl Nk+1 (4) Nk⊏refl N⊕

(2) (Nk)⊕⊏refl (Nk+1)⊕ (5) Nk⊏refl Σ
∗ (for |Σ| > 1)

(3) (Nk)∗⊏refl (Nk+1)∗

Proof. The non-strict relations in (1), (2) and (3) are clear, and for (4) this is proposition
3.1. For (5), ϕ(n1, . . . , nk) = an1b . . . bank is a reflection. Strictness follows from proposition
3.7 and the following order types, obtained according to the previous results: ot(Nk) = ωk,
ot((Nk)⊕) = ωω

k

, ot((Nk)∗) = ωω
ωk

, and ot(Σ∗) = ωω
|Σ|−1

.

3.3 Vector Addition Systems and Lossy Channel Systems

The state spaces described by Γ and used in proposition 3.3 are exactly those of Petri Nets
and Lossy Channel Systems. We will look more closely at these systems to see the implication
of this proposition regarding their expressiveness.

3.3.1 Vector Addition Systems

We consider first Vector Addition Systems with States (definition 1.7). We recall that given
a VASS of dimension k 〈Q,A, δ, tr〉 and a relabelling γ : A → Σ∗, we get a labelled WSTS
〈Q× Nd, A,Σ, γ〉 where:

• Functions of A are given by, if tr(a) = (q, q′):

dom(a) = {q} × {x ∈ Nd | x+ δ(a) ≥ 0}
a(q, x) = (q′, x+ δ(a))

• γ is given by:
γ(a) = γ(a)

Let us denote by VASS d the class of the transition systems obtained from VASS of
dimension d. Notice that the state space of any VASS with dimension d is in Xd = {Q×Nd | Q
finite }. Then we have the following:

Theorem 6. For any d > 0, VASS d 6�WSTSXd−1
.

Proof. We remark that the WSTS defined in the proof of proposition 3.2 is the transition
system of a VASS when X = Q×Nd. This means that VASS d is self-witnessing, and therefore
so is WSTSXd

. Since Nd 6⊑refl Q×Nd−1 for all finite Q (indeed, ot(Nd) = ωd > ωd−1 ∗ |Q| =
ot(Q× Nd−1)), we have Xd 6⊑refl Xd−1 and by proposition 3.4 we conclude.
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3.3.2 Lossy Channel Systems

Given M an alphabet we define Op(M) = {read(a) | a ∈ M} ∪ {write(a) | a ∈ M} ∪
{nop}. For a ∈ M,u ∈ M∗, this defines functions op from M∗ to M∗ by read(a)(au) = u,
write(a)(u) = ua and nop(u) = u.

Definition 3.7. A Channel System (shortly: CS) with k channels is a tuple (Q,M,A, δ, tr)
where:

• Q is a finite (and non-empty) set of control states,

• M is a finite set of messages,

• A is a finite set of transitions,

• δ : A→ Op(M)k is a mapping providing the effect of a transition on channels,

• tr : A→ Q×Q is a mapping providing the effect of a transition on the control state.

To a Channel System and a labelling γ : A → Σ∗, we associate a functional LTS 〈Q ×
M∗,Σ, A, γ〉 where:

• The functions a are defined, if tr(a) = (q, q′) and δ(a) = (op1, . . . , opk), by:

dom(a) = {q} × dom(op1)× . . .× dom(opk)
a(q, u1, . . . , uk) = (q′, op1(u1), . . . , opk(uk))

• γ is given by:
γ(a) = γ(a)

Taking the lossy closure of this transition system gives a WSTS, called a Lossy Channel
System (shortly: LCS).

We define LCS(k, p) as the class of Lossy Channel Systems with k channels and p mes-
sages. A classic result is that one can encode many channels in one, as long as an additional
character (a separator) becomes available for the channel alphabet.

Proposition 3.10. Let S ∈ LCS(k, p) and x0, xf states of S. Then there is S ′ ∈ LCS(1, p+
1) and x′0, x

′
f states of S ′ such that Lc(S, x0, xf) = Lc(S ′, x′0, x

′
f ).

Proof. We keep a notion of “active channel" through the control states. We also consider
channel numbering to be modulo k, i.e. that channel k + 1 is actually channel 1. Let
M be the set of messages of S and # be a channel symbol with # 6∈ M . A state of S ′ is
(q, i, ui#ui+1# . . .#ui+k−1) where q is the original control state of S, 1 ≤ i ≤ k is the current
active channel and uj is the content of the simulated j-th channel. Reading a character in
the i-th channel requires it to be the active channel. Writing a character in the i-th requires
the the i+ 1-th channel to be active.

The system can change the active channel from Ci to Cj (j > i) at any time by iterating
j − i times the following sequence of ε-transitions:
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• Write #

• Read a word in M∗ and copy it to the end of the channel.

• Read #

As long as exactly k−1 separators # stay in the channel, the described system simulate S.
However, one can lose these separators. To remove spurious traces, we add a final checking
procedure, starting from the final states of S, that reads k− 1 symbols # and, if successful,
puts the system in its real final state.

Thanks to our framework, we can precise this result by adding strict inclusions:

Theorem 7. LCS(k, p) ≺ LCS(k + 1, p) ≺ LCS(1, p+ 1)

Proof. LCS(k, p) � LCS(k+1, p) clearly holds. The proof that LCS(k+1, p) � LCS(1, p+
1) is based on the well-known fact that one can simulate the k + 1 channels by inserting a
new symbol k times as delimiters. We provide here a quick proof of this statement:

For the strictness, we remark again that the WSTS introduced in the proof of proposition
3.2 is actually a LCS, that is, given a state space X = Q× (Σ∗

p)
k, we can find S in LCS(k, p)

and a witness L ofX such that S recognizes L. This implies that LCS(k, p) is self-witnessing.
For all k and p, ot(Q × (Σ∗

p)
k) = ωω

p−1∗k ∗ |Q|. This implies that (Σ∗
p)
k+1 6⊑refl Q × (Σ∗

p)
k

and Σ∗
p+1 6⊑refl Q× (Σ∗

p)
k for all Q. To conclude we only need to apply proposition 3.4.

Moreover, in [5] (Theorem 1) the authors prove that VASS ≺ LCS. We can easily get
back this result:

Proposition 3.11.

LCS(1, 2) 6� VASS

Proof. As in the previous result, we remark that LCS(1, 2) and VASS are self-witnessing.
Thus, we only need to apply proposition 3.4, considering that for any d > 0, M∗

2 6⊑refl N
d

(corollary 3.9).

This result is tight: LCS(0, p) ≃ FA (Finite Automata), LCS(k, 1) ≃ VASS k.

3.4 Petri Net extensions with data

Many extensions of Petri Nets with data have been defined in the literature to gain expressive
power for better modeling capabilities. Data Nets [45] are a monotonic extension of Petri
nets in which tokens are taken from a linearly ordered and dense domain, and transitions
can perform whole place operations like transfers, resets or broadcasts. It is known since
[4, ?] that LCS are strictly less expressive than Petri Data Nets ([4] compares LCS and a
model called constrained multiset rewriting system and [?] shows that Petri Data Nets are
equivalent to these rewriting systems).

A similar model, in which tokens can only be compared with equality, is that of ν-Petri
Nets [57]. The relative expressive power of Data Nets and ν-Petri Nets has been an open

57



problem since [58]. In this section we prove that ν-Petri Nets are strictly less expressive
than Data Nets. To do so, we will work with the subclass of Data Nets without whole place
operations, called Petri Data Nets, since Abdulla et al. showed that Petri Data Nets were
as expressive as Data Nets [5].

3.4.1 Definition of ν-Petri Nets and Petri Data Nets

We use here Petri Net formalism to explain informally their semantics, as the intuitions
behind the definitions are easier this way.

Petri Data Nets A Petri Data Net (shortly: PDN) is a Petri net where each token carries
an identity from a linearly ordered and dense domain V. If P is the set of places where the
tokens can be, a marking m of a PDN can be seen, as a multiset of pairs in V× P , or as a
mapping from V to P⊕. However, two key features of Petri Data Nets will guide our choice
for another representation of states:

1. A marking m has only finitely many tokens. Thus, denoting v1 < · · · < vm the
identity of tokens present in m and gathering all tokens carrying the same identity
vi, one obtains a (non-null) place vector xi in Ncard(P ). Therefore, m can be written
(v1, x1) · · · (vm, xm) where xi are vectors of dimension card(P ) different from 0.

2. The concrete identities vi are irrelevant, and only their relative order is useful with
respect to the semantics of the net. Thus, m can be safely abstracted as the sequence
x1 · · ·xm in (Nd \ 0)∗ where d is the number of places.

Every transition a of a PDN specifies a sequence of n ordered potential identities and for
any such identity specifies the tokens F (a) to be consumed and H(a) to be produced. Thus,
F (a) and H(a) are two sequences of n (possibly null) place vectors.

Definition 3.8 (Petri Data Nets). A Petri Data Net of dimension d is a tuple N = 〈A, F,H〉
where:

• A is a finite set of transitions,

• F : A→ (Nd)∗ is a mapping denoting how many tokens are consumed.

• H : A→ (Nd)∗ is a mapping denoting how many tokens are produced.

From a marking m ∈ (Nk \ 0)∗. In order to fire a transition a with |F (a)| = n, one
nondeterministically selects n identities, consumes some of their tokens as indicated by F (t),
and produces new tokens with the identities specified by H(t). However, some of these n
identities might not be present in s, and we should introduce null vectors wherever necessary:
m′ ∈ (Nk)∗ is a 0-extension of m ∈ (Nk \ 0)∗ (equivalently: m is a 0-contraction of m′) if m
can be obtained from m′ by erasing all null vectors.

Once such an 0-extension m′ is built, one selects in it a subword of n vectors x1, . . . , xn
such that every of these vectors contains enough tokens for the transition to be fired, i.e. for
all i ∈ {1, . . . , n}, xi ≥ F (t)(i). In this case, for each i ∈ {1, . . . , n}, F (t)(i) is substracted
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Figure 3.1: Firing of a Petri data net transition

and H(t)(i) is added, yielding a new marking m′′. This m′′ may contain null vectors when all
tokens with some identity have been consumed, so we take the 0-contraction of m′′, giving
our final marking m′′′. Formally, the semantics of a PDN (in VAS-like notations) are given
by:

Definition 3.9 (Transition system of a PDN). Let N be a PDN of dimension d. Its asso-

ciated transition system SN = 〈X,A,−→〉 is defined by:

• X = (Nd \ 0)∗

• m
a
−→ m′ if there exists u0x1u1 · · ·un−1xnun a 0-extension of m with ui ∈ (Nk)∗ and

xi ∈ Nk such that:

1. ∀i ∈ {1, . . . , n}, xi ≥ F (t)(i),

2. m′ is the 0-contraction of u0y1u1 · · ·un−1ynun where yi = xi − F (t)(i) +H(t)(i).

We rely on the standard graphical depiction of high level nets and use (pictures of) Petri
nets where arcs connected to a transition t are labelled by variables (whose number if |F (t)|)
that must be instantiated in a way that respects a constraint labelling the transition. For
concision and readability, it is convenient to allow orderings of the variables that are not
total. Such a transition would then represent several transitions, each of these corresponding
to a possible linearization of the constraint.

For instance, we can simulate a transition t in which two unrelated variables x and y
appear, by having a non-deterministic choice between three transitions t1, t2 and t3, the first
one assuming x < y, the second one assuming y < x and the last one with y substituted by
x. Analogously, a transition with variables x and y so that x ≤ y, can be simulated by two
transitions one assuming x < y and the other one with y substituted by x.

Using these graphical conventions, figure 3.1 depicts a PDN with a single transition a
given by:
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F (a) = (1, 0, 0)(0, 0, 0)(0, 1, 0)
H(a) = (0, 0, 0)(0, 0, 1)(0, 0, 0)

ν-Petri Nets ν-Petri Nets can be seen as a restriction of Petri Data Nets where the domain
of identities V still infinite is now unordered. If we would like to define this model exactly
as for Data Nets, it is sensible to add a construction that ensures that a newly created
token has a value distinct from any already present one (this was not necessary in Petri
Data Nets, as one could maintain a token storing the largest value and then any token
created above this value would be distinct from any existing value). Because of this, we
introduce a countable set Var of variables including a subset of special variables Υ ⊂ Var

with card(Υ) = card(Var \Υ) = ω. The role of Υ is to select values that are not present in
the current marking.

Definition 3.10 (ν-Petri Net). A ν-Petri Net (shortly: ν-PN) of dimension d is a tuple
N = 〈A, F,H〉, where:

• A is a finite set of transitions,

• F : A → Var \ Υ → Nd is a mapping denoting how many tokens are consumed such
that for all a, dom(F (a)) is finite.

• H : A → Var → Nd is a mapping denoting how many tokens are produced such that
for all a, dom(H(a)) is finite.

To represent the markings of a ν-Petri Net, we can use the same reasoning as for Petri
Data Nets, as only the equalities/inequalities between identities matter. This means that a
marking of a ν-Petri Net will be an element of (Nd \ 0)⊕. Now, to fire a transition a from a
marking m, we will first take a 0-extension m′ of m (adding as many 0 into m as we want),
then each variable of dom(F (a))∪dom(H(a)) is mapped to an element of m′, with variables
of Υ being mapped to distinct 0 elements. For each α ∈ dom(F (a)), F (a)(α) is subtracted to
the elements to which α is mapped, then for each α ∈ dom(H(a)), H(a)(α) is added to the
element to which α is mapped. The 0-contraction of the resulting marking is the marking
obtained after the transition. Formally, we have:

Definition 3.11 (Transition System of a ν-Petri Net). Let N be a ν-Petri net. Its associated

transition system 〈X,A,−→〉 is defined by:

• X = (Nd \ 0)⊕

• m
a
−→ m′ if we have:

m0 ∪ {| x1, . . . , xp |} ∪ {| 0
q |} is a 0-extension of m

m0 ∪ {| x′1, . . . , x
′
p |} ∪ {| y

′
1, . . . , y

′
q |} is a 0-extension of m′

such that there exists a mapping ϕ from (dom(F (a)) ∪ dom(H(a))) \ Υ to {1, . . . , p}
and a mapping ψ from dom(H(a)) ∩Υ to {1, . . . , q} with:

60



a

p1

b c

p2

p3

x y

ν

p1

c

p2

d

p3

x y

ν

Figure 3.2: Firing of a ν-Petri Net transition

xi ≥
∑

ϕ(α)=i

F (a)(α)

x′i = xi −
∑

ϕ(α)=i

F (a)(α) +
∑

ϕ(α)=i

H(a)(α)

y′i =
∑

ϕ(α)=i

H(a)(α)

The graphical representation of a ν-Petri net is similar to that of a Petri Data Net
except that if each arc is labelled by a variable, there is no other constraint than the implicit
constraint due to arcs being labelled by the same variable. In such a graphical representation,
we use ν, ν1, . . . , νk for variables of Υ.

Figure 3.2 illustrates the firing of a transition in such nets. Observe that the token created
by the transition cannot belong to {a, b, c}.

Classes of Nets Given N a ν-Petri Net or Petri Data Net with an initial marking, a
place i of N is bounded if there exists some positive integer b such that for every reachable
marking and identity, the number of tokens in i carrying this identity is at most b. Therefore,
a bounded place may contain arbitrarily many identities, provided each of them appears an a
priori bounded number of times. If a Petri Data Net (resp. a ν-Petri net) has k unbounded
places and m places bounded by some b, then we can use as state space (Q × Nk)∗ (resp.
(Q× Nk)⊕) with Q = {0, . . . , b}m.

We denote the class of the transition system, possibly relabelled, of Petri Data Nets with
k unbounded places by PDN k and their state space by X

∗
k = {(Q×N

k)∗ | Q finite}. Similarly,
we denote the class of the transition system, possibly relabelled, of ν-PNwith k unbounded
places by ν-PN k and their state space by X

⊕
k = {(Q× Nk)⊕ | Q finite}. Moreover, we take

X
∗ = {(Nk)∗ | k > 0} and X

⊕ = {(Nk)⊕ | k > 0}.
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Figure 3.4: Petri Data Net recognizing a witness of N∗

3.4.2 Self-Witnesses and Consequences

Proposition 3.12. For every d ≥ 0, ν-PN d and PDN d are self-witnessing.

Proof. We start with ν-PNk. Let (Q× Nd)⊕ ∈ X
⊕
d . We consider an alphabet Σ = {σq | q ∈

Q} ∪ {σ0, . . . , σd−1} and we define η : Σ∗ → (Q× Nk)⊕ by:

η(aq0a
n0,0

0 . . . a
n0,d−1

d−1 . . . aqka
nk,0

0 . . . a
nk,d−1

d−1 )
=

{| (q0, n0,0, . . . , n0,d−1), . . . , (qk, nk,0, . . . , nk,d−1) |}

Let us build ts(N ) ∈ ν-PNd and x, y ∈ (Q×Nd)⊕ such that Lc(ts(N ), x, y)∩dom(η)dom(η) =
Lη. Assume Q = {q0, . . . , qr}. Figure 3.3 shows the case with d = 1 and r = 2.

We take d unbounded places p1, . . . , pd (hence N ∈ ν-PN d). Moreover, we take q1, . . . , qr
as bounded places, a bounded place st that stores all the identities that have been used (once
each identity, hence bounded), and bounded places c0, c1, . . . , cd containing one identity in
mutual exclusion. When the identity is in c0 it is non-deterministically copied in some q
(action labelled by aq), and moved to c1. For every 1 ≤ i ≤ d, when the identity is in ci it
can be copied arbitrarily often to pi (action labelled by ai). At any time, this identity can
be transferred to ci+1 when i < d or to st for i = d (action labelled by ε). In the last case a
fresh identity is put in c0 (thanks to ν ∈ Υ).

The second phase is analogous, with bounded places c′0, c
′
1, ..., c

′
k+1, marked in mutual

exclusion with identities taken from st. At any point, the identity in c′k+1 can be removed,
and one identity moved from st to c′0 (action labelled by ǫ). That identity must appear in
some q. Thus, for each q we have a transition that removes the identity from c′0 and q and

62



puts it in c′1 (action labelled by āq). For each 1 ≤ i ≤ d, the identity in c′i can be removed
zero or more times from pi (action labelled by āi). At any point, the identity is transferred
from c′i to c′i+1 (actions labelled by ε).

The initial and final marking x is with an identity in c0 and another identity in dk+1

(and empty elsewhere). One can check that Lc(ts(N ), x, x) ∩ dom(η)dom(η) = Lη, so we
conclude.

The case of PDN d is analogous to that of ν-PN d. Let (Q × Nd)∗ ∈ X
∗
d. We define

Σ = {σq | q ∈ Q} ∪ {σ0, . . . , σd−1} and η : Σ∗ → (Q× Nd)∗ by:

η(aq0a
n0,0

0 . . . a
n0,d−1

d−1 . . . aqka
nk,0

0 . . . a
nk,d−1

d−1 )
=

(q0, n0,0, . . . , n0,d−1), . . . , (qk, nk,0, . . . , nk,d−1)

The net N with ts(N ) ∈ PDN k that we build is similar to the ν-PN we built in the case
of ν-PN k, except for two differences: On the one hand, whenever a fresh identity was put in
c0, now we put a greater identity (that is, we replace ν by a variable y such that x < y). On
the other hand, whenever we took from st another identity, now we take a greater identity
(that is, we require x < y). Finally, the initial and final marking x is with one identity in c0
and a smaller identity in dk+1. Again, it holds that Lc(ts(N ), x, x) ∩ dom(η)dom(η) = Lη,
and we conclude.

Figure 3.4 shows a PDN recognizing a witness of N∗. Notice that since ν-PN k and PDN k

are self-witnessing for every k ≥ 0, so are ν-PN and PDN .

Proposition 3.13. X
∗
1 6⊑refl X

⊕, X⊕
k+1 6⊑refl X

⊕
k and X

∗
k+1 6⊑refl X

∗
k for all k.

Proof. X
∗
1 6⊑refl X

⊕ holds because ot(N∗) = ωω
ω

6≤ ωω
k

= ot((Nk)⊕), so that N∗ 6⊑refl (Nk)⊕

for all k. The others are obtained similarly, considering that ot((Q × Nk)⊕) = ωω
k∗|Q| and

ot((Q× Nk)∗) = ωω
ωk∗|Q|

.

Corollary 3.14. ν-PN ≺ PDN . Moreover, PDN 1 6� ν-PN .

Proof. ν-PN � PDN is from [58]. PDN 1 6� ν-PN is a consequence of proposition 3.4,
considering that both classes are self-witnessing, and that X∗

1 6⊑refl X
⊕.

We can even be more precise in the hierarchy of Petri Nets extensions.

Proposition 3.15. For any k ≥ 0, ν-PN k ≺ ν-PN k+1 and PDN k ≺ PDN k+1.

Proof. Clearly ν-PN k � ν-PN k+1 and PDN k � PDN k+1 for any k ≥ 0. For the converses,
again we can apply proposition 3.4, considering that all the classes considered are self-
witnessing and that X⊕

k+1 6⊑refl X
⊕
k and X

∗
k+1 6⊑refl X

∗
k hold.

Finally, we can strengthen the result VASS ≺ ν-PN proved in [58] in a very straightfor-
ward way.

Proposition 3.16. ν-PN 1 6� VASS
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Proof. Both VASS and ν-PN 1 are self-witnessing, and X
⊕
1 6⊑refl {N

k | k > 0} because
N⊕ 6⊑refl Nk for all k (indeed, by proposition 3.8 ot(N⊕) = ωω 6≤ ωk = ot(Nk)). By
proposition 3.4 we conclude.

Again, the previous result is tight. Indeed, a ν-PN with no unbounded places can be
simulated by a Petri net, so that ν-PN 0 ≃ VASS .

3.5 Summary of results

To show a strict hierarchy of WSTS classes, we have proposed a generic method based on
two principles: the ability of WSTS to recognize some specific witness languages linked to
their state space, and the use of order theory to show the absence of order reflections from
one wpo to another. This allowed us to unify some existing results, while also solving open
problems. We summarize the current picture on expressiveness of WSTS below w.r.t number
of resources and type of resources. On the other hand, showing equivalence between WSTS
classes is a problem deeply linked to the semantics of the models, and hence that remains to
be solved on a case-by-case basis.

Quantitative results. (All results are new.)
For every k ∈ N, VASS k ≺ VASS k+1 6� VASS k

For every k, p ∈ N, LCS(k, p) ≺ LCS(k + 1, p) ≺ LCS(1, p+ 1)
For every k ∈ N, ν-PN k ≺ ν-PN k+1 and PDN k ≺ PDN k+1

Qualitative results. (New result is ν-PN ≺ DN )
VASS ≺ LCS ≺ DN ≃ PDN

VASS ≺ ν-PN ≺ DN ≃ PDN

An interesting case that remains open is the relative expressiveness of LCS and ν-PN .
Their state space are quite distinct but their order type are the same for some values of their
parameters. We conjecture that there is no reflection from one to the other, but such a proof
would require more than order type analysis.

As all the models that we have studied in this paper use a state space whose order type
is bounded by ǫ0, it is tempting to look at WSTS that would use a greater state space. It is
known that the Kruskal ordering has an order type greater than ǫ0 [59], even for unlabelled
binary trees. However, studies of WSTS based on trees have been quite scarce [43]. We
believe some interesting problems might lie in this direction.
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Part II

Extended Vector Addition Systems
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Chapter 4

Vector Addition Systems with 2 resets

This chapter is unpublished material.

Vector Addition Systems with resets (equivalently Reset Nets) are a natural extension of
Vector Addition Systems where one allows operations to set counters to zero. This can be
used as a direct modeling tool, or seen as an underapproximation of a zero-test. Moreover,
one can show that Affine Nets [31], one of the largest Petri Net extension obtained without
changing the state space can be simulated by Reset Nets in a sensible way.

From a verification point of view, Vector Addition Systems with resets seem to be on the
frontier of decidability for most problems considered. Indeed, the decidability and undecid-
ability of these problems is precisely known since the works of Dufourd et al. in the late
nineties [23, 24]. Mayr [50] later published an overview of the decidability status of problems
in lossy counter machines, making some results a bit more precise. Here is a summary of
previous results, with the addition of some results that will be later shown in chapter 5:

no reset 1 reset 2 resets three resets

REACHABILITY
decidable

[49]
decidable

(red. from [55])
undecidable

[23]
undecidable

[23]

COVERABILITY
decidable
(WSTS)

decidable
(WSTS)

decidable
(WSTS)

decidable
(WSTS)

BOUNDEDNESS
decidable

(strict WSTS)
decidable

[24]
decidable

[24]
undecidable

[23]

PLACE-BOUNDEDNESS
decidable

[41]
decidable

(red. from 5.3)
?

undecidable
[23]

REP. COVERABILITY
decidable

[25]
decidable

(red. from 5.4.1)
undecidable

[50]
undecidable

[23]

One can see that the number of resets is of great importance when looking at decidability
problems. Actually, more than the number of resets, the limiting factor is the number of
counters that can be reset, as many reset transitions can be collapsed into one if they all
reset the same counter.

In this chapter, we fill this gap by showing the decidability of PLACE-BOUNDEDNESS for
Vector Addition Systems with 2 resets.
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4.1 Definition

We introduce formally Vector Addition Systems with resets:

Definition 4.1. A Vector Addition System with resets (shortly : VASrr) of dimension d is
a tuple 〈A, δ,R〉 where:

• A is a finite set of transition labels,

• δ is a mapping from A to Zd and,

• R is a mapping from A to {∅, {0}, {1}, {0, 1}}.

A VAS with resets is a VAS with k resets if there exists a subset R ⊆ {0, . . . , d− 1} such
that for all a ∈ A, R(a) ⊆ R.

δ(a) is the vector added to a state by the transition a, while R(a) defines which counters
are reset by a. The semantics of this system are defined formally by the partial functions
a : Nd

ω 7→ Nd
ω with:

dom(a) = {x ∈ Nd
ω | x+ δ(a) ≥ 0}

a(x)(i) =

{

x(i) + δ(a)(i) if i 6∈ R(a)
0 otherwise

We associate to V the complete WSTS ts(V) = 〈Nd
ω, A〉. We write VASRR = {ts(V) |

V is a VAS with 2 resets}. Properties of the normal transition system (defined on Nd) can
be lifted to its complete transition system, as explained by the more general proposition 4.3.

We can define the extension with states, as we have defined VASS from VAS in definition
1.7 on page 1.7. We won’t give explicitly this definition, which should be straightforward.

4.2 Regular loops

Given S = 〈Nd
ω, A〉 ∈ VASRR, we define DJS(S), a set of functions from N to A∗ by DJS(S) =

{n→
∏

0≤k≤n u0v
k
1u1 . . . v

k
pup | u0, v1, . . . , up ∈ A

∗}.

Definition 4.2. ϕ ∈ DJS is a regular loop on x ∈ Nd
ω, if for all k ∈ N, ϕ(k + 1)(x) >

ϕ(k)(x).

This definition of regular loops is similar to the definition of "regular path schemes" in
[24]. Formally, we have:

Proposition 4.1. Let (w, f, x0) be a regular path scheme (as defined in [24]). There exists
a regular loop ϕ (as defined in definition 4.2) such that:

↓{w(0)w(1) . . .w(k)(x0) | k ∈ N} = ↓{ϕ(0)ϕ(1) . . . ϕ(k)(x0) | k ∈ N}
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Proof. To show that, let us quote the original definition with minor alterations to be consis-
tent with our notations of Vector Addition Systems:

We use p1, p2 to denote elements of {0, 1}. We define p♯ = 3−p. Markings are presented
as (unordered) tuples (r, p1 ← x, p2 ← y) where r ranges over submarkings on nonresetable
places, while x, y are values of the resetable places. The (finite!) range of r is denoted by
fcs; it can be viewed as a finite control states set. (...)
Given a pair (r, p ← b1), (r′, p′ ← b2), where b1, b2 ∈ N (and p = p′ is allowed), by a
path scheme, of order n, we mean a triple (w, f, x0), where w : N → A+, f : N → N,

x0 ∈ N, such that ∀x ≥ x0 : (r, p ← b1, p
♯ ← x)

w(x)
−−→n (r′, p′ ← b2, p

′♯ ← f(x)) (−→n is
the transition relation restrained to the runs where at most n reset transitions are used).
The path scheme has the maximum property if for every x ≥ x0, there is no y > f(x) s.t.

(r, p← b1, p
♯ ← x)

∗
−→n (r′, p′ ← b2, p

′♯ ← y).
A function g : N → N is (i, k)-regular, where 0 ≤ i < d, i, k ∈ N iff there are rational
constants ρ1, ρ2 such that: for every x ∈ N, x mod k = i implies g(x) = ρ1x+ ρ2 (∈ N; note
that it imposes ρ1k ∈ N). We refer to ρ1 (ρ2) as the first ( second) coefficient of g.
A function f : N→ N is k-regular, zhere k ∈ N, k > 0 iff there are functions f0, f1, . . . , fk−1

such that fi is (i, k)-regular (i = 0, 1, . . . , k − 1), all fi’s have the same first coefficient ρ
and f(x) = fi(x) for x mod k = i; ρ is then the coefficient of f . We call f regular if it is
k-regular for some k.
A path scheme (w, f, x0) is regular if f is k-regular for some k, and for each i ∈ {0, 1, 2, . . . , k−
1}, we havem ∈ N, u1, v1, u2, v2, . . . , um, vm, um+1 ∈ A∗ and (i, k)-regular functions g1, g2, . . . , gm
such that: for every x ≥ x0, x mod k = i implies w(x) = u1v

g1(x)
1 u2v

g2(x)
2 . . . umv

gm(x)
m um+1.

A regular witness (for the net N) is a reachable marking (r, p1 ← x0, p2 ← 0) together with
a regular path scheme (w, f, x0) (of order n for some n ∈ N) which is related to the pair
(r, p2 ← 0), (r, p2 ← 0) and has the property: ∀x ≥ x0 : x < f(x).

Let us now explain how this corresponds to our regular loop definition. We take a regular
path scheme (w, f, x0). There is k ∈ N such that for each i ∈ {0, 1, 2, . . . , k− 1}, we have for
n mod k = i, w(n) = ui,1v

gi,1(n)
i,1 u2 . . . v

gi,pi(n)

i,pi
ui,pi+1 with gi,1, . . . , gi,pi (i, k)-regular functions.

First, we note that a (i, k)-function restrained on {n | n mod k = i} is an affine function
(with rationals coefficients), so we have that:

w(kn)w(kn+ 1)w(k(n+ 1)− 1) =
∏

0≤i≤k−1

ui,1v
ai,1n+bi,1
i,1 ui,2 . . . v

ai,pin+bi,pi
i,pi

ui,pi+1

Thus, we have a new regular path scheme (w′, f ′, x0) where f ′(n) = f(kn) and w′(n) =
∏

0≤i≤k−1 ui,1v
ai,1n+bi,1
i,1 ui,2 . . . v

ai,pin+bi,pi
i,pi

ui,pi+1. Now, notice that van+b can be rewritten as
u1v

n
1u2 . . . v

n
aua+1 where ui = ε for i ≤ a, ua+1 = vb and vi = v. Thus, a regular path scheme

(w, f, x0) (according to the definition of [24]) induces a regular loop on x0 (according to the
definition of this chapter).

Thus, we will be able to use the following proposition (updated to use our definition)

Proposition 4.2. ([24], Section 4 / Proposition 1) Let S ∈ VASRR, x0 ∈ Nd
ω and assume

that there exists an infinite strictly increasing sequence (xn)n∈N with xn+1 ∈ ReachS(xn).
Then, one of the following statements is true:
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(1) There exists u ∈ A∗ and y ∈ ReachS(x0) such that u is a simple loop on y.

(2) There exists ϕ ∈ DJS(S) and i y ∈ ReachS(x0) such that ϕ is a regular loop on y.

4.3 Generalized Vector Addition Systems with 2 resets

In this chapter, we will need a more robust class of transition system, that will contain
any function fω obtained by iterating a sequence f of a VASrr (see proposition 4.4). For
this, we allow transitions to set a counter to any value (including ω), and we separate the
precondition of the transitions from the decrementations of the counters:

Definition 4.3. A generalized Vector Addition System with States and 2 resets of dimension
d is a tuple V = 〈Q,A, ρ, δ, µ, tr〉 where:

• Q is a finite set of control states.

• A is a finite set of actions.

• ρ : Q× A→ Nd provides the prerequisites to fire a transition.

• δ : Q×A→ Zd provides the effect of the transition.

• µ : Q×A→ (Nω ∪⊥)2×⊥d−2 indicates which counters are set to a precise value, and,

• tr : Q×A→ Q provides the next control state.

The semantics of this system is given by ts(V) = 〈Nd
ω ×Q,Q× A〉 where:

dom((q, a) = ↑ρ(q, a)× {q}

(q, a)(x)(i) = (y, tr(q, a)) where y is defined by:

y(i) =

{

x(i) + δ(q, a)(i) if µ(q, a) = ⊥
µ(q, a)(i) if µ(q, a) 6= ⊥

We now show that these generalized VASrr can be faithfully simulated by normal VASrr
(without even needing to use ω-values). We are using states in the simulating system for
convenience.

Proposition 4.3. Let V be a generalized Vector Addition System with States and two Resets
and x ∈ Q × Nd

ω. One can build V ′ a Vector Addition System with States and two Resets,
x′ ∈ Q′ × Nd and ϕ a continuous function from Q′ × Nd

ω to Q× Nd
ω such that:

Reachts(V)(x) = ϕ(Reachts(V ′)(x
′))

y′
a
−→ts(V ′) z

′ =⇒ ϕ(y′)
a
−→tsV ϕ(z

′)

y
a
−→ts(V) z =⇒ ∀y′ ∈ ϕ−1(y). ∃z′ ∈ ϕ−1(z). y′

a
−→ts(V ′) z

′
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Proof. Let V = 〈Q,A, ρ, δ, µ, tr〉 of dimension d. The idea is to encode in the control states
what components are equal to ω. Thus, these components can be ignored for transitions
prerequisites. Transitions that set a component a specific value will update this control
state.

Let Ω = {o : {0, . . . , d− 1} → {0, 1}}. We build V ′ = 〈Q× Ω, A, ρ′, δ′, µ′, tr′〉 by:

ρ′(q, o, a)(i) =

{

ρ(q, a)(i) o(i) = 0
0 o(i) = 1

δ′(q, o, a)(i) = δ(q, a)
µ′(q, o, a)(i) = µ(q, a)(i)
tr′(q, o, a)(i) = (tr(q, a), o′)

with: o′(i) =







o(i) if µ(i) = ⊥
0 if µ(i) ∈ N
1 if µ(i) = ω

We define ϕ : Q× Ω× Nd
ω → Q× Nd

ω by:

ϕ(q, o, s′) = (q, s)

with: y(i) =
{

s′(i) if o(i) = 0
ω if o(i) = 1

Finally, we also define x′ = (q, o, s′) ∈ Q× Ω× Nd from x = (q, s) by:

o(i) =

{

1 if s(i) = ω
0 if s(i) < ω

s′(i) =

{

s(i) if s(i) < ω
0 otherwise

With these definitions, it is straightforward to show that the conditions of the proposition
are fulfilled.

4.4 Accelerations in VASRR

We describe now the construction of an acceleration strategy partly taken from the works of
Dufourd, Jančar and Schnoebelen [24] that will allow us to compute the cover for VAS with
two resets.

Definition 4.4. For S ∈ VASRR, we define DJS(S) = {ϕ | ϕ ∈ DJS(S)} by dom(ϕ) =
⋂

n∈N dom(ϕ(n))} and for x ∈ Nd
ω, ϕ(x) = lub {ϕ(n)(x) | n ∈ N} if ϕ is a regular loop on x,

and ϕ(x) = x otherwise.

We note that u is a sequence of transitions of a reset net, the value of un(x)(i) given x(i)
is given by x(i) + n ∗ δ(u)(x) if u doesn’t reset the i-th component, and u(x)(i) otherwise.
More generally, the functions ϕ for ϕ ∈ DJS(S) are computable.

Proposition 4.4. For S ∈ VASRR, ITER
∞(DJS(S) ∪ A) is an acceleration strategy.

70



Proof. One can show by induction on k ∈ N, thatHk = ITER
k(DJS(S)∪F ) is a set of functions

such that for any h ∈ Hk, one can find ρ(h) ∈ Nd, δ(h) ∈ Nd
ω and µ(h) ∈ (N∪{⊥})2×{⊥}d−2

such that dom(h) = ↑ρ(h), h(x)(i) = x(i) + δ(h)(i) if µ(h) = ⊥ and µ(h)(i) if µ(h) 6= ⊥.
From that, these functions are monotonic and computable. As ITER

∞(DJS(S)∪F ) is r.e. by
construction, we get our result.

Given a state x, we say that u ∈ A∗ is a simple loop on x if x ∈ dom(u) and there exists i,
such that µ(u)(i) = ⊥ (i.e. no resets are encountered on place i), δ(u)(i) > 0 and x(i) < ω.
[24] used simple loops as a first kind of witness for unboundedness. Moreover, they showed
that if there was no simple loop in an unbounded system, then there must exist a regular
loop that witnesses unboundedness (and adds an ω in the two components that are reset).
By applying all possible simple loops and regular loops, we can get the following result

Lemma 4.5. Let S ∈ VASRR, (α0, r0) ∈ N2
ω × Nd−2

ω , and assume that {r ∈ Nd−2
ω | ∃α ∈

N2
ω, (α, r) ∈ ReachS(α0, r0)} is finite. Then, Lub CoverS(α0, r0) = AccSTRAT

S (α0, r0) for
STRAT = ITER

∞(DJS(S) ∪ A)

Proof. In this proof, to avoid heavy notations, we use the following shortcuts when there is
no risk of confusion: 0 = {0}, 1 = {1} and 01 = {0, 1}.

Let V = 〈A, δ,R〉 such that S = LTS(V). Let R = {r ∈ Nd−2
ω | ∃α ∈ N2

ω, (α, r) ∈
ReachS(α0, r0)}. We define ≤ω a new ordering on Nω where ω is incomparable with elements
of N and ≤ω is the normal ordering on N. This ordering is extended pointwise on Nd

ω. For
h ∈ H and x ∈ X, we say that h is a real acceleration if h(x) contains strictly more ω’s than
x. For each r ∈ R, the set Ur = {α ∈ N2

ω | There exists a real acceleration in H on (α, r)}
is upward-closed for ≤ω. Hence, its complement Dr is a finite union of N2 ×Qr,∅, N×Qr,0,
Qr,1 × N and Qr,01 where Qr,∅ is a finite subset of N0

ω (so either the empty set, or singleton
containing the empty vector), Qr,0 and Qr,1 are finite subsets of Nω and Qr,01 is a finite subset
of N2

ω.
With these definitions, we will build a generalized VAS with states, that will simulate

the original one, and whose reachability set will be shown finite. As the transitions of our
newly defined will correspond either to normal transitions or to simple/regular loops, this
will give us the result.

We define the finite set D representing the subset of the states of S that we will simulate,
and Q the control structure of our new VASS by:

D = {(α, r) | r ∈ R ∧ α ∈ Dr}
Q =

⋃

r∈R{(r, ∅)} ×Qr,∅∪
⋃

r∈R{(r, 0)} ×Qr,0∪
⋃

r∈R{(r, 1)} ×Qr,1∪
⋃

r∈R{(r, 01)} ×Qr,01

As our state space only simulates D, we need a way to turn any state outside this set into
D. This is done by an acceleration function acc. Let (α, r) 6∈ D. We define acc(α, r) = (α′, r)
where α′ ∈ N2

ω is obtained from α by replacing some components by ω such that α′ ∈ Dr

and that (α′, r) ∈ ↓AccHS (α, r). At least one such α′ can be defined, as we can apply
real accelerations on (α, x) until no more can be performed (at most two accelerations are
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required) because each real acceleration adds an ω to the state. However, more than one
possible value exists, so we arbitrarily resolve this ambiguousity by taking one.

Now, we can define our translation function ϕ from D (the simulated state space) to
N2
ω ×Q (the state space of our new VASS).

ϕ(α, r) = (α(0), α(1), (r, ∅)) if α ∈ N2 ×Qr,0

ϕ(α, r) = (α(0), ω, (r, 0, α(1))) if α ∈ N×Qr,1

ϕ(α, r) = (ω, α(1), (r, 1, α(0))) if α ∈ Qr,1 × N
ϕ(α, r) = (ω, ω, (r, 01, α(0), α(1))) if α ∈ Qr,01

This function is an injection. We write D′ = ϕ(D) and ϕ−1 its inverse (defined on D′).
Note that D′ is upward-closed.

The final part of the simulation is to translate the operations. We define F ′ = {(a, q) |
a ∈ A ∧ q ∈ Q with:

dom((a, q)) = (N2 × {q}) ∩D′

(a, q)(x, q) = ϕ(acc(ϕ−1(x, q) + δ(a)))

Note that the translation of ϕ either preserves the counters of S, or turns them into
control states (setting the counter to ω). Similary, ϕ−1 may turn back a control state into a
counter, which means that the counter would be set to a precise value. Moreover, acc may
only fix some of them into ω, hence the effect of each of these functions on the counters is
either to add a fixed value to them, or to set them to a fixed value. This is a generalized
reset transition as defined above. For this reason, we have that S ′ = 〈N2 × Q,F ′,≤〉 is the
transition system associated to a generalized VASS with 2 resets. We will show that this is
a faithful simulation:

(1) If ϕ(y) ∈ ReachS′(ϕ(x)), then y ∈ ↓AccHS (x) (we recall H = ITER
∞(DJS(S) ∪ F ))

(2) If y ∈ ReachS(x), then, there exists y′ ≥ y such that ϕ(y′) ∈ ReachS′(ϕ(x)).

We show both of these by induction on the length of the transition sequence. For (1),
we first note that if x ∈ D′, we have ReachS′(x) ⊆ D′, so we can consider ϕ(z) such that
ϕ(z) ∈ ReachS′(ϕ(x)) and y ∈ PostS(ϕ(z)). Then, by induction hypothesis, z ∈ ↓AccHS (x).
But, by definition of (a, q), we have y = acc(z + δ(a)), which means that y ∈ ↓AccHS (z). By
transitivity of Acc, we get y ∈ ↓AccHS (x). For (2), we consider z such that z ∈ ReachS(x)
and y ∈ PostS(z). Then, by induction hypothesis, there exists z′ ≥ z such that ϕ(z′) ∈
ReachS′(ϕ(x)). We consider a ∈ A such that y = z + δ(a). Then, we have a, q(ϕ(z′)) =
ϕ(acc(z′ + δ(a))). We define y′ = acc(z′ + δ(a)) ≥ y, and we have ϕ(y′) ∈ ReachS′(ϕ(x)).

This means that for any x ∈ Nd
ω, CoverS(x) ⊆ ↓ϕ

−1(Reach′S(ϕ(x))) ⊆ AccHS (x).

We claim S ′ has a finite set of reachable states. Indeed, if it is not, it means there is
either a simple loop or a regular loop on some reachable state (α, q). We look at these two
cases:

• If it is a simple loop, then the iteration of a word of H∗ is an element of H∗, hence
(α, q) ∈ Ur, which is a contradiction.
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• If it is a regular loop, then one can remark that the values of the first two counters
encountered after each iteration of the regular loop are different from ω. Thus, each of
these iteration can be made to correspond to a run without acceleration (by continuity).
This means that we get an acceleration of DJS(S), which is again a contradiction.

Because S ′ has a finite set of reachable states, we have ↓ϕ−1(Reach′S(ϕ(α, r0))) is a
closed set, which means because CoverS(x) ⊆ ↓ϕ−1(Reach′S(ϕ(x))) ⊆ AccHS (x) that we have
Lub CoverS(x) ⊆ ↓ϕ−1(Reach′S(ϕ(x))) ⊆ AccHS (x), and because we also have AccHS (x) ⊆
Lub CoverS(x), we end with AccS(α0, r0) = Lub CoverS(α0, r0), which concludes the demon-
stration.

4.5 Computing the Cover

With the help of ITER
∞, we can generalize this result into:

Theorem 8. The procedure 1 terminates for any S ∈ VASRR, any x ∈ States(S) and for
STRAT = ITER

∞(DJS(S) ∪ A)

We first prove a technical lemma:

Lemma 4.6. We consider S ∈ VASRR and an increasing sequence (xn)n∈N with xn+1 ∈
AccHS (xn). We define:

Y = {y ∈ Nd
ω | ∃j ∈ N, y ∈ AccHS (xj) ∧ xj+1 ∈ AccHS (y)}

proj(Y ) = {r ∈ Nd−2
ω | ∃α ∈ N2, (α, r) ∈ Y }

Then, if proj(Y ) is finite, one can build a generalized VASS with 2 resets V ′ ∈ VASRR

with LTS(V ′) = 〈Nd′

ω , F
′,≤〉, an injective continuous function ϕ : Y → Nd′

ω and a function
ψ : H ′ → H (with H ′ = ITER

∞(DJS(S ′) ∪ F ′)) such that:

• {r ∈ Nd′−2
ω | ∃α ∈ N2, (α, r) ∈ ReachS′(ϕ(x0))} is finite.

• ∀h′ ∈ H ′, ∀x ∈ Y, h′(ϕ(x)) = ϕ(ψ(h′)(x)).

Proof. First, we remark that if w = u1u2 . . . un . . . is a simple or regular loop on x (we have
ui = uj for simple loops) then for any prefix v of w, there exists v′ ∈ A∗ such that w = vv′w′

and w′ is a simple or regular loop on vv′(x). Hence, this means that all states encountered
along accelerations also belong to Y .

We define a generalized VASS with 2 resets V ′ = 〈Q,A, ρ′, δ′, µ′, tr′〉:

Q = proj(Y )
A = {a′ | a ∈ A}

tr′(q, a) = q + δ(a)(2 . . . d− 1)
for i ∈ {1, 2}:

ρ′((q, a))(i) = max(0,−δ(a)(i))

δ′((q, a))(i) = δ(a)(i)

µ′((q, a))(i) =

{

0 if i ∈ R(a)
⊥ if i 6∈ R(a)
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Then, one can define the following translations:

ϕ(x) = (x(0), x(1), x(2 . . . d− 1))

ψ((q1, a1) . . . (qn, an)) = a1 . . . an

As the functions of H ′ are defined by composition and union of (q1, a1) . . . (qn, an), we
extend ψ by morphism on H ′. It is technically straightforward to show that (1) and (2) are
fulfilled by this simulation.

We now prove theorem 8.
Let H = ITER

∞(DJS(S) ∪ A). Thanks to lemma 2.12, we only have to show that for any
increasing sequence (xn)n∈N with xn+1 ∈ AccHS (xn), we have lub{xn | n ∈ N} ∈ AccHS (x0).
By eventually extracting subsequences, we assume that for each i ∈ {1, . . . , d}, we either
have ∀n ∈ N, xn(i) 6= ω or ∀n ∈ N, xn(i) = ω. We perform the proof by induction on the
number of components that are not equal to ω.

We consider Y = {y ∈ Nd
ω | ∃j ∈ N, y ∈ AccHS (xj) ∧ xj+1 ∈ AccHS (y)} and proj(Y ) =

{r ∈ Nd−2
ω | ∃α ∈ N2, (α, r) ∈ Y }.

Two cases may occur:

• proj(Y ) is infinite. Then, since (Nd
ω,≤) is a wpo, there exists i ∈ {3, . . . , d}, and

y1, y2 ∈ Y such that y1 ≤ y2 and y1(i) < y2(i). Let k1 ∈ N and h1, h
′
1 ∈ H

∗ be such
that y1 = h1(xk1) and xk1+1 = h′1(y1). Similarly, we take k2 ∈ N and h2, h

′
2 ∈ H∗

be such that y2 = h2(xk2) and xk2+1 = h′2(y2). We define k′2 = max(k1 + 1, k2). Let
y′2 = h2(xk′2). Because k′2 ≥ k2, we have xk′2 ≥ xk2 and by the monotony of the functions
of H , we get y′2 ≥ y2. As we have y′2 ∈ Acc

H
S (y1), let h ∈ H∗ such that y′2 = h(y1).

Then, we have h∞ ∈ H , and h∞(y′2) ≥ y2, with h∞(y′2) having more ω’s than y2.
But because, we have xk2+1 ∈ AccHS (y2), we consider the sequence (wi)i∈N, wi ∈ H∗

such that xk2+i+1 = wi(xk2+i). Then, we get the sequence zi by z0 = h′2(h
∞(y′2)) and

zi+1 = wi(zi). This is a sequence that contains strictly more ω’s than the original one,
so we get that lub{xi | i ∈ N} ≤ lub{zi | i ∈ N} ∈ AccHS (z0). By transitivity of Acc, as
z0 ∈ Acc

H
S (x0), we have lub{xi | i ∈ N} ∈ AccHS (x0).

• proj(Y ) is finite. Intuitively, this means that if we project our system on the non-
resetable components, the path we are considering is visiting only a finite number
of states. Formally, one can build S ′ = 〈Nd′

ω , F
′,≤〉 ∈ VASRR of dimension d′, an

injective continuous function ϕ : Y → Nd′

ω and a function ψ : H ′ → H (with H ′ =
ITER

∞(DJS(S ′) ∪ F ′)) such that (1) {r ∈ Nd′−2
ω | ∃α ∈ N2, (α, r) ∈ ReachS′(ϕ(x0))}

is finite. (2) ∀h′ ∈ H ′, ∀x ∈ Y, h′(ϕ(x)) = ϕ(ψ(h′)(x)). This is lemma 4.6 which
corresponds to defining a system that simulates only the runs of S that stay inside
Y . (2) implies that ∀x ∈ Y, AccH

′

S′ (ϕ(x)) ⊆ ϕ(AccHS (x)). Now, because of (1) we can
apply lemma 4.5 and get that ϕ(lub {h(xi)}) = lub {ϕ(h(xi))} ∈ AccH

′

S′ (ϕ(x0)). This
leads that ϕ(lub {h(xi)}) ∈ ϕ(AccHS (x0)), and by injectivity of ϕ, that lub {h(xi)} ∈
AccHS (x0).

Corollary 4.7. For Vector Addition Systems with two resets, CLOVER SET is computable.
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As a consequence, place-boundedness (an instance of the more general CLOVERABILITY)
is decidable.

4.6 Summary of results on VAS with resets

With the additional result (underlined) presented in this chapter, we can present an extensive
overview of the decidability results on VAS with resets:

no reset one reset two resets three resets

REACHABILITY
decidable

[49]
decidable

(red. from [55])
undecidable

[23]
undecidable

[23]

COVERABILITY
decidable
(WSTS)

decidable
(WSTS)

decidable
(WSTS)

decidable
(WSTS)

BOUNDEDNESS
decidable

(strict WSTS)
decidable

[24]
decidable

[24]
undecidable

[23]

PLACE-BOUNDEDNESS
decidable

[41]
decidable

(red. from 5.3)
decidable

undecidable
[23]

REP. COVERABILITY
decidable

[25]
decidable

(red. from 5.4.1)
undecidable

[50]
undecidable

[23]

Despite this array being completely filled, some open questions remain, mostly regarding
complexity. One interesting one is inspired by recent works by Praveen et al. [18], that
extends the Rackoff proof to strongly increasing Affine Nets (that would correspond in our
setup to allow operations that add the content of one counter to another). In order to further
extend this work to VAS with 2 resets, one would have to bound the maximum length of
possible regular loops to consider. The proof proposed by Dufourd et al. already uses a
length-based reasoning, so this might lead to an interesting upper bound. We leave such an
analysis for further work.
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Chapter 5

Vector Addition Systems with

hierarchical zero-tests

The results of this chapter are based on joint work with Alain Finkel, Jerome Leroux and
Marc Zeitoun, originally published in [17], [14]. The results of section 5.2 were originally
published in [15]. These publications were based on the Vector Addition Systems with one
zero-test model. The extension to hierarchical zero-tests is original.

A Vector Addition System is a restricted version of a Counter Machine where the only
operations allowed by transitions are incrementations or decrementations of counters. Im-
plicitly, the decrementations allow to contraint the firing of a transition by testing whether
a given counter is greater than a constant value. It is tempting to allow the complementary
operation, that would test whether a given counter is less than a constant value.

However, one can see that allowing such an operation is equivalent to allow operations
that test whether a given counter is equal to zero (or more generally to any constant value).
Unfortunately, it is known that counter machines that allow incrementation, decrementation,
and testing counters for zero are Turing-complete as soon as two counters are available [51].

Thus, if we want to allow such an operation, we must restrict it to apply on a single
counter if we want meaningful decidability results. Actually, we will look at a slightly
more general model, introduced by Reinhardt [54], where zero-tests are allowed on multiple
counters as long as the counters are ordered in a way that a counter can be tested for zero
only if all counters of lesser index are also tested for zero. We introduce this model formally
in the following way:

Definition 5.1. A Vector Addition System with hierarchical zero-tests (shortly: VAS0∗) of
dimension d is a tuple 〈A0, A1, . . . , Ad, δ〉 where:

• Ai’s are finite set of actions (performing i zero-tests).

• δ :
⋃

0≤i≤dAi → Zd provides the effect of the actions on the counters.

We define A≤p =
⋃

0≤i≤pAi and A = A≤d. If we force all Ai’s for i ≥ 2 to be empty, we
get the natural class of Vector Addition Systems with one zero-tests.

76



One can associate to a VAS0∗ a transition system 〈Nd, A〉 where, for a ∈ Ai, the function
a is defined by:

x ∈ dom(a) ⇐⇒

{

∀j ≤ i. x(i) = 0
x+ δ(a) ≥ 0

a(x) = x+ δ(a)

Note that this transition system is not a WSTS unless A = A0. Indeed, if we take for
example a ∈ A1 with δ(a) = 0, a is fireable from (0, 0, . . . , 0) but not from (1, 0, . . . , 0). For
this reason, specific methods are required to verify such systems. We describe in the next
section the state of the art, and propose in sections 5.2 and 5.3 new techniques that allow
to respectively show the decidability of REACHABILITY and CLOVERABILITY. Section 5.4 will
apply the previous results to derive some related results.

5.1 Related Work

The study of VAS with hierarchical zero-tests (or of the subclass of VAS with one zero-test)
began recently, but already a fair number of results are known for these models. Reinhardt
([54, 55]) has shown that the reachability problem is decidable for VAS with hierarchical zero-
tests. For the subclass of VAS with one zero-tests, Abdulla and Mayr have shown that the
coverability problem is decidable in [7] by using the backward procedure of WSTS (see section
5.3.1 for a summary of Abdulla technique and a comparison with the technique presented
in section 5.3). Finally, boundedness, termination and reversal-boundedness (whether the
counters can alternate infinitely often between the increasing and the decreasing modes)
were shown to be decidable by using a forward procedure, a finite but non-complete Karp
and Miller tree (Finkel and Sangnier [32]).

The decidability results on VAS with hierarchical zero-tests have already been used to
show the decidability of problems on other models, for example the Priced Timed Petri
Nets of Abdulla [7]. Moreover, Atig and Ganty have shown that this class of VAS were
equivalent to a subclass of Pushdown Counter Automatas were the stack is restricted to
index-bounded behaviour, i.e. such that the associated context-free grammar never uses
more than a bounded number of variables at the same time. It could be argued that a
reasonable number of programs will in fact follow such a stack discipline.

5.2 Reachability in VAS with hierarchical zero-tests

If reachability was already shown to be decidable by Reinhardt [54, 55], a few reasons prompt
us to provide an alternate proof:

• The proof of Reinhardt is involved, and is difficult to apprehend.

• Leroux recently provided an extremely short proof (compared to the previous versions)
of the reachability for VAS. By providing an extension of this proof to VAS with
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hierarchical zero-tests, we believe that people with a good knowledge of Leroux proof
will have an easier time understand this proof.

Let us try to summarize the proof structure of [47], that we will mimic. The main
idea is that if a transition relation has some properties, one can find a witness of non-
reachability. As witness of reachability always exist (it is simply the sequence of transitions
used to go from the initial state to the final state), by enumerating all possible witness
of reachability and non-reachability, we are guaranteed to terminate at some point. These
required properties are given by the notion of almost semilinear set, which itself relies on the
notions of asymptotically definable periodic sets and Lambert sets, that generalizes linear
and semilinear sets. After having given in section 5.2.1 the definitions of asymptotically
definable periodic, Lambert and almost semilinear sets, we will recall in section 5.2.2 some
tools from [47], and especially the result that if a relation is almost semilinear, one can find
a witness of non-reachability which is a Presburger forward invariant.

Now, to prove that our reachability relation is almost semilinear, we have to show that
each finite run can be associated a production relation, such that (1) the set of runs, or-
dered by inclusion of their production relations is well-ordered and (2) these productions
relations are asymptotically definable. With a few additionnal assumptions, this means the
reachability relation can be written as a finite sum and union of productions relations (the
relations associated to the minimal elements of the previously defined well-order) and can be
shown to be almost semilinear. We will introduce our version of these production relations in
section 5.2.3 and prove that they are well-ordered. Then, section 5.2.5 will show that these
production relations are asymptotically definable and we will conclude in section 5.2.6.

5.2.1 Definable conic sets, Lambert and almost semilinear sets

A set C ⊆ Qd is conic if it is periodic and Q≥0C = C. A conic set is finitely generated if
there exists a finite set {c1, . . . , cn} ⊆ Q such that C = Q≥0c1 + . . .+Q≥0cn.

Definition 5.2. ([47], Definitions 3.1 and 4.1)
A conic set is said to be definable if it can be defined in FO(Q,+,≤, 0, 1).

A periodic set P ⊆ Nd is said to be asymptotically definable if Q≥0P is definable.

Definition 5.3. ([48], Definition 4.6)
A set L ⊆ Nd is Lambert if it is a finite union of sets bi + Pi where bi ∈ Nd and Pi ⊆ Nd

is an asymptotically definable periodic set.

The stability of Lambert sets will be of importance in the sequel. We have the following
properties1:

Proposition 5.1. Given L ⊆ Nd1 , L′ ⊆ Nd2 Lambert sets and k ∈ N:

1. For d1 = d2, L ∪ L
′ is Lambert.

2. L× L′ is Lambert.

1we recall that we have 0 ⋆ X = {0}, (k + 1) ⋆ X = (k ⋆ X) +X and N ⋆ X =
⋃

k∈N
k ⋆ X
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3. For d′1 < d1, {x ∈ Nd′1 | ∃y ∈ Nd1−d′1 , (x, y) ∈ L} is Lambert.

4. For d1 = d2, L+ L′ is Lambert.

5. k ⋆ L is Lambert.

6. N ⋆ L is an asymptotically definable periodic set (more generally Lambert).

7. If δ is a linear function, then δ(L) is Lambert.

Proof. We have L =
⋃

1≤i≤p

bi + Pi and L′ =
⋃

1≤i≤q

b′i + P ′
i with bi ∈ Nd1 , b′i ∈ Nd2 and Pi ⊆ Nd,

P ′
i ⊆ Nd asymptotically definable periodic sets.

(1) is by definition of a Lambert set.

For (2), we have:

L× L′ =
⋃

1≤i≤p

⋃

1≤j≤q

(bi + Pi)× (b′i + P ′
i )

=
⋃

1≤i≤p

⋃

1≤j≤q

(bi, b
′
j) + Pi × P ′

j .

Because Pi and P ′
i are asymptotically definable, Pi × P ′

i is aymptotically definable, which
makes L× L′ Lambert.

To show (3), we first show the property for asymptotically definable periodic sets. Let’s
take P an asymptotically definable periodic set and P ′ = {x ∈ Qd′1 | ∃y ∈ Qd1−d′1 , (x, y) ∈
P}. Then if x ∈ P ′ and x′ ∈ P ′, we have y, y′ ∈ Qd1−d′1 such that (x, y) ∈ P and (x′, y′) ∈ P ,
which gives (x+ x′, y + y′) ∈ P and x+ x′ ∈ P ′. Moreover, we have:

Q≥0P
′ = {x ∈ Qd′1 | ∃y ∈ Qd1−d′1, ∃k ∈ Q≥0, (kx, y) ∈ P}

= {x ∈ Qd′1 | ∃y ∈ Qd1−d′1, (x, y) ∈ Q≥0P}

which means that from a definition of Q≥0P in FO(Q,+,≤, 0, 1), we easily get the
definition of Q≥0P

′. And if bi = (ci, c
′
i) with ci ∈ Qd′1 , we have:

{x ∈ Qd′1 | ∃y ∈ Qd1−d′1 , (x, y) ∈ L} =
⋃

i

ci + {x ∈ Qd′1 | ∃y ∈ Qd1−d′1 , (x, y) ∈ Pi}

which gives us the result.

To show (4), we note that L + L′ =
⋃

1≤i≤p

⋃

1≤j≤q

(bi + b′j) + (Pi + P ′
j). Because the sum

of periodic sets is periodic, L + L′ is periodic. Moreover, we get easily get the definition of
Q≥0(P +P ′) = Q≥0P +Q≥0P

′ from the definition of Q≥0P and Q≥0P
′ in FO(Q,+,≤, 0, 1).

Hence, L+ L′ is Lambert.

(5) is a direct consequence of (4).

To show (6), we notice that N ⋆ L is periodic, and we have Q≥0(N ⋆ L) =
∑

i

Q≥0bi +
∑

i

Q≥0Pi. As Q≥0Pi is definable in FO(Q,+,≤, 0, 1), so is Q≥0(N ⋆ L). This makes N ⋆ L

asymptotically definable.
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Let’s finally show (7). We have δ(L) =
⋃

1≤i≤p

δ(bi) + δ(Pi). As δ is linear, we have

δ(Pi) periodic and Q≥0δ(Pi) = δ(Q≥0Pi), which makes Q≥0δ(Pi) easily definable from the
definition of Q≥0Pi in FO(Q,+,≤, 0, 1).

Definition 5.4. ([47], Definition 4.6)
A set X ⊆ Nd is almost semilinear if for all Presburger sets S, S ∩X is Lambert.

5.2.2 Important results from Leroux

We recall in this section a few important results from [47].

For a set X ⊆ Qd, the closure of X, written cl(X) is defined by:

cl(X) = {l | ∀τ > 0, ∃x ∈ X, maxi(x− l)(i) < τ ∧maxi(l − x)(i) < τ}

We have this useful characterization of asymptotically definable periodic sets, that we
will use to show that our production relation are asymptotically definable:

Theorem 9. ([47], Theorem 3.8)
A periodic set P ⊆ Nd is asymptotically definable if and only if the conic set cl((Q≥0P )∩

V ) is finitely generated for every vector space V ⊆ Qd

The second theorem needed is the one motivating almost semilinear sets. An almost
semilinear relation admits witnesses of non-reachability:

Theorem 10. ([47], Theorem 6.1)
Let R be a reflexive relation over Nd such that R∗ is almost semilinear. Let X, Y ⊆ Nd

be two Presburger sets such that R∗ ∩ (X × Y ) is empty. There exists a partition of Nd into
a Presburger R-forward invariant that contains X and a Presburger R-backward invariant
that contains Y .

5.2.3 Production relations

For all the remaining sections, we will fix a VAS0∗ V = 〈A0, . . . , Ad, δ〉 of dimension d. We
also consider Vp = 〈A0, . . . , Ap, ∅, . . . , ∅, δ|A≤p

〉 the restriction of V to its transitions testing

at most the p first counters for zero. We have −→ (or A∗

−→) the transition relation of V and
A∗

≤p

−−→ the transition relation of Vp.

In the next sections, we will prove by induction on p the following result:

Theorem 11. Let V be a VAS with hierarchical zero-tests and let p ≥ 0.
A∗

≤p

−−−−։ is an almost
semilinear relation.

Note that the base case (for p = 0) corresponds to the original proof of Leroux. However,
it can also be seen as an instance of the generalized proof below, where the case p = −1
corresponds to the trivial of the case of the empty transition system (i.e. −−։ is the identity).

We will use as induction hypothesis a direct consequence of this result:
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Corollary 5.2. Let V be a VAS with hierarchical zero-tests and let p ≥ 0. Then, the following
set is almost semilinear:

{(x, v, y) | ∃u ∈ A∗
≤p. |u| = v ∧ x

u
−−։ v}

Proof. The idea is to add counters that will compute that Parikh image of the path. Formally,
if we consider a VAS with hierarchical zero-tests V = 〈A0, A1, . . . , Ap, δ〉 of dimension d with
A =

⋃

Ai = {a1, a2, . . . , ak}, we define V2 = 〈A0, A1 . . . , Ap, δ
′〉 of dimension d+ k by:

δ′(ai)(j) = δ(ai)(j) if 0 ≤ j < d
δ′(ai)(j) = 1 if d ≤ j < d+ k and j = d+ i
δ′(ai)(j) = 0 if d ≤ j < d+ k and j 6= d+ i

Then, we have (x, v)
A∗

≤p

−−−−։2 (x
′, v′) iff there exists u ∈ A∗

≤p such that x u
−→ y and v+|u| = v′.

By theorem 11, the reachability relation of V2 is almost semilinear, and by intersection with

a semilinear, so is
A∗

≤p

−−−−։2 ∩Nd×0k×Nd×Nk, which is (up to rearranging components) the
set {(x, v, y) | ∃u ∈ A∗

≤p. |u| = v ∧ x
u
−−։ v}.

We recall from preliminaries that a run ρ of V is a sequence m0.a1.m1.a2 . . . an.mn alter-
nating markings mi ∈ Nd and actions ai ∈ A such that for all 1 ≤ i ≤ n, mi−1

ai−→ mi. m0 is
called the source of ρ, written src(ρ). mn is called the target of ρ, written tgt(ρ). a1a2 . . . an
is called the actions of ρ, written acts(ρ). A run ρ of V is also a run of Vp if all transitions
appearing in ρ belong to A≤p. A single marking m is said to be a run of V−1.

We recall the definitions of the productions relations for a VAS of [47], adapted to our
case by restricting the relation to runs of V0.

• For a marking m ∈ Nd, −−−−→V0,[m] ⊆ Nd × Nd is defined by:

x −−−→
V0,[m]

y ⇐⇒ ∃u ∈ A∗
0, m+ x

u
−−։ m+ y

• For a run ρ = m0.a1.m1 . . . an.mn of V0,
−−−→

V0,ρ is defined by:
−−−→
V0,ρ =

−−−−−→
V0,[m0] ◦

−−−−−→
V0,[m1] ◦ · · ·

−−−−−→
V0,[mn]

Now, we also define the production relations −−−−→Vp,[m] for p ≥ 1 by:

x −−−→
Vp,[m]

y ⇐⇒

{

∃u ∈ A∗
≤p, m+ x

u
−−։ m+ y

∀1 ≤ i ≤ p. x(i) = y(i) = 0

To extend the definition of a production relation to a run ρ of Vp, we consider the
decomposition of ρ = µ0.a1.µ1 . . . ak.µk such that forall 1 ≤ i ≤ k, µi is a run of Vp−1 and
ai ∈ Ap. In that case, we define the production relation of ρ by:

−−−→
Vp,ρ =

−−−−−→
Vp−1,µ0 ◦

−−−−−−−→
Vp,[tgt(µ0)] ◦

−−−−−→
Vp−1,µ1 ◦ · · · ◦

−−−−−−−−−→
Vp,[tgt(µk−1)] ◦

−−−−−→
Vp−1,µk

Note that if we define −−−−→V−1,m to be the identity (m being a trivial run), this definition
instantiated to p = 0 coincides with the earlier definition.
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Proposition 5.3. Let 0 ≤ p ≤ d. For m ∈∈ 0p×Nd−p and µ a run of Vp,
−−−−→

Vp,[m] and −−−→Vp,µ

are periodic.

Proof. The result is easy for −−−−→Vp,[m] . We conclude by the fact the composition of periodic
relations is periodic.

Proposition 5.4. For a run ρ of Vp, we have:

(src(ρ), tgt(ρ)) +
−−−→
Vp,ρ ⊆

A∗
≤p

−−−−։

Proof. We show this result on the length on ρ. Without loss of generality, we assume that p
is the minimum value for which ρ is a run of Vp (−1 if the run is a single marking).

We have to consider two cases:

• ρ = m is immediate by definition of −−−→Vp,ρ = −−−−→Vp,[m] given src(ρ) = tgt(ρ) = m.

• ρ = ρ1
a
−→ ρ2 with a ∈ Ap, ρ1 a run of Vp−1 and ρ2 a run of Vp. Let (x, z) ∈ −−−→Vp,ρ .

Then, as −−−→Vp,ρ = −−−−−→Vp−1,ρ1 ◦
−−−−−−−→

Vp,[tgt(ρ1)] ◦
−−−−→

Vp,ρ2 , there exists y1, y2 ∈ Nd such that
x −−−−→

Vp−1,ρ1

y1 −−−−−−→
Vp,[tgt(ρ1)]

y2 −−−→
Vp,ρ2

z. By induction hypothesis, there exists u1 and u3 in

A∗
≤p such that:

src(ρ) + x
u1
−−−։ tgt(ρ1) + y1

src(ρ2) + y2
u3
−−−։ tgt(ρ) + z

Also, by definition of −−−−−−−→Vp,[tgt(ρ1)] , we have:

tgt(ρ1) + y1
u2
−−−։ tgt(ρ1) + y2

Moreover, by definition of −−−−−−−→Vp,[tgt(ρ1)] , we have, for all i ∈ {0, . . . , p−1}, y2(i) = 0. And
because ρ is a run, this means that tgt(ρ1)

a
−→ src(ρ2), which leads to tgt(ρ1) + y2

a
−→

src(ρ2) + y2. By putting all the parts together, we have:

src(ρ) + x
u1
−−−։ tgt(ρ1) + y1

u2
−−−։ tgt(ρ1) + y2

a
−→ src(ρ2) + y2

u2
−−−։ tgt(ρ) + z

and this gives us that (src(ρ), tgt(ρ)) + (x, z) ∈
A∗

≤p

−−−−։.
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5.2.4 Well-orderings of production relations

For two runs µ, µ′ of Vp, let us define �p by:

µ �p µ
′ ⇐⇒ (src(µ′), tgt(µ′)) +

−−−−→
Vp,µ

′ ⊆ (src(µ), tgt(µ)) +
−−−→
Vp,µ

Our aim is to show that �p is a well-order. To do that, we define the order Ep on runs
of Vp in the following way:

• For ρ = m0
a1−→ m1 . . .

ak−→ mk and µ = m′
0

b1−→ m′
1 . . .

bℓ−→ m′
ℓ runs of V0 (this requires

ai, bi ∈ A0), we get a definition similar as in [47] (the condition ak = bℓ has been added
to be consistent with the general definition for Vp):

m0
a1−→ m1 . . .

ak−→ mk E0 m
′
0
b1−→ m′

1 . . .
bℓ−→ m′

ℓ ⇐⇒















m0 ≤ m′
0

ak = bℓ
mk ≤ m′

ℓ
∏

1≤i≤k(ai, mi) ≤emb
∏

1≤i≤ℓ(bi, m
′
i)

with (a,m) ≤ (b,m′) ⇐⇒ a = b ∧m ≤ m′

• For ρ = ρ0
a1−→ ρ1 . . .

ak−→ ρk and µ = µ0
b1−→ µ1 . . .

bℓ−→ µℓ runs of Vp (with ρi, µi runs of
Vp−1 and ai, bi ∈ Ap), we have:

ρ0
a1−→ ρ1 . . .

ak−→ ρk Ep µ0
b1−→ µ1 . . .

bℓ−→ µℓ ⇐⇒















ρ0 Ep−1 µ0

ak = bl
ρk Ep−1 µl
∏

1≤i≤k(ai, ρi) ≤
emb

∏

1≤i≤ℓ(bi, µi)

with (a, ρ) ≤ (b, µ) ⇐⇒ a = b ∧ ρ Ep−1 µ.

Note that by considering m a run of V−1 with E−1=≤, the definition of E0 concides with
the definition of Ep for p = 0.

Recursive applications of Higman’s lemma gives us the following result:

Proposition 5.5. For any p ≥ 0, the order Ep is well.

We also have the following property, shown by a straightforward induction on p.

Lemma 5.6. For ρ, µ runs of Vp, we have:

ρ Ep µ =⇒

{

src(ρ) ≤ src(µ)
tgt(ρ) ≤ tgt(µ)

Now, we need to prove the following:

Proposition 5.7. For ρ, µ runs of Vp, we have:

ρ Ep µ =⇒ ρ �p µ
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Proof. We show this by induction on p. Let ρ and µ be two runs of Vp with ρ Ep µ. By

definition, this means that we have ρ = ρ0
a1−→ ρ1 . . .

ak−→ ρk and µ = µ0
b1−→ µ1 . . .

bℓ−→ µℓ such
that:

• ρ0 Ep−1 µ0.

• ρk Ep−1 µℓ.

• There exists a strictly increasing mapping ϕ from {1, . . . , k} to {1, . . . , l} such that
ai = bϕ(i) and ρi Ep−1 µϕ(i). Because we required ak = bℓ and ρk Ep−1 µℓ, we can
assume that ϕ(k) = ℓ.

We extend ϕ by taking ϕ(0) = 0. Let us consider the parts of the run µ that doesn’t
appear in ρ, i.e. for each i ∈ {0, . . . , k − 1}, we define µ′

i, a run of Vp by:

µ′
i = tgt(µϕ(i))

bϕ(i)+1
−−−−→ µϕ(i)+1

. . .
bϕ(i+1)−1
−−−−−→ µϕ(i+1)−1

Note that µ′
i is non-empty because ϕ is strictly increasing. It can however be reduced to

a single marking tgt(µϕ(i)) = tgt(µϕ(i+1)−1) if ϕ(i+ 1) = ϕ(i) + 1. This is the case when no
transitions have been suppressed at this position.

We have ρi+1 Ep−1 µϕ(i+1) which by lemma 5.6 means that src(ρi+1) ≤ src(µϕ(i+1)). As we

also have tgt(rhoi)
ai+1
−−→ src(ρi+1) and tgt(µϕ(i+1)−1)

bϕ(i+1)
−−−−→ src(µϕ(i+1)) with ai+1 = bϕ(i+1),

we have tgt(ρi) ≤ tgt(µϕ(i+1)−1) = tgt(µ′
i). Morever, because ρi Ep−1 µϕ(i), we have by

lemma 5.6 tgt(ρi) ≤ tgt(µϕ(i)) = src(µ′
i).

Now, let us consider (ri, si) ∈
−−−−→

Vp,µ
′
i . By proposition 5.4, we get:

(src(µ′
i) + ri, tgt(µ

′
i) + si) ∈

A∗
≤p

−−−−։

But, because we have:

• src(µ′
i) = tgt(µϕ(i)) ≥ tgt(ρi) (by hypothesis ρ Ep µ)

• tgt(µ′
i) = tgt(µϕ(i+1) − 1) ≥ tgt(ρi) (by hypothesis ρ Ep µ)

• For all j ∈ {1, . . . , p}, src(µ′
i)(j) = tgt(µ′

i)(j) = 0 (because bϕ(i)+1 and bϕ(i+1) are fired
from these states, and these transition belong to Ap)

we get:

(tgt(µϕ(i))− tgt(ρi) + r, tgt(µϕ(i+1)−1)− tgt(ρi) + s) ∈ −−−−−−−→Vp,[tgt(ρi)]

Now, we can consider a pair (x, y) ∈ −−−→Vp,µ . We have:
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−−−→
Vp,µ = −−−−−→Vp−1,µ0 ◦

−−−−−−−→
Vp,[tgt(µ0)] ◦−−−−−→Vp−1,µ1

◦ −−−−−−−→
Vp,[tgt(µ1)] ◦−−−−−→Vp−1,µ2

◦ . . . ◦ . . .
◦ −−−−−−−−→Vp,[tgt(µℓ−1] ◦−−−−−→Vp−1,µℓ

But, by taking into account our previously defined runs µ′
i, we can redecompose our run

in the following way (with the fact that production relations are transitive, which means
that −−−−−→Vp−1,µi ◦

−−−−−−−−→
Vp−1,[tgt(µi)] = −−−−−→Vp−1,µi ):

−−−→
Vp,µ = −−−−−→

Vp−1,µ0 ◦ −−−−→
Vp,µ

′
0 ◦

−−−−−−−→
Vp−1,µϕ(1) ◦ −−−−→

Vp,µ
′
1 ◦

. . .
−−−−−−−−→

Vp−1,µϕ(k−1) ◦ −−−−−→Vp,µ
′
k−1 ◦

−−−−−−−→
Vp−1,µϕ(k)

This means there exists (ri, si) such that:

x −−−−→
Vp−1,µ0

r0 −−−→
Vp,µ

′
0

s0

−−−−−−→
Vp−1,µϕ(1)

r1 −−−→
Vp,µ

′
1

s1

. . .
−−−−−−−→
Vp−1,µϕ(k−1)

rk−1 −−−−→
Vp,µ

′
k−1

sk−1

−−−−−−→
Vp−1,µϕ(k)

y

We have already shown that for all i ∈ {0, . . . , k − 1}, (ri, si) ∈
−−−−→

Vp,µ
′
i implies that

(tgt(µϕ(i))− tgt(ρi) + ri, tgt(µϕ(i+1) − 1)− tgt(ρi) + si) ∈
−−−−−−→

Vp,[tgt(ρi)]

By induction hypothesis, we also have that for all i ∈ {0, . . . , k}, (si−1, ri) ∈
−−−−−−−→

Vp−1,µϕ(i)

implies that (src(µϕ(i))− src(ρi) + si−1, tgt(µϕ(i))− tgt(ρi) + ri) ∈
−−−−−→

Vp−1,ρi .

Finally, because we have tgt(µϕ(i+1) − 1)
bϕ(i)
−−→ src(µϕ(i+1)) and tgt(ρi)

ai−→ src(ρi+1) with
ai = bϕ(i), it means we have tgt(µϕ(i+1)−1)− tgt(ρi) = src(µϕ(i+1))− src(ρi+1).

Combining these three parts, we get:

x+ src(µϕ(0))− src(ρ0) −−−−→
Vp−1,ρ0

r0 + tgt(µϕ(0))− tgt(ρ0)

−−−−−−→
Vp,[tgt(ρ0)]

s0 + tgt(µϕ(1)−1)− tgt(ρ0) =

s0 + src(µϕ(1))− src(ρ1) −−−−→
Vp−1,ρ1

r1 + tgt(µϕ(1))− tgt(ρ1)

−−−−−−→
Vp,[tgt(ρ1)]

s1 + tgt(µϕ(2)−1)− tgt(ρ1) =

. . .
sk−2 + src(µϕ(k−1))− src(ρk−1) −−−−−→

Vp−1,ρk−1

rk−1 + tgt(µϕ(k−1))− tgt(ρk−1)

−−−−−−−→
Vp,[tgt(ρk−1)]

sk−1 + tgt(µϕ(k)−1)− tgt(ρk−1) =

sk−1 + src(µϕ(k))− src(ρk) −−−−→
Vp−1,ρk

y + tgt(µϕ(k))− tgt(ρk)
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We have shown (x + src(µ) − src(ρ), y + tgt(µ) − tgt(ρ)) ∈ −−−→Vp,ρ which was what we
wanted to demonstrate.

Theorem 12. � is a well-order on runs of Vp.

Proof. Let us consider an infinite sequence of runs of Vp. Because Ep is a well-order on these
runs, it means that we can extract an infinite increasing subsequence. By proposition 5.7,
this is also an infinite increasing subsequence for �p.

5.2.5 The production relations are asymptotically definable

The relations −−−→Vp,µ are finite compositions of relations −−−−→Vq,[m] for q ≤ p and m ∈ 0q ×Nd−q.
To show that these relations are asymptotically definable, we first recall two results from
[47]:

Lemma 5.8. ([47], Lemma 8.2)
If R and R′ are two asymptotically definable periodic relations, then R ◦R′ is an asymp-

totically definable periodic relation.

Theorem 13. ([47], Theorem 8.1)
For m ∈ Nd, −−−−→V0,[m] is asymptotically definable.

Hence our aim is to generalize this last theorem to −−−−→Vp,[m] for any p and m ∈ 0p × Nd−p

To do that, we will use theorem 9 on 80 that says that−−−−→Vp,[m] is asymptotically definable if
and only if the following conic space is finitely generated for every vector space V ⊆ Qd×Qd:

cl((Q≥0
−−−−→
Vp,[m] ) ∩ V ) = cl(Q≥0(

−−−−→
Vp,[m] ∩ V ))

We take such a vector space V . We define X = 0p × Nd−p and Y = (X ×X) ∩ V .

We will re-use the idea of Leroux’ intraproductions but by restricting them to X. Let

Qm,V = {y ∈ X | ∃(x, z) ∈ (m,m) + Y, x
A∗

≤p

−−−−։ y
A∗

≤p

−−−−։ z} and Im,V ⊆ {0, . . . , d− 1} by
i ∈ Im,V ⇐⇒ {q(i) | q ∈ Qm,V } is infinite. Note that for i ∈ {0, . . . , p− 1}, i 6∈ Im,V as for
all q ∈ Qm,V , q(i) = 0.

An intraproduction for (m, Y ) is a triple (r, x, s) such that x ∈ X and (r, s) ∈ Y with:

r −−−→
Vp,[m]

x −−−→
Vp,[m]

s

An intraproduction is total if x(i) > 0 for every i ∈ Im,V . The following lemma can be
proved exactly as Lemma 8.3 of [47]:

Lemma 5.9. There exists a total intraproduction for (m, V0).
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Proof. (This proof is a straightforward adaptation from [47])

Since finite sums of intraproductions are intraproductions, it is sufficient to prove that
for every i ∈ Im,V , there exists an intraproduction (r, x, s) for (m, Y ) such that x(i) > 0. We
fix i ∈ Im,V .

We first prove that there exists q, q′ ∈ Qm,V such that q ≤ q′ and q(i) < q′(i). Since
i ∈ Im,V , there exists an infinite sequence (qn) of markings qn ∈ Qm,V such that (qn(i)) is
strictly increasing. Since Nd is well-ordered, we can find k < ℓ such that qk ≤ qℓ. As we also
have qk(i) < qℓ(i), we have our property.

So we consider these q, q′ ∈ Qm,V with q ≤ q′ and q(i) < q′(i). As q ∈ Qm,V , then there
exists (r, s) ∈ Y such that:

m+ r
A∗

≤p

−−−−։ q
A∗

≤p

−−−−։ m+ s

Symmetrically, as q′ ∈ Qm,V , there exists (r′, s′) ∈ Y such that:

m+ r′
A∗

≤p

−−−−։ q′
A∗

≤p

−−−−։ m+ s′

As r, r′, s and s′ are in X, it means that adding one of these vectors will not prevent
firing transition of A≤p. This means that from the previous transitions sequences, we can
deduce:

• (m+ r′) + r
A∗

≤p

−−−−։ q′ + r from m+ r′
A∗

≤p

−−−−։ q′.

• q + ((q′ − q) + r)
A∗

≤p

−−−−։ (m+ s) + ((q′ − q) + r) from q
A∗

≤p

−−−−։ m+ s.

• (m+ r) + ((q′ − q) + s)
A∗

≤p

−−−−։ q + ((q′ − q) + s) from m+ r
A∗

≤p

−−−−։ q.

• q′ + s
A∗

≤p

−−−−։ (m+ s′) + s from q′
A∗

≤p

−−−−։ m+ s′.

By combining these parts, we get:

m+ r + r′
A∗

≤p

−−−−։ m+ s+ r + (q′ − q)
A∗

≤p

−−−−։ m+ s+ s′

which means that (r + r′, s+ r + (q′ − q), s+ s′) is the intraproduction we were looking
for, with (s+ r + (q′ − q))(i) > 0.

Given a finite set I ⊆ {0, . . . , d− 1} and a marking m ∈ Nd, we denote by mI the vector
of Nd

ω defined by mI(i) = ω if i ∈ I and mI(i) = m(i) otherwise. We also define the order
≤ω by x ≤ω y if for all i, y(i) = ω or x(i) = y(i) (equivalently, there exists I ⊆ {0, . . . , d−1}

such that xI = y). For a relation −→ on Nd and (x, y) ∈ Nd
ω, we define x −→ y if there exists

x′, y′ ∈ Nd with x′ −→ y′, x′ ≤ω x and y′ ≤ω y.
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Let Q = {qIm,V | q ∈ Qm,V } and G the complete directed graph with nodes Q such that
the edge from q to q′ is labeled by (q, q′). For w ∈ (Q × Q)∗, we define TProd(w) ⊆ NA≤p

by:

TProd(ε) = {0A≤p}

TProd((q, q′)) =

{

|u| | ∃(x, x′) ∈ X ×X, x ≤ω q, x′ ≤ω q′, x
ApA

∗
<p

−−−−−−։ x′
}

TProd(uv) = TProd(u) + TProd(v)

We define the periodic relation Rm,V on Y by r Rm,V s if:

1. r(i) = s(i) = 0 for every i 6∈ Im,V

2. there exists a cycle labeled by w in G on the state mIm,V and v ∈ TProd(w) such that
r + δ(v) = s.

Lemma 5.10. For (q, q′) ∈ (Q×Q), TProd((q, q′)) is Lambert.

Proof. We first define the following Presburger sets (for a ∈ Ap):

P (a) = {(x′, u, y) ∈ X × NA ×X | ∃x ≤∞ q, x
a
−→ x′ ∧ y ≤∞ q′}

P ′ = {(x, u, y) ∈ X × NA ×X | x ≤∞ q ∧ y ≤∞ q′}

We also define R = {(x′, v, y) ∈ Nd × NA × Nd | ∃u ∈ A∗, x′
u
−→ y ∧ |u| = v}. This is an

almost semilinear set (corollary 5.2), which means that R ∩ P (a) and R ∩ P ′ are Lambert
sets.

Now, we note that we have the following:

TProd((q, q′)) =
⋃

a∈Ap
|a|+ {u | ∃(x, y) ∈ Nd × Nd, (x, u, y) ∈ R ∩ P (a)}∪

{u | ∃(x, y) ∈ Nd × Nd, (x, u, y) ∈ R ∩ P ′}

By projection (proposition 5.1), we have that {u | ∃(x, y) ∈ Nd × Nd, (x, u, y) ∈ R ∩ P}
are Lambert sets for P = P (a) or P = P ′. Then, as the union of Lambert sets is Lambert,
we have shown that TProd((q, q′)) is Lambert.

Lemma 5.11. The periodic relation Rm,V is asymptotically definable.

Proof. Let P ⊆ NQ×Q be the Parikh image of the language L made of words labeling cycles
in G on the state mIm,V . L is a language recognized by a finite automaton, hence P is a
Presburger set.

Now, let’s show that R′
m,V = {TProd(w) | w ∈ L} is a Lambert set. We have:

R′
m,V =

{

∑

a∈Q×Q

v(a) ⋆ TProd(a) | v ∈ P

}
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P is Presburger, hence there exists (di)1≤i≤p, (ei,j)1≤i≤p,1≤j≤ni
with di, ei,j ∈ NQ×Q and

P =
⋃

i di + ΣjNei,j . This gives:

R′
m,V =

⋃

1≤i≤p

⋃

v∈Np

∑

1≤j≤ni

∑

a∈Q×Q

(di + v(j) ∗ ei,j)(a) ⋆ TProd(a)

=
⋃

1≤i≤p

∑

a∈Q×Q

di(a) ⋆ TProd(a) +
⋃

1≤i≤p

∑

1≤j≤ni

⋃

k∈N

∑

a∈Q×Q

(k ∗ ei,j)(a) ⋆ TProd(a)

=
⋃

1≤i≤p

∑

a∈Q×Q

di(a) ⋆ TProd(a) +
⋃

1≤i≤p

∑

1≤j≤ni

N ⋆

(

∑

a∈Q×Q

ei,j(a) ⋆ TProd(a)

)

For all a ∈ Q×Q, we have seen that TProd(a) is Lambert. So because Lambert sets are
stable by addition, union and N⋆, (proposition 5.1), R′

m,V is Lambert.

We define VIm,V
= {x ∈ Nd | ∀i 6∈ Im,V , x(i) = 0} and R′′

m,V = {(r, r + δ(x)) | r ∈
VIm,V

∧ x ∈ R′
m,V } = {(r, r) | r ∈ VIm,V

} + {0}d × δ(R′
m,V ). By proposition 5.1, we have

R′′
m,V built from R′

m,V by the image through a linear function and the sum with a Presburger
set, which means R′′

m,V is Lambert. But, R′′
m,V is periodic, which means R′′

m,V = N ⋆ R′′
m,V is

asymptotically definable. Finally, as proposition 9, gives us that asymptotically definable sets
are stable by intersection with vector spaces, Rm,V = R′′

m,V ∩ V is asymptotically definable.

Now, we will show that our graph G is an accurate representation of the reachability
relation:

Lemma 5.12. Let w be the label of a path in G from m
Im,V

1 to m
Im,V

2 and v ∈ TProd(w).

Then, there exists u in A∗
≤p with |u| = v and (x, y) ∈ X ×X, x ≤ω m

Im,V

1 and y ≤ω m
Im,V

2

such that x
u
−→ y.

Proof. We show this by induction on the length of w. Let w = w0(q, q
′) where w0 is a path

from m
Im,V

1 to mIm,V

3 and (q, q′) is an edge from m
Im,V

3 to mIm,V

2 and v ∈ TProd(w0(q, q
′)).

This means there exists v1 ∈ TProd(w0), v2 ∈ TProd(q, q′) such that v = v1 + v2. By
induction hypothesis, there exists u1 ∈ X × X, x′0 ≤∞ m

Im,V

1 and y′0 ≤∞ m
Im,V

3 such that
x′0

u1−→ y′0 and |u1| = v1.
By definition of TProd((q, q′)), as v2 ∈ TProd((q, q′)), there exists x′1 ≤ m

Im,V

3 , y′1 ≤∞

m
Im,V

2 and u2 ∈ ApA∗
<p ∪ A

∗
<p such that x′1

u2−→ y′1 and |u2| = v2. Let z = max(y′0, x
′
1). We

have z(1) = y′0(1) = x′1(1) = m3(1) = 0, which gives us:

x′0 + (z − y′0)
u1−→ z

u2−→ y′1 + (z − x′1)

As zIm,V = y′0
Im,V = x′1

Im,V = m
Im,V

3 , we have (z − y′0) ≤∞ 0Im,V and (z − x′1) ≤∞ 0Im,V ,
which allows us to define x = x′0 + (z − y′0) ≤∞ m

Im,V

1 and y = y′1 + (z − x′1) ≤∞ m
Im,V

2 .
u = u1u2 completes the result.

We now show a lemma for the other direction:
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Lemma 5.13. Let (m1, m2) ∈ Qm,V ×Qm,V with u ∈ A∗
≤p such that m1

u
−→ m2. There exists

w ∈ (Q×Q)∗ label of a path from m
Im,V

1 to m
Im,V

2 such that |u| ∈ TProd(w).

Proof. Let u = u0a1u1 . . . anun with ui ∈ A∗
<p and ai ∈ Ap. We define (xi)0≤i≤n, xi ∈ X (xi’s

for i < n are in X because ai ∈ Ap transitions follow these states, and xn = m2 is in X by
hypothesis) by:

m
u0−→ x0

a1u1−−→ x1
a2u2−−→ x2 · · ·

anun−−−→ xn = m2

We have for all i, xi ∈ X, which leads that |u1| ∈ TProd((m
Im,V

1 , x
Im,V

0 )) and for all
i ∈ {0, . . . , n − 1}, |aiui| ∈ TProd((x

Im,V

i , x
Im,V

i+1 )). Hence, we can get |u| ∈ TProd(w) by
defining w = (m

Im,V

1 , x
Im,V

0 )(x
Im,V

0 , x
Im,V

1 ) . . . (x
Im,V

n−1 , m
Im,V

2 ).

Thanks to lemmas 5.12 and 5.13, we can now prove the following lemma in the same way
as lemma 8.5 of [47]:

Lemma 5.14. cl(Q≥0Rm,V ) = cl(Q≥0(
−−−−→

Vp,[m] ∩ V ))

Proof. (This proof is a straightforward adaptation from [47])

Let us first prove the inclusion ⊇. Let (r, s) ∈ Y be such that r −−−→
Vp,[m]

s. In this case,

there exists a word u ∈ A∗
≤p such that m+ r

w
−→ m+ s. Observe that m+n ∗ r and m+n ∗ s

are in Qm,V for every n ∈ N. Hence, r(i) > 0 or s(i) > 0 implies i ∈ Im,V and we deduce
that (m + r)Im,V = (m + s)Im,V = mIm,V . By lemma 5.13, because m + r

u
−→ m + s, there

exists w label of a cycle on mIm,V and such that |u| ∈ TProd(w). As r+ δ(|u|) = s, we have
proved that (r, s) ∈ Rm,V .

Now, let us prove the inclusion ⊆. Let (r, s) ∈ Rm,V . In this case, (r, s) ∈ Y satisfies
r(i) = s(i) = 0 for every i 6∈ Im,V and there exists a word w = a1 . . . ak with ai ∈ Q × Q,
v ∈ TProd(w) such that r + δ(v) = s. By lemma 5.12, there exists u ∈ A∗

≤p with |u| = v,
r′ ≤∞ 0Im,V , and s′ ≤∞ 0Im,V such that m+r′

u
−→ m+s′. We consider a total intraproduction

(r′′, x, s′′) for (m, Y ). Because r′ ≤∞ 0Im,V , there exists p ∈ N such that r′ ≤ p ∗ x. Because
r′(1) = x(1) = 0, from m + r′

u
−→ m + s′, we get m + p ∗ x

u
−→ m + p ∗ x + δ(u). And as we

also have r(1) = 0, we get:

m+ p ∗ x+ r
w′

−→ m+ p ∗ x+ r + δ(w′) = m+ p ∗ x+ s

This means (r, s) ∈ −−−−→Vp,[m
′] where m′ = m+p∗x. Since a production relation is periodic, we

get for all n ∈ N, (n∗r, n∗s) ∈ −−−−→Vp,[m
′] . As (p∗r′′, p∗x, p∗s′′) is an intraproduction for (m, Y ),

we have m+ p ∗ r′′
∗
−→ m′ ∗

−→ m+ s′′. We deduce the relation (m+ p ∗ r′′)+n ∗ r
∗
−→ m′+n ∗ r

from (m+p∗r′′)
∗
−→ m′ and the relation m′+n∗s

∗
−→ (m+p∗s′′)+n∗s from m′ ∗

−→ (m+p∗s′′).
We deduce that the following relation holds for every n ∈ N:

m+ p ∗ r′′ + n ∗ r
∗
−→ m+ p ∗ s′′ + n ∗ s

And as we have (r′′, s′′) ∈ Y and (r, s) ∈ Y , we have p ∗ (r′, s′) +N ∗ (r, s) ⊆ −−−−→Vp,[m] ∩ Y .
Thus (r, s) ∈ cl(Q≥0(

−−−−→
Vp,[m] ∩ Y )). From the inclusion Rm,V ⊆ cl(Q≥0(

−−−−→
Vp,[m] ∩ Y )) we get

the inclusion cl(Q≥0Rm,V ) ⊆ cl(Q≥0(
−−−−→

Vp,[m] ∩ Y )).
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Finally, as −−−→Vp,µ is a finite composition of elements of the form −−−−→Vk,[m] for j ≤ p, we
have proven the following result:

Theorem 14. If µ is a run of Vp, then −−−→Vp,µ is asymptotically definable.

5.2.6 Decidability of reachability

We have now all the results necessary to prove theorem 11, by adapting the proof of theorem
9.1 of [47].

This problem is equivalent to prove that −→ ∩((m,n)+D) is a Lambert relation for every
(m,n) ∈ Nd×Nd and for every finitely generated periodic relationD ⊆ Nd×Nd. We introduce
the order ≤D over D defined by x ≤P x′ if x′ ∈ x+D. Because D is finitely generated, there
exists a1, . . . , aq ∈ D such that D = Na1 + Na2 + . . .Naq. Hence, if we define the surjective
function f from Nq to D defined by f(x) = Σix(i)ai, we have x ≤ x′ =⇒ f(x) ≤P f(x′), and
because ≤ is a well-order on Nq, ≤D is a well-order on D. We introduce the set Ωm,D,n of runs
µ such that (src(µ), tgt(µ)) ∈ (m,n) +D. Thanks to theorem 12, this set is well-ordered by
the relation �Dp defined by µ �p µ′ and (src(µ), tgt(µ))−(m,n) ≤D (src(µ′), tgt(µ′))−(m,n).
We deduce that B = min�D

p
(Ωm,D,n) is finite.

We now show the following equality:

−→ ∩((m,n) + P ) =
⋃

µ∈B

(src(µ), tgt(µ)) + (
−−−→
Vp,µ ∩ P )

Let us first prove ⊇. Let µ ∈ Ωm,D,n. Proposition 5.4 shows that (src(µ), tgt(µ)) +
−−−→

Vp,µ ∈
∗
−→. Since (src(µ), tgt(µ)) ∈ (m,n)+D and D is periodic we deduce the inclusion ⊆.

Now, let us prove ⊆. Let (x′, y′) in the intersection ∗
−→ ∩((m,n) +D). There exists a run

µ′ ∈ Ωm,D,n such that x′ = src(µ′) and y′ = tgt(µ′). There exists µ ∈ min�D
p
(Ωm,P,n) such

that µ �Dp µ′. We deduce that (x′, y′) ∈ (src(µ), tgt(µ)) + (−−−→Vp,µ ∩D) and we have proved
the inclusion ⊆.

Theorem 14 shows that −−−→Vp,µ is an asymptotically definable relation. As P is a finitely
generated relation, it is also asymptotically definable. Asymptotically definable relations are
stable by finite intersections ([48], Lemma 4.5) and we deduce that−−−→Vp,µ ∩D is asymptotically
definable. This induces that ∗

−→ ∩((m,n)+P ) is a Lambert relation for every (m,n) ∈ Nd×Nd

and for every finitely generated periodic relation D ⊆ Nd × Nd. Therefore,
A∗

≤p

−−−−։ is almost
semilinear.

Because
(

ApA
∗
<p∪A

∗
<p

−−−−−−−→

)∗

=
A∗

≤p

−−→, we can now apply theorem 10 and get:

Proposition 5.15. If X and Y are two Presburger sets such that
A∗

≤p

−−→ ∩(X × Y ) = ∅, then

there exists a Presburger
ApA

∗
<p∪A

∗
<p

−−−−−−−→-forward invariant X ′ with X ′ ∩ Y = ∅.

Now that we have shown the existence of such an invariant, we only need to show that
we are able to test whether a given set is an invariant:
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Proposition 5.16. Whether a Presburger set X is a
ApA

∗
<p∪A

∗
<p

−−−−−−−→-forward invariant is decid-
able.

Proof. X is a forward invariant for
ApA

∗
<p∪A

∗
<p

−−−−−−−→ if and only if
Ap

−→ (X) ⊆ X and
A∗

<p
−−→ (X) ⊆ X.

Because
Ap
−→ (X) is a Presburger set, the first condition is decidable as the inclusion of

Presburger sets, and the second reduces to deciding whether
A∗

<p
−−→ ∩ (X × Nd\X) is empty,

which is an instance of the reachability problem in a VAS with p− 1 hierarchical zero-tests,
which is decidable by induction hypothesis.

This allows us to conclude:

Theorem 15. Reachability in VAS0∗ is decidable.

Proof. By the propositions 5.15 and 5.16, reachability is co-semidecidable by enumerating
Presburger forward invariants, and semidecidability is clear.

5.3 Cloverability in VAS with hierachical zero-tests

If COVERABILITY can be easily obtained from REACHABILITY, there is no known reduction
from CLOVERABILITY to REACHABILITY. We show here how to use the well-orders defined
above to show the decidability of this problem.

In order to do that, we show that we can see a VAS with hierarchical zero-tests as some
kind of WSTS:

Definition 5.5. Given V = 〈A0, ..., Ap, δ〉 a VAS0∗ of dimension d, we define wstsk(V) =
〈0k × Nd−k

ω , AkA∗
<k〉 ∪A

∗
<k where a1 . . . ak = a1.a2 . . . ak.

Proposition 5.17. If V is a VAS0∗p, for k ≤ p, wstsk(V) is a complete WSTS with decidable
POST MEMBERSHIP.

Proof. First, let’s show that wstskV is a WSTS. Let’s take x, y, x′ ∈ 0k ×Nd−k
ω and u ∈ A∗

≤k

such that x
u
−−։lts(V) x

′ and y ≥ x. We have x′ − x ∈ 0k × Nd−k. Because we are only
increasing the counters that can not be tested for zero, we get x′ u

−→ y+ x′− x and wstsk(V)
is a WSTS.

Let’s now show completeness. As [29] already explained that 0p × Nd−p
ω is a cdcwo, we

only have to show continuity, i.e. that for any downward closed set Y ⊆ 0d ×Nd−p
ω , we have

Lim ↓PostS(Y ) = Lim ↓PostS(Lim Y ). As Y ⊆ Lim Y , the direction ⊆ is immediate, so
let’s look at the other direction and take x ∈ PostS(Lim Y ). We have a sequence yi ∈ Y ,
y ∈ Lim Y and u ∈ A∗ such that lim yi = y and y

u
−−։ x. As lim yi = y, there exists

i ∈ N such that for all j ≥ i, u is fireable from yj. Let xj be such that yj
u
−→ xj . This leads

to x ∈ Lim ↓PostS(Y ), and as we have shown have PostS(Lim Y ) ⊆ Lim ↓PostS(Y ), we
obtain by closure Lim ↓PostS(Lim Y ) ⊆ Lim ↓PostS(Y ).
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Now, we consider the problem of POST MEMBERSHIP and reduce it to reachability in VAS0∗

with p − 1 hierarchical zero-tests. We have x, y ∈ 0k × Nd−k
ω and we want to know if there

exists z ∈ Postts(V)(x,Ak ∪{ε}), u ∈ A∗
≤k−1 and y′ ∈ 0k×Nd−k

ω such that y ≤ y′ and z u
−→ y′.

To check that, we define V ′ similar to V but with additionnal transition into A0 that can
decrease each component of index in {k+1, . . . , d}. Then, for z fixed, the previous problem
reduces to reachability of y in V ′. Reachability in such a VAS0∗ is decidable, by theorem 15
(or [55])

We write WSTS-VASZH(k) the class of WSTS obtained by this construction from any VAS0∗

with k hierarchical zero-tests.
This transformation of the original LTS of a VAS0∗ into a WSTS doesn’t lose any infor-

mation required to compute the cover of the original LTS. Indeed, we have the following:

Proposition 5.18. Let V be a VAS0∗ with p hierarchical zero-tests and x ∈ 0p × Nd−p
ω . We

define recursively:
Cp+1 = {x}
Ck = Coverwstsk(S)(Ck+1)

Then, we have C0 = Coverts(S)(x).

Proof. Let us first prove C0 ⊆ Coverts(V)(x). We take y0 ∈ C0. This means there exists for
i ∈ {1, . . . , p}, yi ∈ X, such that (considering x = yp+1), yi ∈ Coverwstsi(V)(yi+1). Because
of monotony, we can build by induction for i ∈ {0, . . . , p+1} the sequence xp+1 = yp+1, and
xi ∈ Reachwstsi(V)(xi+1) with xi ≥ yi. Because Reachwstsi(V)(xi+1) ⊆ Reachts(V)(xi+1), this
gives the existence of x0 ≥ y0 such that x0 ∈ Reachts(V)(x).

To show the other direction, we consider y ∈ Coverts(V)(x) and a run γ such that src(γ) =
x and tgt(γ) ≥ y. We decompose this run by γ = γpγp−1 . . . γ0 where γi fulfills:

• tgt(γi) ∈ 0i × Nd−i
ω

• For i < p, γi doesn’t visit any state in 0i+1 × Nd−i−1
ω .

Note that the second item means that the transitions inside γi live inside A≤i. Hence,
tgt(γi) ∈ C0 and this concludes our proof.

This means that in order to show that CLOVER SET is computable for VAS0∗ , we only
need to show that this is the case for WSTS-VASZH(k). Moreover, to prove that, thanks to
proposition 3 and theorem 2, we will use an acceleration strategy that will be sufficient to
solve this problem.

5.3.1 Duality of the backward and forward algorithm

The next sections may be a bit abstract, as we are using the powerful theorem 2 to obtain
directly the computability of CLOVER SET. We present here an other view of the proof
(restricted to VAS with one sero-test like presented in [17]), as a dual of the algorithm
deciding coverability in VAS with one zero-test presented by Abdulla and Mayr in [7]. Let
us describe in few words the idea behind this algorithm (each step is obtained by using the
previous step has an oracle):
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Coverability [7] Cloverability [17]

Decide REACHABILITY for wsts0(V) Decide REACHABILITY for wsts0(V)

Decide PRED MEMBERSHIP for wsts1(V) Decide POST MEMBERSHIP for wsts1(V)

Compute PRED BASIS for wsts1(V) Compute POST BASIS for wsts1(V)
(using directly membership and (by completing the Post set,

proposition 2.3 of page 33) and taking maximal elements)

Run the backward procedure Run the Karp-Miller procedure
of WSTS on wsts1(V) of WSTS on wsts1(V)

Indeed, as explained in more depth in chapter 2, one can look at the Karp-Miller algorithm
as the dual of the backward algorithm of WSTS by replacing upward closed set by downward
closed sets. However, the properties of downward closed sets are less desirable than those
of upward closed sets: in this particular case, one can not obtain directly POST BASIS from
POST MEMBERSHIP, because POST BASIS is only defined by taking the completion of the Post-
set, which means that one must be able to test membership of the limit elements, and not
of only the "normal" elements. The next sections aim to show that one can test such a
membership by using a recursively enumerable set of possible witnesses.

5.3.2 Productive sequences

We reuse here the well-order Ep defined in section 5.2.4 in order to define accelerations. The
idea is that if we have ρ Ep ρ

′, then ρ′ is obtained from ρ by inserting some additionnal
transitions. We show that iterating these additionnal transitions is a "good" acceleration.

We write run(x0, u) the run x0
a0−→ x1

a1−→ · · ·
an−→ xn when u = a0 . . . an. Formally, if

we have two runs run(x, u) and run(y, v) of a VAS Vp with p hierarchical zero-tests with
run(x, u) Ep run(y, v), we want to define run(x, u) ∇p run(y, v) ∈ ((A∗

≤p)
|u|+1 that will

express the loops that can be inserted between the letters of u (|u| − 1 positions). We will
build this operator by recursion on p:

• For ρ = x0
a1−→ x1

a2−→ · · ·
am−→ xm and µ = y0

b1−→ y1
b2−→ · · ·

bn−→ yn runs with 0 hierarchical
zero-tests with ρ E0 µ, we consider ϕ : {1, . . . , m} → {1, . . . , n} the strictly increasing
mapping induced by the word embedding order, that we extend by ϕ(0) = 0. Because
we have xm ≤ yn and am = bn, we also require that ϕ(m) = n. Then, we define:

ρ ∇0 µ = (bϕ(0)+1bϕ(0)+2 . . . bϕ(1)−1,
bϕ(1)+1bϕ(1)+2 . . . bϕ(2)−1,

. . .
bϕ(m−1)+1bϕ(m−1)+2 . . . bϕ(m)−1)

• For ρ = ρ0
a1−→ ρ1

a2−→ · · ·
am−→ ρm and µ = µ0

b1−→ µ1
b2−→ · · ·

bn−→ µn runs with p
hierarchical zero-tests such that ρi, µi are runs with p − 1 hierarchical zero-tests and
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ai, bi ∈ Ap with ρ Ep µ, we consider ϕ : {1, . . . , m} → {1, . . . , n} the strictly increasing
mapping induced by the word embedding order, that we extend by ϕ(0) = 0. Because
we have ρm Ep−1 µn and am = bn, we also require that ϕ(m) = n. We recall that
acts(ρ) denotes the sequence of actions appearing in ρ. Then, we define:

ρ∇pµ = (ρ0 ∇p−1 µϕ(0))
(bϕ(0)+1acts(µϕ(0)+1) . . . bϕ(1)−1acts(µϕ(1)−1)
(ρ1 ∇p−1 µϕ(1))
(bϕ(1)+1acts(µϕ(1)+1) . . . bϕ(2)−1acts(µϕ(2)−1)

. . .
(bϕ(m−1)+1acts(µϕ(m−1)+1) . . . bϕ(m)−1acts(µϕ(m)−1)
(ρm ∇p−1 µϕ(m))

Let Vp be a VAS with p hierarchical zero-tests with x ∈ Nd
ω and u ∈ A∗

≤p. If there
exists ρ run of Vp such that run(x, u) Ep ρ and src(ρ) = x, we say that ∆ = run(x, u)∇pρ
is productive for Vp, x and u. In this case, for k ∈ N and assuming u = a0a1 . . . an and
∆ = (v1, . . . , vn), we define acc(u,∆, k) ∈ A∗

≤p by:

acc(u,∆, n) = a0v
k
1a1v

k
2 . . . v

k
nan

Note that if ∆ was obtained from the run(x, u) E run(x, u′) inequality with u and u′

fireable from x, we have acc(u,∆, 1) = u′ and hence is fireable. Actually, in this case, we
will show in proposition 5.20 below that all acc(u,∆, k) are fireable from x. But first, we
state a very simple lemma (which can be seen as an instance of proposition 5.3) that shows
the condition necessary to iterate a sequence:

Lemma 5.19. Let V be a VAS with p hierarchical zero-tests, x ∈ Nd−p
ω and ρ be a run of V

with:

• src(ρ)− x ∈ 0p × Nd−p
ω

• tgt(ρ)− x ∈ 0p × Nd−p
ω

Then, we have:

x+ p ∗ (src(ρ)− x)
acts(ρ)p

−−−−−−։ y + p ∗ (tgt(ρ)− y)

Proposition 5.20. Let V be a VAS with p hierarchical zero-tests, x, x′ ∈ Nd
ω, u, u

′ ∈ A∗
≤p

be two transitions sequences fireable respectively from x and x′ such that run(x, u) Ep

run(x′, u′). We define ∆ = run(x, u) ∇p run(x
′, u′)

If y ∈ Nd
ω and y′ ∈ Nd

ω are such that x
u
−−։ y and x′

u′

−−−։ y′, then for any n ∈ N, we
have:

x+ k ∗ (x′ − x)
acc(u,∆,k)
−−−−−−−−։ y + k ∗ (y′ − y)
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Proof. This will be shown by induction on p. For p = −1, we consider the empty transition
system V−1 that has only runs reduced to a single state, and for which the result is immediate.

We take Vp a VAS with p hierarchical zero-tests, x ∈ Nd
ω and u ∈ A∗

≤p fireable from x. We
consider a productive sequence ∆ = (v1, . . . , vn). This means there exists u′ ∈ A∗

≤p fireable
from x with run(x, u) Ep run(x, u

′). This means we have:

run(x, u) = ρ0a1ρ1a2 . . . amρm
run(x, u′) = µ0b1µ1b2 . . . bnµn

with ai, bi ∈ Ap and ρi, µi runs of Vp−1 the VAS with p−1 hierarchical zero-tests obtained
from Vp by removing the Ap transitions. We have also ϕ, a strictly increasing mapping
from {0, . . . , m} to {0, . . . , n} with ϕ(0) = 0, ϕ(m) = n, ∀0 ≤ i ≤ m. ρi Ep−1 µϕ(i) and
∀1 ≤ i ≤ m. ai = bϕ(i).

Because we have ρi Ep−1 µϕ(i), we define ∆i = ρi∇p−1µϕ(i). By induction hypothesis, we
have:

∀k ∈ N. src(ρi)+ k ∗ (src(µϕ(i))− src(ρi))
acc(acts(ρi),∆i,k)
−−−−−−−−−−−−։ tgt(ρi)+ k ∗ (tgt(µϕ(i))− tgt(ρi))

Moreover, for any i ∈ {0, . . . , m− 1}, we have:

• tgt(ρi) ≤ tgt(µϕ(i)) (by lemma 5.6)

• tgt(ρi) ≤ tgt(µϕ(i+1)−1) from src(ρi+1) ≤ src(µϕ(i+1)) (again by lemma 5.6) and ai+1 =
bϕ(i+1)

• tgt(ρi), tgt(µϕ(i+1)−1 ∈ 0p × Nd
ω because ai+1, bϕ(i+1) ∈ Ap are fired after these states.

• tgt(ρi), tgt(µϕ(i)) ∈ 0p × Nd
ω because ai+1, bϕ(i)+1 ∈ Ap are fired after these states.

This means the hypothesis of lemma 5.19 apply to µ′
i defined by:

µ′
i = tgt(µϕ(i))bϕ(i)+1µϕ(i)+1bϕ(i)+2µϕ(i)+2 . . . bϕ(i+1)−1µϕ(i+1)−1

By applying this lemma, we get:

∀k ∈ N. tgt(ρi) + k ∗ (tgt(µϕ(i))− tgt(ρi))
acts(µ′i)

n

−−−−−−−։ tgt(ρi) + k ∗ (tgt(µϕ(i+1)−1)− tgt(ρi))

Finally, we note that because ai = bϕ(i), we have tgt(µϕ(i+1)−1)− tgt(ρi) = src(µϕ(i+1))−
src(ρi+1) which gives:

∀k ∈ N. tgt(ρi) + k ∗ (tgt(µϕ(i+1)−1)− tgt(ρi))
a1−→ src(ρi+1) + k ∗ (src(µϕ(i+1))− src(ρi+1))

But as we have ∆ = ∆0acts(µ
′
0)∆1 . . . acts(µ

′
m−1)∆m, we can put the pieces together and

get:
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src(ρ0) + k ∗ (src(µϕ(0))− src(ρ0))
acc(acts(ρ0),∆0,k)
−−−−−−−−−−−−։ tgt(ρ0) + k ∗ (tgt(µϕ(0))− tgt(ρ0))

acts(µ′0)
n

−−−−−−−։ tgt(ρ0) + k ∗ (tgt(µϕ(1)−1)− tgt(ρ0))
a1−→ src(ρ1) + k ∗ (src(µϕ(1))− src(ρ1))

acc(acts(ρ1),∆1,k)
−−−−−−−−−−−−։ tgt(ρ1) + k ∗ (tgt(µϕ(1))− tgt(ρ1))

acts(µ′1)
k

−−−−−−−։ tgt(ρ1) + k ∗ (tgt(µϕ(2)−1)− tgt(ρ1))
a2−→ src(ρ2) + k ∗ (src(µϕ(2))− src(ρ2))
. . .
am−→ src(ρm) + k ∗ (src(µϕ(m))− src(ρm))

acc(acts(ρm),∆m,k)
−−−−−−−−−−−−−։ tgt(ρm) + k ∗ (tgt(µϕ(m))− tgt(ρm))

Finally, we note that by definition of acc, we have:

acc(acts(ρ),∆, k) = acc(acts(ρ0),∆0, k) acts(µ′
0)
k a1 acc(acts(ρ1),∆1, k)

acts(µ′
1)
k a2 acc(acts(ρ2),∆2, k)

. . . . . .
acts(µ′

m)
k am acc(acts(ρm),∆m, k)

This gives us that:

src(ρ0) + k ∗ (src(µϕ(0))− src(ρ0))
acc(acts(ρ),∆,k)
−−−−−−−−−−−։ tgt(ρm) + k ∗ (tgt(µϕ(m))− tgt(ρm))

Because src(ρ0) = src(ρ), src(µϕ(0)) = src(µ), tgt(ρm) = tgt(ρ) and tgt(µϕ(m)) = tgt(µ),
that concludes the demonstration.

δ is extended to ∆ ∈ (A∗
≤q)

<ω by δ(v0, v1, . . . , vn) =
∑

δ(vi). This allows us to define the
following set of functions (not an acceleration strategy because it doesn’t fulfill h(x) ≥ x):

Definition 5.6. Given S ∈ VASZH(p), for q ≤ p, we define:

PROD(q) = {fu,∆ | u ∈ A
∗
≤q,∆ ∈ ((A≤q)

∗)<ω}

by:

dom(fu,∆) = {x ∈ Nd
ω | ∆ is productive for V, x, u}

fu,∆(x) = x+ ω ∗ δ(∆)

A straightforward corollary of proposition 5.20 is that all these functions stay inside
Lim Cover:

Proposition 5.21. Let S ∈ WSTS-VASZH(p) and x ∈ 0p × Nd−p
ω . For every f ∈ PROD(p),

f(x) ∈ Lim CoverS(x).
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Moreover, this set of functions allow to reach any limit element of the cover of our system:

Proposition 5.22. Let S ∈ WSTS-VASZH(p) and x ∈ 0p×Nd−p
ω . For every y ∈ Lim CoverS(x),

there exists f ∈ PROD(p) such that f(x) = y.

Proof. Let y ∈ Lim CoverS(x). There exists a sequence (ρk)k∈N with ∀k ∈ N. src(ρk) = x
and y ≤ lub {tgt(ρk) | k ∈ N}. We assume that x doesn’t contain any ω’s, as this would
just mean some components are ignored in the system (as explained in section 2.3.2). This
means that for all k, tgt(ρk) ∈ Nd, and by extracting a subsequence of (ρk) we can require
that for any i ∈ {0, . . . , d− 1}:

• y(i) = ω =⇒ tgt(ρk)(i) is strictly increasing.

• y(i) < ω =⇒ ∀k ∈ N. tgt(ρk)(i) = y(i).

Because Ep is a well-order, there exists k < k′ such that ρk Ep ρk′. Let ∆ = ρk ∇p ρk′. By
definition, ∆ is productive for x, so we can pick facts(ρk),∆ and we have x ∈ dom(facts(ρk),∆).
Moreover, δ(∆) = tgt(ρk′)− tgt(ρk), so we have facts(ρk),∆(x) = x+ ω ∗ δ(∆) = y.

5.3.3 Decidability of the cover

By theorem 2, it is enough to show that CLOVERABILITY is semi-decidable and POST MEMBERSHIP

is decidable. Propositions 5.21 and 5.22 show that CLOVERABILITY is semi-decidable by enu-
merating the functions inside PROD(p). As we have also shown in proposition 5.17 that
POST MEMBERSHIP is decidable, we get:

Theorem 16. CLOVER SET is computable for VAS0∗

5.4 Other problems

We show here the decidability of a few other problems on VAS0∗ , which are mainly conse-
quences of the two previous sections.

5.4.1 Repeated Control State Reachability and LTL

We present here a proof of the decidability of REPEATED CONTROL STATE REACHABILITY

(equivalent to REPEATED COVERABILITY as described in section 1.6.5). This requires the
addition of control states to Vector Addition Systems with hierarchical zero-tests. This
is done similarly as for Vector Addition Systems (definition 1.7 on page 18). All results
that were shown for Vector Addition Systems with hierarchical zero-tests stay true with the
addition of control states.

In the basic Vector Addition System with States, REPEATED CONTROL STATE REACHABILITY

was shown equivalent to the presence of a specific increasing loop (see [25]). We define here
a similar notion. Let ≤p be the order defined by x ≤p y if x ≤ y and for i ∈ {0, . . . , p− 1},
x(i) = y(i). Then, we define:
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Definition 5.7. We consider a Vector Addition System with States and hierarchical zero-
tests. Let (q, x) ∈ Q× Nd. A word u ∈ A∗ is a ≤p-increasing loop on (q, x) if:

• u ∈ A+
≤p.

• (q, x) ∈ dom(u) and u(q, x) ≥p (q, x).

With this definition, we proceed in three steps:

• We first show that q can be repeatedly covered from (q0, x0) if there exists a ≤p-
increasing loop (for some p ≤ d) on (q, x) ∈ CoverS(x).

• Then, we show that given y ∈ Nd
ω, one can decide whether there is a ≤p-increasing

loop on (q, x) with x ∈ (↓y) ∩ Nd.

• We conclude by noticing that given q ∈ Q, by proposition 16, we can compute a finite
set B ⊆ Nd

ω such that {x ∈ Nd | (q, x) ∈ CoverS(q0, x0)} = (↓B) ∩ Nd

Lemma 5.23. Let S ∈ VASZH(d), x0 ∈ Nd and q0, q ∈ Q. If q can be repeatedly covered from
(q0, x0), then there exists (q, x) ∈ CoverS(q0, x0), p ≤ d and a ≤p-increasing loop on (q, x).

Proof. Let (q0, x0)
a1−→ (q1, x1) · · ·

ak−→ (qk, xk) · · · be an infinite run covering q infinitely often.
Let p be the highest number such that {k ∈ N | ak ∈ Ap} is infinite. By extracting a suffix,
we can consider that all ak ∈ A≤p. Then, because Nd is well-ordered, one can find a strictly
increasing mapping ϕ : N→ N such that for all k ∈ N:

• (qϕ(k), xϕ(k)) ≤ (qϕ(k+1), xϕ(k+1))

• aϕ(k)+1 ∈ Ap

Because aϕ(k)+1 ∈ Ap, this means that xϕ(k) ∈ 0p×Nd−p. As q is covered infinitely often,
we can find a run from xϕ(k) to xϕ(k+k′) such that q is covered in an intermediate state. Let

u ∈ A∗
leqp and v ∈ A∗

≤p such that (qϕ(k), xϕ(k))
u
−−։ (q, x)

v
−−։ (qϕ(k), xϕ(k+k′)). Then, because

xϕ(k) ≤p xϕ(k+k′), by monotony, there exists x′ ≥ x such that (q, x)
v
−−։ (qϕ(k), xϕ(k+k′))

u
−−։

(q, x′). We have shown the existence of our loop.

We now define precisely our problem of existence of an increasing loop:

Decision Problem: INITIALIZED INCREASING LOOP

Input: S ∈ VASZH(d)

p ≤ d
y ∈ Nd

ω

q ∈ Q
Question: does there exists x ∈ (↓y) ∩ Nd,

u ∈ A+
≤p such that (q, x) ≤p u(q, x)?

and we will show that it is decidable by reduction to reachability:

Lemma 5.24. INITIALIZED INCREASING LOOP is decidable.
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Proof. (In this proof, ωm describes the vector with m ω’s. Also, we recall that ei denotes
the vector whose all components are equal to 0 except the i-th one which is equal to 1.)

Let us take x ∈ 0p × Nd−p
ω . Without loss of generality (by reordering counters), we have

x = (0p, ωm, b), b ∈ Nn, with d = p+m+ n.
We will build a VAS0∗ V ′ inducing a transition system S ′ that will mimic S in the following

sense (x represents a state S, and x′ the associated state in S ′):

• The counters that can be tested for zero are preserved.

• A counter x(i) for p ≤ i ≤ p+m− 1 (the ones for which x(i) = ω) is replaced by two
counters x′(i) and x′(i+m), such that x′(i)− x′(i+m) ≤ x(i). This simulates a lossy
counter that can go arbitrarily below its initial value.

• A counter x(i) for p+m ≤ i ≤ p+m+n− 1 (the ones for which x(i) < ω) is replaced
by one counter x′(i+m) such that x′(i+m) ≤ x(i). This simulates a lossy counter.

Note that states of S will be represented as (q, t, v, z) with q ∈ Q, t ∈ Np, v ∈ Nm

and z ∈ Nn while states of S ′ will be represented as (q, t, v, w, z) with q ∈ Q, t ∈ Np,
(v, w) ∈ Nm × Nm and z ∈ Nn.

Formally, we define V ′ = 〈A′
0, A1, . . . , Ap, δ

′, tr〉 of dimension d′ = p+ 2m+ n by:

A′
0 = A0∪

{leakq,i | p+ 1 ≤ i ≤ p+m ∧ q ∈ Q}∪
{syncaddq,i | p + 1 ≤ i ≤ p+m ∧ q ∈ Q}∪
{syncsubq,i | p+ 1 ≤ i ≤ p+m ∧ q ∈ Q}∪
{leakq,i | p+ 2m+ 1 ≤ i ≤ p+ 2m+ n ∧ q ∈ Q}

δ′(a) = (x, v, 0, w) for a ∈ A≤p and δ(a) = (x, v, w)
δ′(leaki) = −ei

δ′(syncaddi) = −ei − ei+m
δ′(syncsubi) = +ei + ei+m

tr′(a) = tr(a) for a ∈ A≤p

tr′(aq,i) = (q, q) for a ∈ {leak, syncadd, syncsub}

The transition of A≤p are translated by simply affecting the counters that are supposed
to simulate S ones, while transitions that perform more zero-tests than p are discarded. The
leaki transitions makes some counters lossy, and finally the syncaddi and syncsubi transitions
imply that only the relative value of the counters i and i+m matters (for p ≤ i ≤ p+m−1).
This simulates a counter living in Z.

We will show that the existence of x, x′ ∈ 0p×Nd−p and u ∈ A+
≤p such that x ≤ (0p, ωm, b),

x ≤p x′ and x
u
−−։S x

′ is equivalent to the reachability in S ′ of (q, 0p, 0m, 0m, b) from itself
using at least one transition in A≤p. Note that the class of Vector Addition System with
States and hierarchical zero-tests is stable by product with a finite automata, so this question
of reachability with respect to the regular expression A′∗AleqpA

′∗ reduces to basic reachability.
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⇒ Let us assume the existence of x, x′ ∈ 0p × Nd−p and u ∈ A+ such that x ≤ y,
(q, x)

u
−−։ (q, x′) and x ≤ x′.

Let x = (0p, α1, β1), x′ = (0p, α2, β2) with α1 ≤ α2, β1 ≤ β2 and β1 ≤ b.

Because (q, 0p, α1, β1)
u
−−։S (q, 0p, α2, β2), we have (q, 0p, α1, α1, β1)

u
−−։S′ (q, 0p, α2, α1, β2).

Moreover, because β1 ≤ b, we also have that (q, 0p, α1, α1, b)
leak∗syncadd∗

−−−−−−−−−−։S′ (q, 0p, α2, α2, β2+
b− β1).

Then, we have :

(q, 0p, 0m, 0m, b)
syncadd∗

−−−−−−−։S′ (q, 0p, α1, α1, b)
u
−−։S′ (q, 0p, α1, α2, b+ β2 − β1)
leak∗

−−−−−։S′ (q, 0p, α1, α1, b)
syncsub∗

−−−−−−−։S′ (q, 0p, 0m, 0m, b)

⇐ Assume that we have (q, 0p, 0m, 0m, b)
u
−−։S′ (q, 0p, 0m, 0m, b). We will show there exist

x, x′ ∈ 0p×Nd−p with x ≤ y, x ≤ x′ and such that x
u′

−−−։S x
′ with u′ is obtained from

u by deleting all letters that are not in A≤p.

Let (qi, ti, vi, wi, zi)0≤i≤k be a sequence such that:

– For i ∈ {0, . . . , k − 1}, (qi, ti, vi, wi, zi) −−։S′ (qi+1, ti+1, vi+1, wi+1, zi+1).

– (q0, t0, v0, w0, z0) = (qk, tk, vk, wk, zk) = (q, 0p, 0m, 0m, b).

Let α ∈ Nm be the vector defined by, for i ∈ {1, . . . , m}, α(i) = max {wj(i) | 0 ≤ j ≤
k}. We define γ from Nd+m to Nd by γ(t, v, w, z) = (t, v − w + α, z). Then, an easy
induction on the length of the transition sequence gives that:

(q1, s1)
u
−−։S′ (q2, s2) =⇒ ∃s′2 ∈ Nd, s′2 ≥p γ(s2) ∧ (q1, γ(s1))

u′

−−−։S (q2, s
′
2)

This gives the result.

And now, we can just conclude:

Theorem 17. REPEATED CONTROL STATE REACHABILITY is decidable for Vector Addition
Systems with States and hierarchical zero-tests.

Proof. We consider a Vector Addition System with States and hierarchical zero-tests with
x0 ∈ Nd and q0, q ∈ Q. By lemma 5.23, q is repeatedly coverable from (q0, x0) if and only if
there exists p ≤ d such that there exists (q, y) ∈Max Lim CoverS(x), and x ≤ y such that
there is a ≤p-increasing loop on (q, x).

The set of y ∈ Nd
ω such that (q, y) ∈ Max Lim CoverS(x) is finite and computable

(theorem 16). Thus, REPEATED CONTROL STATE REACHABILITY reduces to a finite number
of instances of INITIALIZED INCREASING LOOP which are decidable by lemma 5.24.
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Proposition 1.9 on page 24 allows us to also get:

Theorem 18. LTL MODEL CHECKING is decidable for Vector Addition Systems with hierar-
chical zero-tests.

5.4.2 Regularity

To finish our overview on problems for VAS0∗ , we study the following problem:

Decision Problem: REGULARITY

Input: a LTS S = 〈X,A,−→〉 ∈ S

x ∈ X
Question: is Lt(S, x) regular?

This problem is known to be decidable for simply-labelled Vector Addition Systems, but
not if we allow labelling functions [37, 62]. We will show that regularity is still decidable
for simply-labelled VAS0∗ by a simple reduction to regularity for Vector Addition Systems.
Indeed, given a VAS0∗ V, we will prove that either:

• The zero-tests are really used (for a notion of usage to be defined), and the language
of traces can’t be regular, or,

• The zero-tests aren’t really used, and we can define a simply-labelled VAS V ′ with the
same language of traces.

Let V = 〈A0, A1, . . . , Ad, δ〉 and x ∈ Nd. For p ≤ d, we define:

Ωp = {α ∈ Np | ∃β ∈ Nd−p. ∃y ∈ Nd. x −−։ (α, β) −−։ A∗Ap}

If Ωp is bounded, it means that the zero-tests inside Ap aren’t really used: because it is
only used after bounded behaviour of the counters it is supposed to test, one can encode
these counters in control states. Thus, we have the following lemma:

Lemma 5.25. Let Ωp be finite for every p. Then one can build a VAS V ′ = 〈A, δ′〉 of
dimension d and x′ ∈ Q× Nd such that Lt(ts(V

′), x′) is regular if and only if Lt(ts(V), x) is
regular.

Proof. Let Ω =
⋃

1≤p≤dΩp. We define a VASS V ′ = 〈Q,A′, δ, tr〉 (note that tr is a function
from A′ = Q× A to Q×Q) by:

Q = Ω ∪ {vasmode}

A′ = A×Q

dom(tr) = {(q, a) | a ∈ Ap, q ∈ Ω s.t. ∀i ∈ {0, . . . , p− 1}. q(i) = 0}∪
{vasmode} × A0

tr(q, a) =

{

(q, q + a) if q ∈ Ω and q + δ(a) ∈ Ω
(q, vasmode) otherwise

102



We have two categories of control states: as long as we are in the "predecessors" of the
zero-tests Ω, we keep this information to be able to know when to fire a zero-test. When we
get outside this set, we know that we can only fire normal transitions, so we don’t need this
information any more and we get into the control state vasmode. This makes V ′ simulate
faithfully V:

Lt(ts(V), x) = ϕ(Lt(V), (x, x))
ψ(Lt(ts(V)) = Lt(V, (x, x))

where:

• ϕ is the morphism (Q× A)∗ → A∗ defined by:

ϕ(q, a) = a

• ψ is the transducer A∗ → (Q× A)∗ using states Q defined by:

q
a? (q,a)!
−−−−−→ψ

{

(q, q + a) if q ∈ Ω and q + δ(a) ∈ Ω
(q, vasmode) otherwise

Because regular languages are stable by morphisms and regular transduction, we get our
result.

Lemma 5.26. Let Ω be infinite. Then, Lt(S, x) is not regular.

Proof. Let p such that Ωp is infinite. Ωp is infinite, so because our transition is finite-

branching, by Konig’s lemma, there exists an infinite run ρ x0
u1
−−−։ x1

u2
−−−։ · · ·

uk
−−−։ xk · · ·

such that:

• For all k ∈ N, there exists vk ∈ A∗Ap and yk ∈ Nd such that xk
vk
−−−։ yk.

• For all k ∈ N, xk(0, . . . , p−1) < xk+1(0, . . . , p−1) (which implies δ(uk)(0, . . . , p−1) > 0)

Let us assume that Lt(S, x) is regular. {u1u2 . . . uk−1ukvk | k ∈ N} ⊆ Lt(S, x), so by the
pumping lemma, there exists k, ℓ ∈ N with k ≤ ℓ such that for all n ∈ N:

u1 . . . uk−1(uk . . . uℓ)
nvℓ ∈ Lt(S, x)

But δ(uk . . . uℓ)(0, . . . , p− 1) > 0, which contradicts the fact that vℓ ∈ A∗Ap.

Theorem 19. REGULARITY is decidable for VAS0∗.

Proof. One can decide whether Ω is bounded by reduction to CLOVER SET. Then, lemmas
5.25 and 5.26 allow to conclude.
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5.5 A summary of results on VAS with hierarchical zero-

tests

We can now sum up the various results known on VAS with hierarchical zero-tests. Results
marked by [*] are those presented of this chapter, or that can be directly derived from them.

VAS VAS + 1 zero-test VAS + hierarchical

COVERABILITY
yes

[41],[6],[33],...
yes

[55],[7],[*]
yes

[55],[*]

CLOVERABILITY
yes

[41],[6],[33],...
yes
[*]

yes
[*]

REACHABILITY
yes

[49],[42],[47]
yes

[55],[*]
yes

[55],[*]

BOUNDEDNESS
yes

[41],[6],[33],...
yes

[32],[*]
yes
[*]

TERMINATION
yes

[41],[6],[33],...
yes

[32],[*]
yes
[*]

LTL (on actions)
yes

[25],[39]
yes
[*]

yes
[*]

LTL (on states)
no
[25]

no
[25]

no
[25]

REGULARITY (unlabeled)
yes
[62]

yes
[*]

yes
[*]

REGULARITY (with labeling)
no
[62]

no
[62]

no
[62]

We believe this provide a comprehensive survey of problems that are decidable on VAS
with hierarchical zero-tests. It is interesting to note that despite looking (at least syntaxi-
cally) much closer to Minsky machines than VAS, VAS with hierarchical zero-tests enjoy
exactly the same decidability properties. However, some open problems remain:

• The complexity of these problem on VAS with hierarchical zero-tests are totally un-
known, apart from the lower bound of EXPSPACE derived from coverability for VAS
[19]. It can be shown that they are all as hard as reachability on VAS, and given
the complexity of this problem is an important problem that is still open (and diffi-
cult), it may take time before getting any meaningful result. Extending the Rackoff
proof seems difficult, given that this proof relies heavily on the fact that the value of
a counter doesn’t matter once it gets big enough. A possibility would be to bound the
running time of the algorithms derived from the proofs presented here by the works of
Schnoebelen et al. [27, 60], but that would yield horrendous upper bound, way above
the primitive recursive hierarchy.

• Given the large similarity (from a decidability point of view) between VAS and VAS
with hierarchical zero-tests, it would be interesting to find a significant result that
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would either show their difference, or that they have an underlying structure that
make them basically the same. A study of their reachability languages show that
L = {anbn | n ∈ N} can be recognized by both, but L∗ needs one zero-test. However,
this can hardly be called a major difference.

• A larger model that includes VAS with hierarchical zero-test would be VAS with an
added stack (by [11]). Trying to extend the proofs presented in this chapter to VAS
with a stack is tempting, especially given that there seems to be an order on runs
similar to the one used in this chapter, but this leads to some complications that are
not obvious to resolve.
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Conclusion

We have shown various decidability results on extensions of Vector Addition Systems and
we can now complete the partial view presented in section 1.8:

VAS
transfers resets abstract

data
zero-tests

1 2 ≥ 3 1 2 ≥ 3 1 hier.

reachability yes yes no no yes no no no yes yes

coverability yes yes yes yes yes yes yes yes yes yes

termination yes yes yes yes yes yes yes yes yes yes*

boundedness yes yes yes yes yes yes no yes yes yes*

place-boundedness yes yes* yes* no yes* yes* no no yes* yes*

repeated coverability yes yes* no no yes* no no no yes* yes*

These results were based on two main ideas:

• We can extend the works of Finkel and Goubbault [29, 30] to be able to compute
the cover by using interesting "patterns" of the system (like the one generated by the
well-order of section 5.2, or the one presented by Dufourd et al. in [24])

• The proof of reachability of Leroux [47] uses a well-order that is similar to the one that
can found in VAS with hierarchical zero-tests.

On top of these decidability results, we presented a quick analysis of expressiveness
questions for extensions of Vector Addition Systems. We argued that the following rule of
thumb can be followed: "If the state spaces differ, the expressiveness probably does". We
didn’t try to compare systems with the same state space, as we believed it would be hard
to derive a general idea. However, it should be reasonably easy to prove (for example) that
VAS with resets are more expressive than VAS. We left that as an exercice to the reader.

Some interesting questions remain, that we will study in further work:

• The gap between the only known lower bound (EXPSPACE by [19]) and the ones that
could be obtained by the works of Schnoebelen et al. [27, 60] is huge. Finding better
results would be extremely interesting.

• It is notable that chapter 5 uses a good deal of WSTS theory, despite VAS with
hierarchical zero-tests not being monotonic. It would be interesting to see if the theory
of WSTS can actually be extended to a wider class of systems, some of them displaying
non-monotonic behaviour. A prime candidate for this would be VAS with a stack, as
a generalization of hierarchical zero-tests [11].
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