Logic in Virtualized Systems

Hedi Benzina
LSV, ENS Cachan, CNRS, INRIA
61 avenue du Président Wilson, 94230 CACHAN, France
Email: benzina@Isv.ens-cachan.fr

Abstract—As virtualized systems grow in complexity, they possibly leading to complete corruption, not just of the VMs

are increasingly vulnerable to denial-of-service (DoS) atcks put of the VMM itself. Recently, several new attacks appeare
involving resource exhaustion. A malicious driver downloaed againstdomain zerg4].

and installed by the system administrator can trigger high- -
complexity behavior exhausting CPU time or stack space and AS & defense, we propose to let the system administrator

making the whole system unavailable. Virtualized systemsush describe all undesired activity flows through simple tenapor
as Xen or VirtualBox have been proposed to increase the level formulas. Our point is thatignatures, i.e., specifications of
of SeCUI’ity on Computers. On the other hand, such virtualizd attack patternsy are best expressed |n a IOg'C |nclud|ngmh
systems are now targets for attacks. The weak spot of such .,,qctives to express ordering of events. This allows one t
systems is domain zero administration, which is left entirly .) . . i
under the administrator's responsibility, and is in particular describe attacks in a declarative way, free of implementati
vulnerable to attacks. decisions. As in programming languages, usintg@darative

We propose to let the administrator write and deploy securiy language allows one to focus anhat to monitor instead
policies and rely on our policy compiler RuleGen, and Orchids’ of p01 to monitor. This caters for easier writing and easier

fast, real-time monitoring engine to raise alerts in case anpolicy ,,yerstanding of signatures, and improves maintainglofit
violation, expressed in a fragment of linear temporal logic is

detected. This approach has shown its efficiency against reaos ~ ©Of signature files.
exploits. We show how RuleGen, a tool for automatic generation

_ _ _ o of attacks signatures, can be used with the Orchids intnusio
Keywords: Virtual machine monitors, security policies, temdetection system [6] to protect the domain zero againstadleni
poral logic, denial of service attacks, intrusion detattio of service attacks.
|. INTRODUCTION Outline The plan of the paper is as follows. After reviewing

o . . . Belated work in Section Il, we present some basic components
Virtualization is becoming an increasingly popular metho S . .
of our solution in Section Ill. In particular we explore theeu

to achieve security-based solutions for both personal an

. . L . : of linear temporal logic with first-order variables for vimi
industrial activities. This technology presents the itnsof security policies in Section I11-B. This will give the reada

many smaller virtual machines, each running a separate oRgl .
avor of what temporal logic is, and how we can generate an

ating system instance on the same machine. Such a V'rtda“%?tack signature from a temporal formula. We shall show that

environment provides isolation, security, IO.W performncthe translation algorithm for this logic is NP-complete. We
overhead, and supports heterogeneous applications. Fger I"’}Jlescribe an attack scenario in Section IV. And show a line

enterprises, where on-demand capabilities are highlyasls, of defense against real exploits in Section V. We report on

SUCh a vw’;uallzatlon tephmque IS Very helpful m_buuduag practical results in Section VI and conclude in Section VII.
ideal solution for security and application consolidation

A virtualized system such as Xen [1], VirtualBox [2] or
QEmu [3] allows one to emulate one or several so-called

guestoperating systems (OS) in one or sevevatual ma- | 3 previous work [7], we proposed an approach for protect-
chines(VM). The different VMs execute as though they were, 4 \/\Ms using Orchids [5]. In this paper we present a new idea
physically distinct machlnes. The various _/Ms run under thg, protecting the VMM itself by imposing security policies
control of a so-calledvirtual machine monitor (VMM) or expressed in temporal logic and that can be easily transtate
hypervisor, which one can think of as being a thin, highlysitack signatures used by Orchids. Whereas dealing witmtec
pnwl_eged Igyer between the hardware anq _the VMs. All theiiacks require expressive property specification langsiag
administrative tasks are done under a privileged VM calleq,rrent specification techniques are restricted in the gutigs
domain zerdn Xen terminology or théost operating systém hey can handle. They either support properties expressed
under VirtualBox. _ _ _ . in propositional temporal logics and thus cannot cope with
The weak link of almost all VMMs isdlomain Oadminis- 5riables ranging over infinite domains [17], do not provide
tration where even a benevolent administrator may intreduoth universal and existential quantification [22] or only i
trojans, by downloading new updates or malicious drivergssiricted ways [25], cannot handle unrestricted negdfidh

This work was supported by grant DIGITEO°R009-41D from Région do not provide quantitative temporal operators [23]’ ornean
lle-de-France. handle both past operators [18].

II. RELATED WORK

The logic we use has the advantage that it is high-leveljith a well-defined semantics allows the policy compiler to
compact and mostly readable notation for events occurribgnefit from several optimizations. This is entirely autteda
as time passes. In addition, we propose a tool that generdteace safe, contrarily to more imperative languages likesBlu
automatically attacks signatures from policy formulastteri [13], where defining and applying these optimizations mast b
in this logic. Safety properties can be described and taé@dl done by hand, and is therefore error-prone. In this sectien w
to rules that can be added to the intrusion detection syststrow how one can describe attacks or security policies using
(IDS). Much work have been done in this area. Sekar this logic. The without {), box (@) and diamond §) past
al. brought the idea ofmodel-carrying code(MCC) [12]. operators should be used.
This technique allow one to accept and execute code everFor example, to describe an attack scenario where a first
from untrusted producers. Software fault isolation (SBRI}][eventA happens, theB andC happen successively afterwards,
instruments a program so that it cannot violate a built-inge write this formula :C' A ¢(B A $A).
safety policy. Security automata SFI implementation (SASI Another attack scenario would be the following : the events
an SFl-based tool developed by Erlingsson and Schneidgr [20thenB happen, and since then the evénhever happened,
for enforcing security policies encoded in a security-adta the corresponding formula is¢(B A ¢A4) ~ C. We can also
language. While our approach reduces consequently the efipy to make sure that an eveAtnever happened in the past
done by the user, these techniques need a big deploymerit effg writing this formula :H-A.
and technical intervention from the user. Example:To give a simple example how the reported events
from audi t d can be used to write formulas, let us consider
the following formula :

We present in this section some important components Qfuditd.syscall == 3 V .auditd.syscall == 4) A
our approach. (.auditd.a0 == *“/etc/passwd”) A (.auditd.uid! = 0)
This formula describes an attack where an unauthorized user
(uid! = 0) tries to access the sensitive filee{c/passwd) for

In a previous implementation [7], we used Orchids to protegéading or writing. Note that thecad andwrite system calls
VMs. Here we want to use Orchids to protect the VMMave respectively the codgsand4. We have to mention that
and domain zero The latter reports sequences of systefihis formula corresponds to an attack signature, however we
calls through the standamiidi t d daemon, a component of can transform it into a formula that describes a safety ptgpe

SELinux [8], which one can even run without the need f%y 0n|y addmg the negation operatmO@ at the beginning
installing or running SELinux itself. Usingudi t d as event of the formula.

collection mechanism, we get events in the form of strings
such as: C. The algorithm

1276848926. 326: 1234 syscal | =102
success=yes a0=2 al=1 a2=6 pi d=7651

IIl. PRELIMINARIES

A. Orchids and the auditd sensor

In [7], we presented an algorithm that compiles formulas
specifying policies into rules that can be fed to the Orchids
which read as follows: the event was collected at dateS.

1276848926.326, written as the number of seconds since the

epoch (January 01, 1970, OhOO UTC), and is event number IV. THREAT MODEL

1234; this was a call to thesocket () function (code 102),

with parameter®F_| NET (Internet domain, wherBF_| NET Since VMMs are running under usual operating systems,
is defined as 2 idusr/i ncl ude/ socket . h—a0 is the they are also exposed to threats and attacks. Denial ofcgervi
first parameter to the system cal§OCK_STREAM(= 1; al (DoS) is one of the most serious threats. One possible scenar
is connection type here), and with the TCP protocol (numbisr this: the administrator needs to download some driver and
6, passed as third argumea®); this was issued by processinstall it; this driver contains a trojan horse, which runB@S
number7651 and returned with success. attack. Even if the server is secure, the administrator @an b

Orchids recognizes scenarios by simulating known finitée victim of a man-in-the-middle attack, that substitutes
automata, from a given event flow. This method allows tr@uthentic driver with a malicious one. Once the new driver
writing of powerful stateful rules suitable for intrusiomteéc- has been installed and the DoS attack has been triggered, one
tion. cannot hope to react in any effective way. To be more precise,

In the next section, we will show how to avoid the comthe VMM controls entirely the hardware abstraction layetth
plexity of writing such rules by automatically generatitgm is presented to each of the guest OSes: no network link, no

from simple logic formulas. disk storage facility, no keyboard input can be trusted by an
) guest OS any longer. Worse, the VMM also controls some of
B. The logic the features of the processor itself, or of the MMU, making

Our logic is a fragment of linear temporal logic (LTL)memory or register contents themselves unreliable.
with past See the second part of [7] for a more in-depth We present in the next section our approach to avoid this
treatment. We shall see that relying on a logical languaged of threats.

Attack signature I'isten(sock, 2);

Policy Rolebian ——— systen("/bin/cat /proc/net/atnf pvc");
{stateinit { [*kkkrkhkhkhhkhhkkkkkxx [
expect(.auditd syscall—3)
£y g T br eak;
(-auditd syscall — 3)\] ¢) .
(auditd uid!=0) && 750 s state check{ case 'h':
_auditd syscall =102, 3 > Oy 3 > expect(uid—0) .
z.auditd.ao':«i)\(.aud)itlllaZ:l) Ll ff goto alert); usage();
ki 158) * ,f ilatealm{ .)
{ report(); We modify the source code of FUSE by adding the code
‘exit’); H H ”. ” H H
y et of the exploit to the file "fusermount.c”. When the clientesi
}

to unmount the filesystem (using the command : "fusermount

-u”), the attack is triggered and the system crashes.
Fig. 1. The RuleGen tool

1) Expressing the attack in our logicThis attack can be

expressed as follows :
V. PROTECTINGVMM S WITH LOGIC, RULEGEN AND

ORCHIDS (SPID == .auditd.pid N\ .auditd.syscall == 102 A
Our approach is simple but efficient : we show how theauditd.a0 == 4) A (.auditd.pid == $PID A
administrator of a virtualized architecture can protecs hj.auditd.syscall == 102 A .auditd.a0 == 4)

system against DoS attacks by writing policy formulas and
relying on our tool RuleGen that compiles these formulas to _ . _ .
ying 5 This formula describes two events correlated by the vari-

rules that can be fed to the Orchids IDS. The latter can easiIKIe SPID (the process identifier) and connected with the

detect and stop complex attacks. ? , E The fi . eteall
Our case study is the following: we run a malicious versior" . (47d) operator. The first event is socketcall system

of FUSE [14], a generic filesystem driver, under th@main call (code ,102) with the first argumer@[) equals 4 (the
zeroof a Xen hypervisor (which is equivalent tioe host O®f ”St‘”ﬁ‘ funct|9n). Thepid O.f the Process 15 catched from the
the VirtualBox VMM. This modified version of FUSE contains @¢ditd-pid field and put in the variablé P1D. The second

two real-world DoS attacks that can be triggered easilyr aft vent is similar to the first one, but should pe trlgger_ed by
installing the driver. the same process, and should come later since the first one

Then we show how the administrator can prevent these t Opreceded by the diamor#l operator (which means that it

attacks using RuleGen. The latter is an implementation ef t appened once in the past).

algorithm presented in [7]. RuleGen can efficiently gereerat 2) The generated ruleRuleGen parses the formula and
attack signatures from temporal formulas written in ouidog 9enerates the attack signature in respect of the syntax of
RuleGen helps the administrator avoid the complexity (Qr(_:hlds’ rules. The flrs_t state should be nanieét, this sta}te
writing Orchids’ rules. This is important since the attacisb vyalts for alisten function call socketcall system call with

of Orchids needs to be updated frequently and sometinfd§t parameter equals 4) and at the same time catchgs dhe

quickly. of the process triggering this event. Once the second sate i
. . reached, we are sure that time has elapsed, and the expected
A. The multiple listen DoS attack event was triggered. The second state nantedk waits for a

This attack [15] is quite simple, but can cause a lot gfecond call to théisten function and goes to thélert state if
damage, in particular when triggered in the host where tkee event is triggered by the same process (the two events are
VMM is running. It makes the system unavailable and theorrelated by théPID variable). The third state is theert
administrator becomes unable to react since his admitistra state which is responsible for killing the offending proges
platform has crashed. Consequently, all running VMs will band making a report that helps the security administrator in
unavailable. The attack consists in two calls to theten his work. The generated rule is below :
function (linux/socket.h) on the same ATM (Asynchronous
Transfer Mode) socket descriptor. Linux 2.6.x kernels and .

. e . rule listen_atmyvcec
many Linux distributions are vulnerable to this attack. - =

We show below how we insert the code of this attack in t

source code of FUSE: state init

{
/1 FUSE driver file : fusernount.c $PID = . auditd. pid;
switch (ch) { expect (.auditd.syscall == 102 &&
case 'u': .auditd. a0 == 4)
unmount = 1; goto start;
[*xx%xxx malicious code ***xxx*/ }
int sock = socket (PF_ATMSVC, 0, 37); state check

listen(sock, 7); {

$PI D &&
== 102 &&

expect (.auditd.pid
.audi td. syscal |
.auditd. a0 == 4)

goto alert;
}
state alert
{
system("kill -9"+str fromint($PID));
report();
}

}

B. The locklease DoS attack

This is another DoS attack [16]. In brief, the attack goesyef i ne
in an infinite loop trying to obtain numerous file-lock leases:qyef i ne
which will consume excessive kernel log memory. Once thgjef i ne
leases timeout, the event will be logged, and kernel memotyef i ne
will be consumed. Many Linux 2.6.x kernels are vulnerablgqet i ne

to this attack.

the parameter "fsetlease”) on a descriptor without closing it
(close system call has the code 6), is a suspicious one and
should be stopped.

The keywordoop is used when we need to describe looping
events :loop A A means that the event A will loop. The
administrator, and after getting experimental resultguih
fix the permitted number of locks that can be made to a
descriptor without making the system cradi (n the case
of our experiments).

2) The generated ruleAs shown in the previous attack,
RuleGen transforms this formula into an attack signatuag th
can be added to the Orchids’ rules base. The generated rule
is:

MAX_CALLS 10
SYS_OPEN 5
SYS_CLOCSE 6
SYS_FONTL 221
LEASE " F_SETLEASE"

We show below where we inserted the code of the explgit| e | ock | ease dos
in FUSE source code to make sure that it will be execut?d - -

when the kernel starts using the driver.

/I FUSE file : fusernount.c
static int open_fuse_device(char *xdevp)

{

int fd = try_open_fuse_devi ce(devp);
[*xx*xx malicious code x*xx/
int r;
whi | e(1)
{
/11 ock
r = fentl (fd, F_SETLEASE, F_RDLCK);
/ I'unl ock
r = fentl (fd, F_SETLEASE, F_UNLCK);
}
if (fd >= -1) return fd;
fprintf(stderr,"%: fuse device error");
return -1,
}
When the filesystem is mounted, thefusermount

program (fusermount.c) tries to opeiYdev/fuse” (the

open fuse device() function). At this time, the attacker can

be sure that his exploit is being executed.

1) Expressing the attack in our logicThis attack can be
written in our logic as follows :

(#(.auditd.syscall == 5 N SPID == .auditd.pid) A
(loop A (.auditd.syscall 221 A .auditd.a2
7 f_setlease” A .auditd.pid $PID)))
(.auditd.syscall == 6 A .auditd.pid == $PID)

N

state init

{

$counter = 0;
$PI D = . auditd. pid;

expect (.auditd.syscall == SYS OPEN)
goto start;
}
state start
{
$counter = 1 ;
expect (.auditd.pid == $PID &&
.audi td.syscall == SYS FCNTL

.auditd. a2 LEASE)
goto listen_| oop;

}
state listen_| oop
{
$counter = $counter + 1;

if ($counter
goto alert;

MAX_CALLS)

expect (.auditd.pid == $PID &&
.audi td.syscall == SYS CLOSE)
[/ abort the surveillance
/1l of this process
goto init;

expect (.auditd.pid == $PID &&
.audi td. syscal | SYS FCNTL &&
.auditd. a2 LEASE &&
$counter < MAX CALLS)

Here is how this formula can be read: every process that
makes a call to thepen function (code 5) and then makes }

goto listen_| oop;

numerous locksf(cntl64 system call with code 221, and with state al ert

{ [8] S. Smalley, C. Vance, and W. Salamon. Implementing SEtias a
//kill the attack process Linux security module. Technical report, NSA, 2001.
i " . . [9] M. R. Garey and D. S. Johnson. Computers and Intractgbéi Guide
syst en(Kill -9"+st r_f rom.i nt ($Pl D)) ’ to the Theory of NP-Completeness. W.H. Freeman and Co., 1979
report(); [10] Ulfar Erlingsson and Fred B. Schneider. IRM enforcetmanlava stack
} inspection. In RSP: 21th IEEE Computer Society SymposiurResearch
in Security and Privacy, 2000.
} [11] Robert Wahbe, Steven Lucco, Thomas E. Anderson, andrSus
Graham. Efficient software-based fault isolation. In Pealtegs of the
VI. EXPERIMENTS Fourteenth ACM Symposium on Operating Systems Princigtesjes

; 203216, Asheville, NC, December 1993.
We deployed our solution on a 1000 MHz Intel Core Duglz R. Sekar, C. Ramakrishnan, I. Ramakrishnan, and S. I&ndVlodel-

machine with 4096 KB cache running Xen 3.3.1 as hypervisor. carnying code (MCC): A new paradigm for mobile-code seguritn
DomoO is a 32-bit Fedora 11 Linux with 2 GB of RAM. We Proceedings of the New Security Paradigms Workshop (NSP)20

. ; Cloudcroft, NM, Sept. 2001. ACM Press.
also use two guest VMs: Fedora 10 and Ubuntu 8 with 1 C:"[?3] A. Mounji. Languages and tools for rule-based distidol intrusion

and 512 MB RAM, rESpeCtive.l)’- detection. PhD thesis, FUNDP, Namur, Belgium, 1997.
We perform a set of experiments to evaluate RuleGen aiid] FUSE, 2011. hitp://fuse.sourceforge.net/.

Orchids performance on the target platform using a malgiolt°) 288/8'5'200%8‘5079’ http://cve. mitre.org/cgi-bin/ceme. cgi?name=CVE-
-5079.

FUSE driver. Practical results look promising: Orchids cafig] cvE-2005-3857, http://cve.mitre.org/cgi-bin/cene.cgi?name=CVE-
detect simultaneously the two DoS attacks presented earlie 2005-3857.

A. Bauer, M. Leucker, and C. Schallhart. Monitoring cfaf-time
and stop them before the system crashes. We do not Clé}m properties. In Proc. of the 26th Conference on FoundatidriSoftware

that this approach is the final solution to DoS attacks. There Technology and Theo- retical Computer Science (FSTTCS)4&87 of
are cases where the DoS attack is stealthy; after all, thas is LNCS, pp. 260-272. Springer, 2006.

; ; i ; i [18] J. Chomicki. Efficient checking of temporal integritprestraints using
starting point for writing complete security policies then bounded history encoding. ACM Trans. Database Syst., 20(@186,

be able to protect the system from families of DoS attacks. 1ggs.
[19] K. Havelund and G. Rosu. Efficient monitoring of safetpperties. Int.
VIl. CONCLUSION AND FUTURE WORK J. Softw. Tools Technol. Trans., 6(2):158-173, 2004.
. .] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rb&sed runtime
) _Our 'mport’ as we _h0pe t.O. have demon_Strated' IS th%? verification. In Proc. of the 5th International Conference\@rification,
it is possible to describe policies through simple temporal Model Checking and Abstract Interpretation (VMCAI), vol9F7 of

logic without caring about technical details related to the LNCS, pp. 44-57. Springer, 2004.

. [21] S. Hallé and R. Villemaire. Runtime monitoring of mage-based
intrusion detection mechanism. This temporal |Og|C hagarcl workflows with data. In Proc. of the 12th International |IEERt&prise

semantics and a clear notion of correlation of events. We hav Distributed Object Com- puting Conference (EDOC), pp. @3-EEE
also presented RuleGen, a tool for compiling security pedic Computer Society, 2008.

. . _ - 2] J. Hakansson, B. Jonsson, and O. Lundqvist. Generatitige test
written in- a temporal IOg'C into attack signatures EXprdssg oracles from temporal logic specifications. Int. J. Softwol§ Technol.

as EFSA (extended finite-state automata). RuleGen offers to Trans., 4(4):456-471, 2003.
virtualized systems administrators the ability to writeittown [23] M. Roger and J. Goubault-Larrecq. Log auditing througtodel-

. . checking. In Proc. of the 14th IEEE Computer Security Fotinda
policies. We have shown that RuleGen and Orchids can be Workshop (CSFW), pp. 220-234. IEEE Computer Society, 2001.

used to protect VMMs from DoS attacks. [24] A. P. Sistla and O. Wolfson. Temporal triggers in actilstabases. IEEE
This work opens several directions for further investigati Trans. Knowl. Data Eng., 7(3):471-486, 1995.

. . . . 5] O. Sokolsky, U. Sammapun, I. Lee, and J. Kim. Run-timeosing
First, we would like to raise the abstraction level of th& of dynamic properties. Elec. Notes Theo. Comput. Sci., 448{-108,

generated attack signatures to reduce the descriptiomt effo 2006.
required when writing policy formulas. Next, we aim to

apply the use of RuleGen and Orchids to a wider range of
applications not limited to VMMs. Finally, we feel that ugin

other low-level sensors to detect kernel-level malware ld/ou

be a plus.

REFERENCES

[1] Xen, 2005-2011. http://www.xen.org/.

[2] VirtualBox, 2011. http://www.virtualbox.org/.

[3] Qemu, 2011. http://www.gemu.org/.

[4] R. Wojtczuk. Subverting the Xen hypervisor. Black Hat'08 Las Vegas,
NV, 2008.

[5] J. Olivain and J. Goubault-Larrecq. The Orchids intoasdetection tool.
In K. Etessami and S. Rajamani, editot3th Intl. Conf. Computer Aided
Verification (CAV'05) pages 286-290. Springer LNCS 3576, 2005.

[6] J. Goubault-Larrecq and J. Olivain. A smell of Orchids. M. Leucker,
editor, Proceedings of the 8th Workshop on Runtime Verification @By’
Lecture Notes in Computer Science, pages 1-20, Budapestjary Mar.
2008. Springer.

[7] H. Benzina and J. Goubault-Larrecq. Some Ideas on lire@d Systems
Security, and Monitors. In DPM/SETOP’10, LNCS 6514, pagé4-258.
Springer, 2010.

