
A Network Policy Model for Virtualized Systems

Hedi Benzina

LSV, ENS Cachan, CNRS, INRIA

61 avenue du Président Wilson, 94230 CACHAN, France

Email: benzina@lsv.ens-cachan.fr

Abstract—Modern hypervisors offer the ability to build virtual
networks between virtual machines. These networks are very
useful in both personal and professional activities since they offer
the same opportunities as physical networks, but in a much lower
cost in terms of hardware and time. On the other hand, these
networks are facing many security threats due to the absence of
rigourous security policies that protect the sensitive ressources of
the network. In this paper, we propose a multilevel security policy
model for these networks, this policy covers not only network
operations, but also operations related to the management of the
virtual architecture.

Keywords: Virtualized systems, virtual networks, security

policies.

I. INTRODUCTION

A virtualized system such as Xen [1], VirtualBox, VMWare,

or QEmu allows one to emulate one or several so-called

guest operating systems (OS) in one or several virtual ma-

chines (VM). The different VMs execute as though they were

physically distinct machines, and can communicate through

ordinary network connections. A virtual network can be built

between VMs, this allows them to communicate by simple

network primitives. This kind of networks can be seen as

a solution to the complexity of building physical networks

: building and configuring a virtual network is a very easy

task. On the other hand, most of the security threats we

face in a non-virtualized environment exist in virtualized

environments as well. We propose in this paper a multi-level

security policy model that covers common network operations

and administrative actions. We take into consideration the

constraints that must be satisfied during the communication

between VMs and propose the policy model and discuss its

implementation.

II. RELATED WORK

A body of existing work has already examined the issues

arised by virtualized architectures [2][3]. However, not enough

work was done for securing virtual networks between VMs.

The introduction of the Xen Security Modules (XSM)

framework enables the enforcement of comprehensive control

over the resources of the hypervisor. The XSM policy model

is based on SELinux [4], so VMM policies will be compre-

hensive, but determining whether a security goal is enforced

correctly seems to be non-trivial for beginning users due to

the complexity of policy rules organization.

This work was supported by grant DIGITEO No2009-41D from Région
Ile-de-France.

Sensor SensorSensor
Orchids

Surveillance

OS

Hypervisor

Dom 0
...

Guest

OS

Hardware

Guest

OS

Drivers

Network

Fig. 1. Decentralized Supervision based on a virtual network

sHype [6] is one of the best-known security architecture for

hypervisors : its primary goal was to control the information

flows between VMs. sHype is based on the Xen hypervisor

and does not protect other virtualized architecture.

In [7], a role-based access control policy was introduced to

VMMs by Hirano et al. This policy focuses only on the access

between guest VMs and the VMM layer, and does not treat

inter-VM communication.

III. VIRTUAL NETWORKS : ADVANTAGES AND SECURITY

THREATS

We call virtual network the local network built between

virtual machines in an hypervisor-based architecture.

We argue that these networks have several advantages :

First, a virtual network reduces the networking hardware

investment (fewer cables, hubs) and eliminates dependen-

cies on hardware. Second, one can consolidate hardware by

connecting guest systems that run in virtual machines in a

single host. Also, consolidating servers in a virtual network

allows one to reduce or eliminate the overhead associated

with traditional networking components. Besides, by defining

a virtual network on a single processor, one does not need to

consider network traffic outside the processor. As a result : a

high degree of network availability and performance.

In [8] we showed that virtual networks can be very useful for

intrusion detection by proposing a decentralized supervision

architecture on a single physical host based on the Xen hyper-

visor. This architecture is based on a virtual network allowing

the communication between ordinary VMs, the surveillance

VM and the administration VM called domain0. See Figure 1,

which is perhaps more typical of Xen than other hypervisors.

For instance, rolling back a machine by the checkpoint

and restore mechanism can re-expose patched vulnerabilities,

reactivate vulnerable services, re-enable previously disabled



accounts or passwords, use previously retired encryption keys,

and change firewalls to expose vulnerabilities. It can also

reintroduce worms, viruses, and other malicious code that had

previously been removed.

A subtler issue can break many existing security protocols.

Simply put, the problem is that while VMs may be rolled back,

an attacker’s memory of what has already been seen cannot.

For example, with a one-time password system like S/KEY

where a user’s real password is combined in an offline device

with a short set of characters and a decrementing counter

to form a single-use password. In this system passwords are

transmitted in the clear and security is entirely reliant on

the attacker not having seen previous sessions. If a machine

running S/KEY is rolled back, an attacker can simply replay

previously sniffed passwords.

IV. MULTILEVEL NETWORK SECURITY

Multi-level security was formalized by Bell and La- Padula

[9] in order to control how information is allowed to flow

between subjects in a system. These subjects are given a

sensitivity level, or security clearance, and objects are also

given a similar security classification. MLS policies attempt

to restrict how information may flow between designated

sensitivities. As an example, consider a military application

with 4 sensitivities, ordered from least to most sensitive:

Unclassified (UC), Confidential (CO), Secret (S), and Top

Secret (TS). In this case, TS dominates S. Note that in this

example the sensitivites form a total ordering; each sensitivity

is either higher, lower, or equal to another. This is not always

the case.

V. THE SECURITY POLICY MODEL

A. Model Representation

In order to be generic, our model takes into consideration

the recent development in virtualized systems area, thus we

will deal with Input/Output devices as separated VMs : in fact

VMware, Xen and many other hypervisors tend to dedicate a

whole VM for I/O, and sometimes for the processor, which

reduces consequently the overhead for communicating the I/O

and processor commands.

We define a network security model, MODEL, as follows :

MODEL =< S, O, s0 >

where S is the set of States, O is the set of system Operations

and s0 is the initial system state.

Let us first define the basic sets used to describe the model:

• Sub : Set of all network subjects. This includes the set of

all Users (Users) and all Processes (Procs) in the network.

That is : Sub = Procs ∪ Users
• Obj : Set of all network objects. This includes both the

set of Network Components (NC) and Information Units

(IU ). That is : Obj = NC ∪ IU .

Typically, the set of Network Components includes vir-

tual machines (V Ms), Input-Output Devices (IOD) and

Output Devices (OD) whereas Information Units include

files and messages. That is : NC = V Ms∪ IOD ∪OD

• SCls : Set of Security Classes. We assume that a partial

ordering relation ≥ is defined on the set of security

classes.

• Rset : Set of user roles. This includes for instance the

role Admin dedicated to the administrator of the network

who is typically the administrator of the whole virtualized

architecture.

We use the notation xs, to denote the element x at state s.

1) System State: We only consider the security relevant

state variables. Each state s ∈ S can be regarded as a 11-

tuple as follows :

s =< Subs, Objs, authlist, connlist, accset, subcls, objcls,
curcls, subrefobj, role, currole, curvm >

Let us now briefly describe the terms involved in the state

definition :

- Subs and Objs defines respectively the sets of subjects and

objects at the state s.

- authlist is a set of elements of the form (sub, nc) where

sub ∈ Subs and nc ∈ Objs. The existence of an element

(sub1, nc1) in the set indicates that the subject sub1 has an

access right to connect to the network component nc1.

- connlist is again a set of elements of the form (sub, nc).
This set gives the current set of authorized connections at that

state.

- accset is a set of elements of the form (sub, iuobj), where

sub ∈ Subs, and iuobj ∈ Objs. The existence of an element

(sub1, iuobj1) in the set indicates that the subject sub1 has an

access right to bind to the object iuobj1.

- subcls : Sub → SCls, is a function which maps each subject

to a security class.

- objcls : Obj → SCls, is a function which maps each object

to a security class.

- curcls : Sub → SCls, is a function which determines the

current security class of a subject.

- subrefobj : Sub → PS(Obj), is a mapping which indicates

the set of objects referenced by a subject at that state.

- role : Users → PS(Rset), gives the authorized set of roles

for a user.

- currole : Users → Rset, gives the current role of a user.

- curvm : Users → NC, is a function which gives the VM

in which a user is logged on.

- view : Sub → Obj, is a function that determines the objects

that can be viewed by a subject.

2) Secure State: To define the necessary conditions for a

secure state, we need to consider the different phases gone

through by the system during its operation, we focus on typical

network operations :

Login Phase : We require that if the user is logging through

a VM, he must have appropriate clearance with respect to the

VM. That is, the security class of the user must be above the

security class of the VM in which the user is attempting to

log on. In addition, the current security class of the user must

be below the maximum security class of that user and the role

of the user must belong to the authorized role set allocated to

that user. So we have the following constraint:



- Proposition 1 : Login Constraint :

A state s satisfies the Login Constraint if ∀x ∈ Users :

• subcls(x) ≥ objcls(curvm(x))
• subcls(x) ≥ curcls(x)

Connect Phase : Having logged-on to the virtual network, a

user may wish to establish a connection with another network

component (VM or I/O VM). In determining whether such a

connection request is to be granted, both network discretionary

and mandatory security policies on connections need to be

satisfied. The discretionary access control requirement is spec-

ified using the authorization list which should contain an entry

involving the requesting subject and the network component.

If the network component in question is a VM then the current

security class of the subject must at least be equal to the lowest

security class of that VM. On the other hand, if the network

component is an output device, then the security class of the

subject must be below the security class of that component.

Hence we have the following constraint:

Proposition 2 : Connect Constraint :

A state s satisfies the Connect Constraint if ∀(sub, nc) ∈
connlist :

• (sub, nc) ∈ authlist
• if nc ∈ V Ms, then curcls(sub) ≥ objcls(nc)
• if nc ∈ OD then objcls(nc) ≥ curcls(sub)

Other Conditions We require two additional conditions :

(1) The classification of the information that can be ”viewed”

through an I/O device must not be greater than the classifica-

tion of that device.

(2) The role of the users at a state belong to the set of

authorized roles. Now we can give the definition of a secure

state as follows :

- Definition : A state s is Secure if :

• s satisfies the Login Constraint

• s satisfies the Connect Constraint

• ∀z ∈ (IODs ∪ ODs), ∀x ∈ IUs,
x ∈ view(z) ⇒ objcls(z) ≥ subcls(x).

We assume that the initial system state s0 is defined in such

a way that it satisfies all the conditions of the secure state

described above.

VI. OPERATIONS AND THEIR SECURITY REQUIREMENTS

In this section we will present the security constraints that

must be satisfied by the different operations performed by the

user of the virtual network : this includes vitual machines man-

agement operations done by the administrator (create/remove

a VM, checkpoint/restore a VM), network operations such as

connect and bind operations and finally operations related to

the policy management (assign a security class to an object,

assign a role to a user, etc).

A. Virtual machines managment operations

Create a new VM : Only the administrator of the virtual

network is allowed to create new virtual machines. Once

created, a new VM must be labelled by a security class which

should be dominated by the security class of the Dom0. This

leads to the following constraints : if a subject sub wants to

create a new virtual machine newVM then:

• Admin ∈ role(sub) and currole(sub) = Admin
• objcls(Dom0) ≥ objcls(newV M)
• NC′

s
= NCs ∪ {newV M}

Remove a VM : Only a user with the role Admin
is allowed to remove virtual machines. The only VM that

cannot be removed is the administration VM, even by the

administrator of the system (this is the normal case, but when

we have other sensitive VMs such as the surveillance VM in

our architecture, we can add restriction concerning the removal

of this VM). This leads us to define the set sensitiveVMs which

includes the Dom0 in the case of Xen, the surveillance VM

and may include other important VMs that cannot be removed.

We have the following constraints : if a user sub wants to

remove a virtual machine VM then:

• currole(sub) = Admin
• V M /∈ sensitiveV Ms
• authlist′

s
= authlists r (x, V M), where x ∈ Sub.

• connlist′
s

= connlists r (x, V M), where x ∈ Sub.

After removing the VM the lists authlist and connlist are

updated by removing the pairs where the deleted VM occurs.

Checkpoint and restore a VM : These functionalities are

offred by most modern hypervisors. By creating checkpoints

for a virtual machine, one can restore the virtual machine to

a previous state. A typical use of checkpoints is to create a

temporary backup before applying updates to the VM. The

restore operation enables to revert the virtual machine to its

previous state if the update fails or adversely affects the virtual

machine. Any user can checkpoint and restore his own VM,

the user with the role Admin can do this with any VM. To

make sure that these two operations do not represent security

threats, we need the following constraints.

If a user sub wants to checkpoint a virtual machine vm1

then:

• curvm(sub) = vm1 or currole(sub) = Admin
• V M 6= Dom0

In addition to these constraints, when restored, a VM must

keep the same security class as before the checkpoint. Let s
and z be respectively the states of the system bebore and after

the checkpoint, we should have :

• objclsz(vm1) = objclss(vm1)

B. Network operations

Connect operation : The operation connect(sub, nc) al-

lows a subject sub to connect to a remote network entity nc.

From the Connect Constraint given earlier, for this operation

to be secure, we require that :

• (sub, nc) ∈ authlist
• if nc ∈ V Ms, then curcls(sub) ≥ objcls(nc)

or

if nc ∈ OD then objcls(nc) ≥ subcls(sub)

After the operation is performed we should have : (sub, nc) ∈
connlist′ and nc ∈ subrefobj(sub).



Bind operation : The operation bind(iuobj, nc) allows a

subject sub to link an information object iuobj in a network

component nc. The constraints that must be satisfied by this

operation are:

• (sub, iuobj) ∈ accset(iuobj)
• curcls(sub) ≥ objcls(iuobj)
• for any sb ∈ Subs, iuobj /∈ subrefobj(sb)

We will have iuobj ∈ subrefobj′(sub). Where subrefobj′

refers to the new state s′.

Transfer operation :

The operation transfer(iuobj1,nc1,iuobj2,nc2) allows a subject

sub to append the contents of an information unit object

iuobj1 in a network component object nc1 to the contents

of another information unit object iuobj2 in a network com-

ponent object nc2.

• objcls(iuobj2) ≥ objcls(iuobj1)
• curcls(sub) ≥ objcls(iuobj1)

Further both iuobj1 and iuobj2 referenced by the subject sub
must not be referenced by any other object. That is, for any

sb ∈ Subs, sb 6= sub, iuobj1 and iuobj2 /∈ subrefobj(sb).
Also iuobj1 and iuobj2 ∈ subrefobj(sub).

After the operation is performed the security classes of the

objects iuobj1 and iuobj2 remain unchanged. That is,

• objcls′(iuobj1) = objcls(iuobj1)
• objcls′(iuobj2) = objcls(iuobj2)

where objcls′ refers to the new state s′.

C. Security-related operations

Let us consider some of the security-related operations. We

will use the notation x and x′ to refer to x at states s and s′.

Assign-cls-nc : The operation assign-cls-nc(nc,scls) allows

a subject sub to set the security class of a network component

object nc, to scls. That is, objcls′(nc) = {scls}. This

operation can be performed only when the component is not

being used. If this operation is to be performed at state s then

the following must be true :

If there exists any nc ∈ NC such that objcls(nc) 6=
objcls′(nc) then :

• for any subject sb ∈ Subs(sb 6= sub), nc /∈
subrefobj(sb) and (sb, nc) /∈ connlist

• Admin ∈ role(sub) and currole(sub) = Admin.

Assign-curcls-user : The operation assign-curcls-user(usr,

scls) allows a subject sub to set the current security class of a

user usr to scls. That is, curcls′(usr) = scls. If there exists

any usr ∈ Users such that curcls(usr) 6= curcls′(usr) then

• Admin ∈ role(sub) and currole(sub) = Admin or

usr = sub.

• subcls(usr) ≥ curcls′(usr)
• if the user is logged onto a terminal at state s, then

curcls′(usr) ≥ objcls(curvm(usr)).
• if the user is connected to a network component at state

s which is not an output device, that is, (usr, nc) ∈
connlist and nc /∈ OD, then curcls′(usr) ≥ objcls(nc)

• if the user is logged in and is connected to an output

device, that is, (usr, nc) ∈ connlist and nc ∈ OD, then

objcls(nc) ≥ curcls′(usr).

Assign-role-user : The operation assign-role-user(usr,rlset)

allows a subject sub to assign a role set rlset to a user usr,

That is role′(usr) = {rlset}. For this operation to be secure,

we need the following condition to be hold :

If there exists any usr ∈ Users such that role(usr) 6=
role′(usr) then :

• Admin ∈ role(sub) and currole(sub) = Admin
• if the user is logged in at state s, then currole(usr) ∈

role′(usr).

Setauthlist : The operation setauthlist(al) allows a

subject to set the authorization list. The authlist is of the

form (sb, nc), where sb ∈ Sub and nc ∈ NC. Again, this

operation can only be performed by a subject who can act as

a Admin. That is, if al /∈ authlist and al ∈ authlist′ then

Admin ∈ role(sub) and currole(sub) = Admin where sub
is the subject performing this operation.

Theorem : The model M =< S, O, s0 > is secure.

VII. CONCLUSION AND FUTURE WORK

The flexibility that makes virtual networks such a useful

technology can also undermine security within organizations

and individual hosts. Current research on virtual machines

has focused largely on the implementation of virtualization

and its applications. But less effort was done for securing

communication under virtualized systems. We proposed in this

paper a security policy model for communication under virtual

networks, this model can be implemented easily under most

virtualized architectures.

REFERENCES

[1] Xen, 2005–2011. http://www.xen.org/.
[2] Adrian Baldwin, Chris Dalton, Simon Shiu, Krzysztof Kostienko, Qasim

Rajpoot Providing Secure Services for a Virtual Infrastructure ACM
SIGOPS 2009

[3] Trent Jaeger, Reiner Sailer, Yogesh Sreenivasan. Managing the Risk of
Covert Information Flows in Virtual Machine Systems. SACMAT 2007

[4] S. Smalley, C. Vance, and W. Salamon. Implementing SELinux as a
Linux security module. Technical report, NSA, 2001.

[5] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh.
Terra: a virtual machine-based platform for trusted computing. SIGOPS
Operating Systems Review.

[6] Reiner Sailer, Trent Jaeger, Enriquillo Valdez, Ramon Caceres, Ronald
Perez, Stefan Berger, John L. Griffin, and Leendert van Doorn. Building
a macbased security architecture for the xen opensource hypervisor.
In Proceedings of the 21st Annual Computer Security Applications
Conference, pages 276-285, December 2005.

[7] Introducing Role-based Access Control to a Secure Virtual Machine Mon-
itor: Security Policy Enforcement Mechanism for Distributed Computers.
In : IEEE Asia-Pacific Services Computing Conference 2008.

[8] H. Benzina and J. Goubault-Larrecq. Some Ideas on Virtualized Systems
Security, and Monitors. In DPM/SETOP’10, LNCS 6514, pages 244-258.
Springer, 2010.

[9] Bell, D.E., Padula, L.J.L.: Secure computer system: unified exposition
and MULTICS interpretation. Report ESD-TR-75-306, The MITRE Cor-
poration (1976)


