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Abstrat. We onsider the lass of Vetor Addition Systems with one
zero-test and we show that the model-heking problem for LTL is de-
idable thanks to a redution to the omputability of the over and the
deidability of reahability. Our proof uses the notion of inreasing loop,
that we re�ne to �t the non-standard monotony of our system.

1 Introdution

Petri Nets Vetor Addition Systems (VAS) are a well-known lasses of
ounter systems, equivalent to Petri Nets. The reahability problem is
known to be deidable [14,15,16,17℄ even if its omplexity is still an open
problem. As the equality of the reahability sets (the set of states that
are reahable from an initial state) of two suh systems is undeidable
[13℄, one annot ompute a anonial �nite representation of the reaha-
bility set. However, there is suh an e�etive �nite representation for the
over, the downward losure of the reahability set, whih is onneted to
various veri�ation problems, like the ontrol state reahability problem.

If we add to VASS the ability to test at least two ounters to zero, one
obtains a model equivalent to Minsky mahines, for whih all nontrivial
properties are undeidable. The study of VASS with a single zero-test
transition began reently, and a reasonable number of results are now
known. Reinhardt [18℄ has shown that the reahability problem is de-
idable. Abdulla and Mayr [2℄ have provided an algorithm based on the
bakward proedure of Well Strutured Transition Systems [1,9℄ to de-
ide overability of a state. Termination and Boundedness were shown
by Finkel and Sangnier [8℄, while an algorithm to ompute the maximal
elements of the over has been found by Bonnet, Finkel, Leroux and
Zeitoun [3℄.

LTL Linear-time logi is a widely used logi in order to express safety
and liveness properties of a system. Emerson [4℄ provided an algorithm
based on a overing graph that worked on well strutured transition sys-
tems, but that was not guaranteed to terminate. Esparza [5,6℄ showed
that LTL on the ations of a VASS was deidable, but that CTL was
not, and that LTL beame undeidable when prediates regarding the
states were added. Habermehl [12℄ ompleted this proof by showing
EXPSPACE-ompleteness of LTL satis�ability.



Our ontribution We omplete the works of [3℄ by showing deidability
of LTL model heking. We start by the usual redution of LTL model-
heking to repeated ontrol state reahability by de�ning the synhro-
nized produt of a VASS0 and a Buhi automaton. Then, we show that
repeated ontrol state reahability an be deided by looking at the ex-
istene of a speial kind of inreasing loop. We �rst provide a redution
of this problem of existene of a loop to the reahability problem for
VASS0 when the starting point of there is a �nite number of suh sub-
sets, and hene that if one is able to ompute a �nite representation of
the over, existene of an inreasing loop an be deided by looking at
all the subsets.

2 Preliminaries

2.1 Generalities

Sets and Vetors. The artesian produt of two sets X and Y is noted
X × Y and the disjoint union X ⊎ Y . For d ≥ 1, we write any x ∈ Xd

as x = (x[0], . . . , x[d − 1]), with x[i] ∈ X. For x1 ∈ Xd1 and x2 ∈ Xd2 ,
we let (x1, x2) be the vetor of Xd1+d2 obtained by gluing x1 and x2.
Addition of vetors is de�ned by (x + y)[i] = x[i] + y[i] and substration
similarly.
We denote by Nω the set N ∪ {ω} where ω is an element stritly greater
than all integers. We will use the notations 0d to denote the vetor om-
posed of d 0's, ωd for the vetor omposed of d ω's, and ed

i be the vetor
of N

d suh that ed
i [i] = 1 and ed

i [j] = 0 if i 6= j.

Orderings. An ordering ¹ on a set X is a re�exive, transitive and
antisymmetri binary relation on X. Given x, y ∈ X, we write x ≺ y
for x ¹ y and x 6= y. The pointwise ordering on Xd, still denoted ¹, is
de�ned by x ¹ y if x[i] ¹ y[i] for all i. Given Y ⊆ X, ↓¹Y = {x ∈ X |
∃y ∈ Y, x ¹ y} denotes the downward losure of Y with respet to ¹.
The set Y is said downward losed if Y = ↓¹Y . In N

d, we shorten ↓≤ as
↓.
An ordering ¹ on X is well if, given any sequene (xi)i∈N of elements
of X, one an �nd i < j suh that xi ≤ xj . The usual ordering on N

d is
well.

Basis in N
d
ω. Given a downward-losed set X ⊆ N

d, a basis of X is a
�nite subset B of N

d
ω suh that ↓B ∩ N

d = X. Any downward-losed set
of N

d admits a basis [7℄ and one an show that the maximal elements
of any basis B of X still form a basis whih does not depend of B. It is
minimal for inlusion among all basis, and is alled the minimal basis.

Words. The set of �nite words (shortly words) on A is denoted A∗. A
word u ∈ A∗ is written a1a2...an, ai ∈ A, and we will also use the notation
u[i] to refer to the i-th letter of u. The onatenation of two words u and
v is simply written uv and the empty word ε, with εa = aε = a. A+

denotes the set of non-empty words. An in�nite word on A is a sequene
(ai)i∈N. Given an in�nite word u, we use the notation u[k . . .] to refer to
the subsequene (u[k + i])i∈N. The set of in�nite words on A is written
Aω and the union of �nite and in�nite words is written A≤ω
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2.2 Transition Systems

De�nition 1. A Labelled Transition System (LTS) S is a tuple 〈X, A,→
, sin〉 where X is the set of states, A is the set of transition labels,
→⊆ X × (A ∪ {ε}) × X is the transition relation and sin is the initial
state.

We will use the notations States(S), Actions(S) and Init(S) to refer
respetively to X, A, sin. Moreover, we write s

a
−→ s′ if (s, a, s′) ∈→ and

we extend this notation to words by s
ε
−→ s and s

uv
−→ s′ i� ∃s′′, s

u
−→

s′′
v
−→ s′. Note that transitions may be labelled by ε and hene that s

a
−→ s′

where a ∈ A doesn't mean that s′ is reahed from s by one transition,
but by one transition labelled by a and any number of ε-transitions.
A run w of S is a sequene (si, ti) ∈ (States(S) × Actions(S))≤ω suh

that s0 = Init(S) and ∀i, si
ti−→ si+1. Given a run (si, ti)i, we de�ne

actions(w) as (ti)i. The reahability set is de�ned as Reach(S) = {y ∈
States(S) | ∃u ∈ Actions(S)∗ | Init(S)

u
−→ y}. If States(S) is ordered

by ≤, the over is Cover≤(S) = ↓≤Reach(S). The subsript ≤ will be
omitted when it is lear from the ontext.

2.3 Vetor Addition Systems

De�nition 2. A Vetor Addition System with States and one zero-test
(shortly VASS0) of dimension d is a tuple V = 〈Q, A, aZ , T, sin〉 where
Q is a �nite set of ontrol loations, A is a �nite alphabet of ations,
aZ ∈ A is alled the zero-test, T ⊆ Q × Z

d × A × Q is the �nite set of
transitions, and sin = (qin, xin) ∈ Q × N

d is the initial state.

Intuitively, a VASS0 works on d ounters, one for eah omponent, whose
initial values are given by xin. If (q, v, a, q′) ∈ T , a ∈ A when the VASS0

is in ontrol loation q adds the vetor v to the ounters and moves the
system in the ontrol loation q′. This ation an be exeuted only if
the resulting ounters values are non-negative. Moreover, we have the
restrition that aZ an be �red only if the �rst ounter is zero.
More formally, a VASS0 〈Q, A, aZ , T, sin〉 indues a transition system S
by:

States(S) = Q × N
d

Actions(S) = A
Init(S) = (qin, xin)

(q, x)
a
−→S (q′, x′) ⇐⇒ (q, x′ − x, a, q′) ∈ T for a 6= aZ

(q, x)
aZ−−→S (q′, x′) ⇐⇒



(q, x′ − x, aZ , q′) ∈ T
x[0] = 0

A �nite automaton (FA) is a VASS0 of dimension 0. We get bak the usual
de�nition of VASS (without zero-test) as 〈Q, A, T, sin〉 whose semantis
are the same as the VASS0 〈Q, A ⊎ {aZ}, aZ , T, sin〉 where aZ doesn't
appear in T .

We reall from previous works the following properties of VASS0 that we
will use in the sequel :
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Theorem 1. (Reahability [18℄, Coverability [2℄)

Let S be the transition system assoiated to a VASS0. Membership in
Reach(S) and Cover(S) is deidable.

Regarding overability, we an be even more preise. Atually, Cover(S)
is not only reursive, but also has a �nite representation.

Theorem 2. (Cover [3℄)

Let S be the transition system assoiated to a VASS0. One an ompute
the minimal basis of Cover(S).

To simplify some proofs, we will only onsider normed VASS0, i.e. VASS0

suh that there exists a unique (q, q′, δ) for whih (q, δ, az, q′) ∈ T . We
show in the appendix (proposition 3) that any VASS0 an be rewritten
in a normed VASS0 satisfying the same LTL formulas.

3 The LTL Logi

3.1 Buhi Automata and LTL

De�nition 3. A Buhi automaton is a pair 〈A, F 〉 where A is a �nite
automaton and F ⊆ States(S).

An in�nite run ((qi, xi), ti)i∈N of a Buhi Automata is aepted i� {i ∈
N | qi ∈ F} is in�nite.

De�nition 4. Given a set A, the set of LTL formulae is given by the
following grammar, where a ranges over A :

ϕ ::= true | a | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1Uϕ2

Formulas are interpreted on in�nite words over the alphabet A. We de-
note that w satis�es a formula ϕ by w |= ϕ. This relation is de�ned
indutively on the struture of ϕ by:

w |= true
w |= a ⇐⇒ w[0] = a
w |= ¬ϕ ⇐⇒ w 6|= ϕ
w |= ϕ1 ∧ ϕ2 ⇐⇒ w |= ϕ1 and w |= ϕ2

w |= Xϕ ⇐⇒ w[1 . . .] |= ϕ
w |= ϕ1Uϕ2 ⇐⇒ ∃i, ∀0 ≤ j < i, w[j . . .] |= ϕ1 ∧ w[i . . . |= ϕ2

Given a LTL formula ϕ, one an build a Buhi automaton Bϕ suh that
the set of in�nite words satisfying ϕ is exatly the in�nite words a-
epted by Bϕ. We refer to the abundant literature on this subjet for the
onstrution (Proposition 4.1 of [5℄, but also [11℄ and [10℄).
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3.2 Model Cheking

We onsider two problems on VASS0. LTL Model Cheking onsists in,
given a VASS0 V induing a transition system S and a LTL formula ϕ on
Actions(S), determining whether there exists an in�nite run w of S suh
that actions(w) |= ϕ. Repeated Control State Reahability onsists in,
given a VASS0 S = 〈Q, A, aZ , T, sin〉 and a ontrol loation qf ∈ Q, de-
termining whether there exists an in�nite run w = (s1, t1) . . . (sk, tk) . . .
of S suh that {j ∈ N | ∃xj , sj = (qf , xj)} is in�nite.
We have the following usual redution :

Proposition 1. LTL Model Cheking on VASS0 redues to Repeated
Control State Reahability on VASS0.

Proof. Let V = 〈Q, A, aZ , T, (qin, xin)〉 be a VASS0 and ϕ a LTL formula
on A. Let B = 〈QB, A, TB, qinB, F 〉 be a Buhi automaton representing
ϕ. The synhronized produt of V and B is de�ned as the VASS0 V ′ =
〈Q × QB, A, aZ , T ′, ((qin, qinB), xin)〉 with :

T ′ = {((q1, q2), δ, a, (q′1, q
′
2)) | (q1, δ, a, q′1) ∈ T ∧ (q2, a, q′2) ∈ TB}

This VASS0 indues a transition system S ′, and it is easy to hek that
a sequene ((q1

i , q2
i , xi), ai)i is a run of S ′ if and only if ((q1

i , xi), ai)i is a
run of S and (q2

i , ai)i is a run of B. Hene, there exists a run of S ′ that
visits in�nitely often Q × F , if and only if there exists runs w of S and
w′ of B suh that actions(w) = actions(w′) and w′ visits in�nitely often
F , whih means that actions(w) |= ϕ.

4 Deidability of Repeated Control State

Reahability

Let us introdue the order ≤0 as x ≤0 y ⇐⇒ x ≤ y ∧ x[0] = y[0]. We
have the following monotony property for VASS0:

Proposition 2. Let q ∈ Q and x, y ∈ N
d with x ≤0 y. If a sequene of

transitions an be �red from (q, x), it an be �red from (q, y).

Our idea is to make an equivalene between repeated ontrol loation
reahability and the existene of an inreasing loop going through this
state.

De�nition 5. Let V be a VASS0 and S its assoiated transition system.
Given ℓ in N×N

d−1
ω , we say that (x, u, y) ∈ N

d×A+×N
d is a ℓ-inreasing

loop on q in V if we have (q, x)
u
−→S (q, y), x ≤0 y and x ≤0 ℓ.

Our proof is in three steps : First we show that if we have the restrition
that ℓ[0] = 0, we an deide the existene of an ℓ-inreasing loop. Then we
show that, assuming the run we are looking for goes in�nitely through
the zero-test, the existene of a run visiting in�nitely often a ontrol
loation redues to the existene of a ℓ-inreasing loop with ℓ[0] = 0. We
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onlude by taking also are of runs visiting the zero-test only a �nite
number of times.

We will �x a normed VASS0 V = 〈Q, A, aZ , T, sin〉 of dimension d and S
its assoiated transition system. Unless otherwise spei�ed, all lemmas
refer to this VASS0.

Lemma 1. Let qf ∈ Q and ℓ ∈ {0} × N
d−1
ω . The existene of an ℓ-

inreasing loop on qf is deidable.

Proof. Let us take ℓ ∈ {0} × N
d−1
ω . Without loss of generality (by re-

ordering ounters), we have ℓ = (0, ωm, b), b ∈ N
n, with d = 1 + m + n.

We will build a VASS0 V ′ induing a transition system S ′ that will mimi
S in the following sense (x represents a state S, and x′ the assoiated
state in S ′):

� The ounter that an be tested for zero is preserved.

� A ounter x[i] for 1 ≤ i ≤ m (the ones for whih ℓ[i] = ω) is replaed
by two ounters x′[i] and x′[i + m], suh that x′[i + m]−x′[i] ≤ x[i].
This simulates a ounter that an go arbitrarily below its initial
value, and that an leak non-deterministially.

� A ounter x[i] for m + 1 ≤ i ≤ m + n (the ones for whih ℓ[i] 6= ω)
is replaed by one ounter x′[i + m] suh that x′[i + m] ≤ x[i]. This
simulates a ounter that an leak non-deterministially.

Note that states of S will be represented as (x, v, z) with x ∈ N, v ∈ N
m

and z ∈ N
n while states of S ′ will be represented as (x, v, w, z) with

x ∈ N, (v, w) ∈ N
m × N

m and z ∈ N
n.

Formally, we de�ne V ′ = 〈Q, A, aZ , T ′, s′in〉 of dimension d′ = 1+2m+n
by:

s′in = (0, 0, 0, b)

T ′ =

{(q, a, (x, 0m, v, w), q′) | (q, a, (x, v, w), q′) ∈ T}∪ (T1)
{(q, ε, (0, 0m, 0m,−en

i ), q) | q ∈ Q ∧ 1 ≤ i ≤ n}∪ (T2)
{(q, ε, (0, em

i , em
i , 0n), q) | q ∈ Q ∧ 1 ≤ i ≤ m}∪ (T3)

{(q, ε, (0,−em
i ,−em

i , 0n), q) | q ∈ Q ∧ 1 ≤ i ≤ m}∪ (T4)
{(q, ε, (0, 0m,−em

i , 0n), q) | q ∈ Q ∧ 1 ≤ i ≤ m} (T5)

(T1) is the tradution of the transition of S. (T2) makes the ounters
of index from 1 + 2 ∗ m + 1 to 1 + 2 ∗ m + n (we reall these ounters
represent the ounters of index 1 + m + 1 to 1 + m + n in S) lossy. (T3)
+ (T4) imply that only the relative value of the ounters i and i + m
matters (for 1 ≤ i ≤ m). This simulates a ounter living in Z. Finally,
(T5) makes the previous ounter lossy.

We will show that the existene of x, y ∈ {0}×N
d−1 and u ∈ A+ suh that

x ≤ ℓ, (qf , x)
u
−→S (qf , y) and x ≤ y is equivalent to the reahability in

S ′ of (0, 0m, 0m, b) from itself using at least one non-epsilon transition.
Note that reahability by using at least one non-epsilon transition is
reduible to reahability by adding a lossy ounter, starting at zero, that
is inreased when a non-epsilon transition is �red.
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⇒ Let us assume the existene of x, y ∈ {0} × N
d−1 and u ∈ A+ suh

that x ≤ ℓ, x
u
−→ y and x ≤ y.

Let x = (0, α1, β1), y = (0, α2, β2) and ℓ = (0, ωm, b) with α1 ≤ α2,
β1 ≤ β2 and β1 ≤ b.
Beause (qf , 0, α1, β1)

u
−→S (qf , 0, α2, β2), we have (qf , 0, α1, α1, β1)

u
−→S′

(qf , 0, α1, α2, β2). Beause β1 ≤ b, we also have that (qf , 0, α1, α1, b)
u
−→S′

(qf , 0, α1, α2, β2 + b − β1).
Then, we have :

(qf , 0, 0m, 0m, b)
ε
−→S′ (qf , 0, α1, α1, b)
u
−→S′ (qf , 0, α1, α2, b + β2 − β1)
ε
−→S′ (qf , 0, α1, α1, b)
ε
−→S′ (qf , 0, 0m, 0m, b)

⇐ Assume that we have (qf , 0, 0m, 0m, b)
u
−→ (qf , 0, 0m, 0m, b). We will

show there exist x, y ∈ {0} × N
d−1 with x ≤ ℓ suh that (qf , x)

u
−→S

(qf , y).
Let (ti, vi, wi, zi)0≤i≤k suh that (ti, vi, wi, zi) →S′ (ti+1, vi+1, wi+1, zi+1)
and (t, v0, w0, z0) = (t, vk, wk, zk) = (0, 0m, 0m, b).
Let α be the vetor de�ned by α[i] = max0≤j≤k{vj [i]}. We de�ne µ

from N
d′

to N
d by µ(t, v, w, z) = (t, w − v + α, z). Then, an indu-

tion on the length of the transition sequene gives that (q, s1)
u
−→S′

(q′, s2) =⇒ ∃s3 ∈ N
d, s3 ≤1 µ(s2) ∧ (q, µ(s1))

u
−→S (q′, s3).

This gives the result.

Note that we an treat a VASS as a VASS0 where the omponent tested
for zero is unused. We get the following orollary of lemma 1 (a similar
result an be found in [5℄ and [4℄) that we will also need to use:

Corollary 1. Let V ′ = 〈Q, A, T, sin〉 be a VASS, qf ∈ Q and ℓ ∈ N
d
ω. It

is possible to deide whether there exists a ℓ-inreasing loop on qf in V ′.

Lemma 2. Let qf be a ontrol loation.
Testing whether there is a run of S visiting in�nitely often qf and on
whih the zero-test is �red in�nitely often is deidable.

Proof. We redue this problem to the one of lemma 1. Beause S is
normed, there is a single transition labelled by aZ in T : (qz, δz,aZ , q′z).
We de�ne S ′ = 〈Q′, A, aZ , T ′, s′in〉 of dimension d + 1 (shematized in
�gure 4) by:

Q′ = Q ∪ {qpre, q
′
f}

s′in = (qin, (xin, 0))

T ′ =

{(q, (δ, 0), a, q′) | (q, δ, a, q′) ∈ T ∧ q′ /∈ {qf , qz}}∪
{(q, (δ, 1), a, qf ) | (q, δ, a, qf ) ∈ T}∪
{(q, (δ, 0), a, qpre) | (q, δ, a, qz)}∪
˘

(qpre, 0
d+1, ε, qz), (qz, (0d,−1), ε, q′f ), (q′f , 0d+1, ε, qz)

¯

Note that in S ′, the last omponent of the state ontains the di�erene
between the number of times the system visited qf and the number of
times the system visited q′f .
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qzq′z

qf

qpre

q′f

x[d + 1] + +

x[d + 1] + +

aZ

x[d + 1] − −

Fig. 1. Shema of the redution

First, let us show that there is a run visiting in�nitely often qf and going
through the zero-test in�nitely often in S if and only if there is a run
visiting in�nitely often q′f in S ′.
⇒ Let us assume there is a run in S that visits in�nitely often qf and

that goes in�nitely often through the zero-test. This run is also a
valid run in S ′ beause we only added plaes and a ounter that is
only inremented by ations of S. Now, we alter this run by inserting
as many loops qz ⇋ qf as possible before eah zero-test. This new
run ful�lls x[d + 1] = 0 in�nitely often, and beause this ounter
marks the di�erene between the number of passages in qf and the
number of passages in q′f , this means q′f is visited in�nitely often.

⇐ Let us assume there is a run in S ′ that visits q′f in�nitely often.
Beause of the x[d + 1] ounter, this run visits qf in�nitely often.
Moreover, beause q′f an only be reahed by qz, that an only go
to q′f or through the zero-test, and that the loop qz ⇋ qf an only
be done a �nite number of times, if q′f is visited in�nitely often on
a run, then the zero-test is also �red an in�nite number of times.
Hene, we have a run of S ′ that visits in�nitely often qf and on
whih the zero-test is �red in�nitely often. Now, if we remove in this
run the loops qz ⇋ qf , we get a run using only transitions of S, and
removing the additionnal ounter an't make this run non-�reable,
so we get a run of S that visits in�nitely often qf and the zero-test.

Now, assume we have a run visiting in�nitely often q′f . We have an in�nite

sequene (xi)i, xi ∈ N
d+1 suh that for all i ∈ N, (qf , xi)

∗
−→ (qf , xi+1). By

well-order of N
d+1, there exists i < j suh that xi ≤ xj . Also, beause the

zero-test is �red after the iterations q′f ⇋ qz, this means that xi[1] = 0.
So, we have a run visiting in�nitely often q′f if and only if there exists
(qf , x) reahable state with x[1] = 0, y with x ≤0 y and u ∈ A+ suh
that (qf , x)

u
−→ (qf , y) (the "if" part is immediate).
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Beause the �rst ounter is neessarily 0 on the q′f ontrol loation (as-
suming an in�nite run) and beause our system is monotoni with respet
to ≤0 (proposition 2), we an replae "(qf , x) reahable state" by "(qf , x)
overable state" in the previous equivalene. Hene, our problems redue
to deide whether there exists a ℓ-inreasing loop on qf , for ℓ a maximal
element of Cover(S).
By [3℄, we an ompute the maximal elements of Cover(S). Then, for
eah suh maximal element, we an use lemma 1 to get our result.

Lemma 3. Let qf be a ontrol loation.
Testing whether there is a run of S visiting in�nitely often qf and on
whih the zero-test is not �red in�nitely often is deidable.

Proof. Let us onsider a run visiting qf in�nitely often. Beause the zero-
test is �red only a �nite number of times, after some point, we have a run
visiting qf in�nitely often without �ring the zero-test. Hene, we redue
our problem to repeated ontrol loation reahability in VASS.

We make the intersetion of Cover(S) (omputed through [3℄) with
({qf} × N

d). By well-order, if qf is visited in�nitely often, then there
exists x, x′ ∈ N

d and u ∈ (A\{az})
+ suh that (qf , x)

u
−→ (qf , x′), x ≤ x′.

Deteting suh an inreasing loop in a VASS an be seen as a speial ase
of lemma 1 (orollary 1), and by testing the presene of an inreasing
loop for eah maximal element of the over, we get our result.

Finally, we an ombine lemmas 2 and 3 to get:

Theorem 3. Let qf be a ontrol loation.
Testing whether there is a run of S visiting in�nitely often qf is deidable.

And by proposition 1,

Corollary 2. Model-Cheking LTL is deidable on VASS0.

5 Conlusion

We have shown that despite VASS0 looking more expressive than VASS,
another deidability result of VASS is preserved. Between the numerous
deidability results that have reently been shown for VASS0 and this
new one, a rule of thumb seems to be that VASS0 and VASS enjoy
the same deidability properties, and ounter-examples have yet to be
found. One an wonder if the few problems (regularity of the reognized
language for example) that are deidable for VASS and remain unknown
for VASS0 follow this rule.

However, it is interesting to note that, despite repeated ontrol loa-
tion reahability being independent from reahability for Vetor Addition
Systems [6℄, our proof requires both reahability and plae-boundedness
on VASS0. This makes the omplexity of our proedure unknown. One
might wonder a proof might exist without using reahability and/or
plae-boundedness, or whether reahability and plae-boundedness an
atually be redued to LTL. We leave these questions for future work.
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A Additionnal redutions

De�nition 6. Let S1 = 〈Q1, A, aZ , T1, sin1〉 and S2 = 〈Q2, A, aZ , T2, sin2〉
be two VASS0 of respetive dimensions d1 and d2. S1 and S2 are weakly
bisimilar if there exists a relation ∼⊆ (Q1 ×N

d1)× (Q2 ×N
d2) suh that:

� sin1 ∼ sin2

�



s1 ∼ s2

s1

a
−→S1 s′1

=⇒ ∃s′2 ∈ Q × N
d2



s2

a
−→S2 s′2

s′1 ∼ s′2

�



s1 ∼ s2

s2

a
−→S2 s′2

=⇒ ∃s′1 ∈ Q × N
d2



s1

a
−→S1 s′1

s′1 ∼ s′2

Note that we are using weak bisimilarity beause of the presene of
epsilon-transitions. Satis�ability of a LTL formula is stable by weak
bisimilarity1.

We provide here a quik proof of a well known redution of VASS0.

Proposition 3. Let S be a VASS0. There exists a VASS0 S ′ weakly
bisimilar to S suh that there exists a unique (qz, aZ , q′z, δz) ∈ T .

1 For a survey of weak bisimilarity and other notions of system equivalene, one might
look at "The linear time-branhing time spetrum II: The semantis of sequential
proesses with silent moves", by RJ. van Glabbeek
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Proof. If S has no suh transition, we an simply add new unreahable
ontrol states and add the required transition, so we will only onsider
the ase of S having more than one transition.
Let S = 〈Q, A, aZ , T, (qin, xin)〉 be a VASS0 of dimension d.
Let Tz = {(qz,i, aZ , q′z,i, δz,i) | 0 ≤ i ≤ p} be the transitions of S using
the zero-test. Let T0 be the other transitions. T = T0 ⊎ Tz. We de�ne
S ′ = 〈Q′, A, aZ , T ′, s′in〉 of dimension d + 2 by:

Q′ = Q ⊎ {qz, q′z}

T ′ =

{(q, a, q′, (δ, 0, 0)) | (q, a, q′, δ) ∈ T0)}∪
{(qz,i, ε, qz, (δz,i, i, p − i) | 1 ≤ i ≤ p}∪

{(q′z, ε, q′z,i, (0
d,−i,−(p − i)) | 1 ≤ i ≤ p}∪

{(qz, az, q′z, 0d+2)}
s′in = (qin, (xin, 0, 0))

We note that we have the invariant that the last two omponents are
always zero in all states of Q. Bisimilarity omes easily from that.
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