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Abstract. We consider the class of Vector Addition Systems with one
zero-test and we show that the model-checking problem for LTL is de-
cidable thanks to a reduction to the computability of the cover and the
decidability of reachability. Our proof uses the notion of increasing loop,
that we refine to fit the non-standard monotony of our system.

1 Introduction

Petri Nets Vector Addition Systems (VAS) are a well-known classes of
counter systems, equivalent to Petri Nets. The reachability problem is
known to be decidable [TAIT5TE/TT] even if its complexity is still an open
problem. As the equality of the reachability sets (the set of states that
are reachable from an initial state) of two such systems is undecidable
[13], one cannot compute a canonical finite representation of the reacha-
bility set. However, there is such an effective finite representation for the
cover, the downward closure of the reachability set, which is connected to
various verification problems, like the control state reachability problem.
If we add to VASS the ability to test at least two counters to zero, one
obtains a model equivalent to Minsky machines, for which all nontrivial
properties are undecidable. The study of VASS with a single zero-test
transition began recently, and a reasonable number of results are now
known. Reinhardt [I8] has shown that the reachability problem is de-
cidable. Abdulla and Mayr |2] have provided an algorithm based on the
backward procedure of Well Structured Transition Systems [1I9] to de-
cide coverability of a state. Termination and Boundedness were shown
by Finkel and Sangnier [8], while an algorithm to compute the maximal
elements of the cover has been found by Bonnet, Finkel, Leroux and
Zeitoun [3].

LTL Linear-time logic is a widely used logic in order to express safety
and liveness properties of a system. Emerson [4] provided an algorithm
based on a covering graph that worked on well structured transition sys-
tems, but that was not guaranteed to terminate. Esparza [5/6] showed
that LTL on the actions of a VASS was decidable, but that CTL was
not, and that LTL became undecidable when predicates regarding the
states were added. Habermehl [12] completed this proof by showing
EXPSPACE-completeness of LTL satisfiability.



Our contribution We complete the works of [3] by showing decidability
of LTL model checking. We start by the usual reduction of LTL model-
checking to repeated control state reachability by defining the synchro-
nized product of a VASSy and a Buchi automaton. Then, we show that
repeated control state reachability can be decided by looking at the ex-
istence of a special kind of increasing loop. We first provide a reduction
of this problem of existence of a loop to the reachability problem for
VASSy when the starting point of there is a finite number of such sub-
sets, and hence that if one is able to compute a finite representation of
the cover, existence of an increasing loop can be decided by looking at
all the subsets.

2 Preliminaries
2.1 Generalities

Sets and Vectors. The cartesian product of two sets X and Y is noted
X x Y and the disjoint union X &Y. For d > 1, we write any © € X¢
as x = (z[0],...,z[d — 1)), with z[i] € X. For z; € X% and z, € X%,
we let (z1,z2) be the vector of X% +d2 ghtained by gluing x; and xs.
Addition of vectors is defined by (z + y)[i] = z[i] + y[i] and substraction
similarly.

We denote by N, the set NU {w} where w is an element strictly greater
than all integers. We will use the notations 0% to denote the vector com-
posed of d 0’s, w? for the vector composed of d w’s, and e? be the vector
of N% such that ef[i] = 1 and ef[j] = 0 if i # j.

Orderings. An ordering < on a set X is a reflexive, transitive and
antisymmetric binary relation on X. Given z,y € X, we write x < y
for £ < y and x # y. The pointwise ordering on X<, still denoted =, is
defined by z <X y if z[i] < y[¢] for all i. Given Y C X, |<Y ={z € X |
Jy € Y, z < y} denotes the downward closure of Y with respect to <.
The set Y is said downward closed if Y = |<Y . In N¢, we shorten l< as
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An ordering < on X is well if, given any sequence (z;);cn of elements
of X, one can find i < j such that x; < x;. The usual ordering on N is
well.

Basis in N¢. Given a downward-closed set X C N9, a basis of X is a
finite subset B of N such that | BN N? = X. Any downward-closed set
of N% admits a basis [7] and one can show that the maximal elements
of any basis B of X still form a basis which does not depend of B. It is
minimal for inclusion among all basis, and is called the minimal basis.

Words. The set of finite words (shortly words) on A is denoted A*. A
word u € A* is written ajas...an, a; € A, and we will also use the notation
u[i] to refer to the i-th letter of u. The concatenation of two words v and
v is simply written uv and the empty word e, with ea = ae = a. AT
denotes the set of non-empty words. An infinite word on A is a sequence
(ai)ien. Given an infinite word u, we use the notation u[k . ..] to refer to
the subsequence (ulk + 7])ien. The set of infinite words on A is written
A“ and the union of finite and infinite words is written A



2.2 Transition Systems

Definition 1. A Labelled Transition System (LT1S) S is a tuple (X, A, —
,Sin) where X is the set of states, A is the set of transition labels,
—C X x (AU {e}) x X 1s the transition relation and sin is the initial
state.

We will use the notations States(S), Actions(S) and Init(S) to refer
respectively to X, A, sin. Moreover, we write s — s’ if (s,a,s’) €— and
we extend this notation to words by s — s and s — s iff 35", s —
s” % §'. Note that transitions may be labelled by & and hence that s = s’
where a € A doesn’t mean that s’ is reached from s by one transition,
but by one transition labelled by a and any number of e-transitions.

A run w of S is a sequence (s;,t;) € (States(S) x Actions(S))S“ such
that so = Init(S) and Vi,s; L, si11. Given a run (84, ti)i, we define
actions(w) as (¢;);. The reachability set is defined as Reach(S) = {y €
States(S) | Ju € Actions(S)* | Init(S) < y}. If States(S) is ordered
by <, the cover is Cover<(S) = |<Reach(S). The subscript < will be
omitted when it is clear from the context.

2.3 Vector Addition Systems

Definition 2. A Vector Addition System with States and one zero-test
(shortly VASSy) of dimension d is a tuple V = (Q, A,az,T, sin) where
Q is a finite set of control locations, A is a finite alphabet of actions,
az € A is called the zero-test, T C Q x Z% x A x Q is the finite set of
transitions, and Sin = (¢in, Tin) € Q X N? is the initial state.

Intuitively, a VASSo works on d counters, one for each component, whose
initial values are given by xi. If (¢,v,a,q") € T, a € A when the VASS,
is in control location ¢ adds the vector v to the counters and moves the
system in the control location ¢’. This action can be executed only if
the resulting counters values are non-negative. Moreover, we have the
restriction that az can be fired only if the first counter is zero.

More formally, a VASSy (Q, A, az,T, sin) induces a transition system S
by:

States(S) = Q x N¢
Actions(S) = A
Init(S) = (gin,Tin)
(¢,2) s (¢',2") <= (¢, —z,0,¢) €T for a # az
(@:0) Lo (¢0) = {7 Pem T

A finite automaton (FA) is a VASSy of dimension 0. We get back the usual
definition of VASS (without zero-test) as (@, A, T, sin) whose semantics
are the same as the VASSy (Q, AW {az},az, T, sin) where az doesn’t
appear in 7.

We recall from previous works the following properties of VASSy that we
will use in the sequel :



Theorem 1. (Reachability [18], Coverability [2])
Let S be the transition system associated to a VASSy. Membership in
Reach(S) and Cover(S) is decidable.

Regarding coverability, we can be even more precise. Actually, Cover(S)
is not only recursive, but also has a finite representation.

Theorem 2. (Cover [3])
Let S be the transition system associated to a VASSy. One can compute
the minimal basis of Cover(S).

To simplify some proofs, we will only consider normed VASSy, i.e. VASSy
such that there exists a unique (g, q’,d) for which (q,d,a.,q") € T. We
show in the appendix (proposition Bl that any VASSy can be rewritten
in a normed VASS, satisfying the same LTL formulas.

3 The LTL Logic

3.1 Buchi Automata and LTL

Definition 3. A Buchi automaton is a pair (A, F) where A is a finite
automaton and F C States(S).

An infinite run ((gs;, i), t:)ien of a Buchi Automata is accepted iff {i €
N| ¢; € F} is infinite.

Definition 4. Given a set A, the set of LTL formulae is given by the
following grammar, where a ranges over A :

pu=truela| | i Aps | Xo | pr1ldps
Formulas are interpreted on infinite words over the alphabet A. We de-

note that w satisfies a formula ¢ by w = . This relation is defined
inductively on the structure of ¢ by:

w = true

wkEa — wl0]=a

w = g = wlo

wE @i Ap2 <= w1 and w = p2

wkE Xp — wll..]E¢

whEeilpy <= 3, V0O<j<i, wj..]EpiAwfi... Ep2

Given a LTL formula ¢, one can build a Buchi automaton B, such that
the set of infinite words satisfying ¢ is exactly the infinite words ac-
cepted by B,. We refer to the abundant literature on this subject for the
construction (Proposition 4.1 of [5], but also [II] and [10]).



3.2 Model Checking

We consider two problems on VASSy. LTL Model Checking consists in,
given a VASS, V inducing a transition system S and a LTL formula ¢ on
Actions(S), determining whether there exists an infinite run w of S such
that actions(w) | ¢. Repeated Control State Reachability consists in,
given a VASSy S = (@, A,az,T, sin) and a control location ¢y € Q, de-
termining whether there exists an infinite run w = (s1,¢1) ... (Sk, tk) ...
of & such that {j € N | 3z, s; = (gs,x;)} is infinite.

We have the following usual reduction :

Proposition 1. LTL Model Checking on VASS, reduces to Repeated
Control State Reachability on VASSo.

Proof. Let V =(Q, A,az,T, (¢in,Zin)) be a VASSy and ¢ a LTL formula
on A. Let B = (Qs,A,T5, ¢ing, F) be a Buchi automaton representing
. The synchronized product of V and B is defined as the VASS, V' =
(@ x Qp,A,az,T',((gin, qinp)s Tin)) With :

T ={((q1,92),6,a,(q1,92)) | (q1,6,a,¢) € T A (q2,a,¢5) € Tis}

This VASSo induces a transition system S’, and it is easy to check that
a sequence ((qi,¢?,x:),a;); is a run of S’ if and only if (g}, x:),a:); is a
run of S and (¢7,a;); is a run of B. Hence, there exists a run of S’ that
visits infinitely often @ x F', if and only if there exists runs w of & and
w’ of B such that actions(w) = actions(w’) and w’ visits infinitely often
F, which means that actions(w) = .

4 Decidability of Repeated Control State
Reachability

Let us introduce the order <g as <oy <= z < y A z[0] = y[0]. We
have the following monotony property for VASSy:

Proposition 2. Let ¢ € Q and z,y € N with x <o y. If a sequence of
transitions can be fired from (q,x), it can be fired from (q,y).

Our idea is to make an equivalence between repeated control location
reachability and the existence of an increasing loop going through this
state.

Definition 5. Let V be a VASSy and S its associated transition system.
Given € in NxN&™1 | we say that (z,u,y) € Nx AT xN? is a £-increasing
loop on q in V if we have (q,z) s (q,y), <oy and x <o £.

Our proof is in three steps : First we show that if we have the restriction
that £[0] = 0, we can decide the existence of an ¢-increasing loop. Then we
show that, assuming the run we are looking for goes infinitely through
the zero-test, the existence of a run visiting infinitely often a control
location reduces to the existence of a ¢-increasing loop with £[0] = 0. We



conclude by taking also care of runs visiting the zero-test only a finite
number of times.

We will fix a normed VASSy V = (Q, A,az,T, sirn) of dimension d and S
its associated transition system. Unless otherwise specified, all lemmas
refer to this VASSy.

Lemma 1. Let q; € Q and £ € {0} x N1 The existence of an (-
increasing loop on qy is decidable.

Proof. Let us take £ € {0} x NZ=!. Without loss of generality (by re-
ordering counters), we have £ = (0,w™,b), b € N*, with d =1+ m + n.
We will build a VASS, V' inducing a transition system S’ that will mimic
S in the following sense (x represents a state S, and =’ the associated
state in §’):

— The counter that can be tested for zero is preserved.

— A counter z[i] for 1 < ¢ < m (the ones for which £[i] = w) is replaced
by two counters z'[i] and z'[i +m], such that z'[i +m] — 2'[i] < =z[i].
This simulates a counter that can go arbitrarily below its initial
value, and that can leak non-deterministically.

— A counter z[i] for m 4+ 1 < ¢ < m + n (the ones for which £[i] # w)
is replaced by one counter z'[i + m] such that x’[i + m] < z[i]. This
simulates a counter that can leak non-deterministically.

Note that states of S will be represented as (x,v, z) with z € N, v € N™
and z € N" while states of &' will be represented as (z,v,w, z) with
z €N, (v,w) € N® x N™ and 2z € N".

Formally, we define V' = (Q, A,az,T’, si,) of dimension d' = 1+2m+n
by:

»
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(T1) is the traduction of the transition of S. (T2) makes the counters
of index from 1 +2%m + 1 to 1 4+ 2% m + n (we recall these counters
represent the counters of index 1 +m+1to 1+ m+mn in S) lossy. (T3)
+ (T4) imply that only the relative value of the counters ¢ and i + m
matters (for 1 < i < m). This simulates a counter living in Z. Finally,
(T5) makes the previous counter lossy.

We will show that the existence of 2,y € {0} xN?~* and u € A* such that
z <Y, (qr,7) =5 (gr,y) and = < y is equivalent to the reachability in
S’ of (0,0™,0™,b) from itself using at least one non-epsilon transition.
Note that reachability by using at least one non-epsilon transition is
reducible to reachability by adding a lossy counter, starting at zero, that
is increased when a non-epsilon transition is fired.



= Let us assume the existence of 2,y € {0} x N~* and v € A" such
that z < £, z < y and = < y.
Let x = (0,1, 51), y = (0,2, 82) and £ = (0,w™,b) with a1 < a,
B1 < B2 and B1 < b.
Because (¢r,0, a1, 31) s (qr,0, e, B2), we have (qr,0, o1, a1, B1) —50
(q,0, a1, az, B2). Because 81 < b, we also have that (qr,0, a1, a1,b) g/
(g5,0, 01, 2, B2 + b — f1).
Then, we have :

(qf7 0,0™,0™, b) i’-S’ (qfa 0,a1, 01, b)
—s! (%’7 07 a1, a2, b + ﬂ2 - /81)
€
—s (qr,0,a1,01,b)

i’s’ (Qf7 07 0m7 0m7 b)

< Assume that we have (gr,0,0™,0™,b) % (qr,0,0™,0™,b). We will
show there exist z,y € {0} x N?~! with x < £ such that (¢s,2) s
(a7,9)-
Let (¢, vi, ws, 2i)o<i<k such that (ts, vi,ws, z;) =g (titr1, Vit1, Wit1, Zit1)
and (t,v0,wo, 20) = (t, vk, w, 2¢) = (0,0™,0™,b).
Let a be the vector defined by afi] = mazo<;j<r{v;[i]}. We define p
from N¥ to N? by w(t,v,w,z) = (t, w — v + @, z). Then, an induc-
tion on the length of the transition sequence gives that (gq,s1) —s
(¢',s2) = 3s3 € N 55 <1 pals2) A (g, 1(51)) s (4, 83)-
This gives the result.

Note that we can treat a VASS as a VASSo where the component tested
for zero is unused. We get the following corollary of lemma[Il (a similar
result can be found in [5] and [4]) that we will also need to use:

Corollary 1. Let V' = (Q, A, T, sin) be a VASS, q; € Q and £ € N&. It
is possible to decide whether there exists a {-increasing loop on qf in V',

Lemma 2. Let g5 be a control location.
Testing whether there is a Trun of S wisiting infinitely often q¢ and on
which the zero-test is fired infinitely often is decidable.

Proof. We reduce this problem to the one of lemma [l Because S is
normed, there is a single transition labelled by az in T: (g.,d,az ,q.).
We define 8" = (Q', A,az, T, s},) of dimension d + 1 (schematized in
figure M) by:

Q' =QuU {Qm“e»Q}}
8in = (qin, (Tin, 0))
{(a,(8,0),a,9") | (¢,6,a,4") € T Ng" ¢ {qs,q:}} U
T — {(q7 (57 1),a,Qf) | (Q7 J,a, Qf) € T}U
{(a,(6,0),a,qpre) | (¢,6,a,q:)} U
{(gpre, 0776, 42), (g=, (0%, —1),6,4%), (¢}, 09 e, ¢2) }
Note that in S’, the last component of the state contains the difference

between the number of times the system visited ¢y and the number of
times the system visited ¢}.



Fig. 1. Schema of the reduction

First, let us show that there is a run visiting infinitely often ¢y and going

through the zero-test infinitely often in S if and only if there is a run

visiting infinitely often ¢} in S’

= Let us assume there is a run in § that visits infinitely often ¢y and
that goes infinitely often through the zero-test. This run is also a
valid run in S’ because we only added places and a counter that is
only incremented by actions of S. Now, we alter this run by inserting
as many loops g, = ¢y as possible before each zero-test. This new
run fulfills z[d + 1] = 0 infinitely often, and because this counter
marks the difference between the number of passages in g5 and the
number of passages in ¢}, this means ¢} is visited infinitely often.

< Let us assume there is a run in S’ that visits q} infinitely often.
Because of the z[d + 1] counter, this run visits ¢; infinitely often.
Moreover, because q} can only be reached by g, that can only go
to q} or through the zero-test, and that the loop ¢. = ¢y can only
be done a finite number of times, if ¢} is visited infinitely often on
a run, then the zero-test is also fired an infinite number of times.
Hence, we have a run of &’ that visits infinitely often gy and on
which the zero-test is fired infinitely often. Now, if we remove in this
run the loops g. = ¢y, we get a run using only transitions of S, and
removing the additionnal counter can’t make this run non-fireable,
so we get a run of S that visits infinitely often gy and the zero-test.

Now, assume we have a run visiting infinitely often q’f. We have an infinite
sequence (x;):, x; € N** such that for all i € N, (gf,z:) = (qy, &it1). By
well-order of N4t there exists ¢ < j such that z; < z;. Also, because the
zero-test is fired after the iterations ¢ = ¢, this means that x;[1] = 0.
So, we have a run visiting infinitely often q} if and only if there exists
(g, ) reachable state with z[1] = 0, y with z <¢ y and u € AT such
that (g, z) = (qs,%) (the "if" part is immediate).



Because the first counter is necessarily 0 on the ¢} control location (as-
suming an infinite run) and because our system is monotonic with respect
to <o (proposition ), we can replace "(gr, z) reachable state" by "(qy, x)
coverable state" in the previous equivalence. Hence, our problems reduce
to decide whether there exists a ¢-increasing loop on ¢y, for £ a maximal
element of Cover(S).

By [3], we can compute the maximal elements of Cover(S). Then, for
each such maximal element, we can use lemma/[I] to get our result.

Lemma 3. Let g5 be a control location.
Testing whether there is a run of S wisiting infinitely often qf and on
which the zero-test is not fired infinitely often is decidable.

Proof. Let us consider a run visiting ¢y infinitely often. Because the zero-
test is fired only a finite number of times, after some point, we have a run
visiting ¢y infinitely often without firing the zero-test. Hence, we reduce
our problem to repeated control location reachability in VASS.

We make the intersection of Cover(S) (computed through [3]) with
({gs} x N%). By well-order, if q; is visited infinitely often, then there
exists x,2’ € N* and u € (A\{a.})" such that (¢7,2) = (qr,2'), z < 2.
Detecting such an increasing loop in a VASS can be seen as a special case
of lemma [I] (corollary [, and by testing the presence of an increasing
loop for each maximal element of the cover, we get our result.

Finally, we can combine lemmas [2] and [3] to get:

Theorem 3. Let g5 be a control location.
Testing whether there is a Tun of S visiting infinitely often qy is decidable.

And by proposition [I]

Corollary 2. Model-Checking LTL is decidable on VASS.

5 Conclusion

We have shown that despite VASS, looking more expressive than VASS,
another decidability result of VASS is preserved. Between the numerous
decidability results that have recently been shown for VASS, and this
new one, a rule of thumb seems to be that VASSy and VASS enjoy
the same decidability properties, and counter-examples have yet to be
found. One can wonder if the few problems (regularity of the recognized
language for example) that are decidable for VASS and remain unknown
for VASSy follow this rule.

However, it is interesting to note that, despite repeated control loca-
tion reachability being independent from reachability for Vector Addition
Systems [6], our proof requires both reachability and place-boundedness
on VASSp. This makes the complexity of our procedure unknown. One
might wonder a proof might exist without using reachability and/or
place-boundedness, or whether reachability and place-boundedness can
actually be reduced to LTL. We leave these questions for future work.



References

1.

10.

11.

P. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General de-
cidability theorems for infinite-state systems. Logic in Computer
Science, Symposium on, 0:313, 1996.

P. Abdulla and R. Mayr. Minimal cost reachability /coverability in
priced timed petri nets. In L. de Alfaro, editor, Foundations of Soft-
ware Science and Computational Structures, volume 5504 of Lecture
Notes in Computer Science, pages 348-363. Springer Berlin / Hei-
delberg, 2009.

R. Bonnet, A. Finkel, J. Leroux, and M. Zeitoun. Place-boundedness
for vector addition systems with one zero-test. In K. Lodaya
and M. Mahajan, editors, Proceedings of the 30th Conference on
Foundations of Software Technology and Theoretical Computer Sci-
ence (FSTTCS’10), volume 8 of Leibniz International Proceedings
in Informatics, pages 192—203, Chennai, India, Dec. 2010. Leibniz-
Zentrum fiir Informatik.

E. A. Emerson and K. S. Namjoshi. On model checking for non-
deterministic infinite-state systems. In Proceedings of the 13th An-
nual IEEE Symposium on Logic in Computer Science, LICS ’98,
pages 70—, Washington, DC, USA, 1998. IEEE Computer Society.
J. Esparza. On the decidability of model checking for several pu-
calculi and petri nets. In S. Tison, editor, Trees in Algebra and
Programming — CAAP’9), volume 787 of Lecture Notes in Com-
puter Science, pages 115-129. Springer Berlin / Heidelberg, 1994.
10.1007/BFb0017477.

J. Esparza. Decidability and complexity of petri net problems : An
introduction. In W. Reisig and G. Rozenberg, editors, Lectures on
Petri Nets I: Basic Models, volume 1491 of Lecture Notes in Com-
puter Science, pages 374-428. Springer Berlin / Heidelberg, 1998.
A. Finkel and J. Goubault Larrecq. Forward analysis for WSTS, Part
I: Completions. In Susanne Albers and Jean-Yves Marion, editors,
26th International Symposium on Theoretical Aspects of Computer
Science - STACS 2009, pages 433-444, Freiburg Allemagne, 2009.
IBFI Schloss Dagstuhl.

A. Finkel and A. Sangnier. Mixing coverability and reachability
to analyze vass with one zero-test. In J. van Leeuwen, A. Muscholl,
D. Peleg, J. Pokorny, and B. Rumpe, editors, SOFSEM 2010: Theory
and Practice of Computer Science, volume 5901 of Lecture Notes
in Computer Science, pages 394-406. Springer Berlin / Heidelberg,
2010.

A. Finkel and P. Schnoebelen. Well-structured transition systems
everywhere! Theoretical Computer Science, 256(1-2):63 — 92, 2001.
P. Gastin and D. Oddoux. Fast It]l to biichi automata translation. In
G. Berry, H. Comon, and A. Finkel, editors, Computer Aided Veri-
fication, volume 2102 of Lecture Notes in Computer Science, pages
53-65. Springer Berlin / Heidelberg, 2001.

R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-
fly automatic verification of linear temporal logic. In Proceedings
of the Fifteenth IFIP WG6.1 International Symposium on Protocol

10



Specification, Testing and Verification XV, pages 3—18, London, UK,
UK, 1996. Chapman & Hall, Ltd.

12. P. Habermehl. On the complexity of the linear-time p-calculus for
petri nets. In P. Azéma and G. Balbo, editors, Application and The-
ory of Petri Nets 1997, volume 1248 of Lecture Notes in Computer
Science, pages 102-116. Springer Berlin / Heidelberg, 1997.

13. M. Hack. The equality problem for vector addition systems is unde-
cidable. Theoretical Computer Science, 2(1):77 95, 1976.

14. S. R. Kosaraju. Decidability of reachability in vector addition sys-
tems. In Proceedings of the fourteenth annual ACM symposium on
Theory of computing, STOC 82, pages 267-281, New York, NY,
USA, 1982. ACM.

15. J. Leroux. The general vector addition system reachability prob-
lem by presburger inductive invariants. Logic in Computer Science,
Symposium on, 0:4-13, 2009.

16. J. Leroux. Vector addition system reachability problem: a short self-
contained proof. SIGPLAN Not., 46:307-316, January 2011.

17. E. W. Mayr. An algorithm for the general petri net reachability
problem. In Proceedings of the thirteenth annual ACM symposium
on Theory of computing, STOC '81, pages 238-246, New York, NY,
USA, 1981. ACM.

18. K. Reinhardt. Reachability in petri nets with inhibitor arcs. Elec-
tronic Notes in Theoretical Computer Science, 223:239 — 264, 2008.
Proceedings of the Second Workshop on Reachability Problems in
Computational Models (RP 2008).

A Additionnal reductions

Definition 6. Let S1 = (Q1,A,az,T1,8in1) and Sz = (Q2, A, az,T2, Sino)
be two VASSy of respective dimensions di and dz. S1 and Sz are weakly
bisimilar if there exists a relation ~C (Q1 x N1) x (Q2 x N¥2) such that:

— Sin1 ™ Sin2

a
S1 .~ 82 S2 — S
- a , = JsheQx N2 T
S1 —8; S1 S1 ™~ S2

a
81 ~ S2 S1 —S8, S
- “ , = Jsh e Q@ x Nzl TSl
82 —Sy S2 S1 ™~ S2

Note that we are using weak bisimilarity because of the presence of
epsilon-transitions. Satisfiability of a LTL formula is stable by weak
bisimilarit.

We provide here a quick proof of a well known reduction of VASS,.

Proposition 3. Let S be a VASSy. There exists a VASSy S’ weakly
bisimilar to S such that there exists a unique (q.,az,q.,5.) € T.

! For a survey of weak bisimilarity and other notions of system equivalence, one might

look at "The linear time-branching time spectrum II: The semantics of sequential
processes with silent moves", by RJ. van Glabbeek
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Proof. If S has no such transition, we can simply add new unreachable
control states and add the required transition, so we will only consider
the case of S having more than one transition.

Let S =(Q, A,az,T, (qin,Tin)) be a VASS, of dimension d.

Let T: = {(¢zs,02,¢%4,0-:) | 0 < i < p} be the transitions of S using
the zero-test. Let Ty be the other transitions. T = Ty W T,. We define
S =(Q',A,az,T,s;,) of dimension d + 2 by:

Q =Qu{g:,q.}
q, a, qu (57 07 0)) | (Q7a‘7 ql75) S TO)}U
T — iagaqza(éz,i7i7p_i)‘1§i§p}u

qlz75>qlz,i7 <0d> _i> _(p - 7’)) | 1 S 1 S p}U
q27a’z7q;70d+2)}

{(
{(a
{(
{(
S:Ln = (qinv (xinv 0, O))

We note that we have the invariant that the last two components are
always zero in all states of (). Bisimilarity comes easily from that.
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