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Abstract. Virtualized systems such as Xen, VirtualBox, VMWare or
QEmu have been proposed to increase the level of security achievable
on personal computers. On the other hand, such virtualized systems are
now targets for attacks. We propose an intrusion detection architecture
for virtualized systems, and discuss some of the security issues that arise.
We argue that a weak spot of such systems is domain zero administra-
tion, which is left entirely under the administrator’s responsibility, and
is in particular vulnerable to trojans. To avert some of the risks, we
propose to install a role-based access control model with possible role
delegation, and to describe all undesired activity flows through simple
temporal formulas. We show how the latter are compiled into Orchids
rules, via a fragment of linear temporal logic, through a generalization
of the so-called history variable mechanism.

1 Introduction

Intrusion detection and prevention systems (IDS, IPS) have been around for
some time, but require some administration. Misuse intrusion detection systems
require frequent updates of their attack base, while anomaly-based intrusion
detection systems, and especially those based on statistical means, tend to have
a high false positive rate. On the other hand, personal computers are meant to
be used by a single individual, or by several individuals, none being specially
competent about security, or even knowledgeable in computer science.

We propose to let the user run her usual environment inside the virtual
machine of some virtualized architecture, such as Xen [28], VirtualBox [24],
VMWare [25], or QEmu [15]. The idea has certainly been in the air for some
time, but does not seem to have been implemented in the form we propose
until now. We shall argue that this architecture has some of the advantages of
decentralized supervision, where the IDS/IPS is located on a remote machine,
connected to the monitored host through network links.
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and by project PFC (“plateforme de confiance”), pôle de compétitivité System@tic
Paris-région Ile-de-France.
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Outline. We survey related work in Section 2. Section 3 describes the rationale for
our virtualized supervision architecture, and the architecture itself. We identify
what we think is the weakest link in this architecture in Section 4, i.e., the need
for domain zero supervision. There does not seem to be any silver bullet here.
We attempt to explore a possible answer to the problem in Section 5, based on
Sekar et al.’s model-carrying code paradigm. We conclude in Section 6.

2 Related work

Much work has been done on enhancing the security of computer systems. Most
implemented, host-based IDS run a program for security on the same operating
system (OS) as protected programs and potential malware. This may be simply
necessary, as with Janus [6], Systrace [13], Sekar et al.’s finite-state automaton
learning system [19], or Piga-IDS [1], where the IDS must intercept and check
each system call before execution. Call this an interception architecture: each
system call is first checked for conformance against a security policy by the IDS;
if the call is validated, then it is executed, otherwise the IDS forces the call to
return immediately with an error code, without executing the call.

On the other hand, some other IDS are meant to work in a decentralized

setting. In this case, the IDS does not run on the same host as the supervised
host, S. While in an interception architecture, the IDS would run as a process
on S itself, in a decentralized setting only a small so-called sensor running on S
collects relevant events on S and sends them through some network link to the
IDS, which runs on another, dedicated host M.

Both approaches have pros and cons. Interception architectures allow the IDS
to counter any attack just before they are completed. This way, and assuming
the security policy that the IDS enforces is sufficiently complete, no attack ever
succeeds on S that would make reveal or alter sensitive data, make it unstable,
or leave a backdoor open (by which we also include trojans and bots).

On the other hand, decentralized architectures (see Figure 1) make the IDS
more resistant to attacks on S (which may be any of S1, . . . , S4 in the figure):
to kill the IDS, one would have to attack the supervision machine M, but M is
meant to only execute the IDS and no other application, and has only limited
network connectivity. In addition to the link from S to M used to report events
to the IDS, we also usually have a (secure) link from M to S, allowing the IDS to
issue commands to retaliate to attacks on S. While this may take time (e.g., some
tens or hundreds of milliseconds on a LAN), this sometimes has the advantage to
let the IDS learn about intruder behavior once they have completed an attack.
This is important for forensics.

Decentralized architectures are also not limited to supervising just one host
S. It is particularly interesting to let the supervision machine M collect events
from several different hosts at once, from network equipment (routers, hubs, etc.,
typically through logs or MIB SNMP calls), and correlate between them, turning
the IDS into a mix between host-based and network-based IDS.



Some Ideas on Virtualized System Security, and Monitors 3

Sensor

Sensor Sensor

Sensor

S1

S2 S3

S4

OrchidsNetwork links

Network

M

Fig. 1. Decentralized Supervision

We shall argue in Section 3 that one can simulate such a decentralized ar-
chitecture, at minimal cost, on a single machine, using modern virtualization
technology. We shall also see that this has some additional advantages.

A virtualized system such as Xen [28], VirtualBox [24], VMWare [25], or
QEmu [15] allows one to emulate one or several so-called guest operating sys-
tems (OS) in one or several virtual machines (VM). The different VMs execute
as though they were physically distinct machines, and can communicate through
ordinary network connections (possibly emulated in software). The various VMs
run under the control of a so-called virtual machine monitor (VMM) or hyper-
visor , which one can think of as being a thin, highly-privileged layer between
the hardware and the VMs. See Figure 2, which is perhaps more typical of Xen
than of the other cited hypervisors. The solid arrows are meant to represent
the flow of control during system calls. When a guest OS makes a system call,
its hardware layer is emulated through calls to the hypervisor. The hypervisor
then calls the actual hardware drivers (or emulations thereof) implemented in
a specific, high privilege VM called domain zero. Domain zero is the only VM
to have access to the actual hardware, but is also responsible for administering
the other VMs, in particular killing VMs, creating new VMs, or changing the
emulated hardware interface presented to the VMs.

In recent years, virtualization has been seen by several as an opportunity for
enforcing better security. The fact that two distinct VMs indeed run in separate
sandboxes was indeed brought forward as an argument in this direction. However,
one should realize that there is no conceptual distinction, from the point of
view of protection, between having a high privilege VMM and lower-privileged
VMs, and using a standard Unix operating system with a high privilege kernel
and lower-privileged processes. Local-to-root exploits on Unix are bound to be
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Fig. 2. A Virtualized System

imitated in the form of attacks that would allow one process running in one VM
to gain control of the full VMM, in particular of the full hardware abstraction
layer presented to the VMs. Indeed, this is exactly what has started to appear,
with Wojtczuk’s attack notably [26].

Some of the recent security solutions using virtualization are sHype [18] and
NetTop [10]. They provide infrastructure for controlling information flows and
resource sharing between VMs. While the granularity level in these systems is a
VM, our system controls execution at the granularity of a process.

Livewire [5] is an intrusion detection system that controls the behavior of a
VM from the outside of the VM. Livewire uses knowledge of the guest OS to
understand the behavior in a monitored VM. Livewire’s VMM intercepts only
write accesses to a non-writable memory area and accesses to network devices.
On the other hand, our architecture can intercept and control all system calls
invoked in target VMs.

In [12], Onoue et al. propose a security system that controls the execution
of processes from the outside of VMs. It consists of a modified VMM and a
program running in a trusted VM. The system intercepts system calls invoked
in a monitored VM and controls the execution according to a security policy.
Thus, this is a an interception system. To fill the semantic gap between low-level
events and high-level behavior, the system uses knowledge of the structure of a
given operating system kernel. The user creates this knowledge with a tool when
recompiling the OS. In contrast, we do not need to rebuild the OS, and only
need to rely on standard event-reporting daemons such as auditd, which comes
with SELinux [22], but is an otherwise independent component.

We end this section by discussing run-time supervision and enforcement of
security policies. Systems such as SELinux (op. cit.) are based on a security
policy, but fail to recognize illegal sequences of legal actions. To give a simple
example, it may be perfectly legal for user A to copy some private data D to
some public directory such as /tmp, and for user B to read any data from /tmp,
although our security policy forbids any (direct) flow of sensitive data from A to
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B. Such sequences of actions are called transitive flows of data in the literature.
To our knowledge, Zimmerman et al. [29–31] were the first to propose an IDS
that is able to check for illegal transitive flows. Briffaut [1] shows that even more
general policies can be efficiently enforced, including non-reachability properties
and Chinese Wall policies, among others; in general, Briffaut uses a simple and
general policy language. We propose another, perhaps more principled, language
in Section 5, based on linear temporal logic (LTL). Using the latter is naturally
related to a more ancient proposal by Roger and the second author [17]. However,
LTL as defined in (the first part of) the latter paper only uses future operators,
and is arguably ill-suited to intrusion detection (as discussed in op. cit. already).
Here, instead we use a fragment of LTL with past , which, although equivalent to
ordinary LTL with only future operators as far as satisfiability is concerned (for
some fixed initial state only, and up to an exponential-size blowup), will turn
out to be much more convenient to specify policies, and easy to compile to rules
that can be fed to the Orchids IPS [11, 7].

3 Simulating Decentralized Supervision, Locally

We run a fast, modern IPS such as Orchids [11, 7] in another VM to monitor,
and react against, security breaches that may happen on the users’ environment
in each of the guest OSes present in a virtualized system: see Figure 3.

Sensor SensorSensor
Orchids

Surveillance
OS

Hypervisor

Dom 0
...

Guest
OS

Hardware

Guest
OS

Drivers

Network

Fig. 3. Simulating Decentralized Supervision, Locally

One can see this architecture as an implementation of a decentralized super-
vision architecture on a single physical host.

We argue that this solution has several advantages. First, there is a clear
advantage in terms of cost, compared to the decentralized architecture: we save
the cost of the additional supervision host M.

Second, compared to a standard, unsupervised OS, the user does not need
to change her usual environment, or to install any new security package. Only
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a small sensor has to run on her virtual machine to report events to Orchids.
Orchids accepts events from a variety of sensors. In our current implementation,
each guest OS reports sequences of system calls through the standard auditd

daemon, a component of SELinux [22], which one can even run without the
need for installing or running SELinux itself. (Earlier, we used Snare, however
this now seems obsolescent.) The bulk of the supervision effort is effected in a
different VM, thus reducing the installation effort to editing a few configuration
files, to describe the connections between the guest OSes and the supervision
OS mainly. In particular, we do not need to recompile any OS kernel with our
architecture, except possibly to make sure that auditd is installed and activated.

A third advantage, compared with interception architectures, and which we
naturally share with decentralized architectures, is that isolating the IPS in its
own VM makes it resistant to attacks from the outside. Indeed, Orchids runs in
a VM that has no other network connection to the outside world than those it
requires to monitor the guest OSes, and which runs no other application that
could possibly introduce local vulnerabilities.

Orchids should have high privileges to be able to retaliate to attacks on each
guest OS. For example, we use ssh connections between Orchids and each VM
kernel to be able to kill offending processes or disable offending user accounts.
(The necessary local network links, running in the opposite direction as the
sensor-to-Orchids event reporting links shown in Figure 3, are not drawn.)

However, running on a virtualized architecture offers additional benefits. One
of them is that Orchids can now ask domain zero to kill an entire VM. This is
necessary when a guest OS has been subject to an attack with consequences
that we cannot assess precisely. For example, the do brk() attack [23] and its
siblings, or the vmsplice() attack [14] allow the attacker not just to gain root
access, but direct access to the kernel . Note that this means, for example, that
the attacker has immediate access to the whole process table, as well as to the
memory zones of all the processes. While current exploits seem not to have used
this opportunity, such attack vectors in principle allow an attacker to become
completely stealthy, e.g., by making its own processes invisible to the OS. In this
case, the OS is essentially in an unpredictable state.

The important point is that we can always revert any guest OS to a previous,
safe state, using virtualization. Indeed, each VM can be checkpointed , i.e., one
can save the complete instantaneous state of a given VM on disk, including
processes, network connections, signals. Assuming that we checkpoint each VM
at regular intervals, it is then feasible to have Orchids retaliate by killing a VM
in extreme cases and replacing it by an earlier, safe checkpoint.

Orchids can also detect VMs that have died because of fast denial-of-service
attacks (e.g., the double listen() attack [3], which causes instant kernel lock-
up), by pinging each VM at regular intervals: in this case, too, Orchids can kill
the VM and reinstall a previous checkpoint. We react similarly to attacks on
guest OSes that are suspected of having succeeded in getting kernel privileges
and of, say, disabling the local auditd daemon.
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Killing VMs and restoring checkpoints is clearly something that we cannot
afford with physical hosts instead of VMs.

It would be tempting to allow Orchids to run inside domain zero to do so.
Instead, we run Orchids in a separate guest OS, with another ssh connection
to issue VM administration commands to be executed by a shell in domain
zero. I.e., we make domain zero delegate surveillance to a separate VM running
Orchids, while the latter trusts domain zero to administer the other guest VMs.
We do so in order to sandbox each from the other one. Although we have taken
precautions against this prospect, there is still a possibility that a wily attacker
would manage to cause denial-of-service attacks on Orchids by crafting events
causing blow-up in the internal Orchids surveillance algorithm (see [7]), and we
don’t want this to cause the collapse of the whole host. Conversely, if domain
zero itself is under attack, we would like Orchids to be able to detect this and
react against it. We discuss this in Section 4

To our knowledge, this simple architecture has not been put forward in pre-
vious publications, although some proposals already consider managing the se-
curity of virtualized architectures, as we have already discussed in Section 2.

4 The Weak Link: Domain Zero Administration

The critical spots in our architecture are the VMM (hypervisor) itself, domain
zero, and the surveillance VM running Orchids.

Attacking the latter is a nuisance, but is not so much of a problem as attacking
the VMM or domain zero, which would lead to complete subversion of the system.
Moreover, the fact that Orchids runs in an isolated VM averts most of the effects
of any vulnerability that Orchids may have.

Attacks against the VMM are much more devastating. Wojtczuk’s 2008 at-
tacks on Xen 2 [26] allow one to take control of the VMM, hence of the whole
machine, by rewriting arbitrary code and data using DMA channels, and almost
without the processor’s intervention. . . quite a fantastic technique, and certainly
one that breaks the common idea that every change in stored code or data must
be effected by some program running on one of the processors. Indeed, here a
separate, standard chip is actually used to rewrite the code and data.

Once an attacker has taken control over the VMM, one cannot hope to react
in any effective way. In particular, the VMM controls entirely the hardware
abstraction layer that is presented to each of the guest OSes: no network link,
no disk storage facility, no keyboard input can be trusted by any guest OS any
longer. Worse, the VMM also controls some of the features of the processor itself,
or of the MMU, making memory or register contents themselves unreliable.

We currently have no idea how to prevent attacks such as Wojtczuk’s, apart
from unsatisfactory, temporary remedies such as checkpointing some selected
memory areas in the VMM code and data areas.

However, we claim that averting such attacks is best done by making sure
that they cannot be run at all. Indeed, Wojtczuk’s attacks only work provided
the attacker already has root access to domain zero, and this is already quite a
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predicament. We therefore concentrate on ensuring that no unauthorized user
can gain root access to domain zero.

Normally, only the system administrator should have access to domain zero.
(In enterprise circles, the administrator may be a person with the specific role of
an administrator. In family circles, we may either decide that there should be no
administrator, and that the system should self-administer; or that one particular
user has administrator responsibilities.) We shall assume that this administrator
is benevolent , i.e., will not consciously run exploits against the system. However,
he may do so without knowing it.

One possible scenario is this: the administrator needs to upgrade some li-
brary or driver, and downloads a new version; this version contains a trojan
horse, which runs Wojtczuk’s attack. Modern automatic update mechanisms
use cryptographic mechanisms, including certificates and cryptographic hashing
mechanisms [27], to prevent attackers from running man-in-the-middle attacks,
say, and substitute a driver with a trojan horse for a valid driver. However, there
is no guarantee that the authentic driver served by the automatic update server
is itself free of trojans. There is at least one actual known case of a manufac-
turer shipping a trojan (hopefully by mistake): some Video iPods were shipped
with the Windows RavMonE.exe virus [16], causing immediate infection of any
Windows host to which the iPods were connected.

5 A Line of Defense: MCC, LTL, and Orchids

Consider the case whereby we have just downloaded a device driver, and we
would like to check whether it is free of a trojan. Necula and Lee pioneered
the idea of shipping a device driver with a small, formal proof of its properties,
and checking whether this proof is correct before installing and running the
driver. This is proof-carrying code [9]. More suited to security, and somehow
more practical is Sekar et al.’s idea of model-carrying code (MCC) [20]. Both
techniques allow one to accept and execute code even from untrusted producers.

local read (ConfigFiles)

local read (LogFile)

�

exists (IconFile) !exists (IconFile)

local read (IconFile) remote read (IconFile)

�

Fig. 4. An EFSA Model, after Sekar et al. [20]
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Let us review MCC quickly. A producer generates both the program D to be
downloaded (e.g., the device driver), and a model of it, M . The consumer , which
in our case is software running in domain zero, checks the model against a local
policy P . Instead of merely rejecting the program D if its model M does not
satisfy, the consumer computes an enforcement model M ′ that satisfies both M

and P , and generates a monitor that checks whether P satisfies M ′ at run-time.
Any violation is flagged and reported.

In [20], models, as well as policies and enforcement models, are taken to be
extended finite-state automata (EFSA), i.e., finite state automata augmented
with finitely many state variables meant to hold values over some fixed domain.
A typical example, taken from op. cit., is the EFSA of Figure 4. This is meant to
describe the normal executions of D as doing a series of system calls as follows.
Each system call is abstracted, e.g., the first expected system call from D is a call
to local read with argument bound to the ConfigFiles state variable. Then D

is expected to either take the left or the right transition going down, depending
on whether some tested file (in variable IconFile) exists or not. In the first case,
D should call local read, in the second case, D should call remote read. The
transitions labeled � are meant to be firable spontaneously.

Typical policies considered by Sekar et al. are invariants of the form “any
program should either access local files or access the network but not both”
(this is violated above, assuming obvious meanings for system calls), or that
only files from the /var/log/httpd/ directory should be read by D. Policies are
again expressed as EFSA, and enforcement models can be computed as a form
of synchronized product denoting the intersection of the languages of M and P .

The EFSA model is sufficiently close to the automaton-based model used in
Orchids (which appeared about at the same time, see the second part of [17]; or
see [7] for a more in-depth treatment) that the EFSA built in the MCC approach
can be fed almost directly to Orchids. Accordingly, we equip domain zero with a
sensor as well (Figure 3, left box), which reports to Orchids for EFSA checking.

However, we feel that a higher-level language, allowing one to write accept-
able policies for automatic updates in a concise and readable manner, would
be a plus. There have been many proposals of higher-level languages already,
including linear temporal logic (LTL) [17], chronicles [8], or the BMSL language
by Sekar and Uppuluri [21], later improved upon by Brown and Ryan [2]. It
is not our purpose to introduce yet another language here, but to notice that
a simple variant of LTL with past will serve our purpose well and is efficiently
and straightforwardly translated to Orchids rules—which we equate with EFSA
here, for readability, glossing over inessential details.

Consider the following fragment of LTL with past. We split the formulae
in several sorts. F ∙ will always denote present tense formulae, which one can
evaluate by just looking at the current event:

F ∙ ::= P (x) ∣ cond(x) atomic formula
∣ ⊥ false
∣ F ∙ ∧ F ∙ conjunction
∣ F ∙ ∨ F ∙ disjunction
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Atomic formulae check for specific occurrences of events, e.g., local read (Icon-
File) will typically match the current event provided it is of the form local read

applied to some argument, which is bound to the state variable IconFile. In the
above syntax, x denotes a list of state variables, while cond(x) denotes any com-
putable formula of x, e.g., to check that IconFile is a file in some specific set
of allowed directories. This is as in [21, 2]. We abbreviate P (x) ∣ ⊤, where ⊤ is
some formula denoting true, as P (x).

Note that we do not allow for negations in present tense formulae. If needed,
we allow certain negations of atomic formulae as atomic formulae themselves,
e.g., !exists (IconFile). However, we believe that even this should not be nec-
essary. Disjunctions were missing in [21], and were added in [2].

Next, we define past tense formulae, which can be evaluated by looking at
the current event and all past events, but none of the events to come. Denote
past tense formulae by F←:

F← ::= F ∙ present tense formulae
∣ F← ∧ F← conjunction
∣ F← ∨ F← disjunction
∣ F← ∖ F ∙ without
∣ Start initial state

All present formulae are (trivial) past formulae, and past formulae can also
be combined using conjunction and disjunction. The novelty is the “without”
constructor: F← ∖ F ∙ holds iff F← held at some point in the past, and since
then, F ∙ never happened. Apart from the without operator, the semantics of
our logic is standard. We shall see below that it allows us to encode a number
of useful idioms. The past tense formula Start will also be explained below.

Formally, present tense formulae F ∙ are evaluated on a current event e, while
past tense formulae F← are evaluated on a stream of events e = e1, e2, . . . , en,
where the current event is en, and all others are the past events. (We warn the
reader that the semantics is meant to reason logically on the formulae, but is
not indicative of the way they are evaluated in practice. In particular, although
we are considering past tense formulae, and their semantics refer to past events,
our algorithm will never need to read back past events.) The semantics of the
without operator is that e = e1, e2, . . . , en satisfies F←∖F ∙ if and only if there is
an integerm, with 0 ≤ m < n, such that the proper prefix of events e1, e2, . . . , em
satisfies F← for some values of the variables that occur in F← (“F← held at
some point in the past”), and none of em+1, . . . , en satisfies F ∙ (“since then, F ∙

never happened”)—precisely, none of em+1, . . . , en satisfies F ∙ with the values

of the variables obtained so as to satisfy F←; this makes perfect sense if all the
variables that occur in F← already occur in F ∙, something we shall now assume.

The past tense formula Start has trivial semantics: it only holds on the empty
sequence of events (i.e., when n = 0), i.e., it only holds when we have not received
any event yet. This is not meant to have any practical use, except to be able
to encode useful idioms with only a limited supply of temporal operators. For
example, one can define the formula ■¬F ∙ (“F ∙ never happened in the past”)
as Start∖ F ∙.
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■¬F ∙
def
= Start∖ F

∙ “F ∙ never happened in the past”

♦F
← def

= F
←

∖⊥ “F← was once true in the past”

F
← → F

∙ def
= ♦F

← ∧ F
∙ “F← was once true, and now F

∙ is”

F
← → F

∙

1 → F
∙

2 → . . . → F
∙

n

def
= (. . . ((F← → F

∙

1 ) → F
∙

2 ) → . . .) → F
∙

n

F
∙

1 ;F
∙

2 ; . . . ;F
∙

n

def
= Start → F

∙

1 → . . . → F
∙

n
Chronicle

Fig. 5. Some Useful Idioms

The without operator allows one to encode other past temporal modalities,
see Figure 5. In particular, we retrieve the chronicle F ∙1 ;F

∙

2 ; . . . ;F
∙

n [8], mean-
ing that events matching F ∙1 , then F ∙2 , . . . , then F ∙n have occurred in this or-
der before, not necessarily in a consecutive fashion. More complex sequences
can be expressed. Notably, one can also express disjunctions as in [2], e.g.,
disjunctions of chronicles, or formulae such as (login(Uid) ∖ logout(Uid)) ∧
local read(Uid, ConfigF ile) to state that user Uid logged in, then read some
ConfigF ile locally, without logging out inbetween.

Let us turn to more practical details. First, we do not claim that only Start
and the without (∖) operator should be used. The actual language will include
syntactic sugar for chronicles, box (■) and diamond (♦) modalities, and possibly
others, representing common patterns. The classical past tense LTL modality S
(“since”) is also definable, assuming negation, by F S G = G ∖ ¬F , but seems
less interesting in a security context.

Second, as already explained in [17, 21, 2], we see each event e as a formula
P (fld1, f ld2, . . . , f ldm), where fld1, fld2, . . . , fldm are taken from some domain
of values—typically strings, or integers, or time values. This is an abstraction
meant to simplify mathematical description. For example, using auditd as event
collection mechanism, we get events in the form of strings such as:

1276848926.326:1234 syscall=102 success=yes a0=2 a1=1 a2=6 pid=7651

which read as follows: the event was collected at date 1276848926.326, written
as the number of seconds since the epoch (January 01, 1970, 0h00 UTC), and
is event number 1234 (i.e., we are looking at event e1234 is our notation); this
was a call to the socket() function (code 102), with parameters PF_INET (In-
ternet domain, where PF_INET is defined as 2 in /usr/include/socket.h—a0

is the first parameter to the system call), SOCK_STREAM (= 1; a1 is connec-
tion type here), and with the TCP protocol (number 6, passed as third argu-
ment a2); this was issued by process number 7651 and returned with success.
Additional fieldss that are not relevant to the example are not shown. This
event will be understood in our formalization as event e1234, denoting syscall

(1276848926.326, 102, "yes", 2, 1, 6, 7651). The event e1234 satisfies the atomic
formula syscall (Time,Call, Res,Dom,Conn, Prot, P id) ∣ Res = "yes" but
neither audit (X) nor syscall (Time,Call, Res,Dom,Conn, Prot, P id) ∣ Time ≤
1276848925.
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Third, we need to explain how we can detect when a given sequence of events
e satisfies a given formula in our logic, algorithmically. To this end, we define a
translation to the Orchids language, or to EFSA, and rely on Orchids’ extremely
efficient model-checking engine [7]. The translation is based on the idea of his-
tory variables , an old idea in model-checking safety properties in propositional
LTL. Our LTL is not propositional, as atomic formulae contain free variables—
one may think of our LTL as being first-order, with an implicit outer layer of
existential quantifiers on all variables that occur—but a similar technique works.

It is easier to define the translation for an extended language, where the
construction F←∖F ∙ is supplemented with a new construction F←∖

∗F ∙ (weak
without), which is meant to hold iff F← once held in the past, or holds now , and
F ∙ did not become true afterwards.

The subformulae of a formula F are defined as usual, as consisting of F plus
all subformulae of its immediate subformulae. To avoid some technical subtleties,
we shall assume that Start is also considered a subformula of any past tense
formula. The immediate subformulae of F ∧G, F ∨G, F ∖

∗G are F and G, while
atomic formulae, ⊥ and Start don’t have any immediate subformula. To make
the description of the algorithm smoother, we shall assume that the immediate
subformulae of F ∖ G are not F and G, but rather F ∖

∗ G and G. Indeed, we
are reproducing a form of Fischer-Ladner closure here [4].

Given a fixed past-tense formula F←, we build an EFSA that monitors ex-
actly when a sequence of events will satisfy F←. To make the description of
the algorithm simpler, we shall assume a slight extension of Sekar et al.’s EFSA
where state variables can be assigned values on traversing a transition. Accord-
ingly, we label the EFSA transitions with a sequence of actions $x1 := e1; $x2 :=
e2; . . . ; $xk := ek, where $x1, $x2, . . . , $xk are state variables, and e1, e2, . . . ,
ek are expressions, which may depend on the state variables. This is actually
possible in the Orchids rule language, although the view that is given of it in
[7] does not mention it. Also, we will only need these state variables to have
two values, 0 (false) or 1 (true), so it is in principle possible to dispense with all
of them, encoding their values in the EFSA’s finite control. (Instead of having
three states, the resulting EFSA would then have 3 2k states.)

Given a fixed F←, our EFSA has only three states qinit (the initial state), q,
and qalert (the final, acceptance state). We create state variables $xi, 1 ≤ i ≤ k,
one per subformula of F←. Let F1, F2, . . . , Fk be these subformulae (present or
past tense), and sort them so that any subformula of Fi occurs before Fi, i.e.,
as Fj for some j < i. (This is a well-known topological sort .) In particular, Fk is
just F← itself. Without loss of generality, let Start occur as F1. The idea is that
the EFSA will run along, monitoring incoming events, and updating $xi for each
i, in such a way that, at all times, $xi equals 1 if the corresponding subformula
Fi holds on the sequence e of events already seen, and equals 0 otherwise.

There is a single transition from qinit to q, which is triggered without having
to read any event at all. This is an �-transition in the sense of [7], and behaves
similarly to the transitions exists (IconFile) and !exists (IconFile) of Figure 4.
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It is labeled with the actions $x1 := 1; $x2 := 0; . . . ; $xk := 0 (Start holds, but
no other subformula is currently true).

There is also a single �-transition from q to qalert. This is labeled by no action
at all, but is guarded by the condition $xk == 1. I.e., this transition can only
be triggered if $xk equals 1. By the discussion above, this will only ever happen
when Fk, i.e., F

← becomes true.

Finally, there is a single (non-�) transition from q to itself. Since it is not an
�-transition, it will only fire on reading a new event e [7]. It is labeled with the
following actions, written in order of increasing values of i, 1 ≤ i ≤ k:

$x1 := 0 (Start is no longer true)
$xi := P (x) ∧ cond(x) (for each i such that Fi is atomic,

i.e., Fi is P (x) ∣ cond(x))
$xi := 0 (if Fi is ⊥)
$xi := and($xj , $xk) (if Fi = Fj ∧ Fk)
$xi := or($xj , $xk) (if Fi = Fj ∨ Fk)
$xi := or($xj , and(not($xk), $xi)) (if Fi = Fj ∖

∗ Fk)
$xi := and(not($xk), $xℓ) (if Fi = Fj ∖ Fk, and Fj ∖

∗ Fk is Fℓ, ℓ < i)

Here, and, or and not are truth-table implementations of the familiar Boolean
connectives, e.g., and(0, 1) equals 0, while and(1, 1) equals 1. We assume that
P (x), i.e., P (x1, . . . , xn) will equal 1 if the current event is of the form P (s1,
. . . , sn), and provided each xj that was already bound was bound to sj exactly,
in which case those variable xj that were still unbound will be bound to the
corresponding sj . E.g., if x1 is bound to 102 but x2 is unbound, then P (x1, x2)
will equal 1 if the current event is P (102, 6) (binding x2 to 6), or P (102, 7)
(binding x2 to 7), but will equal 0 if the current event is Q(102, 6) for some
Q ∕= P , or P (101, 6). We hope that this operational view of matching predicates
is clearer than the formal view (which simply treats x1, . . . , xn as existentially
quantified variables, whose values will be found as just described).

The interesting case is when Fi is a without formula Fj ∖ Fk, or Fj ∖
∗ Fk.

Fj ∖ Fk will become true after reading event e whenever Fj ∖
∗ Fk was already

true before reading it, and Fk is still false, i.e., when $xℓ = 1 and $xk = 0, where
ℓ is the index such that Fj ∖

∗ Fk occurs in the list of subformulae of F← as Fℓ.
So in this case we should update $xi to and(not($xk), $xℓ), as shown above. This
relies on updating variables corresponding to weak without formulae Fj ∖

∗ Fk:
Fj∖

∗Fk becomes true after reading event e iff either Fj becomes true ($xj = 1),
or Fj ∖

∗ Fk was already true before ($xi was already equal to 1) and Fk is false
on event e ($xk equals 0), whence the formula $xi := or($xj , and(not($xk), $xi))
in this case.

This completes the description of the translation. We now rely on Orchids’
fast, real-time monitoring engine to alert us in case any policy violation, ex-
pressed in our fragment of LTL, is detected.
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6 Conclusion

We have proposed a cost-effective implementation of a decentralized supervision
architecture on a single host, using virtualization techniques. This offers at least
the same security level as a classical decentralized intrusion detection architec-
ture based on a modern IPS such as Orchids, and additionally allows for killing
and restoring whole VMs to previous safe states.

In any security architecture, there is a weak link. We identify this weak
link as domain zero administration, where even a benevolent administrator may
introduce trojans, possibly leading to complete corruption, not just of the VMs,
but of the VMM itself. There is no complete defense against this yet. As a first
step, we have shown that Orchids can again be used, this time to implement an
elegant instance of Sekar et al.’s model-carrying code paradigm (MCC).
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30. J. Zimmerman, L. Mé, and C. Bidan. Experimenting with a policy-based hids
based on an information flow control model. In ACSAC ’03: Proceedings of the
19th Annual Computer Security Applications Conference, page 364, Washington,
DC, USA, 2003. IEEE Computer Society.
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