
Antichain-based
Universality and Inclusion Testing

over Nondeterministic Finite
Tree Automata

FIT BUT Technical Report Series

Ahmed Bouajjani, Peter Habermehl,
Lukáš Hoĺık, Tayssir Touili, and

Tomáš Vojnar

Technical Report No. FIT-TR-2008-001
Faculty of Information Technology, Brno University of Technology

Last modified: May 8, 2008

Antichain-based Universality and Inclusion Testing over
Nondeterministic Finite Tree Automata

Ahmed Bouajjani1, Peter Habermehl1,2, Lukáš Holı́k3, Tayssir Touili1, and
Tomáš Vojnar3

1 LIAFA, CNRS and University Paris Diderot, France,
email: {abou,haberm,touili}@liafa.jussieu.fr

2 LSV, ENS Cachan, CNRS, INRIA
3 FIT, Brno University of Technology, Czech republic,

email: {holik,vojnar}@fit.vutbr.cz

Abstract. We propose new antichain-based algorithms for checking universal-
ity and inclusion of nondeterministic tree automata. We have implemented these
algorithms in a prototype tool and we present experiments which show that the al-
gorithms provide a significant improvement over the traditional determinisation-
based approaches. Furthermore, we use the proposed antichain-based inclusion
checking algorithm to build an abstract regular tree model checking framework
based entirely on nondeterministic tree automata. We show the significantly im-
proved efficiency of this framework on a series of experiments with verifying
various programs over dynamic tree-shaped data structures linked by pointers.

1 Introduction

Tree automata have proved to be useful in numerous different areas, including, e.g., the
implementation of decision procedures for various logics, XML manipulation, linguis-
tics, or different areas of formal verification of systems such as parameterised networks
of processes, cryptographic protocols, or programs with dynamic linked data structures.
A classical implementation of many of the operations—such as minimisation or inclu-
sion checking—used for dealing with tree automata in the different application areas
often assumes that the automata being handled are deterministic. However, like in our
own practical experience discussed later in this paper, it may happen that the determin-
isation step yields automata which are too large to handle although the original non-
deterministic automata are quite small. It may even be the case that the corresponding
minimal deterministic automata are small, but one may not be able to compute them as
the intermediary automata resulting from determinisation are too big.

As the situation is similar also for other kinds of automata, recently, a lot of research
has been done to implement efficiently operations like minimisation (or at least reduc-
tion), universality checking, or inclusion checking directly on nondeterministic word,
Büchi, or tree automata. Here, we follow this line of research and propose and exper-
imentally evaluate new efficient algorithms for universality and inclusion checking on
nondeterministic (bottom-up) tree automata. Our work is based on using antichains of
sets of states of the considered automata instead of the classical subset construction. In

1

this way, we extend some of the antichain-based algorithms recently proposed for uni-
versality and inclusion checking over finite word automata [11] to tree automata (and
we also show that the others are not practical for tree automata).

To evaluate the proposed algorithms, we have implemented them in a prototype
tool over the Timbuk tree automata library [8] and tested them in a series of experi-
ments showing that they provide a significant advantage over the traditional approaches
based on determinisation. The experiments were done both on randomly generated au-
tomata with different densities of transitions and final states like in [11] as well as
within an important complex application of tree automata. Indeed, our antichain-based
inclusion checking algorithm for tree automata fills an important hole in the tree au-
tomata technology enabling us to implement an abstract regular tree model checking
(ARTMC) framework based entirely on nondeterministic tree automata. ARTMC is
a generic technique for an automated formal verification of various kinds of infinite-
state and parameterised systems. In this paper, we, in particular, consider its use for
verification of programs manipulating dynamic tree-shaped data structures, and we
show that the use of nondeterministic tree automata instead of the deterministic ones
gives a very significant improvement in the efficiency of the technique.

Related Work. In [11], antichains were used for dual forward and backward algorithms
for universality and inclusion testing over finite word automata. In [7], antichains were
applied for Büchi automata. Here, we show how the forward algorithms from [11] can
be extended to finite (bottom-up) tree automata (in the form of algorithms computing
upwards). We also show that the backward computation from word automata is not
practical for tree automata (where it corresponds to a downward computation).

The regular tree model checking framework was studied in, e.g., [10, 5, 2], and
abstract regular tree model checking in [3, 4]—in all cases using deterministic tree
automata. When implementing a framework for abstract regular tree model checking
based on nondeterministic tree automata, we exploit the recent results on simulation-
based reduction of tree automata obtained in [1].

2 Preliminaries

We recall in this section basic definitions of terms, trees, and tree automata.
An alphabet Σ is ranked if it is endowed with a mapping rank : Σ → N. For k ≥ 0,

Σk is the set of elements of rank k. Σk = {f ∈ Σ | rank(f) = k}. Note that the sets
Σk need not be disjoint. The elements of Σ0 are called constants. The set TΣ of terms
over Σ is defined inductively as follows: if f ∈ Σ0, then f ∈ TΣ and if k ≥ 1, f ∈ Σk,
and t1, . . . , tk ∈ TΣ, then f(t1, . . . , tk) is in TΣ .

Definition 1. A bottom-up tree automaton (we shall omit the ‘bottom-up’ below) is
a tuple A = (Q, Σ, F, q0, δ) where Q is a finite set of states, Σ is a ranked alphabet,
F ⊆ Q is a set of final states, and δ is a set of rules of the form (1) f(q1, . . . , qn

)

→ q
or (2) a(q0) → q, where a ∈ Σ0, n ≥ 1, f ∈ Σn, and q1, . . . , qn, q, q′ ∈ Q.

Let t be a term over Σ. A run of A on t can be done in a bottom-up manner as
follows: first, we assign a state to each leaf according to the rules (2), then for each

2

internal node, we must collect the states assigned to all its children and then associate
a state to the node itself according to the rules (1). Formally, if during the state assign-
ment process the subterms t1, . . . , tn are labelled with states q1, . . . , qn, and if the rule
f(q1, . . . , qn) → q is in δ, which we will denote by f(q1, . . . , qn) →δ q below, then
the term f(t1, . . . , tn) is labelled with q. A term t is accepted if A reaches the root of
t in a final state. The language accepted by the automaton A is the set of terms that it
accepts: L(A) = {t ∈ TΣ | t

∗
→δ q(t) and q ∈ F}.

We call a tree automaton complete if for all n ≥ 1, f ∈ Σn, q1, ..., qn ∈ Q, there
is at least one q ∈ Q such that f(q1, ..., qn) →δ q, and for each a ∈ Σ0, there is at
least one q ∈ Q such that a(q0) →δ q. Note that a tree automaton may in general
be nondeterministic—we call it deterministic if in both of the cases from the previous
sentence, there is at most one right-hand side q ∈ Q.

3 Universality Checking

3.1 Lattices and Antichains

The following definitions are similar to the corresponding ones from [11]. Let Q be
a finite set. An antichain over Q is a set S ⊆ 2Q such that ∀s, s′ ∈ S : s 6⊂ s′, i.e., a set
of pairwise incomparable subsets of Q. We denote by L the set of antichains. A set s ∈
S ⊆ 2Q is minimal in S iff ∀s′ ∈ S : s′ 6⊂ s. Given a set S ⊆ 2Q, we denote by bSc the
set of minimal elements of S. We define a partial order on antichains: for two antichains
S, S′ ∈ L, let S v S′ iff ∀s′ ∈ S′ ∃s ∈ S : s ⊆ s′. Given two antichains S, S ′ ∈ L,
the v-lub (least upper bound) is the antichain S tS ′ = b{s∪ s′|s ∈ S ∧ s′ ∈ S′}c and
the v-glb (greatest lower bound) is the antichain S u S ′ = b{s|s ∈ S ∨ s ∈ S′c. These
definitions can be extended to lub and glb of arbitrary subsets of L in the obvious way,
yielding the operators

⊔

and
d

. Then, it is easy to see that we obtain a complete lattice
(L,v,

⊔

,
d

, {∅}, ∅), where {∅} is the minimal element and ∅ the maximal element.

3.2 Upward Universality Checking Using Antichains

To check for universality of a tree automaton, the standard approach consists in making
the automaton complete, determinising it, complementing, and checking for emptiness.
Since determinisation is an expensive step, we propose in this section an algorithm
that allows to check universality for tree automata without determinisation. The idea of
our technique is to find at least one term that is not accepted by the automaton. To do
this, we perform a kind of symbolic simulation of the automaton to cover all runs that
necessarily lead to non-accepting states.

In what follows, q, q1, q2, ... denote states of nondeterministic tree automata, s, s1,
s2, ... denote sets of such states, and S, S1, S2, ... denote antichains of sets of states.

We first give some definitions. We suppose our automata to be complete. Let f ∈
Σn, then Postδf (s1, ..., sn) = {q | ∃qi ∈ si, 1 ≤ i ≤ n : f(q1, ..., qn) →δ q}. We omit
δ if it is understood from the context. Let us define Post(S) = b{Postf (s1, ..., sn) |
n ∈ N, s1, ..., sn ∈ S, f ∈ Σn}c. Clearly, Post is monotonic wrt. v. Let Post0(S) =

3

S and Posti(S) = Post(Posti−1(S)) u S for all i > 0. As Post is monotonic, we
have

∀S ∈ L ∀i ≥ 0 : Posti+1(S) v Posti(S) (1)

Since we work on a finite lattice, this implies that for all S there exists jS such that
PostjS

(S) = PostjS+1(S). We let Post∗(S) = PostjS
(S).

Lemma 1. Let A = (Q, Σ, F, q0, δ) be an automaton and t a term over Σ. Let s =

{q | t
∗
→δ q}, then Post∗({{q0}}) v {s}.

Proof. We proceed by structural induction on t.

Basic case. t = a ∈ Σ0. Let s = {q | t
∗
→δ q}. Then s = {q | a(q0) →δ q} which

is equal to Posta({q0}). Therefore, there exists s′ ∈ Post({{q0}}) s.t. s′ ⊆ s since
Post is obtained by taking the minimal elements. Furthermore, because of (1), there is
also s′′ ⊆ s′ such that s′′ ∈ Post∗({{q0}}).

Induction step. t = f(t1, ..., tn). Let si = {q ∈ Q | ti
∗
→δ q} for i ∈ {1, ..., n}. Let

s = {q | t
∗
→δ q}. Then, clearly, s = {q | ∃q1 ∈ s1, ..., qn ∈ sn : f(q1, ..., qn) →δ q}.

By induction, it follows that there exists s′i ⊆ si s.t. s′i ∈ Post∗({{q0}}). Let s′ =
Postf (s′1, ..., s

′
n). Then, it is clear by the definition of Postf that we have s′ ⊆ s, and

by definition of Post∗, there exists s′′ ⊆ s′ such that s′′ ∈ Post∗({{q0}}). ut

Lemma 2. Let A = (Q, Σ, F, q0, δ) be an automaton and let s ∈ Post∗({{q0}}).
Then there exists a term t over Σ such that s = {q | t

∗
→δ q}.

Proof. Let i be the minimum index such that s ∈ Posti({{q0}}). We proceed by
induction on i.

Basic case. i = 1. Then there exists a symbol a ∈ Σ0 such that s ∈ Posta({q0}).
It is clear by the definition of Posta that s = {q | a

∗
→δ q}.

Induction step. Let i > 1. Then, there exists f ∈ Σn and s1, ..., sn ∈ Posti−1({{q0}})
with s = Postf (s1, ..., sn). By induction, there exists t1, ..., tn s.t. for j ∈ {1, ..., n},
sj = {q | tj

∗
→δ q}. Let t = f(t1, ...tn). By definition of Postf , s = {q | t

∗
→δ q}. ut

We can now give a theorem allowing to decide universality without determinisation.

Theorem 1. A tree automaton A = (Q, Σ, F, q0, δ) is not universal if and only if ∃s ∈
Post∗({{q0}}) : s ⊆ F .

Proof. Suppose A is not universal. Let then t be a term that is not accepted by A. Let
s = {q | t

∗
→δ q}. Since t is not accepted by the automaton, s ⊆ F . It follows by

Lemma 1 that there is s′ ∈ Post∗({{q0}}) such that s′ ⊆ s ⊆ F .
Suppose that there exists s ∈ Post∗({{q0}}) such that s ⊆ F . By Lemma 2, there

exists a term t such that s = {q | t
∗
→δ q}. Since s ⊆ F , t is not accepted by A. ut

4

3.3 Experiments with Upward Universality Checking Using Antichains

We have implemented the above approach for testing universality of tree automata in
a simple prototype based on the Timbuk tree automata library [8]. The results we ob-
tained from experimenting with the implementation are given in Fig. 1. We ran our tests
on randomly generated automata and on automata obtained from abstract regular tree
model checking applied in verification of several pointer-manipulating programs. All
the experiments were run on an Intel Xeon processor at 2.7GHz with 16GB of memory.

In the random tests, we first used automata with 20 states and we varied the density
of their transitions (the average number of different right-hand side states for a given
left-hand side of a transition rule, i.e., |δ|/|{f(q1, ..., qn) | ∃q ∈ Q : f(q1, ..., qn) →δ

q}|) and the density of their final states (i.e., |F |/|Q|). Fig. 1(a) shows the probability
of such automata being universal, and Fig. 1(b) the average times needed for checking
the universality of such automata using our antichain-based approach. The most diffi-
cult instances are naturally those where the probability of being universal is about one
half. In Fig. 1(c), we show how the running times change for some selected instances
of the problem (in terms of some selected densities of transitions and final states, in-
cluding those for which the problem is the most difficult) when the number of states
of the automata grows. The figure also shows the time needed when the universality is
checked using determinisation, complement, and emptiness checking. We see that the
antichain-based approach behaves in a significantly better way. The same conclusion
can then be drawn also from the results shown in Fig. 1(d) obtained on automata from
experimenting with abstract regular tree model checking applied for verifying various
real-life procedures manipulating trees, which are presented in Section 5.3.

3.4 Downward Universality Checking with Antichains

The upward universality checking that we have introduced above for tree automata con-
ceptually corresponds to the forward universality checking of finite word automata dis-
cussed in [11]. In [11], a dual backward universality checking based on computing the
controllable predecessors of the set of non-final states is also introduced. Here, the con-
trollable predecessors are the predecessors that can be forced by some input symbol to
continue into a given set of states. Then, the automaton is non-universal iff the set of
initial states is covered by the controllable predecessors of the non-final states.

Downward universality checking for tree automata as a dual approach to the upward
universality checking is problematic. This is because the set of controllable predeces-
sors of a set of states s ⊆ Q of a tree automaton A = (Q, Σ, F, q0, δ) is not a set of
states, but a set of tuples of states. Namely, CPre(s) = {(q1, ..., qn) | n ∈ N ∧ ∃f ∈
Σ ∀q ∈ Q : f(q1, ..., qn) →δ q ⇒ q ∈ s}. Note that if we flatten the set CPre(s)
to the set FCPre(s) of states that appear in some of the tuples of CPre(s) and check
that starting from q0 the computation can be forced into some subset of FCPre(s),
then this does not imply that the computation can be forced into some state from s.
This is the case because for any rule f(q1, ..., qn) →δ q, q ∈ s, not all of the states q1,
..., qn may be reached. Furthermore, it is too strong to require that starting from q0, it
must be possible to force the computation into all states of FCPref (s). Clearly, it is
enough if the computation starting from q0 can be forced into s via some of the vectors

5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

 0

 0.2

 0.4

 0.6

 0.8

 1 0

 0.2

 0.4

 0.6

 0.8

 1

probability of being universal

transition ratio

final states ratio

probability of being universal

(a) Probability that a tree automaton (TA)
with 20 states and some density of tran-
sitions and final states is universal

 0
 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4
 4.5

 0 0.5 1 1.5 2 2.5 3 3.5 4

 0

 0.2

 0.4

 0.6

 0.8

 1 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

time (s)

transition ratio

final states ratio

time (s)

(b) Average times of antichain-based univer-
sality checking on TA with 20 states and
some density of transitions and final states

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120

tim
e

(s
)

number of states

Density of transitions, final states: 1.5, 0.9
2.0, 0.5
2.5, 0.3

(checking via determinisation) 2.5, 0.3

(c) Determinisation-based and antichain-based universality check-
ing on TA with selected densities of transitions and final states

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 20 40 60 80 100 120 140

tim
e

(s
)

number of states

antichain-based
determinisation-based

(d) Determinisation-based and antichain-based universality check-
ing on TA from abstract regular tree model checking

Fig. 1. Experiments with universality checking on tree automata

in CPre(s), and not necessarily all of them. Also, if we keep CPre(s) for s ⊆ Q as a
set of vectors, we have to subsequently define the notion of a controllable predecessor
for sets of vectors of states, which is a set of vectors of vectors of states, and so on.
Clearly, such an approach is not practical.

6

4 Inclusion Checking

Let A = (Q, Σ, F, q0, δ) and B = (Q′, Σ, F ′, q′0, δ
′) be two tree automata. We want

to check whether L(A) ⊆ L(B). The traditional approach consists in computing the
complement of B, and check whether it has an empty intersection with A. This is ex-
pensive because computing the complement necessitates determinisation. We show in
this section how to check inclusion without determinisation.

As previously, the idea is to find at least one term that is accepted by A and not by B.
For that, we simultaneously simulate the runs of the two automata by dealing with pairs
of the form (p, s) such that p ∈ Q and s ⊆ Q′, where the first component memorises
the run of A and the second component all the possible runs of B. Then, if t is a term
accepted by A and not by B, this simultaneous run of the two automata reaches the root
of t at a pair of the form (p, s) with p ∈ F and s ⊆ F ′. Notice that s must represent all
the possible runs of B on t in order to be sure that no run of B can accept the term t.
This is the reason why we need s to be a set of states.

Formally, an antichain over Q × 2Q′

is a set S ⊆ Q × 2Q′

such that for every
(p, s), (p′, s′) ∈ S, if p = p′, then s and s′ are incomparable (s 6⊆ s′ and s′ 6⊆ s). We
denote by LI the set of all antichains over Q×2Q′

. Given a set S ∈ Q×2Q′

, an element
(p, s) ∈ S is minimal if for every s′ ⊂ s, (p, s′) /∈ S. As previously, we denote by bSc
the set of minimal elements of S. Given two antichains S and S ′, we define the order
vI , the least upper bound tI , and the greatest lower bound uI as follows: S vI S ′ iff
for every (p, s′) ∈ S ′, there exists (p, s) ∈ S such that s ⊆ s′; S tI S ′ = b{(p, s∪ s′) |
(p, s) ∈ S ∧ (p, s′) ∈ S ′}c; and S uI S ′ = b{(p, s) | (p, s) ∈ S ∨ (p, s) ∈ S ′}c.

These definitions can be extended to arbitrary sets in the standard way leading to
the operators

⊔

I and
d

I . This defines a complete lattice as in Section 3.1.
For a given f ∈ Σn, we define IPostf

(

(p1, s1), ..., (pn, sn)
)

= {(p, s) |f(p1, ..., pn) →δ

p∧s = Postδ
′

f (s1, ..., sn)}. Let S be an antichain over Q×2Q′

. Then, we let IPost(S) =

b{IPostf

(

(p1, s1), . . . , (pn, sn)
)

| n ∈ N, (p1, s1), ..., (pn, sn) ∈ S, f ∈ Σn}c. Let
IPost0(S) = S and IPost i(S) = IPost

(

IPost i−1(S)
)

uI S. As before, we can show
that ∀S ∈ LI ∀i ≥ 0 : IPost i+1(S) vI IPost i(S), and that for every antichain S,
there exists a J such that IPostJ+1(S) = IPostJ (S). Let IPost

∗(S) = IPostJ(S).
Then, we can show the following lemma. The proof is similar to the one of Lemma 1.

Lemma 3. Let A = (Q, Σ, F, q0, δ) and B = (Q′, Σ, F ′, q′0, δ
′) be two automata, and

let t be a term over Σ. Let p ∈ Q such that t
∗
→δ p, and s = {q ∈ Q′ | t

∗
→δ′ q}. Then,

IPost
∗
(

{(q0, {q′0})}
)

) vI {(p, s)}.

We can also show the following lemma. Its proof is similar to the one of Lemma 2.

Lemma 4. Let A = (Q, Σ, F, q0, δ) and B = (Q′, Σ, F ′, q′0, δ
′) be two automata, and

let (p, s) ∈ IPost
∗({(q0, {q′0})}). Then there exists a term t over Σ such that t

∗
→δ p

and s = {q | t
∗
→δ′ q}.

Then, we can decide inclusion without determinising the automata as follows:

Theorem 2. Let A = (Q, Σ, F, q0, δ) and B = (Q′, Σ, F ′, q′0, δ
′) be two automata.

Then, L(A) ⊆ L(B) iff for every (p, s) ∈ IPost
∗({(q0, {q′0})}), p ∈ F ⇒ s 6⊆ F ′.

7

Proof. Suppose there exists (p, s) ∈ IPost
∗({(q0, {q′0})}) such that p ∈ F and s ⊆ F ′.

Lemma 4 implies that there exists a term t such that t
∗
→δ p and s = {q | t

∗
→δ′ q}.

Since p ∈ F and s ⊆ F ′, t is accepted by A and not by B, i.e., L(A) 6⊆ L(B).
Suppose now that L(A) 6⊆ L(B). Let then t be a term accepted by A and not by B.

Let p ∈ F such that t
∗
→δ p, and let s = {q | t

∗
→δ′ q}. We have that s ⊆ F ′. Lemma 3

implies that IPost
∗
(

{(q0, {q′0})}
)

) contains a pair (p, s′) such that s′ ⊆ s ⊆ F ′. ut

4.1 Experiments with Inclusion Checking Using Antichains

Below, in Fig. 2 and Fig. 3, we present the results that we have obtained from experi-
menting with our prototype implementation of the antichain-based inclusion checking
for tree automata, which we have built on top of the Timbuk tree automata library.
The experiments were performed on an Intel Xeon processor at 2.7GHz with 16GB of
available memory (the same as in Section 3.3).

We first ran our tests on pairs of randomly generated automata having 10 states and
different possible densities of transitions and final states. The probability that L(A1) ⊆
L(A2) holds for randomly generated tree automata A1 and A2 (both having the same
densities of transitions and final states) is shown in Fig. 2(a). Fig. 2(b) then shows
how the antichain-based inclusion checking behaves on such automata. We see that its
time consumption is naturally growing for automata where the probability of whether
L(A1) ⊆ L(A2) holds is neither too low nor too high.

Fig. 2(c) and Fig. 2(d) show what happens if either A1 or A2 is left completely
random, and only A2 or A1, respectively, follows a given density of transitions and
final states. The fact that the results in Fig. 2(c) follow Fig. 2(b), whereas the time
consumption in Fig. 2(d) is roughly implied by the size of A1 (in terms of transitions),
implies that the time consumption of the antichain-based inclusion checking is—as
expected—influenced much more by the automaton A2.

Finally, in Fig. 3(a), we show how the running times change for some selected
instances of the problem (in terms of some selected densities of transitions and final
states, including those for which the problem is the most difficult) when the number
of states of the automata starts growing. The figure also shows the time needed when
the inclusion checking is based on determinising and complementing A2 and checking
emptiness of the language L(A1) ∩ L(A2). We see that the antichain-based approach
really behaves in a very significantly better way. The same conclusion can then be
drawn also from the results shown in Fig. 3(b) that we obtained on automata saved from
experimenting with abstract regular tree model checking applied for verifying various
real-life procedures manipulating trees (cf. Section 5.3). In fact, the antichain-based
inclusion checking allowed us to implement an abstract regular tree model checking
framework entirely based on nondeterministic tree automata which is significantly more
efficient than the framework based on deterministic automata.

5 Regular Tree Model Checking

Regular tree model checking (RTMC) [10, 5, 2, 3] is a general and uniform framework
for verifying infinite-state systems. In RTMC, configurations of a system being verified

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

 0

 0.2

 0.4

 0.6

 0.8

 1 0

 0.2

 0.4

 0.6

 0.8

 1

probability of inclusion
 of L(A1) in L(A2)

transition ratio

final states ratio

probability of inclusion
 of L(A1) in L(A2)

(a) Probability of L(A1) ⊆ L(A2)
for tree automata (TA) with 10 states
and some density of transitions and final
states

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.5 1 1.5 2 2.5 3 3.5 4

 0

 2

 4

 6

 8

 10 0

 1

 2

 3

 4

 5

 6

 7

 8

time(s)

transition ratio
final states ratio

time(s)

(b) Average times of antichain-based inclu-
sion checking on TA with some density of
transitions and final states

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 0.5 1 1.5 2 2.5 3 3.5 4

 0

 0.2

 0.4

 0.6

 0.8

 1 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

time(s)

transition ratio

final states ratio

time(s)

(c) Antichain-based inclusion checking on
TA, A1 random, A2 with some density of
transitions and final states

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.5 1 1.5 2 2.5 3 3.5 4

 0

 0.2

 0.4

 0.6

 0.8

 1 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

time(s)

transition ratio

final states ratio

time(s)

(d) Antichain-based inclusion checking on
TA, A2 random, A1 with some density of
transitions and final states

Fig. 2. Experiments with inclusion checking on tree automata

are encoded by trees, sets of the configurations by tree automata, and transitions of the
verified system by a term rewriting system (usually given as a tree transducer or a set of
tree transducers). Then, verification problems based on performing reachability analysis
correspond to computing closures of regular languages under rewriting systems, i.e.,
given a term rewriting system τ and a regular tree language I , one needs to compute
τ∗(I), where τ∗ is the reflexive-transitive closure of τ . This computation is impossible
in general. Therefore, the main issue in RTMC is to find accurate and powerful fixpoint
acceleration techniques helping the convergence of computing language closures. One
of the most successful acceleration techniques used in RTMC is abstraction whose use
leads to the so-called abstract regular tree model checking (ARTMC) [3], on which we
concentrate in this work.

9

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30 35 40

tim
e

(s
)

number of states

Inclusion - automata from ARTMC

Density of transitions, final states: 1.5,0.9
2.0, 0.5
2.5, 0.3
3.5, 0.3

(checking via determinisation) 4.0, 0.3

(a) Determinisation-based and antichain-based inclusion checking on TA
with selected densities of transitions and final states

 0
 5

 10
 15
 20
 25
 30

 0 20 40 60 80 100 120 140

tim
e

(s
)

number of states

antichain_based
determinisation-based

(b) Determinisation-based and antichain-based inclusion checking on TA
from abstract regular tree model checking

Fig. 3. Further experiments with inclusion checking on tree automata

5.1 Abstract Regular Tree Model Checking

We now briefly recall the basic principles of ARTMC in the way they were introduced in
[3]. Let Σ be a ranked alphabet and MΣ the set of all tree automata over Σ. Let I ∈ MΣ

be a tree automaton describing a set of initial configurations, τ a term rewriting system
describing the behaviour of a system, and B ∈ MΣ a tree automaton describing a set of
bad configurations. The safety verification problem can now be formulated as checking
whether the following holds:

τ∗(L(I)) ∩ L(B) = ∅ (2)

In ARTMC, the precise set of reachable configurations τ∗(L(I)) is not computed to
solve Problem (2). Instead, its overapproximation is computed by interleaving the ap-
plication of τ and the union in L(I) ∪ τ(L(I)) ∪ τ(τ(L(I))) ∪ ... with an application
of an abstraction function α. The abstraction is applied on the tree automata encoding
the so-far computed sets of reachable configurations.

An abstraction function is defined as a mapping α : MΣ → AΣ where AΣ ⊆ MΣ

and ∀A ∈ MΣ : L(A) ⊆ L(α(A)). An abstraction α′ is called a refinement of the
abstraction α if ∀A ∈ MΣ : L(α′(A)) ⊆ L(α(A)). Given a term rewriting system τ

10

and an abstraction α, a mapping τα : MΣ → MΣ is defined as ∀A ∈ MΣ : τα(A) =
τ̂ (α(A)) where τ̂ (A) is the minimal deterministic automaton describing the language
τ(L(A)). An abstraction α is finitary, if the set AΣ is finite.

For a given abstraction function α, one can compute iteratively the sequence of
automata (τ i

α(I))i≥0. If the abstraction α is finitary, then there exists k ≥ 0 such that
τk+1
α (I) = τk

α(I). The definition of the abstraction function α implies that L(τkα(I)) ⊇
τ∗(L(I)).

If L(τk
α(I))∩L(B) = ∅, then Problem (2) has a positive answer. If the intersection

is non-empty, one must check whether a real or a spurious counterexample has been
encountered. The spurious counterexample may be caused by the used abstraction (the
counterexample is not reachable from the set of initial configurations). Assume that
L(τk

α(I)) ∩ L(B) 6= ∅, which means that there is a symbolic path:

I, τα(I), τ2
α(I), ..., τn−1

α (I), τn
α (I) (3)

such that L(τn
α (I)) ∩ L(B) 6= ∅.

Let Xn = L(τn
α (I)) ∩ L(B). Now, for each l, 0 ≤ l < n, Xl = L(τ l

α(I)) ∩
τ−1(Xl+1) is computed. Two possibilities may occur: (a) X0 6= ∅, which means that
Problem (2) has a negative answer, and X0 ⊆ L(I) is a set of dangerous initial con-
figurations. (b) ∃m, 0 ≤ m < n, Xm+1 6= ∅ ∧ Xm = ∅ meaning that the abstraction
function is too rough—one needs to refine it and start the verification process again.

In [3], two general-purpose kinds of abstractions are proposed. Both are based on
automata state equivalences. Tree automata states are split into several equivalence
classes, and all states from one class are collapsed into one state. An abstraction be-
comes finitary if the number of equivalence classes is finite. The refinement is done by
refining the equivalence classes. Both of the proposed abstractions allow for an auto-
matic refinement to exclude the encountered spurious counterexample.

The first proposed abstraction is an abstraction based on languages of trees of a fi-
nite height. It defines two states equivalent if their languages up to the give height n are
equivalent. There is just a finite number of languages of height n, therefore this abstrac-
tion is finitary. A refinement is done by an increase of the height n. The second proposed
abstraction is an abstraction based on predicate languages. Let P = {P1, P2, . . . , Pn}
be a set of predicates. Each predicate P ∈ P is a tree language represented by a tree au-
tomaton. Let A = (Q, Σ, F, q0, δ) be a tree automaton. Then, two states q1, q2 ∈ Q are
equivalent if the languages L(Aq1

) and L(Aq2
) have a nonempty intersection with ex-

actly the same subset of predicates from the set P provided that Aq1
= (Q, Σ, F, q1, δ)

and Aq2
= (Q, Σ, F, q2, δ). Since there is just a finite number of subsets of P , the ab-

straction is finitary. A refinement is done by adding new predicates, i.e. tree automata
corresponding to the languages of all the states in the automaton of Xm+1 from the
analysis of spurious counterexample (Xm = ∅).

5.2 Nondeterministic Abstract Regular Tree Model Checking

As is clear from the above mentioned definition of τ̂ , ARTMC was originally defined for
and tested on minimal deterministic tree automata (DTA). However, the various exper-
iments done showed that the determinisation step is a significant bottleneck. To avoid

11

it and to implement ARTMC using nondeterministic tree automata (NTA), we need the
following operations over NTA: (1) application of the transition relation τ , (2) union,
(3) abstraction and its refinement, (4) intersection with the set of bad configurations,
(5) emptiness, and (6) inclusion checking (needed for testing if the abstract reachabil-
ity computation has reached a fixpoint). Finally, (7) a method to reduce the size of the
computed NTA is also desirable—τ̂(A) is then redefined to be the reduced version of
the NTA obtained from an application of τ on an NTA A.

An implementation of Points (1), (2), (4), and (5) is easy. Moreover, concerning
Point (3), the abstraction mechanisms of [3] can be lifted to work on NTA in a straight-
forward way while preserving their guarantees to be finitary, overapproximating, and
the ability to exclude spurious counterexamples. Furthermore, the recent work [1] gives
efficient algorithms for reducing NTA based on computing suitable simulation equiva-
lences on their states, which covers Point (7). Hence, the last obstacle for implementing
nondeterministic ARTMC was Point (6), i.e., the need to efficiently check inclusion on
NTA. We have solved this problem by the approach proposed in Section 4, which al-
lowed us to implement a nondeterministic ARTMC framework in a prototype tool and
test it on suitable examples. Below, we present the first very encouraging results that
we have achieved.

5.3 Experiments with Nondeterministic ARTMC

We have implemented the nondeterministic ARTMC framework using the Timbuk tree
library [8] and compared it with an ARTMC implementation based on the same library,
but using DTA. In particular, the deterministic ARTMC framework uses determinisa-
tion and minimisation after computing the effect of each forward or backward step to
try to keep the automata as small as possible and to allow for easy fixpoint checking:
The fixpoint checking on DTA is not based on inclusion, but identity checking on the
obtained automata (due to the fact that the computed sets are only growing and minimal
DTA are canonical). For NTA, the tree automata reduction from [1] that we use does
not yield canonical automata, and so the antichain-based inclusion checking is really
needed.

We have applied the framework to verify several procedures manipulating dynamic
tree-shaped data structures linked by pointers. The trees being manipulated are encoded
directly as the trees handled in ARTMC, each node is labelled by the data stored in it
and the pointer variables currently pointing to it. All program statements are encoded as
(possibly non-structure preserving) tree transducers. The encoding is fully automated.
The only allowed destructive pointer updates (i.e., pointer manipulating statements
changing the shape of the tree) are tree rotations [6] and addition of new leaf nodes.

We have in particular considered verification of the depth-first tree traversal and
the standard procedures for rebalancing red-black trees after insertion or deletion of a
leaf node [6]. We have verified that the programs do not manipulate undefined and null
pointers in a faulty way. For the procedures on red-black trees, we have also verified that
their result is a red-black tree (without taking into account the non-regular balancedness
condition). In general, the set of possible input trees for the verified procedures as well
as the set of correct output trees were given as tree automata. In the case of the procedure
for rebalancing red-black trees after an insertion, we have also used a generator program

12

Table 1. Running times (in sec.) of det. and nondet. ARTMC applied for verification of various
tree manipulating programs (× denotes a too long run or a failure due to a lack of memory)

DFT
RB-delete

(null,undef)
RB-insert

(null,undef)
det. nondet. det. nondet. det. nondet.

full abstr. 5.2 2.7 × × 33 15
restricted abstr. 40 3.5 × 60 145 5.4

RB-delete
(RB preservation)

RB-insert
(RB preservation)

RB-insert
(gen., test.)

det. nondet. det. nondet. det. nondet.
full abstr. × × × × × ×

restricted abstr. × 57 × 89 × 978

preceding the tested procedure which generates random red-black trees and a tester
program which tests the output trees being correct. Here, the set of input trees contained
just an empty tree, and the verification was reduced to checking that a predefined error
location is unreachable. The size of the programs ranges from 10 to about 100 lines of
pure pointer manipulations.

The results of our experiments on an Intel Xeon processor at 2.7GHz with 16GB of
available memory (as in Section 3.3) are summarised in Table 1. The predicate abstrac-
tion proved to give much better results (therefore we do not consider the finite-height
abstraction here). The abstraction was either applied after firing each statement of the
program (“full abstraction”) or just when reaching a loop point in the program (“re-
stricted abstraction”). The results we have obtained are very encouraging and show a
significant improvement in the efficiency of ARTMC based on nondeterministic tree au-
tomata. Indeed, the ARTMC framework based on deterministic tree automata has either
been significantly slower in the experiments (up to 25-times) or has completely failed
(a too long running time or a lack of memory)—the latter case being quite frequent.

6 Conclusion

We have proposed new antichain-based algorithms for universality and inclusion check-
ing on (nondeterministic) tree automata. The algorithms have been thoroughly tested
both on randomly generated automata and on automata obtained from various verifi-
cation runs performed within the abstract regular tree model checking framework. The
new algorithms have been proved to be significantly more efficient than the classical
determinisation-based approaches to universality and inclusion checking. Moreover,
using the proposed inclusion checking algorithm together with some other recently
published results, we have implemented a complete abstract regular tree model check-
ing framework based on nondeterministic tree automata and tested it on verification
of several real-life pointer-intensive procedures. The results show a very encouraging
improvement in the capabilities of the framework. In the future, we would like to im-
plement the antichain-based universality and inclusion checking algorithms (as well

13

as other recently proposed algorithms for dealing with NTA, such as the simulation-
based reduction algorithms) on automata symbolically encoded as in the MONA tree
automata library [9]. We hope that this will yield another significant improvement in
the tree automata technology allowing for a new generation of tools using tree automata
(including, e.g., the abstract regular tree model checking framework).

Acknowledgement. The work was supported in part by the ANR-06-SETI-001 French
project AVERISS, the Czech Grant Agency (projects 102/07/0322 and 102/05/H050),
the Czech-French Barrande project 2-06-27, and the Czech Ministry of Education by
the project MSM 0021630528 Security-Oriented Research in Information Technology.

References

1. P.A. Abdulla, A. Bouajjani, L. Hol ı́k, L. Kaati, and T. Vojnar. Computing Simulations over
Tree Automata: Efficient Techniques for Reducing Tree Automata. In Proc. of TACAS’08,
volume 4963 of LNCS. Springer, 2008.

2. P.A. Abdulla, A. Legay, J. d’Orso, and A.Rezine. Simulation-Based Iteration of Tree Trans-
ducers. In Proc. of TACAS’05, volume 3440 of LNCS. Springer, 2005.

3. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract Regular Tree Model
Checking. ENTCS, 149:37–48, 2006. A preliminary version was presented at Infinity’05.

4. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract Regular Tree Model
Checking of Complex Dynamic Data Structures. In Proc. of SAS’06, volume 4134 of LNCS.
Springer, 2006.

5. A. Bouajjani and T. Touili. Extrapolating Tree Transformations. In Proc. of CAV’02, volume
2404 of LNCS. Springer, 2002.

6. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT Press, 1990.
7. L. Doyen and J.-F. Raskin. Improved Algorithms for the Automata-based Approach to Model

Checking. In Proc. of TACAS’07, volume 4424 of LNCS. Springer, 2007.
8. T. Genet. Timbuk: A Tree Automata Library. http://www.irisa.fr/lande/genet/timbuk.
9. N. Klarlund and A. Møller. MONA Version 1.4 User Manual, 2001. BRICS, Department of

Computer Science, University of Aarhus, Denmark.
10. E. Shahar. Tools and Techniques for Verifying Parameterized Systems. PhD thesis, Faculty of

Mathematics and Computer Science, The Weizmann Inst. of Science, Rehovot, Israel, 2001.
11. M. De Wulf, L. Doyen, T.A. Henzinger, and J.-F. Raskin. Antichains: A New Algorithm

for Checking Universality of Finite Automata. In Proc. of CAV’06, volume 4144 of LNCS.
Springer, 2006.

14

