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Abstra
t. We 
onsider the 
lass of Ve
tor Addition Systems with one
zero-test and we show that the model-
he
king problem for LTL is de-

idable thanks to a redu
tion to the 
omputability of the 
over and the
de
idability of rea
hability. Our proof uses the notion of in
reasing loop,
that we re�ne to �t the non-standard monotony of our system.

1 Introdu
tion

Petri Nets Ve
tor Addition Systems (VAS) are a well-known 
lasses of

ounter systems, equivalent to Petri Nets. The rea
hability problem is
known to be de
idable [14,15,16,17℄ even if its 
omplexity is still an open
problem. As the equality of the rea
hability sets (the set of states that
are rea
hable from an initial state) of two su
h systems is unde
idable
[13℄, one 
annot 
ompute a 
anoni
al �nite representation of the rea
ha-
bility set. However, there is su
h an e�e
tive �nite representation for the

over, the downward 
losure of the rea
hability set, whi
h is 
onne
ted to
various veri�
ation problems, like the 
ontrol state rea
hability problem.

If we add to VASS the ability to test at least two 
ounters to zero, one
obtains a model equivalent to Minsky ma
hines, for whi
h all nontrivial
properties are unde
idable. The study of VASS with a single zero-test
transition began re
ently, and a reasonable number of results are now
known. Reinhardt [18℄ has shown that the rea
hability problem is de-

idable. Abdulla and Mayr [2℄ have provided an algorithm based on the
ba
kward pro
edure of Well Stru
tured Transition Systems [1,9℄ to de-

ide 
overability of a state. Termination and Boundedness were shown
by Finkel and Sangnier [8℄, while an algorithm to 
ompute the maximal
elements of the 
over has been found by Bonnet, Finkel, Leroux and
Zeitoun [3℄.

LTL Linear-time logi
 is a widely used logi
 in order to express safety
and liveness properties of a system. Emerson [4℄ provided an algorithm
based on a 
overing graph that worked on well stru
tured transition sys-
tems, but that was not guaranteed to terminate. Esparza [5,6℄ showed
that LTL on the a
tions of a VASS was de
idable, but that CTL was
not, and that LTL be
ame unde
idable when predi
ates regarding the
states were added. Habermehl [12℄ 
ompleted this proof by showing
EXPSPACE-
ompleteness of LTL satis�ability.



Our 
ontribution We 
omplete the works of [3℄ by showing de
idability
of LTL model 
he
king. We start by the usual redu
tion of LTL model-

he
king to repeated 
ontrol state rea
hability by de�ning the syn
hro-
nized produ
t of a VASS0 and a Bu
hi automaton. Then, we show that
repeated 
ontrol state rea
hability 
an be de
ided by looking at the ex-
isten
e of a spe
ial kind of in
reasing loop. We �rst provide a redu
tion
of this problem of existen
e of a loop to the rea
hability problem for
VASS0 when the starting point of there is a �nite number of su
h sub-
sets, and hen
e that if one is able to 
ompute a �nite representation of
the 
over, existen
e of an in
reasing loop 
an be de
ided by looking at
all the subsets.

2 Preliminaries

2.1 Generalities

Sets and Ve
tors. The 
artesian produ
t of two sets X and Y is noted
X × Y and the disjoint union X ⊎ Y . For d ≥ 1, we write any x ∈ Xd

as x = (x[0], . . . , x[d − 1]), with x[i] ∈ X. For x1 ∈ Xd1 and x2 ∈ Xd2 ,
we let (x1, x2) be the ve
tor of Xd1+d2 obtained by gluing x1 and x2.
Addition of ve
tors is de�ned by (x + y)[i] = x[i] + y[i] and substra
tion
similarly.
We denote by Nω the set N ∪ {ω} where ω is an element stri
tly greater
than all integers. We will use the notations 0d to denote the ve
tor 
om-
posed of d 0's, ωd for the ve
tor 
omposed of d ω's, and ed

i be the ve
tor
of N

d su
h that ed
i [i] = 1 and ed

i [j] = 0 if i 6= j.

Orderings. An ordering ¹ on a set X is a re�exive, transitive and
antisymmetri
 binary relation on X. Given x, y ∈ X, we write x ≺ y
for x ¹ y and x 6= y. The pointwise ordering on Xd, still denoted ¹, is
de�ned by x ¹ y if x[i] ¹ y[i] for all i. Given Y ⊆ X, ↓¹Y = {x ∈ X |
∃y ∈ Y, x ¹ y} denotes the downward 
losure of Y with respe
t to ¹.
The set Y is said downward 
losed if Y = ↓¹Y . In N

d, we shorten ↓≤ as
↓.
An ordering ¹ on X is well if, given any sequen
e (xi)i∈N of elements
of X, one 
an �nd i < j su
h that xi ≤ xj . The usual ordering on N

d is
well.

Basis in N
d
ω. Given a downward-
losed set X ⊆ N

d, a basis of X is a
�nite subset B of N

d
ω su
h that ↓B ∩ N

d = X. Any downward-
losed set
of N

d admits a basis [7℄ and one 
an show that the maximal elements
of any basis B of X still form a basis whi
h does not depend of B. It is
minimal for in
lusion among all basis, and is 
alled the minimal basis.

Words. The set of �nite words (shortly words) on A is denoted A∗. A
word u ∈ A∗ is written a1a2...an, ai ∈ A, and we will also use the notation
u[i] to refer to the i-th letter of u. The 
on
atenation of two words u and
v is simply written uv and the empty word ε, with εa = aε = a. A+

denotes the set of non-empty words. An in�nite word on A is a sequen
e
(ai)i∈N. Given an in�nite word u, we use the notation u[k . . .] to refer to
the subsequen
e (u[k + i])i∈N. The set of in�nite words on A is written
Aω and the union of �nite and in�nite words is written A≤ω
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2.2 Transition Systems

De�nition 1. A Labelled Transition System (LTS) S is a tuple 〈X, A,→
, sin〉 where X is the set of states, A is the set of transition labels,
→⊆ X × (A ∪ {ε}) × X is the transition relation and sin is the initial
state.

We will use the notations States(S), Actions(S) and Init(S) to refer
respe
tively to X, A, sin. Moreover, we write s

a
−→ s′ if (s, a, s′) ∈→ and

we extend this notation to words by s
ε
−→ s and s

uv
−→ s′ i� ∃s′′, s

u
−→

s′′
v
−→ s′. Note that transitions may be labelled by ε and hen
e that s

a
−→ s′

where a ∈ A doesn't mean that s′ is rea
hed from s by one transition,
but by one transition labelled by a and any number of ε-transitions.
A run w of S is a sequen
e (si, ti) ∈ (States(S) × Actions(S))≤ω su
h

that s0 = Init(S) and ∀i, si
ti−→ si+1. Given a run (si, ti)i, we de�ne

actions(w) as (ti)i. The rea
hability set is de�ned as Reach(S) = {y ∈
States(S) | ∃u ∈ Actions(S)∗ | Init(S)

u
−→ y}. If States(S) is ordered

by ≤, the 
over is Cover≤(S) = ↓≤Reach(S). The subs
ript ≤ will be
omitted when it is 
lear from the 
ontext.

2.3 Ve
tor Addition Systems

De�nition 2. A Ve
tor Addition System with States and one zero-test
(shortly VASS0) of dimension d is a tuple V = 〈Q, A, aZ , T, sin〉 where
Q is a �nite set of 
ontrol lo
ations, A is a �nite alphabet of a
tions,
aZ ∈ A is 
alled the zero-test, T ⊆ Q × Z

d × A × Q is the �nite set of
transitions, and sin = (qin, xin) ∈ Q × N

d is the initial state.

Intuitively, a VASS0 works on d 
ounters, one for ea
h 
omponent, whose
initial values are given by xin. If (q, v, a, q′) ∈ T , a ∈ A when the VASS0

is in 
ontrol lo
ation q adds the ve
tor v to the 
ounters and moves the
system in the 
ontrol lo
ation q′. This a
tion 
an be exe
uted only if
the resulting 
ounters values are non-negative. Moreover, we have the
restri
tion that aZ 
an be �red only if the �rst 
ounter is zero.
More formally, a VASS0 〈Q, A, aZ , T, sin〉 indu
es a transition system S
by:

States(S) = Q × N
d

Actions(S) = A
Init(S) = (qin, xin)

(q, x)
a
−→S (q′, x′) ⇐⇒ (q, x′ − x, a, q′) ∈ T for a 6= aZ

(q, x)
aZ−−→S (q′, x′) ⇐⇒



(q, x′ − x, aZ , q′) ∈ T
x[0] = 0

A �nite automaton (FA) is a VASS0 of dimension 0. We get ba
k the usual
de�nition of VASS (without zero-test) as 〈Q, A, T, sin〉 whose semanti
s
are the same as the VASS0 〈Q, A ⊎ {aZ}, aZ , T, sin〉 where aZ doesn't
appear in T .

We re
all from previous works the following properties of VASS0 that we
will use in the sequel :
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Theorem 1. (Rea
hability [18℄, Coverability [2℄)

Let S be the transition system asso
iated to a VASS0. Membership in
Reach(S) and Cover(S) is de
idable.

Regarding 
overability, we 
an be even more pre
ise. A
tually, Cover(S)
is not only re
ursive, but also has a �nite representation.

Theorem 2. (Cover [3℄)

Let S be the transition system asso
iated to a VASS0. One 
an 
ompute
the minimal basis of Cover(S).

To simplify some proofs, we will only 
onsider normed VASS0, i.e. VASS0

su
h that there exists a unique (q, q′, δ) for whi
h (q, δ, az, q′) ∈ T . We
show in the appendix (proposition 3) that any VASS0 
an be rewritten
in a normed VASS0 satisfying the same LTL formulas.

3 The LTL Logi


3.1 Bu
hi Automata and LTL

De�nition 3. A Bu
hi automaton is a pair 〈A, F 〉 where A is a �nite
automaton and F ⊆ States(S).

An in�nite run ((qi, xi), ti)i∈N of a Bu
hi Automata is a

epted i� {i ∈
N | qi ∈ F} is in�nite.

De�nition 4. Given a set A, the set of LTL formulae is given by the
following grammar, where a ranges over A :

ϕ ::= true | a | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1Uϕ2

Formulas are interpreted on in�nite words over the alphabet A. We de-
note that w satis�es a formula ϕ by w |= ϕ. This relation is de�ned
indu
tively on the stru
ture of ϕ by:

w |= true
w |= a ⇐⇒ w[0] = a
w |= ¬ϕ ⇐⇒ w 6|= ϕ
w |= ϕ1 ∧ ϕ2 ⇐⇒ w |= ϕ1 and w |= ϕ2

w |= Xϕ ⇐⇒ w[1 . . .] |= ϕ
w |= ϕ1Uϕ2 ⇐⇒ ∃i, ∀0 ≤ j < i, w[j . . .] |= ϕ1 ∧ w[i . . . |= ϕ2

Given a LTL formula ϕ, one 
an build a Bu
hi automaton Bϕ su
h that
the set of in�nite words satisfying ϕ is exa
tly the in�nite words a
-

epted by Bϕ. We refer to the abundant literature on this subje
t for the

onstru
tion (Proposition 4.1 of [5℄, but also [11℄ and [10℄).
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3.2 Model Che
king

We 
onsider two problems on VASS0. LTL Model Che
king 
onsists in,
given a VASS0 V indu
ing a transition system S and a LTL formula ϕ on
Actions(S), determining whether there exists an in�nite run w of S su
h
that actions(w) |= ϕ. Repeated Control State Rea
hability 
onsists in,
given a VASS0 S = 〈Q, A, aZ , T, sin〉 and a 
ontrol lo
ation qf ∈ Q, de-
termining whether there exists an in�nite run w = (s1, t1) . . . (sk, tk) . . .
of S su
h that {j ∈ N | ∃xj , sj = (qf , xj)} is in�nite.
We have the following usual redu
tion :

Proposition 1. LTL Model Che
king on VASS0 redu
es to Repeated
Control State Rea
hability on VASS0.

Proof. Let V = 〈Q, A, aZ , T, (qin, xin)〉 be a VASS0 and ϕ a LTL formula
on A. Let B = 〈QB, A, TB, qinB, F 〉 be a Bu
hi automaton representing
ϕ. The syn
hronized produ
t of V and B is de�ned as the VASS0 V ′ =
〈Q × QB, A, aZ , T ′, ((qin, qinB), xin)〉 with :

T ′ = {((q1, q2), δ, a, (q′1, q
′
2)) | (q1, δ, a, q′1) ∈ T ∧ (q2, a, q′2) ∈ TB}

This VASS0 indu
es a transition system S ′, and it is easy to 
he
k that
a sequen
e ((q1

i , q2
i , xi), ai)i is a run of S ′ if and only if ((q1

i , xi), ai)i is a
run of S and (q2

i , ai)i is a run of B. Hen
e, there exists a run of S ′ that
visits in�nitely often Q × F , if and only if there exists runs w of S and
w′ of B su
h that actions(w) = actions(w′) and w′ visits in�nitely often
F , whi
h means that actions(w) |= ϕ.

4 De
idability of Repeated Control State

Rea
hability

Let us introdu
e the order ≤0 as x ≤0 y ⇐⇒ x ≤ y ∧ x[0] = y[0]. We
have the following monotony property for VASS0:

Proposition 2. Let q ∈ Q and x, y ∈ N
d with x ≤0 y. If a sequen
e of

transitions 
an be �red from (q, x), it 
an be �red from (q, y).

Our idea is to make an equivalen
e between repeated 
ontrol lo
ation
rea
hability and the existen
e of an in
reasing loop going through this
state.

De�nition 5. Let V be a VASS0 and S its asso
iated transition system.
Given ℓ in N×N

d−1
ω , we say that (x, u, y) ∈ N

d×A+×N
d is a ℓ-in
reasing

loop on q in V if we have (q, x)
u
−→S (q, y), x ≤0 y and x ≤0 ℓ.

Our proof is in three steps : First we show that if we have the restri
tion
that ℓ[0] = 0, we 
an de
ide the existen
e of an ℓ-in
reasing loop. Then we
show that, assuming the run we are looking for goes in�nitely through
the zero-test, the existen
e of a run visiting in�nitely often a 
ontrol
lo
ation redu
es to the existen
e of a ℓ-in
reasing loop with ℓ[0] = 0. We
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on
lude by taking also 
are of runs visiting the zero-test only a �nite
number of times.

We will �x a normed VASS0 V = 〈Q, A, aZ , T, sin〉 of dimension d and S
its asso
iated transition system. Unless otherwise spe
i�ed, all lemmas
refer to this VASS0.

Lemma 1. Let qf ∈ Q and ℓ ∈ {0} × N
d−1
ω . The existen
e of an ℓ-

in
reasing loop on qf is de
idable.

Proof. Let us take ℓ ∈ {0} × N
d−1
ω . Without loss of generality (by re-

ordering 
ounters), we have ℓ = (0, ωm, b), b ∈ N
n, with d = 1 + m + n.

We will build a VASS0 V ′ indu
ing a transition system S ′ that will mimi

S in the following sense (x represents a state S, and x′ the asso
iated
state in S ′):

� The 
ounter that 
an be tested for zero is preserved.

� A 
ounter x[i] for 1 ≤ i ≤ m (the ones for whi
h ℓ[i] = ω) is repla
ed
by two 
ounters x′[i] and x′[i + m], su
h that x′[i + m]−x′[i] ≤ x[i].
This simulates a 
ounter that 
an go arbitrarily below its initial
value, and that 
an leak non-deterministi
ally.

� A 
ounter x[i] for m + 1 ≤ i ≤ m + n (the ones for whi
h ℓ[i] 6= ω)
is repla
ed by one 
ounter x′[i + m] su
h that x′[i + m] ≤ x[i]. This
simulates a 
ounter that 
an leak non-deterministi
ally.

Note that states of S will be represented as (x, v, z) with x ∈ N, v ∈ N
m

and z ∈ N
n while states of S ′ will be represented as (x, v, w, z) with

x ∈ N, (v, w) ∈ N
m × N

m and z ∈ N
n.

Formally, we de�ne V ′ = 〈Q, A, aZ , T ′, s′in〉 of dimension d′ = 1+2m+n
by:

s′in = (0, 0, 0, b)

T ′ =

{(q, a, (x, 0m, v, w), q′) | (q, a, (x, v, w), q′) ∈ T}∪ (T1)
{(q, ε, (0, 0m, 0m,−en

i ), q) | q ∈ Q ∧ 1 ≤ i ≤ n}∪ (T2)
{(q, ε, (0, em

i , em
i , 0n), q) | q ∈ Q ∧ 1 ≤ i ≤ m}∪ (T3)

{(q, ε, (0,−em
i ,−em

i , 0n), q) | q ∈ Q ∧ 1 ≤ i ≤ m}∪ (T4)
{(q, ε, (0, 0m,−em

i , 0n), q) | q ∈ Q ∧ 1 ≤ i ≤ m} (T5)

(T1) is the tradu
tion of the transition of S. (T2) makes the 
ounters
of index from 1 + 2 ∗ m + 1 to 1 + 2 ∗ m + n (we re
all these 
ounters
represent the 
ounters of index 1 + m + 1 to 1 + m + n in S) lossy. (T3)
+ (T4) imply that only the relative value of the 
ounters i and i + m
matters (for 1 ≤ i ≤ m). This simulates a 
ounter living in Z. Finally,
(T5) makes the previous 
ounter lossy.

We will show that the existen
e of x, y ∈ {0}×N
d−1 and u ∈ A+ su
h that

x ≤ ℓ, (qf , x)
u
−→S (qf , y) and x ≤ y is equivalent to the rea
hability in

S ′ of (0, 0m, 0m, b) from itself using at least one non-epsilon transition.
Note that rea
hability by using at least one non-epsilon transition is
redu
ible to rea
hability by adding a lossy 
ounter, starting at zero, that
is in
reased when a non-epsilon transition is �red.
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⇒ Let us assume the existen
e of x, y ∈ {0} × N
d−1 and u ∈ A+ su
h

that x ≤ ℓ, x
u
−→ y and x ≤ y.

Let x = (0, α1, β1), y = (0, α2, β2) and ℓ = (0, ωm, b) with α1 ≤ α2,
β1 ≤ β2 and β1 ≤ b.
Be
ause (qf , 0, α1, β1)

u
−→S (qf , 0, α2, β2), we have (qf , 0, α1, α1, β1)

u
−→S′

(qf , 0, α1, α2, β2). Be
ause β1 ≤ b, we also have that (qf , 0, α1, α1, b)
u
−→S′

(qf , 0, α1, α2, β2 + b − β1).
Then, we have :

(qf , 0, 0m, 0m, b)
ε
−→S′ (qf , 0, α1, α1, b)
u
−→S′ (qf , 0, α1, α2, b + β2 − β1)
ε
−→S′ (qf , 0, α1, α1, b)
ε
−→S′ (qf , 0, 0m, 0m, b)

⇐ Assume that we have (qf , 0, 0m, 0m, b)
u
−→ (qf , 0, 0m, 0m, b). We will

show there exist x, y ∈ {0} × N
d−1 with x ≤ ℓ su
h that (qf , x)

u
−→S

(qf , y).
Let (ti, vi, wi, zi)0≤i≤k su
h that (ti, vi, wi, zi) →S′ (ti+1, vi+1, wi+1, zi+1)
and (t, v0, w0, z0) = (t, vk, wk, zk) = (0, 0m, 0m, b).
Let α be the ve
tor de�ned by α[i] = max0≤j≤k{vj [i]}. We de�ne µ

from N
d′

to N
d by µ(t, v, w, z) = (t, w − v + α, z). Then, an indu
-

tion on the length of the transition sequen
e gives that (q, s1)
u
−→S′

(q′, s2) =⇒ ∃s3 ∈ N
d, s3 ≤1 µ(s2) ∧ (q, µ(s1))

u
−→S (q′, s3).

This gives the result.

Note that we 
an treat a VASS as a VASS0 where the 
omponent tested
for zero is unused. We get the following 
orollary of lemma 1 (a similar
result 
an be found in [5℄ and [4℄) that we will also need to use:

Corollary 1. Let V ′ = 〈Q, A, T, sin〉 be a VASS, qf ∈ Q and ℓ ∈ N
d
ω. It

is possible to de
ide whether there exists a ℓ-in
reasing loop on qf in V ′.

Lemma 2. Let qf be a 
ontrol lo
ation.
Testing whether there is a run of S visiting in�nitely often qf and on
whi
h the zero-test is �red in�nitely often is de
idable.

Proof. We redu
e this problem to the one of lemma 1. Be
ause S is
normed, there is a single transition labelled by aZ in T : (qz, δz,aZ , q′z).
We de�ne S ′ = 〈Q′, A, aZ , T ′, s′in〉 of dimension d + 1 (s
hematized in
�gure 4) by:

Q′ = Q ∪ {qpre, q
′
f}

s′in = (qin, (xin, 0))

T ′ =

{(q, (δ, 0), a, q′) | (q, δ, a, q′) ∈ T ∧ q′ /∈ {qf , qz}}∪
{(q, (δ, 1), a, qf ) | (q, δ, a, qf ) ∈ T}∪
{(q, (δ, 0), a, qpre) | (q, δ, a, qz)}∪
˘

(qpre, 0
d+1, ε, qz), (qz, (0d,−1), ε, q′f ), (q′f , 0d+1, ε, qz)

¯

Note that in S ′, the last 
omponent of the state 
ontains the di�eren
e
between the number of times the system visited qf and the number of
times the system visited q′f .
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qzq′z

qf

qpre

q′f

x[d + 1] + +

x[d + 1] + +

aZ

x[d + 1] − −

Fig. 1. S
hema of the redu
tion

First, let us show that there is a run visiting in�nitely often qf and going
through the zero-test in�nitely often in S if and only if there is a run
visiting in�nitely often q′f in S ′.
⇒ Let us assume there is a run in S that visits in�nitely often qf and

that goes in�nitely often through the zero-test. This run is also a
valid run in S ′ be
ause we only added pla
es and a 
ounter that is
only in
remented by a
tions of S. Now, we alter this run by inserting
as many loops qz ⇋ qf as possible before ea
h zero-test. This new
run ful�lls x[d + 1] = 0 in�nitely often, and be
ause this 
ounter
marks the di�eren
e between the number of passages in qf and the
number of passages in q′f , this means q′f is visited in�nitely often.

⇐ Let us assume there is a run in S ′ that visits q′f in�nitely often.
Be
ause of the x[d + 1] 
ounter, this run visits qf in�nitely often.
Moreover, be
ause q′f 
an only be rea
hed by qz, that 
an only go
to q′f or through the zero-test, and that the loop qz ⇋ qf 
an only
be done a �nite number of times, if q′f is visited in�nitely often on
a run, then the zero-test is also �red an in�nite number of times.
Hen
e, we have a run of S ′ that visits in�nitely often qf and on
whi
h the zero-test is �red in�nitely often. Now, if we remove in this
run the loops qz ⇋ qf , we get a run using only transitions of S, and
removing the additionnal 
ounter 
an't make this run non-�reable,
so we get a run of S that visits in�nitely often qf and the zero-test.

Now, assume we have a run visiting in�nitely often q′f . We have an in�nite

sequen
e (xi)i, xi ∈ N
d+1 su
h that for all i ∈ N, (qf , xi)

∗
−→ (qf , xi+1). By

well-order of N
d+1, there exists i < j su
h that xi ≤ xj . Also, be
ause the

zero-test is �red after the iterations q′f ⇋ qz, this means that xi[1] = 0.
So, we have a run visiting in�nitely often q′f if and only if there exists
(qf , x) rea
hable state with x[1] = 0, y with x ≤0 y and u ∈ A+ su
h
that (qf , x)

u
−→ (qf , y) (the "if" part is immediate).
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Be
ause the �rst 
ounter is ne
essarily 0 on the q′f 
ontrol lo
ation (as-
suming an in�nite run) and be
ause our system is monotoni
 with respe
t
to ≤0 (proposition 2), we 
an repla
e "(qf , x) rea
hable state" by "(qf , x)

overable state" in the previous equivalen
e. Hen
e, our problems redu
e
to de
ide whether there exists a ℓ-in
reasing loop on qf , for ℓ a maximal
element of Cover(S).
By [3℄, we 
an 
ompute the maximal elements of Cover(S). Then, for
ea
h su
h maximal element, we 
an use lemma 1 to get our result.

Lemma 3. Let qf be a 
ontrol lo
ation.
Testing whether there is a run of S visiting in�nitely often qf and on
whi
h the zero-test is not �red in�nitely often is de
idable.

Proof. Let us 
onsider a run visiting qf in�nitely often. Be
ause the zero-
test is �red only a �nite number of times, after some point, we have a run
visiting qf in�nitely often without �ring the zero-test. Hen
e, we redu
e
our problem to repeated 
ontrol lo
ation rea
hability in VASS.

We make the interse
tion of Cover(S) (
omputed through [3℄) with
({qf} × N

d). By well-order, if qf is visited in�nitely often, then there
exists x, x′ ∈ N

d and u ∈ (A\{az})
+ su
h that (qf , x)

u
−→ (qf , x′), x ≤ x′.

Dete
ting su
h an in
reasing loop in a VASS 
an be seen as a spe
ial 
ase
of lemma 1 (
orollary 1), and by testing the presen
e of an in
reasing
loop for ea
h maximal element of the 
over, we get our result.

Finally, we 
an 
ombine lemmas 2 and 3 to get:

Theorem 3. Let qf be a 
ontrol lo
ation.
Testing whether there is a run of S visiting in�nitely often qf is de
idable.

And by proposition 1,

Corollary 2. Model-Che
king LTL is de
idable on VASS0.

5 Con
lusion

We have shown that despite VASS0 looking more expressive than VASS,
another de
idability result of VASS is preserved. Between the numerous
de
idability results that have re
ently been shown for VASS0 and this
new one, a rule of thumb seems to be that VASS0 and VASS enjoy
the same de
idability properties, and 
ounter-examples have yet to be
found. One 
an wonder if the few problems (regularity of the re
ognized
language for example) that are de
idable for VASS and remain unknown
for VASS0 follow this rule.

However, it is interesting to note that, despite repeated 
ontrol lo
a-
tion rea
hability being independent from rea
hability for Ve
tor Addition
Systems [6℄, our proof requires both rea
hability and pla
e-boundedness
on VASS0. This makes the 
omplexity of our pro
edure unknown. One
might wonder a proof might exist without using rea
hability and/or
pla
e-boundedness, or whether rea
hability and pla
e-boundedness 
an
a
tually be redu
ed to LTL. We leave these questions for future work.
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A Additionnal redu
tions

De�nition 6. Let S1 = 〈Q1, A, aZ , T1, sin1〉 and S2 = 〈Q2, A, aZ , T2, sin2〉
be two VASS0 of respe
tive dimensions d1 and d2. S1 and S2 are weakly
bisimilar if there exists a relation ∼⊆ (Q1 ×N

d1)× (Q2 ×N
d2) su
h that:

� sin1 ∼ sin2

�



s1 ∼ s2

s1

a
−→S1 s′1

=⇒ ∃s′2 ∈ Q × N
d2



s2

a
−→S2 s′2

s′1 ∼ s′2

�



s1 ∼ s2

s2

a
−→S2 s′2

=⇒ ∃s′1 ∈ Q × N
d2



s1

a
−→S1 s′1

s′1 ∼ s′2

Note that we are using weak bisimilarity be
ause of the presen
e of
epsilon-transitions. Satis�ability of a LTL formula is stable by weak
bisimilarity1.

We provide here a qui
k proof of a well known redu
tion of VASS0.

Proposition 3. Let S be a VASS0. There exists a VASS0 S ′ weakly
bisimilar to S su
h that there exists a unique (qz, aZ , q′z, δz) ∈ T .

1 For a survey of weak bisimilarity and other notions of system equivalen
e, one might
look at "The linear time-bran
hing time spe
trum II: The semanti
s of sequential
pro
esses with silent moves", by RJ. van Glabbeek
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Proof. If S has no su
h transition, we 
an simply add new unrea
hable

ontrol states and add the required transition, so we will only 
onsider
the 
ase of S having more than one transition.
Let S = 〈Q, A, aZ , T, (qin, xin)〉 be a VASS0 of dimension d.
Let Tz = {(qz,i, aZ , q′z,i, δz,i) | 0 ≤ i ≤ p} be the transitions of S using
the zero-test. Let T0 be the other transitions. T = T0 ⊎ Tz. We de�ne
S ′ = 〈Q′, A, aZ , T ′, s′in〉 of dimension d + 2 by:

Q′ = Q ⊎ {qz, q′z}

T ′ =

{(q, a, q′, (δ, 0, 0)) | (q, a, q′, δ) ∈ T0)}∪
{(qz,i, ε, qz, (δz,i, i, p − i) | 1 ≤ i ≤ p}∪

{(q′z, ε, q′z,i, (0
d,−i,−(p − i)) | 1 ≤ i ≤ p}∪

{(qz, az, q′z, 0d+2)}
s′in = (qin, (xin, 0, 0))

We note that we have the invariant that the last two 
omponents are
always zero in all states of Q. Bisimilarity 
omes easily from that.
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