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Abstract—As virtualized systems grow in complexity, they
are increasingly vulnerable to denial-of-service (DoS) attacks
involving resource exhaustion. A malicious driver downloaded
and installed by the system administrator can trigger high-
complexity behavior exhausting CPU time or stack space and
making the whole system unavailable. Virtualized systems such
as Xen or VirtualBox have been proposed to increase the level
of security on computers. On the other hand, such virtualized
systems are now targets for attacks. The weak spot of such
systems is domain zero administration, which is left entirely
under the administrator’s responsibility, and is in particular
vulnerable to attacks.

We propose to let the administrator write and deploy security
policies and rely on our policy compiler RuleGen, and Orchids’
fast, real-time monitoring engine to raise alerts in case any policy
violation, expressed in a fragment of linear temporal logic, is
detected. This approach has shown its efficiency against real DoS
exploits.

Keywords: Virtual machine monitors, security policies, tem-
poral logic, denial of service attacks, intrusion detection.

I. I NTRODUCTION

Virtualization is becoming an increasingly popular method
to achieve security-based solutions for both personal and
industrial activities. This technology presents the illusion of
many smaller virtual machines, each running a separate oper-
ating system instance on the same machine. Such a virtualized
environment provides isolation, security, low performance
overhead, and supports heterogeneous applications. For large
enterprises, where on-demand capabilities are highly desirable,
such a virtualization technique is very helpful in buildingan
ideal solution for security and application consolidations.

A virtualized system such as Xen [1], VirtualBox [2] or
QEmu [3] allows one to emulate one or several so-called
guestoperating systems (OS) in one or severalvirtual ma-
chines(VM). The different VMs execute as though they were
physically distinct machines. The various VMs run under the
control of a so-calledvirtual machine monitor (VMM) or
hypervisor, which one can think of as being a thin, highly-
privileged layer between the hardware and the VMs. All the
administrative tasks are done under a privileged VM called
domain zeroin Xen terminology or thehost operating system
under VirtualBox.

The weak link of almost all VMMs isdomain 0adminis-
tration where even a benevolent administrator may introduce
trojans, by downloading new updates or malicious drivers,
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possibly leading to complete corruption, not just of the VMs,
but of the VMM itself. Recently, several new attacks appeared
againstdomain zero[4].

As a defense, we propose to let the system administrator
describe all undesired activity flows through simple temporal
formulas. Our point is thatsignatures, i.e., specifications of
attack patterns, are best expressed in a logic including temporal
connectives to express ordering of events. This allows one to
describe attacks in a declarative way, free of implementation
decisions. As in programming languages, using adeclarative
language allows one to focus onwhat to monitor instead
of how to monitor. This caters for easier writing and easier
understanding of signatures, and improves maintainability of
of signature files.

We show how RuleGen, a tool for automatic generation
of attacks signatures, can be used with the Orchids intrusion
detection system [6] to protect the domain zero against denial
of service attacks.

Outline. The plan of the paper is as follows. After reviewing
related work in Section II, we present some basic components
of our solution in Section III. In particular we explore the use
of linear temporal logic with first-order variables for writing
security policies in Section III-B. This will give the reader a
flavor of what temporal logic is, and how we can generate an
attack signature from a temporal formula. We shall show that
the translation algorithm for this logic is NP-complete. We
describe an attack scenario in Section IV. And show a line
of defense against real exploits in Section V. We report on
practical results in Section VI and conclude in Section VII.

II. RELATED WORK

In a previous work [7], we proposed an approach for protect-
ing VMs using Orchids [5]. In this paper we present a new idea
for protecting the VMM itself by imposing security policies
expressed in temporal logic and that can be easily translated to
attack signatures used by Orchids. Whereas dealing with recent
attacks require expressive property specification languages,
current specification techniques are restricted in the properties
they can handle. They either support properties expressed
in propositional temporal logics and thus cannot cope with
variables ranging over infinite domains [17], do not provide
both universal and existential quantification [22] or only in
restricted ways [25], cannot handle unrestricted negation[24],
do not provide quantitative temporal operators [23], or cannot
handle both past operators [18].



The logic we use has the advantage that it is high-level,
compact and mostly readable notation for events occurring
as time passes. In addition, we propose a tool that generates
automatically attacks signatures from policy formulas written
in this logic. Safety properties can be described and translated
to rules that can be added to the intrusion detection system
(IDS). Much work have been done in this area. Sekaret
al. brought the idea ofmodel-carrying code(MCC) [12].
This technique allow one to accept and execute code even
from untrusted producers. Software fault isolation (SFI) [11]
instruments a program so that it cannot violate a built-in a
safety policy. Security automata SFI implementation (SASI) is
an SFI-based tool developed by Erlingsson and Schneider [10]
for enforcing security policies encoded in a security-automata
language. While our approach reduces consequently the effort
done by the user, these techniques need a big deployment effort
and technical intervention from the user.

III. PRELIMINARIES

We present in this section some important components of
our approach.

A. Orchids and the auditd sensor

In a previous implementation [7], we used Orchids to protect
VMs. Here we want to use Orchids to protect the VMM
and domain zero. The latter reports sequences of system
calls through the standardauditd daemon, a component of
SELinux [8], which one can even run without the need for
installing or running SELinux itself. Usingauditd as event
collection mechanism, we get events in the form of strings
such as:

1276848926.326:1234 syscall=102
success=yes a0=2 a1=1 a2=6 pid=7651

which read as follows: the event was collected at date
1276848926.326, written as the number of seconds since the
epoch (January 01, 1970, 0h00 UTC), and is event number
1234; this was a call to thesocket() function (code 102),
with parametersPF_INET (Internet domain, wherePF_INET
is defined as 2 in/usr/include/socket.h—a0 is the
first parameter to the system call),SOCK_STREAM (= 1; a1
is connection type here), and with the TCP protocol (number
6, passed as third argumenta2); this was issued by process
number7651 and returned with success.

Orchids recognizes scenarios by simulating known finite
automata, from a given event flow. This method allows the
writing of powerful stateful rules suitable for intrusion detec-
tion.

In the next section, we will show how to avoid the com-
plexity of writing such rules by automatically generating them
from simple logic formulas.

B. The logic

Our logic is a fragment of linear temporal logic (LTL)
with past. See the second part of [7] for a more in-depth
treatment. We shall see that relying on a logical language

with a well-defined semantics allows the policy compiler to
benefit from several optimizations. This is entirely automated,
hence safe, contrarily to more imperative languages like Russel
[13], where defining and applying these optimizations must be
done by hand, and is therefore error-prone. In this section we
show how one can describe attacks or security policies using
this logic. The without (r), box (�) and diamond (�) past
operators should be used.

For example, to describe an attack scenario where a first
eventA happens, thenB andC happen successively afterwards,
we write this formula :C ∧ �(B ∧ �A).
Another attack scenario would be the following : the events
A thenB happen, and since then the eventC never happened,
the corresponding formula is :�(B ∧ �A)r C. We can also
try to make sure that an eventA never happened in the past
by writing this formula :�¬A.

Example:To give a simple example how the reported events
from auditd can be used to write formulas, let us consider
the following formula :
(.auditd.syscall == 3 ∨ .auditd.syscall == 4) ∧

(.auditd.a0 == “/etc/passwd“) ∧ (.auditd.uid! = 0)
This formula describes an attack where an unauthorized user
(uid! = 0) tries to access the sensitive file (/etc/passwd) for
reading or writing. Note that theread andwrite system calls
have respectively the codes3 and4. We have to mention that
this formula corresponds to an attack signature, however we
can transform it into a formula that describes a safety property
by only adding the negation operator (not) at the beginning
of the formula.

C. The algorithm

In [7], we presented an algorithm that compiles formulas
specifying policies into rules that can be fed to the Orchids
IDS.

IV. T HREAT MODEL

Since VMMs are running under usual operating systems,
they are also exposed to threats and attacks. Denial of service
(DoS) is one of the most serious threats. One possible scenario
is this: the administrator needs to download some driver and
install it; this driver contains a trojan horse, which runs aDoS
attack. Even if the server is secure, the administrator can be
the victim of a man-in-the-middle attack, that substitutesthe
authentic driver with a malicious one. Once the new driver
has been installed and the DoS attack has been triggered, one
cannot hope to react in any effective way. To be more precise,
the VMM controls entirely the hardware abstraction layer that
is presented to each of the guest OSes: no network link, no
disk storage facility, no keyboard input can be trusted by any
guest OS any longer. Worse, the VMM also controls some of
the features of the processor itself, or of the MMU, making
memory or register contents themselves unreliable.

We present in the next section our approach to avoid this
kind of threats.



Fig. 1. The RuleGen tool

V. PROTECTING VMM S WITH LOGIC, RULEGEN AND

ORCHIDS

Our approach is simple but efficient : we show how the
administrator of a virtualized architecture can protect his
system against DoS attacks by writing policy formulas and
relying on our tool RuleGen that compiles these formulas to
rules that can be fed to the Orchids IDS. The latter can easily
detect and stop complex attacks.

Our case study is the following: we run a malicious version
of FUSE [14], a generic filesystem driver, under thedomain
zeroof a Xen hypervisor (which is equivalent tothe host OSof
the VirtualBox VMM. This modified version of FUSE contains
two real-world DoS attacks that can be triggered easily after
installing the driver.

Then we show how the administrator can prevent these two
attacks using RuleGen. The latter is an implementation of the
algorithm presented in [7]. RuleGen can efficiently generate
attack signatures from temporal formulas written in our logic.
RuleGen helps the administrator avoid the complexity of
writing Orchids’ rules. This is important since the attack base
of Orchids needs to be updated frequently and sometimes
quickly.

A. The multiple listen DoS attack

This attack [15] is quite simple, but can cause a lot of
damage, in particular when triggered in the host where the
VMM is running. It makes the system unavailable and the
administrator becomes unable to react since his administration
platform has crashed. Consequently, all running VMs will be
unavailable. The attack consists in two calls to thelisten
function (linux/socket.h) on the same ATM (Asynchronous
Transfer Mode) socket descriptor. Linux 2.6.x kernels and
many Linux distributions are vulnerable to this attack.

We show below how we insert the code of this attack in the
source code of FUSE:

//FUSE driver file : fusermount.c
switch (ch) {

case ’u’:
unmount = 1;
/******* malicious code ******/
int sock = socket(PF_ATMSVC, 0, 37);
listen(sock, 7);

listen(sock, 2);
system("/bin/cat /proc/net/atm/pvc");
/*******************/
break;

case ’h’:
usage();

We modify the source code of FUSE by adding the code
of the exploit to the file ”fusermount.c”. When the client tries
to unmount the filesystem (using the command : ”fusermount
-u”), the attack is triggered and the system crashes.

1) Expressing the attack in our logic:This attack can be
expressed as follows :

�($PID == .auditd.pid ∧ .auditd.syscall == 102 ∧

.auditd.a0 == 4) ∧ (.auditd.pid == $PID ∧

.auditd.syscall == 102 ∧ .auditd.a0 == 4)

This formula describes two events correlated by the vari-
able $PID (the process identifier) and connected with the
”∧” (and) operator. The first event is asocketcall system
call (code 102) with the first argumenta0 equals 4 (the
listen function). Thepid of the process is catched from the
.auditd.pid field and put in the variable$PID. The second
event is similar to the first one, but should be triggered by
the same process, and should come later since the first one
is preceded by the diamond� operator (which means that it
happened once in the past).

2) The generated rule:RuleGen parses the formula and
generates the attack signature in respect of the syntax of
Orchids’ rules. The first state should be namedinit, this state
waits for a listen function call (socketcall system call with
first parameter equals 4) and at the same time catches thepid
of the process triggering this event. Once the second state is
reached, we are sure that time has elapsed, and the expected
event was triggered. The second state namedcheck waits for a
second call to thelisten function and goes to thealert state if
the event is triggered by the same process (the two events are
correlated by the$PID variable). The third state is thealert
state which is responsible for killing the offending process
and making a report that helps the security administrator in
his work. The generated rule is below :

rule listen_atm_vcc
{
state init
{

$PID = .auditd.pid;
expect (.auditd.syscall == 102 &&

.auditd.a0 == 4)
goto start;

}
state check
{



expect (.auditd.pid == $PID &&
.auditd.syscall == 102 &&
.auditd.a0 == 4)

goto alert;
}

state alert
{
system("kill -9"+str_from_int($PID));
report();
}

}

B. The locklease DoS attack

This is another DoS attack [16]. In brief, the attack goes
in an infinite loop trying to obtain numerous file-lock leases,
which will consume excessive kernel log memory. Once the
leases timeout, the event will be logged, and kernel memory
will be consumed. Many Linux 2.6.x kernels are vulnerable
to this attack.

We show below where we inserted the code of the exploit
in FUSE source code to make sure that it will be executed
when the kernel starts using the driver.

//FUSE file : fusermount.c
static int open_fuse_device(char **devp)
{

int fd = try_open_fuse_device(devp);
/***** malicious code ****/
int r;
while(1)
{
//lock
r = fcntl(fd, F_SETLEASE, F_RDLCK);
//unlock
r = fcntl(fd, F_SETLEASE, F_UNLCK);

}
if (fd >= -1) return fd;
fprintf(stderr,"%s: fuse device error");
return -1;

}

When the filesystem is mounted, thefusermount
program (fusermount.c) tries to open”/dev/fuse” (the
open fuse device() function). At this time, the attacker can
be sure that his exploit is being executed.

1) Expressing the attack in our logic:This attack can be
written in our logic as follows :

(�(.auditd.syscall == 5 ∧ $PID == .auditd.pid) ∧

(loop ∧ (.auditd.syscall == 221 ∧ .auditd.a2 ==
”f setlease” ∧ .auditd.pid == $PID))) r

(.auditd.syscall == 6 ∧ .auditd.pid == $PID)

Here is how this formula can be read: every process that
makes a call to theopen function (code 5) and then makes
numerous locks (fcntl64 system call with code 221, and with

the parameter ”fsetlease”) on a descriptor without closing it
(close system call has the code 6), is a suspicious one and
should be stopped.

The keywordloop is used when we need to describe looping
events : loop ∧ A means that the event A will loop. The
administrator, and after getting experimental results, should
fix the permitted number of locks that can be made to a
descriptor without making the system crash (10 in the case
of our experiments).

2) The generated rule:As shown in the previous attack,
RuleGen transforms this formula into an attack signature that
can be added to the Orchids’ rules base. The generated rule
is:

#define MAX_CALLS 10
#define SYS_OPEN 5
#define SYS_CLOSE 6
#define SYS_FCNTL 221
#define LEASE "F_SETLEASE"

rule lock_lease_dos
{
state init
{

$counter = 0;
$PID = .auditd.pid;
expect (.auditd.syscall == SYS_OPEN )

goto start;
}
state start
{
$counter = 1 ;
expect (.auditd.pid == $PID &&

.auditd.syscall == SYS_FCNTL

.auditd.a2 == LEASE)
goto listen_loop;

}
state listen_loop
{

$counter = $counter + 1;
if ($counter == MAX_CALLS)

goto alert;

expect (.auditd.pid == $PID &&
.auditd.syscall == SYS_CLOSE)
//abort the surveillance
// of this process
goto init;

expect (.auditd.pid == $PID &&
.auditd.syscall == SYS_FCNTL &&
.auditd.a2 == LEASE &&
$counter < MAX_CALLS)

goto listen_loop;
}
state alert



{
//kill the attack process
system("kill -9"+str_from_int($PID));
report();

}
}

VI. EXPERIMENTS

We deployed our solution on a 1000 MHz Intel Core Duo
machine with 4096 KB cache running Xen 3.3.1 as hypervisor.
Dom0 is a 32-bit Fedora 11 Linux with 2 GB of RAM. We
also use two guest VMs: Fedora 10 and Ubuntu 8 with 1 GB
and 512 MB RAM, respectively.

We perform a set of experiments to evaluate RuleGen and
Orchids performance on the target platform using a malicious
FUSE driver. Practical results look promising: Orchids can
detect simultaneously the two DoS attacks presented earlier
and stop them before the system crashes. We do not claim
that this approach is the final solution to DoS attacks. There
are cases where the DoS attack is stealthy; after all, this isa
starting point for writing complete security policies thatcan
be able to protect the system from families of DoS attacks.

VII. C ONCLUSION AND FUTURE WORK

Our import, as we hope to have demonstrated, is that
it is possible to describe policies through simple temporal
logic without caring about technical details related to the
intrusion detection mechanism. This temporal logic has a clean
semantics and a clear notion of correlation of events. We have
also presented RuleGen, a tool for compiling security policies
written in a temporal logic into attack signatures expressed
as EFSA (extended finite-state automata). RuleGen offers to
virtualized systems administrators the ability to write their own
policies. We have shown that RuleGen and Orchids can be
used to protect VMMs from DoS attacks.

This work opens several directions for further investigation.
First, we would like to raise the abstraction level of the
generated attack signatures to reduce the description effort
required when writing policy formulas. Next, we aim to
apply the use of RuleGen and Orchids to a wider range of
applications not limited to VMMs. Finally, we feel that using
other low-level sensors to detect kernel-level malware would
be a plus.
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