
Lumping partially symmetrical stochastic models

S. Baarira, M. Beccutib, C. Dutheilleta, G. Franceschinisc, S. Haddadd

aLIP6, Universit́e Paris 6
bDip. di Informatica, Univ. di Torino

cDip. di Informatica, Univ. Piemonte Orientale
dLSV, ENS Cachan

Abstract

Performance and dependability evaluation of complex systems by means of dynamic stochas-
tic models (e.g. Markov chains) may be impaired by the combinatorial explosion of their state
space. Among the possible methods to cope with this problem,symmetry-based ones can be ap-
plied to systems including several similar components. Often however these systems are only
partially symmetric: their behaviour is in general symmetric except for some local situation when
the similar components need to be differentiated.

In this paper two methods to efficiently analyze partially symmetrical models are presented in
a general setting and the requirements for their efficient implementation are discussed. Some case
studies are presented to show the methods effectiveness andtheir applicative interest.

Keywords: Markov chains, lumpability, stochastic Petri nets, symmetries.

1. Introduction

As software systems and hardware architectures are more andmore complex, their verifica-
tion and evaluation become critical issues. Analysis methods are often subject to the problem of
combinatorial explosion due to the increasing system complexity. Several approaches have been
undertaken to cope with this problem: decomposition methods take advantage of the modular
structure of the system; for performance evaluation, approximate and bounding methods substi-
tute a simpler system to the original one; diagram decision based methods symbolically manage
sets of states rather than representing states explicitly,etc. Here, we present symmetry-based
methods that exploit the presence of several similar components in the system.

The general principle of these methods consists to substitute to the state graph a quotient
graph w.r.t. some equivalence relation. This relation considers two states as equivalent if they
can be obtained from each other permuting equivalent components. These methods have been
first introduced in order to check safeness properties (see e.g. [1, 2]), then generalized in order to
check temporal logic formulae (see e.g. [3]) and also adapted to performance evaluation (through a
Markov chain)via the quantitative counterpart of symmetry, i.e.lumpability(see e.g. [4, 5, 6, 7]).
It should be stressed that the requirements w.r.t. lumpability are generally stronger than the ones
that ensure equivalence between qualitative (symmetrical) behaviors and thus the design of such
methods needs more elaboration.

Preprint submitted to Performance Evaluation June 5, 2010

In order to successfully exploit symmetries it is required to (1) define in a generic way, at
the conceptual level, what method can be used to reduce the state space through symmetries (2)
select a formalism where symmetries are automatically detected (3) define how the method can be
efficiently implemented in practice. The design at the conceptual level is based on the operations
of a permutation group; the formalism must allow a simple wayto express similar components;
the implementation should be based on a symbolic representation of set of states and transitions
and their efficient manipulation.

However, the systems seldom have completely symmetric behavior (for example in distributed
algorithms we often have a symmetric specification, together with some symmetry-breaking cri-
teria - e.g. based on unique process identity - to solve conflicts, deadlocks, etc.) so it is useful to
define and implement methods to deal with partial symmetries. In the literature partial symmetry
methods have been proposed for qualitative analysis [8, 9, 10, 11].

In this paper we propose two methods to apply lumping in partially symmetrical models: they
are here presented for the first time asgenericmethods, applicable to any kind of formalism
that may originate partially symmetric models, while they were originally proposed in [12, 13]
in the specific context of the Stochastic Well-Formed Net (SWN) formalism [5]. The first one,
called Dynamic Symmetry (DS) method, starts from the synchronized product of a completely
symmetric Markov chain (MC) and an additional automata describing the asymmetries: in this
case a lumped MC satisfying the exact lumpability conditionis built. The second one, called Two-
Levels Symmetry (TLS) method, instead starts from an over-aggregated MC from which a lumped
MC can be derived by applying a refinement algorithm: it can use either the strong lumpability or
the exact lumpability condition (which have different impact on the type of performance indices
that can be computed and may lead to different degrees of aggregation).

In the paper we show how the two methods can be efficiently applied to SWN1 models, in
fact this formalism is designed so that symmetries can be automatically detected and exploited.
However since they are here presented asgenericmethods, it is also possible to adapt them to
other kinds of high level stochastic models (as we show for two examples, Stochastic Automata
Networks and Stochastic Activity Networks, discussed towards the end of the paper). One of the
main differences between the two methods is that the TLS method uses two different aggregation
criteria depending on the current phase of the behavior (symmetric or asymmetric), while the DS
method aggregates states in a more dynamic way, possibly using several different aggregation cri-
teria which may correspond to a more articulated classification of the behavior phases: symmetric
behavior or one among several asymmetric behaviors.

We have implemented our methods in the GreatSPN tool [14] allowing us to perform several
experiments. Six case studies are presented in the paper by means of the SWN formalism. The
experimental results show that relevant savings in the state space size can be achieved through
both approaches, and that they can be alternatively appliedin the most appropriate situations.

The paper unifies and extends the results presented in [12, 13], revisiting them in a more
general setting and giving a particular emphasis to the casestudies. It is organized as follows:
in Sec. 2 some basic notions on MC and lumpability are defined,in Sec. 3 the TLS and DS

1SWNs are high level stochastic Petri nets with a specific syntax for expressing color domains of places and
transitions, arc functions and transition guards, that support automatic symmetry exploitation.

2

methods are presented; in Sec. 4 we show how they have been instantiated in the SWN formalism
and we discuss about the implementation in GreatSPN. Sec. 5 describes which kind of partially
symmetrical systems leads more effective state space reduction. In Sec. 6 significant case studies
are presented and analyzed. Finally in Sec. 7 we give some hints on possible efficient application
to other formalisms. We conclude in Sec. 8.

2. Markov chain lumpability

2.1. Strong, weak and exact lumpability

The quantitative evaluation of dynamic systems proposed inthis paper implies the following
three steps (a) the specification of the stochastic process representing the target system, (b) the
definition of the required performance (or dependability) indices and (c) the possibility of applying
efficient algorithms for transient or steady state measurescomputation.

The analysis of stochastic processes in general is a hard problem, in fact often simulation is
the only viable option, while in some cases algorithms for the computation of approximations or
bounds on the desired measures can be applied.

When the dynamic system behavior can be described through a finite Discrete Time MC
(DTMC) or Continuous Time MC (CTMC), the solution is conceptually simpler, however, in
realistic case studies, it is still computationally expensive; for this reason state space reduction
techniques have been studied, such as the so called MClumpingtechnique2.

Lumping of (finite) MCs is a useful method for dealing with large chains [17]. The principle
is simple: substitute to the MC an “equivalent” one, where each state of the lumped chain is a
set of states of the original one. There are different versions of lumpability related to the fact that
the lumpability condition holds for every initial distribution (strong lumpability) or for at least
one (weak lumpability). First, we briefly introduce MCs. Due to space constraints,we only deal
with CTMCs. However our methods also apply to DTMCs and we indicate later on the interest of
dealing with DTMCs even in a continuous time setting.

Definition 1 (Markov Chains). A CTMCC = 〈S, Q, π0〉 is defined by a state spaceS, an in-
finitesimal generatorQ that is aS×S matrix whose off-diagonal elements are non negative reals,
while each diagonal element is defined asQ[s, s] = −

∑
s 6=s′ Q[s, s′], andπ0, an initial probability

distribution overS. We note{Xt}t∈IR≥0

the associated stochastic process.

Notation. S0 denotes the subset of “initial” states, i.e.,S0 = {s ∈ S | π0(s) > 0}.
We now introduce lumpability concepts.

Definition 2. LetC be a CTMC and{Si}i∈I be a partition of the state space. LetYt be a random
variable defined byYt = i ⇔ Xt ∈ Si. Then:
• Q is strongly lumpablew.r.t. {Si}i∈I

iff ∀π0, {Yt}t∈IR≥0

is a CTMC,

• Q is weakly lumpablew.r.t. {Si}i∈I

iff ∃π0 s.t.{Yt}t∈IR≥0

is a CTMC.

2When a partition of states satisfies the lumpability condition it is possible to perform the aggregation of states
efficiently without introducing approximations as it happens with other methods like e.g. [15, 16]

3

Whereas the characterization of strong lumpability w.r.t.the infinitesimal generator is straight-
forward, checking for weak lumpability is much harder [18].Here, we introduce the exact lumpa-
bility, a simpler case of weak lumpability.

Definition 3. LetC be a CTMC and{Si}i∈I be a partition of the state space. LetYt be a random
variable defined byYt = i ⇔ Xt ∈ Si. Then:
• An initial distributionπ0 is equiprobable w.r.t.{Si}i∈I

if ∀i ∈ I, ∀s, s′ ∈ Si, π0(s) = π0(s
′).

• Q is exactly lumpablew.r.t. {Si}i∈I iff
∀π0 equiprobable w.r.t.{Si}i∈I {Yt}t∈IR≥0

is a CTMC.

Exact and strong lumpability have easy characterizations [19] given by the following proposition.

Proposition 4. LetC be a CTMC and{Si}i∈I be a partition of the state space. Then:
• Q is strongly lumpable w.r.t.{Si}i∈I iff ∀i 6= j ∈ I,
∀s, s′ ∈ Si,

∑
s′′∈Sj

Q(s, s′′) =
∑

s′′∈Sj
Q(s′, s′′),

• Q is exactly lumpable w.r.t.{Si}i∈I iff ∀i, j ∈ I,
∀s, s′ ∈ Si,

∑
s′′∈Sj

Q(s′′, s) =
∑

s′′∈Sj
Q(s′′, s′).

The following corollary establishes a sufficient conditionfor exact lumpability in CTMCs
which will be useful in order to check the correctness of one of our methods.

Corollary 5. Let C be a CTMC and{Si}i∈I be a partition of the state space. ThenQ is exactly
lumpable w.r.t.{Si}i∈I if:
1. ∀i 6= j ∈ I, ∀s, s′ ∈ Si,∑

s′′∈Sj
Q(s′′, s) =

∑
s′′∈Sj

Q(s′′, s′).
2. ∀i ∈ I, ∀s, s′ ∈ Si,∑

s′′ 6=s∈Si
Q(s′′, s) =

∑
s′′ 6=s′∈Si

Q(s′′, s′).
3. ∀i ∈ I, ∀s, s′ ∈ Si, Q(s, s) = Q(s′, s′).

When the strong lumpability condition holds the infinitesimal generator of the lumped chain
can be directly computed from the original generator as expressed by the following proposition.

Proposition 6. Let C be a CTMC that is strongly lumpable w.r.t. a partition of the state space
{Si}i∈I . LetQlp be the generator associated with this lumped CTMC, then:

∀i, j ∈ I, ∀s ∈ Si, Q
lp(i, j) =

∑
s′∈Sj

Q(s, s′).

As for strong lumpability, also in case of exact lumpabilitythe infinitesimal generator of the
lumped chain can be directly computed from the original generator. Observe that starting with the
probability mass equidistributed on the states of every subset of the partition, the distribution at any
time is still equidistributed. Consequently, if the CTMC isergodic, its steady-state distribution is
equidistributed between states of every subset of the partition. In other words, with the knowledge
of the lumped chain generator, one may compute its steady-state distribution, and deduce (bylocal
equidistribution) the steady-state distribution of the original chain. It must be emphasized that this
last step is impossible with strong lumpability since it does not ensure equiprobability of the states
in an aggregate.

4

Proposition 7. Let C be a CTMC that is exactly lumpable w.r.t. a partition of the state space
{Si}i∈I . LetQlp be the generator associated with this lumped CTMC, then:
• ∀i, j ∈ I, ∀s ∈ Sj ,

Qlp(i, j) = (
∑

s′∈Si
Q(s′, s)) × (|Sj|/|Si|)

• If ∀i ∈ I, ∀s, s′ ∈ Si, π0(s) = π0(s
′) then∀t ∈ IR≥0,

∀i ∈ I, ∀s, s′ ∈ Si, πt(s) = πt(s
′),

whereπt is the probability distribution at timet.
• If Q is ergodic andπ is its steady-state distribution

then∀i ∈ I, ∀s, s′ ∈ Si, π(s) = π(s′).

Observation: the above aggregation equations for strong and exact lumpability can be derived

from the general aggregation equationQlp(i, j) =

P

s′∈Si
π(s′)

P

s∈Sj
Q(s′,s)

P

s′∈Si
π(s′)

applying the equations

in Proposition 4 and the fact that when exact lumpability holds the steady state distributionπ is
equiprobable w.r.t.{Si}i∈I .

2.2. Dealing with DTMCs.

As said before, very similar results hold for DTMCs. Furthermore even in a continuous time
setting, there are two situations where choosing DTMCs is convenient. Some semi-Markovian pro-
cesses are analyzablevia anembeddedDTMC which only takes into account state changes. This
DTMC could be lumpable thus enlarging this technique to semi-Markovian processes. Further-
more, it may happen that even in a case of CTMC, the embedded DTMC has a greater reduction
factor by lumpability. We have experienced this phenomenonwhen benchmarking our methods.

2.3. Computation of performance indices.

Let us now recall how it is possible to characterize the performance index (or indices) of
interest on a given CTMC, and then discuss the implications of lumping on its computability.

The performance indices of interest can be computed in a transient or steady state setting.
Examples of performance indices are the steady state availability of a server, the probability that
a given connection be active at time instantτ , or the average number of clients being served in a
system.

A general way of defining performance indices on CTMCs is through the use ofreward func-
tions: their domain is the setS of CTMC states while the co-domain isIR. In fact, a function
r can be seen as a performance index and, given a (steady state or transient) state probability
distributionπ, the (average or instantaneous) performance index measurecan be expressed as:∑

s∈S π(s) · r(s).
If the reward functionr expressing the performance index of interest is constant within each

aggregate, then the probability distribution of the aggregates is enough to compute the value of
the performance index (we can say that the reward function iscompatible with the aggregation).
However if this is not the case, only exact lumpability stillgives us the possibility to compute the
performance index value.

Finally observe that the efficient computation of performance indices corresponding to uncon-
strained reward functions in the exact lumpability case requires a way of efficiently computing the

5

Figure 1: A labeled CTMC and its control automaton Figure 2: CTMC(CG
A)lp

cardinality of each aggregate, and of the subset of states within the aggregate characterized by the
same reward function value.

3. The DS and TLS methods

3.1. Lumpability of partially symmetrical MCs

This section presents theDynamic Symmetrymethod applied to partially symmetrical MCs.
Partially symmetrical CTMCs. The model of partially symmetrical systems that we develop here
is defined as a CTMC obtained by some synchronized product between a (symmetrical) CTMC
and a control automaton. Let us first formalize this product.Synchronizing the behavior of the
two components requires to “label” the CTMC with events.
Notation. Let C be a CTMC, we associate with each pair of statess 6= s′ a label in some alphabet
Σ ∪ {ε}, denotedΛ(s, s′). We require thatΛ(s, s′) = ε iff Q(s, s′) = 0.

Since the automaton is introduced in order to modify the behavior of the CTMC, the label
of each edge is a predicate that selects the events allowed tooccur in the current location of the
automaton.

Definition 8. LetC be a CTMC, thenA = 〈L, l0,→〉 a control automaton ofC is defined by:
• L, the set of automaton locations,
• l0, the initial location,
• →⊆ L × 2Σ × L, the transitions of the automaton.

A transition(l, γ, l′) will be denoted byl
γ
−→ l′.

Furthermore, ifl
γ
−→ l′ andl

γ′

−→ l′ with γ 6= γ′

thenγ ∩ γ′ = ∅.

In standard automata, the last requirement can be easily ensured by merging the two transitions
into a single one labeled byγ ∪ γ′. However the interest of letting distinct the two transitions will
be discussed later.

Fig.1 represents a CTMC and its control automaton. Standardletters are labels, while Greek
letters represent transition rates. The initial distribution is: π(r0) = 1.

In the synchronized product defined below, the CTMC is the “active” component whereas the
automaton is the “passive” component waiting for a transition of the CTMC in order to synchronize

6

it with one of its transitions. Consequently, the rates (resp. the initial distribution) associated with
the product depends only on the rates (resp. the initial distribution) of the CTMC.

Definition 9. LetC be a CTMC andA some control automaton ofC. The synchronized product of
C andA, CA = 〈S × L, π′

0, Q
′〉 is a CTMC defined by:

• ∀s, π′
0(s, l0) = π0(s) ∧ ∀l 6= l0, π

′
0(s, l) = 0

• ∀s 6= s′ ∈ S, ∀l, l′ ∈ L, if l
γ
−→ l′ ∧ Λ(s, s′) ∈ γ

thenQ′((s, l), (s′, l′)) = Q(s, s′)
elseQ′((s, l), (s′, l′)) = 0

• ∀s ∈ S, ∀l 6= l′ ∈ L, Q′((s, l), (s, l′)) = 0

Remarks. Due to the constraint on the labeling functionΛ, a transition with null rate cannot be
synchronized with an automaton transition. The requirement related to transitions of the control
automaton ensures that given a current locationl, a possible next locationl′ and a labelα ∈ Σ
(triggered by a transition of the CTMC) there is at most one transition of the automaton that
reachesl′ from l accepting labelα. In realistic applications, the control automaton is only used in
order to restrict the behavior of the original CTMC. Howeverobserve that the outgoing transition

rate of a state(s, l) can be greater than the one ofs. Take for instanceΛ(s, s′) = α, l
{α}
−−→ l′

and l
{α}
−−→ l′′ and assume thatQ(s, s) = −Q(s, s′) (i.e., s′ is the only successor ofs). Then

Q((s, l), (s, l)) = 2Q(s, s) due to the two automaton arcs. We choose this more general setting
since for specific applications, it could be useful.

In the example of Fig.1, the control automaton actually forbids transitions that are not labeled
with a or b. Hence,CA is obtained fromC by removing the dotted arcs. Formally, the states ofCA
are pairs(si, l) but as there is only one location in the automaton, we will omit it in the represen-
tation of states throughout the example.

From a theoretical point of view, the specification of the system symmetries relies on group
theory, applied to the states and the events of the system. The next definition recalls the appropriate
notions.

Definition 10. LetG be a group, with neutral elementid and whose internal operation is denoted
(•). LetE be a set.
• Anoperationof G onE is a mapping fromG × E

to E s.t. the image of(g, e), denoted byg.e, fulfills:
∀e ∈ E, id.e = e ∧ ∀g, g′ ∈ G, (g • g′).e = g.(g′.e)

• Theisotropy subgroupof a subsetE ′ ⊆ E is defined by:
GE′ = {g ∈ G | ∀e ∈ E ′, g.e ∈ E ′}

• LetH be a subgroup ofG, theorbit of e byH
denotedH.e, is defined by:{g.e | g ∈ H}.
The set of orbits byH defines a partition ofE.

We simultaneously introduce the notions of symmetrical andpartially symmetrical CTMCs.
Informally, a CTMC issymmetricalw.r.t. some group if the operation of the group on the state

7

space preserves its initial distribution and stochastic behavior. A CTMC ispartially symmetricalif
it is a synchronized product of a symmetrical CTMC with a (nonsymmetrical) control automaton.

Definition 11. A CTMCC is symmetrical w.r.t. a groupG operating onS andΣ iff: ∀g ∈ G, ∀s 6=
s′ ∈ S, π0(g.s) = π0(s) ∧ Q(g.s, g.s′) = Q(s, s′) andΛ(g.s, g.s′) = g.Λ(s, s′).

LetC be symmetrical w.r.t.G andA be a control automaton ofC, thenCA is said to be partially
symmetrical w.r.t.G.

We associate with eachγ occurring in a transition ofA a subgroupHγ ⊆ G defined by:
g ∈ Hγ iff ∀a ∈ Σ, a ∈ γ ⇔ g.a ∈ γ.

The size of the subgroupHγ is an indicator of the symmetry of the associated edge. When
Hγ = G, the edge is “fully” symmetrical whilst whenHγ = {id}, the edge is “fully” asym-
metrical. Here we see the interest of keeping distinct transitions of the control automaton with
same sources and destinations. Indeed when merging them, the subgroup associated with the new
transition could be smaller than one of (or even both) the subgroups associated with the original
transitions.

Back to the example of Fig.1, letG be the group of permutations of{1, 2, 3} generated by
binary permutationspi,j which exchangei andj. The operations ofG onS andΣ are defined by:
∀pi,j, pi,j.r0 = r0 ∧ pi,j.a = a
∀pi,j, pi,j.si = sj ∧ pi,j .ti = tj
∀pi,j, pi,j.sj = si ∧ pi,j .tj = ti
∀pi,j, k /∈ {i, j}, pi,j.sk = sk ∧ pi,j.tk = tk
p1,2.b = c ∧ p1,2.c = b ∧ p1,2.d = d
p1,3.b = d ∧ p1,3.c = c ∧ p1,3.d = b
p2,3.b = b ∧ p2,3.c = d ∧ p2,3.d = c

It is easy to verify that the CTMC is symmetrical w.r.t.G. The subgroups associated with
the labels ofA areHγ1

= G andHγ2
= {id, p2,3}. Observe that if instead we had merged the

transitions, the group would have been{id, p2,3} and thus the full symmetry of the edgeγ1 would
have been lost.
A subset construction for lumpability. Given a partially symmetrical CTMCCA, our method
builds a smaller (but equivalent) CTMC based on the buildingof some “subset” reachability graph
that we callGA. Algorithm 1 describes its construction.

Let us detail how it works. The nodes of this graph are pairs consisting in a location ofA and
a subset of states ofC which equivalently denotes a subset of states ofCA with same location. An
edge of this graph is labeled by a transitionl

γ
−→ l′ of A and it represents a (non empty) set of

transitions ofCA. More precisely, such a transition links some state of the source subset to some
state of the destination subset that can be reached usingl

γ
−→ l′.

The key idea of this construction is the following: along anypath of this graph (and indepen-
dently on the instants of transition firings corresponding to the arcs of this path) starting from the
initial distribution, the occurrence probability of all states of the subset associated with the last
node of this path are identical.

In fact, the construction maintains the following invariants: (1) The graph represents all behav-
iors except possibly the ones that start from some destination node of an edge that is present in the

8

Algorithm 1 : Building of GA

nodes = ∅; edges = ∅;1

PartitionS0 = ⊎n0

i=1
S0,i2

s.t. everyS0,i is the orbit of somesi ∈ S0 by G;3

add ⊥ to nodes;4

for i ∈ {1, . . . , n0} do5

push(stack ,⊥
init
−−→ (l0, S0,i));6

while stack is not emptydo7

(l, R)
γ
−→ (l′, R′) = pop(stack);8

ComputeΓ = {γ′ | ∃l′
γ′

−→ l′′, ∃s′ ∈ R′, ∃s′′ ∈ S, Λ(s′, s′′) ∈ γ′};9

ComputeH = GR′ ∩
⋂

γ′∈Γ
Hγ′ ;10

PartitionR′ = ⊎m
i=1Ri s.t. everyRi is the orbit of someri ∈ R′ by H ;11

for i ∈ {1, . . . , m} do12

if (l′, Ri) ∈ nodes then13

add(l, R)
γ
−→ (l′, Ri) to edges;14

else15

add(l′, Ri) to nodes;16

add(l, R)
γ
−→ (l′, Ri) to edges;17

for l′
γ′

−→ l′′ do18

ComputeSET S = {H.s∗ | Λ(ri, s
∗) ∈ γ′};19

for S′ ∈ SET S do20

push(stack , (l′, Ri)
γ′

−→ (l′′, S′));21

stack. (2) The nodes (i.e., the corresponding subset of states) of the graph fulfill all the conditions
of corollary 5. (3) The subsets which are destination of an edge in the stack fulfill the first two
conditions of corollary 5.

Thewhile loop extracts an edge from the stack (line 8). Then it splits the destination subsetR′

(lines 9-11) in order to ensure the third condition of corollary 5 since inside a subsetRi, the states
allow the same transitions of the control automaton. Furthermore,ri ∈ Ri is selected. IfRi is a
node of the graph (lines 13-14) then one adds the edge to the graph (while preserving the conditions
of corollary 5). Otherwise one createsRi as a new node and the corresponding incoming edge and
computes the outgoing edges ofRi (lines 18-24). The variableSET S contains orbits w.r.t.H
reachable fromRi using a transition whose label belongs toγ′. These edges are pushed onto the
stack. Again by construction, the destination subsets of states fulfill the first two conditions of
corollary 5. Furthermore, the choice of theri (line 19) is irrelevant sinceRi is the orbit underH
of any of its item. So whatever the choice, the set of subsetsSET S will be identical.

The initial stage consists in partitioning the initial states (S0) w.r.t. G (line 2). Since there is
no incoming edge the two first conditions of corollary 5 are satisfied. We have added a fictitious
node⊥ in order to handle theS0,i subsets in the main loop (lines 3-6).

We have not represented the computation of rates in the algorithm in order to focus on the
qualitative aspects. We explain it now: Let(l, R)

γ
−→ (l′, Ri) be an edge ofGA. We apply proposi-

9

tion 7; so we select a states′ ∈ Ri and compute(
∑

s′∈R Q(s′, s))× (|Ri|/|R|). The first term only
depends ons and so it is efficiently computed. Varying with the specification formalisms, the com-
putation of cardinalities can be done more or less efficiently but it is always a local computation
and then it does not suffer a combinatorial explosion. Furthermore some tricks are possible. For
instance,R is the orbit of any stater ∈ R by some group sayH. So we have|R| = |H|/|H ∩Gr|
(by an elementary result on groups). With some formalisms the computations of cardinalities of
such groups is straightforward and leading to efficiently obtain |R|.

In order to prove the soundness of this construction, we firstintroduce a CTMCCG
A , which

is bigger thanCA. In CG
A , states ofCA are replicated in instances, and instances are organized

w.r.t. the subsets associated with the nodes ofGA. By construction, all the instances that belong to
the same subset have the same associated location of the automaton. We will denote(s, l, R) the
instance of(s, l) s.t.s belongs to such a subsetR. In the next definition,nodes(resp.edges) refers
to the nodes (resp. edges) ofGA.

Definition 12. LetCA be partially symmetrical CTMC w.r.t.G, then the CTMCCG
A = 〈S ′′, π′′

0 , Q
′′〉

is defined by:
• The set of statesS ′′ is defined by:

S ′′ = {(s, l, R) | (l, R) ∈ nodes ∧ s ∈ R}.
• ∀i ∈ {1, . . . , n0}, ∀R s.t.R is an item of the partition

of S0,i, ∀s ∈ R, π′′
0(s, l0, R) = π′

0(s, l0)(= π0(s)).
For every other(s, l, R) ∈ S ′′, π′′

0(s, l, R) = 0.
• ∀(s, l, R) 6= (s′, l′, R′) ∈ S ′′, If (l, R)

γ
−→ (l′, R′)

is in edges thenQ′′((s, l, R), (s′, l′, R′)) = Q(s, s′).
OtherwiseQ′′((s, l, R), (s′, l′, R′)) = 0.

The stochastic process we want to build is obtained by forgetting the instances and only mem-
orizing the subsets.

Definition 13. Let CA be partially symmetrical w.r.t.G, then the stochastic process(CG
A)lp is

defined by:X lp
t = (R, l) iff X ′′

t ∈ {(s, l, R)}.

The next proposition is the theoretical core of our method. It states that(CG
A)lp is obtained from

CA by the inverse of a strong followed by an exact lumping.

Proposition 14. LetCA be partially symmetrical w.r.t.G, then:
• Denoting(s0, l0) . . . , (sn, ln) the state space ofCA,
CA is a strong lumping ofCG

A w.r.t. the partition
⊎

sli
wheresli = {(si, li, R) ∈ S ′′}.

• Denoting{(R0, l0), . . . , (Rk, lk)} the state space of
(CG

A)lp, (CG
A)lp is an exact lumping ofCG

A w.r.t. the
partition

⊎
Rli whereRli = {(s, li, Ri) ∈ S ′′}.

Proof
Let (s, l) be a state ofCA and let(s, l, R) be an instance of this state inCG

A , we show that there

10

is a bijective mapping from the transitions out of(s, l) onto the transitions out of(s, l, R). So
we can suppose thats is examined when looking for successors of(l, R). Then∃s′, ∃l

γ
−→ l′ s.t.

Λ(s, s′) ∈ γ ⇔ ∃R′, ∃s′ ∈ R′, ∃l
γ
−→ l′ s.t. Λ(s, s′) ∈ γ with (l′, R′) a successor of(l, R). Since

this mapping preserves the rate of the transitions the condition of Prop. 4 for strong lumpability is
fulfilled.

Let (s1, l, R) and(s2, l, R) be two states ofCG
A , we show that there is a bijective mapping from

the input transitions of(s1, l, R) onto the input transitions of(s2, l, R). Let (v1, l
′, R′) be such that

∃l′
γ
−→ l andΛ(v1, s1) ∈ γ. LetH be the group of line 10 related tol′, R′, then∃g ∈ H ⊆ GR′∩Hγ

s.t.s2 = g.s1. Now definev2 = g.v1, thenv2 ∈ R′ andΛ(v2, s2) ∈ γ. This implies the existence of
the required mapping. Since this mapping preserves the rates of transitions, the first two conditions
of corollary 5 for exact lumpability are fulfilled. The thirdone is ensured by the splitting of line
11 which has produced(l, R). �

Illustration. We illustrate the algorithm on the CTMC of Fig. 1. The lumped CTMC (CG
A)lp

is given in Fig. 2. We have represented inside each node the states corresponding to the subset
associated with that node. Let us describe the first steps of the algorithm. We push on the stack the

edge⊥
init

−−→ (l0, {r0}). When we pick it, we determine that only the automaton transition labeled
by a can be synchronized. Thus the subgroup of line 10,H is equal toG.

The transition(r0, l0)
a
−→ (s1, l0) (resp.(r0, l0)

a
−→ (t1, l0)) yields to push on the stack an edge

whose destination set is{s1, s2, s3} (resp.{t1, t2, t3}). When the edge with destination{s1, s2, s3}
is popped, the two transitions of the automaton can be synchronized and thus the groupH of line
10 becomes{id, p2,3}. The orbits of{s1, s2, s3} w.r.t. H are {s1} and {s2, s3}. At the end,
observe that statesti appear twice: in{t1, t2, t3} and in some orbit of{id, p2,3}. We can intuitively
explain it as follows. When the CTMC reaches directly the statesti from r0 then their occurrence
is equiprobable which is only the case fort2 andt3 when going throughsi.

Our generic method can now be described. Assume first that theCTMC CA associated with the
high-level modelM we want to analyze is partially symmetrical. Assume also that we are able
to compute directly(CG

A)lp from M. Noteπt the unknown distribution ofCA at timet andπ
(lp)
t

the (computed) distribution of(CG
A)lp at timet. Thenπt(s, l) =

∑
s∈R(1/|R|) × π

(lp)
t (R, l). The

equality also holds for the steady-state distributions.
Although theoretically difficult, we can give some hints of how the space complexity decreases

using our approach. In the lumped CTMC, the original states have been substituted by subsets.
Note that these subsets may intersect. However these subsets are always the orbit of a state by a
subgroup ofG. Thus, the larger these subgroups, the better the method. Note that each time a new
subset is built, the group is reduced (by intersection with some groupsHγ) and then is enlarged by
implicitly substituting to these intersections, the isotropy subgroup of the subset. Interpreting this
phenomenon at the model level, we deduce that the complexityreduction factor is high whenever
the effect of an asymmetrical event is forgotten in a close future. Experimentations will illustrate
this interpretation.

3.2. Lumpability of Almost Symmetrical MCs

In this section we shall define the second method for the (strong or exact) lumpability of a
finite CTMC, calledTwo-Levels Symmetry(TLS) method.

11

s1

•
s2

•
s3

•

r1
• r2

• r3
•

λ
µ

λ λλ

λ λ

s1

•

r2
•

µ

Si

Sj

λ, f

f(s
1
) = {r

1
, r
3
}

f(s
2
) = {r

1
, r
2
}

f(s
3
) = {r

2
, r
3
}

f -1(r
1
) = {s

1
, s
2
}

f -1(r
2
) = {s

2
, s
3
}

f -1(r
3
) = {s

1
, s
3
}

s2
•

s3
•

r3
•r1

•

Figure 3: A simple CTMC and its almost symmetrical specification

The starting point is analmost symmetrical specificationof the CTMC. This specification is
a graph, whose nodes are aggregates of a partition of CTMC states. These nodes are connected
by two types of arcs:genericand instantiatedarcs. Generic arcs result from the presence of
symmetries in the system: the actions that they represent are performed similarly from all the
states belonging to the same partition aggregate. Hence, these arcs can be defined at the aggregate
level. On the contrary,instantiatedarcs result from asymmetry and represent actions that are
performed individually. A simple example of almost symmetrical specification of a CTMC is
presented in Fig. 3.

Such arc specification leads to a compact representation of the CTMC; unfortunately this rep-
resentation may not not satisfy any lumpability condition due to the presence of instantiated arcs.
Hence, the idea is to derive from this structure a new one for which lumpability holds. To do so a
partition refinement algorithm is applied.

Definition 15 (Almost symmetrical CTMC). An almost symmetrical specification of a CTMC
C = 〈S, π0, Q〉 is defined by:

• a partition of the state space{Si}i∈I such thatS = ⊎i∈I{Si}

• for Si, Sj ∈ {Si}i∈I , two types of state transition arcs:

generic arcs: Si
λ,f
−−→ Sj whereλ ∈ IR>0 is a rate, andf is a functionf : Si → 2Sj , such

that

0. ∀s ∈ Si : r ∈ f(s) ⇒ Q[s, r] ≥ λ,

1. ∀s, s′ ∈ Si, |f(s)| = |f(s′)|,

2. ∀r, r′ ∈ Sj , |f
−1(r)| = |f−1(r′)|,

wheref−1 is the functionSj → 2Si defined byf−1(r) = {s | r ∈ f(s)}.

instantiated arcs: s
µ
−→ r wheres ∈ Si, r ∈ Sj andµ ∈ IR>0 is a rate, such that :

Q[s, r] =
∑

Si

λ,f
−−→Sj ,r∈f(s)

λ +
∑

s
µ
−→r

µ

12

Remark: Point (0.) of definition 15 relies on the fact that when the transition rate froms to r
is greater thanλ, it can always be decomposed into (at least) two arcs, one of which is labeled byλ.

A direct consequence of the definition is that, if the almost symmetrical specification of a
CTMC is such that:

∀Si, Sj, ∀s, s′ ∈ Si,
∑

r∈Sj

Q[s, r] =
∑

r∈Sj

Q[s′, r]

thenQ is strongly lumpable with respect to{Si}i∈I . To ensure this property, it is sufficient that∑
r∈Sj :s

µ
−→r

µ =
∑

r∈Sj :s′
µ′

−→r
µ′. In this case, the infinitesimal generator of the lumped CTMCis

given by (see Proposition 6):

Qlp(i, j) =
∑

r∈Sj

Q[s, r] = (
∑

Si

λ,f
−−→Sj

λ|f(s)|) + (
∑

r∈Sj :s
µ
−→r

µ) (1)

On the other hand, if the almost symmetrical specification ofa CTMC is such that:

∀Si, Sj , ∀r, r′ ∈ Sj ,
∑

s∈Si

Q[s, r] =
∑

s∈Si

Q[s, r′]

plus the following initial condition:∀i ∈ I, ∀s, s′ ∈ Si, π0(s) = π0(s
′), thenQ is exactly lumpable

with respect to{Si}i∈I . To ensure this property, it is sufficient that
∑

s∈Si:s
µ
−→r

µ =
∑

s∈Si:s
µ′

−→r′
µ′.

In this case, the infinitesimal generator of the lumped CTMC is given by (see Proposition 7) :

Qlp(i, j) =
|Sj|

|Si|

∑

s∈Si

Q[s, r] =
|Sj|

|Si|
((

∑

Si

λ,f
−−→Sj

λ|f−1(r)|) + (
∑

s∈Si:s
µ
−→r

µ))

As ∀s ∈ Si, |f
−1(r)|.|Sj| = |f(s)|.|Si|, we obtain

Qlp(i, j) =
∑

Si

λ,f
−−→Sj

λ|f(s)| +
|Sj |

|Si|
(

∑

s∈Si:s
µ
−→r

µ) (2)

The above conditions for lumpability do not hold in general for an almost symmetrical CTMC
specification, hence we propose an algorithm that iteratively refines the partition of the CTMC
until the desired lumping condition is satisfied. Considering the example in Fig. 3, our algorithm
will produce the structures in Fig 4, depending on whether wewant to ensure (a) strong or (b)
exact lumpability.

Our algorithm is based on (an adaptation of) Paige and Tarjan’s partition refinement algo-
rithm [20, 21, 22] and exploits the properties of generic arcs whenever possible to reduce the
number of checks to be performed.

It is worth noting that the achieved lumpable CTMC can have more nodes than the one obtained
with a coarser initial partition, however in the case where the initial aggregates cannot anyway be

13

s1

•
s2

•
s3

•

Si

r2

•
r1

•
r3

•

Sj1 Sj2

4.λ

3

(a) Strong (b) Exact

s1

•
s2

•
s3

•

r1
• r2

• r3
•

Si1

Sj

Si2

2.λ2.λ+µ
2.λ

3

µ

3
+

Figure 4: Refinement applied to the example of Fig. 3

Algorithm 2 : Algorithm for the exact lumpability check
A, X : Set Of Sets of States (SSS);1

B, D : Set Of States (SS);2

Lel : Set of tuples 〈real, integer, S〉;3

PartLel : Set of tuples 〈SS, real, integer〉;4

X.Create(AS CTMC);5

A = X.PreSplit();6

while X 6= A do7

D = X.Remove() s.t.∀Ai ∈ A, Ai 6= D;8

B = A.P ick(D) s.t.∃B ⊆ D ⇒ ∀Ai ⊆ D, |B| > |Ai|;9

X.Insert(B);10

X.Insert(D \ B);11

Lel = CompAllSucc(B);12

PartLel = Partition wrt rate A(Lel);13

A.Split(PartLel) ;14

return A;15

Algorithm 3 : SSSM ::
Split(PartLel)

Set, Ai : SSM ;1

for 〈S, rate, i〉 ∈ PartLel do2

Set = ∅;3

Ai = GetElement(i);4

Set = Ai \ S;5

Substitute(i, Set);6

Add(S);7

lumped, then the number of steps of the present algorithm is less than the number of steps required
when applying the algorithm directly on the original CTMC.

In practice, the choice of the initial partition is usually guided by the need to have an efficient
(implicit and symbolic) representation of aggreates of thealmost symmetrical CTMC. Moreover
it can be related to the way performance indices are specified(e.g. through a reward function that
is forced to have uniform value for all states within the sameinitial aggregate).

The efficiency of the proposed method relies on a compact (symbolic) representation of both
generic arcs and partition aggregates. Of course a way of retrieving ordinary states and/or arcs
must be given, as it is needed during the refinement.

The algorithm for checking exact lumpability A mapping between thestability conditionof
Paige and Tarjan’s algorithm and the strong or exact lumpability condition is possible. This is
easy for strong lumpability condition, since the stabilitycondition is implied by it. In fact the
stability condition requires that all elements in each aggregate reach the same set of destination

14

aggregates, while the strong lumpability condition also requires that they do so with the same rate.
Instead for the exact lumpability the mapping requires to consider the arcs as if they were

reversed: when considering reversed arcs, again the stability condition is weaker than the exact
lumpability condition. In fact the “reversed arcs” stability condition requires that all elements in
each aggregate are reached by the same set of source aggregates while the exact lumpability con-
dition also requires that they do so with the same rate; moreover we use the additional requirement
that the global output rate of states in the same aggregate must be equal (Corollary 5 condition 3).

Like the Paige and Tarjan’s Partition refinement algorithm,our algorithm uses the following
data structures:
(1)A is the current partition of states3; every element of the list will be calledblock. A single block
contains a set of elements of typeNode. Moreover aNodecan be a single state if it represents only
one state; or “macrostate” if it represents an aggregate.
(2) X represents another possible partition into aggregates, such thatA is a refinement ofX and
A satisfies the lumpability condition with respect to every block ofX.

Algorithm 2 shows the pseudo-code of the algorithm. It has two main phases: the initialization
(lines 5-6) and the iterative refinement (lines 7-14).

(1) The initial phase.Create initializes the setX (of the set of states, hereafter called blocks) on
the basis of the initial partition of the almost symmetricalCTMC specification: for each aggregate
having only generic input and output arcs, a new block is inserted intoX, containing only one
element of type “macrostate”. For each aggregate having also instantiated input and/or output arcs
a new subset is inserted intoX, containing as many elements of type “state” as the states contained
in this aggregates. In the simple example of Fig. 5(a),X initially contains three blocks, two of
which contain a single element of type “macrostate” (aggregatesS0, S2), the third contains three
elements of type ’state’ (statess1, s2 ands3 of aggregateS1). The notation used in the sequel for
X is: X = {x0 = {S0}, x1 = {s1, s2, s3}, x2 = {S2}}.

PreSplit (line 6) returns a refined set ofX, such that each elementAi in this refined set
satisfies the exact lumpability condition with respect to each element ofX.

∀s1, s2 ∈ Ai,
∑

sk∈Xj ,sk

µk1−→s1

µk1 =
∑

sk∈Xj ,sk

µk2−→s2

µk2 (3)

whereµk,i represent the rate associated with the arc fromsk to si. Observe that this condition will
be also the invariant of the iterative refinement phase.

The new refinement is obtained by splitting those sets ofX that are reached by one or more
instantiated arcs and/or such that one or more instantiatedarcs depart from them. The splitting of
such sets is performed considering the weights and source aggregates of the ingoing instantiated

3It will be clarified later how the initial partition is chosenand how the iterated refinement steps leading to each
successive refinement work.

15

transitions, plus the global output rate of each state4. Finally (line 6), the new refinement is stored
in A. In the simple example,A andX sets after the pre-splitting are:A = {a0 = {S0}, a1 =
{s1}, a2 = {S2}, a3 = {s2, s3}}

(2) The iterative refinement phase.The algorithm core consists of repeating arefinement stepuntil
X converges toA (X = A). The so-called refinement step is performed as follows:

In the partitionX, an elementD that has been refined in a previous step is selected (line 8),
then the largest5 elementB ∈ A s.t.B ⊆ D is chosen (line 9). Finally,X is updated by replacing
D with B andD \ B (lines 10-11). In the example,X block x1 is chosen and theA block a3 is
chosen in the role ofB. All successors ofB are computed and the following information are stored
in Lel (line 12): the successor, the rate with which it is reached and theA-element index containing
it. Then, the functionPartition wrt rate A performs a partitioning ofLel grouping the tuples
with the same second and third element. In particular all thefound “macrostate” elements are
instantiated, so that the “macrostate” elements will be substituted by all the states that represent,
and the generic arcs are instantiated using functionf . In the example the “macrostate”S2, reached
by blocka3, is instantiated ins4, s5 ands6, andPartLel is {p1〈{s5, s6}, β, a2〉} (there is only one
set of states, belonging to blocka2, reached bya3 with rateβ).
At this point,A must be refined according to the new partition represented byPartLel, as shown
in Algorithm 3. In Algorithm 3, for each element〈S, rate, i〉 ∈ PartLel, we remove the elements
of S from Ai. Line 6 replaces the old representation ofAi, while line 7 insertsS as a new set inA.

In the example the blocka2 is split in two blocksa2 = {s4} and a4 = {s5, s6}, so that
list A is {a0 = {S0}, a1 = {s1}, a2 = {s4}, a3 = {s2, s3}, a4 = {s5, s6}}, while list X is
{x0 = {S0}, x1 = {s1}, x2 = {s4, s5, s6}, x3 = {s2, s3}}. The refinement is repeated choosing
blocka4 in the role ofB. This does not cause any new splitting: the final partition isthe one ofA
above as illustrated in Fig. 5(b).

Observe that the algorithm may have to instance some states and arcs that will be aggregated
again in the final CTMC, so that the peak of memory usage duringexecution exceeds the size of
the final lumped CTMC, and may limit the applicability of the method.

Algorithm for strong lumpability check. It is easy to adapt the previous algorithm to check the
strong lumpability condition instead of the exact lumpability one. In fact only a small part of the
previous algorithm must be modified. First we need to modify slightly the pre-splitting phase. In
line 6 the new refinement is derived by splitting those sets ofX where one or more instantiated arcs
depart from them. In the example of Fig. 5(a) the pre-split phase for strong lumpability provides
the same result as the one already presented for exact lumpability.

In the refinement step only the following change is necessary: after selecting the blockB and
updatingX, for everyNode element inB we compute the elements reaching it, and the following
information are stored inLel (line 12): the predecessor, the rate with which predecessorreaches it
and theA-element index containing predecessor.

4This is sufficient to assure the condition (3), because the subsets that are not reached by any instantiated arcs
and/or such that no instantiated arcs depart from it do not need refinement, they already satisfy Eq. (3)

5In terms of number of contained elements.

16

f1 : f1(s0) = {si, i = 1, 2, 3}), f2 : f2(s0) = {si, i = 4, 5, 6}, , f3 : f3(si) = {si+3, i = 1, 2, 3} f4 : f4(si) = {s0, i = 4, 5, 6}

Figure 5: A simple example of almost symmetrical CTMC (a) andthe result of exact (b) and strong (c) lumpability
algorithm application.

After this, the refinement step works similarly to the exact lumpability version.
In the examplea3 is chosen again in the role ofB but now the listPartLel is: PartLel =

{p1〈{s0}, α, a0〉}. This step requires the instantiation of aggregateS0 and of the generic arc la-
beledα, f1. SinceS0 contains onlys0 no split is performed and the algorithm ends.

Comparing the two final partitions (obtained using the two algorithms) we can observe that
the strong lumpability condition for this example requiresto instance less “macrostate” w.r.t the
exact one. This is not always true, it depends on the characteristics of the model to be studied. For
selecting the better one w.r.t. a particular model a first choice must be driven by the performance
measures that we want to compute. If probabilities of individual markings (SMs) are needed, then
the strong lumpability cannot be used since it only gives theprobabilities of aggregates Instead
if the performance measures can be expressed at the level of aggregates, then both approaches
are suitable and a heuristic rule for defining the approach minimizing the number of instanced
“macrostates” can be used.
Computation of the infinitesimal generator of the lumped CTMC. If the CTMC is strongly
lumped, the infinitesimal generator is obtained by applyingEquation 1.

In the case of exact lumpability, the splitting of an aggregate affects the computation of transi-
tion rates in the following way :

Qlp(i, j) = (
|Sj |

|orig(Sj)|

∑

Si

λ,f
−−→Sj

λ|f(s)|) + (
|Sj|

|Si|

∑

s∈Si:s
µ
−→s′

µ) (4)

wheres ∈ Si ands′ ∈ Sj , andorig(Sj) denotes the aggregate to which states inSj belonged in the
initial almost symmetrical CTMC. This is needed because there might be generic arcs connecting
a non split aggregate to an aggregate that has been split (there will be a replica of such generic arc
for each refined aggregate substituting the original one).

17

Figure 6: An example of SWN related to the Benchmark pattern.

In the examples of Figg. 5(b) and 5(c) the instantiated arcs created during the algorithm execu-
tion are shown instead of the arcs in the final lumped CTMC, to illustrate the algorithm operation
and the memory peak problem. There will be only one arc between each pair of aggregates in the
lumped CTMC, whose rate can be easily derived from the above formulae: e.g. in Fig. 5(c) the
rate fromS0 to S2 is 3α. Indeed, from Eq. 1 we obtain that

∑
S0

λ,f
−−→S2

λ|f(s0)|) is 3α, since there

is only one generic arc with rateα and|f2(s0)| = 3, and
∑

s′∈S2:s0

µ
−→s′

µ is 0, since no instantiated
arcs connecting any states ofS0 to S2 exist. Instead, the rate fromS2 to S0 is θ, since there is only
one generic arc with rateθ and|f4(s4)| = |f5(s5)| = |f6(s6)| = 1 and no instantiated arcs.

In Fig. 5(b) the rate fromS0 toS4 is2α, indeed from Eq. 4 we obtain that
∑

S0

λ,f
−−→S4

λ|f(s0)|=0

since no generic arcs connectingS0 to S4 exist, |S4|
|S0|

= 2 and
∑

s∈S0:s
µ
−→s′

µ = α since only one
instantiated arc exists betweenS0 andS4.

Finally, in the refinements in Fig. 4 we have both instantiated and generic arcs between the
same aggregates. Then in Fig. 4(a) we observe that the rate from Si1 andSj is 2λ + µ because
using Eq. 1 we obtain that

∑
Si1

λ,f
−−→Sj

λ|f(si)|) is 2λ since there is only one generic arc with

rateλ and|f(si)| = 2, and
∑

s′∈Sj :si

µ
−→s′

µ is µ since there is only one instantiated arc with rate

µ. Instead, in Fig. 4(b), we observe that the rate fromSi andSj1 is 2λ
3

+ µ

3
because using 4 we

obtain |Sj1|

|orig(Sj1)|
= 1

3
,
∑

Si

λ,f
−−→Sj1

λ|f(si)| is 2λ since there is only one generic arc with rateλ and

|f(si)| = 2, |Sj1|

|Si|
= is 1

3
and

∑
s∈Si:s

µ
−→s′

µ is µ, since there is only one instantiated arc with rateµ.

4. Instantiation of methods: the SWN formalism

4.1. Stochastic well-formed nets

Both methods handle sets of states which require a symbolic representation to efficiently man-
age them and a symbolic computation of the set of successors.Decision Diagrams (DD) could be
used to this aim. However DD would not take into account that these sets are somewhat special

18

since they are orbits of subgroups. By contrast, some formalisms are tailored to take advantage of
the symmetries during the modeling and the analysis stages.

Thus we have implemented our methods using the SWN formalism[5], a kind of high-level
Petri nets that is the starting point of numerous efficient symmetry-based analysis methods already
implemented in the GreatSPN tool [14]. Alternatively we could have instantiated our methods on
symmetrical Stochastic Activity Networks [6] or on Stochastic Automata Networks [23].

Here we only describe the main features of SWNs illustratingthem with the net of figure 6.
In an SWN and more generally in a colored net, acolor domainis associated with places and
transitions. The colors of a place label the tokens contained in this place, whereas the colors of
a transition define different ways of firing it. In order to specify these firings, acolor functionis
attached to every arc which, given a color of the transition connected to the arc, determines the
colored tokens that will be added to or removed from the corresponding place. Finally the initial
marking is defined by a multi-set of colored tokens in each place.

The specification of the stochastic behavior is given first byassociating priorities to transitions.
Transitions with priority 0 are triggered by a negative exponential law whereas transition with non
null priority are immediate (they fire in 0 time). Thus one associates a rate with transitions of
priority 0 while one associates a weight with other transitions that is used in a random choice
between enabled transitions with the same priority. Inhibitor arcs (with their usual meaning) are
also used in order to obtain concise models.

SWN are a particular case of colored nets with a simple syntax. In SWN, a color domain is
a Cartesian product ofcolor classeswhich may be viewed as primitive domains. A class can be
divided intostatic subclasses. The colors of a class have the same nature (e.g. processes) whereas
the colors inside a static subclass have the same potential behavior (e.g. batch processes). In the
net of figure 6, there is a single color classC and the color domains of places are eitherC or ε the
neutral domain consisting of a single color (as in ordinary nets). For instance, the color domain of
placeSwitch is ε while the color domain of placeIdle is C. ClassC models a set of tasks with
three static subclassesC = C1 ⊎C2 ⊎C3. C1 is a set of interactive tasks,C2 is a set of batch tasks
andC3 is a set of tasks that alternate between interactive and batch execution.

A color function is built by standard operations (linear combination, composition, etc.) on
predefined basic functions. The most often used basic function is a projection which selects an item
of a tuple and is denoted by a typed variable (e.g.,x, y). Transitions can be guarded by expressions.
An expression is a Boolean combination of predefined atomic predicates like[x 6= y]. In the net
of Fig. 6, there are two functions.x is the identity overC meaning for instance that the color that
instantiates transitionEndErl must be present in placeInputErl and it will be consumed by its
firing. S is the constant color function that returns the bag of colors

∑
c∈C c whatever the domain

of the transition. For instance, in order to fireStart1, all task colors must be present in placeIdle
and they will be moved in placeInputErl. The guardd(x) = C2 of transitionChoice3 means
that this transition may only be instantiated by a color of static subclassC2. This net will be fully
described in section 5.

4.2. Symbolic reachability graph buildings for SWN

The implicit symmetry of an SWN, obtained by its restrictivesyntax, leads to a groupG op-
erating on color classes (and by extension on markings and firing instances).G is the intersection

19

of the isotropy subgroups of static subclasses. In other words, any permutation inG maps any
static subclass onto itself. Given a markingm and a permutationg of G, the behavior of the net
from the markingg.m is the same as the behavior fromm up to permutationg. The Symbolic
Reachability Graph (SRG) construction lies on symbolic markings, namely a compact represen-
tation for a set of equivalent ordinary markings. A symbolicmarking is a generic representation,
where the actual color of tokens is forgotten and only their distributions among places are stored.
Tokens with the same distribution and belonging to the same static subclass are grouped into a
so-calleddynamic subclass. Then, the SRG can be automatically built using a symbolic firing rule
that directly applies to symbolic markings [5].

The critical factor for efficiency of the SRG method is the partition of a class into static sub-
classes. Finer is the partition, less effective is the reduction of the state space. Thus the implemen-
tation of both DS and TLS methods aims at keeping this partition as coarse as possible (locally).

In order to implement the DS method for a partially symmetrical CTMC, we specify this
chain as the synchronized product of an SWN without static subclasses (so,G is the group of
all permutations on color classes) representing the symmetrical MC, and a control automaton
whose labels are sets of instances of transitions like{t(a, b), t(b, b), t(a, a), t(b, a)} equivalently
denoted

∨
x,y∈{a,b} t(x, y). Thus the isotropy subgroup of a transition may be represented by a

“local partition” in static subclasses (e.g.{{a, b}, {c, d}} for the label described above). The
symbolic representation of a state of the lumped MC is then given by a local partition of color
classes (corresponding to the isotropy subgroup of the set of associated states), a symbolic marking
w.r.t. this partition, and a state of the automaton. The symbolic firing rule is close to the original
one except that a refinement w.r.t. to the partitions of the synchronized transitions must bea priori
performed, and a merging of static subclasses must bea posterioriperformed in order to represent
the isotropy subgroup of the new set of states. The graph which is built is called Dynamical SRG
(DRSG), emphasizing that the partition in static subclasses depends on each node.

In order to implement the TLS method for an almost symmetrical CTMC, we specify this
chain through an SWN where the transitions are split in symmetrical transitions, whose specifica-
tion does not depend on static subclasses, and asymmetricalones whose specification depends on
them. An almost symmetrical CTMC is then generated from thisspecification. It corresponds to
the Extended SRG (ESRG) [11] whose main feature is that a nodehas a two-level representation.
At the higher level, a node is a symbolic marking w.r.t. the SWN without static subclasses: this
symbolic marking is enough to check and fire symmetrical transitions. At the lower level, the
symbolic marking is substituted by a set of symbolic markings taking into account the static sub-
classes partitions allowing to check and fire asymmetrical transitions. These two representations
correspond to the same set of ordinary markings. The aim of the ESRG construction is to avoid
developing the lower level representation for nodes as often as possible. This can be done when all
ordinary makings of the node are known to be reachable and when none allows an asymmetrical
firing (these conditions can be symbolically checked). Thus, the ESRG is the starting point of
our adaptation of the Paige-Tarjan’s algorithm where some avoided lower level representations are
now developed (if needed) in order to meet the lumpability requirements.

The different approaches developed in this paper have been implemented in the GreatSPN
tool (www.di.unito.it/∼greatspn) [14]. Actually, the kernel of the package, initially developed to

20

perform on global symmetries (the SRG approach), has been extended to handle dynamic and
partial symmetries (the ESRG and DSRG approaches).

5. Analysis of efficiency: characterization of the appropriate models

5.1. Pattern characterization

As for every state-based reduction method, it is not easy to characterize the kind of models for
which our methods bring a relevant reduction of the state space size. There are least two problems
related with this characterization: (1) the “degree” of asymmetry of the system is not proportional
to the number of asymmetrical transitions of the system but rather when they occur in the dynamics
of the system. This was already experienced by the qualitative partially symmetrical methods; (2)
the asymmetry may propagate due to the constraints associated with the lumping conditions.

In the light of these two problems and with the help of numerous models that we have tested
since the development of these methods, we can suggest two application patterns for which our
algorithms perform efficiently. The behavior of these systems can be schematized as an infinite
loop where every cycle of the loop consists of:

• a synchronization stage where the consequences of the past asymmetrical behavior can be
safely forgotten. This corresponds to reaching one or more “regeneration states” w.r.t. the
history of asymmetrical behavior.

• a symmetrical and an asymmetrical stage that may overlap.

Here, we present two different patterns: the behavior of thefirst pattern is characterized as fol-
lows: a cycle of the loop consists of a synchronization stagefollowed first by a symmetrical
stage and then by an asymmetrical one (not overlapping). Thebehaviors of the second pattern is
characterized as follows: a cycle of the loop consists of a symmetrical stage followed first by a
synchronization stage then by an asymmetrical one.

An example of net modeling the first pattern is shown in Fig. 6.This pattern models a sys-
tem where a set of repetitive tasks are processed according to their types: interactive ones, batch
ones and mixed ones. The first type represents the interactive tasks that prompt the user for such
input, while the second represents the batch tasks that can be run to completion without human
interaction. The last type represents tasks that alternatebetween interactive and batch executions.

The model can be divided in three parts:N1, N2 and N3; where the submodelN1 is the
synchronization stage,N2 the symmetrical stage andN3 the asymmetrical one. In the submodel
N1 all tasks are simultaneously started (transitionstart1). Then, in the submodelN2 every task
perform some preprocessing whose time distribution is an Erlang-k wherek is the number of
stages. This is concisely modeled in the net with transitions (ErlSymStage, EndErl). When at
leastJ tasks (with1 ≤ J ≤ #task) have achieved their preprocessing the third part can start. In
the third part (submodelN3), every task acts depending on its type: the interactive activities are
modeled by transitionsChoice3 andChoice4 while the batch activities are modeled by transitions
Choice1 andChoice2. As said before, the mixed tasks alternate between interactive and batch
activities chosen at each start of cycle (when the synchronization stage is performed) with place
Switch controlling this alternation.

21

Figure 7: SWN model related to the Benchmark pattern.

The critical factor for the efficiency of the methods is the degree of overlapping of the sym-
metrical and asymmetrical behaviors. The more they are sequentialized the better the methods
perform. The last point that can be emphasized is that the methods based on exact aggregation
perform better when the symmetrical behavior starts first and vice versa for the method based on
strong aggregation. This is certainly due to the way the constraints on lumping propagate (forward
for exact lumpability, backward for strong lumpability).

In particular, in our example the critical parameter isJ since it rules the overlapping of the
symmetric and asymmetric behaviors. IfJ = #task then there is a complete sequentialization
whereas ifJ = 1 there is a complete overlapping.

Let us examine the experiment results on the net of Fig. 6 summarized in Table 1. The first
column shows the values of the experiment parameters: the number of stages of the Erlang (K),
the level of overlapping of the symmetrical and asymmetrical behaviors (J), the number of tasks
for each type. The Columns labeled “St.” represent the number of constructed states for each
structure6. The columns labeled “Peak” contain the total number of intermediate states stored to
obtain the final structure (only for ESRG and RESRGs). Finally the seventh, tenth and twelfth
columns show the reduction factor obtained using these three methods.

We have to highlight that a good level of reduction is obtained by both the approaches when
there is a complete sequentialization between the symmetric and asymmetric behaviors. For in-
stance, the experiment with parameters10−8−3−3−2 leads to a reduction factor of approximately
120 whatever method.

In Fig. 7 an example of net modeling the second pattern is shown. This model is obtained by
the previous one (Fig. 6) discarding the initial synchronization and inserting it just before the sym-

6for the ESRG are also shown the number of Extended Symbolic Marking (ESM, first level representation) plus
the Eventualities (Ev, second level representation)

22

SRG ESRG RESRG (Exact) RESRG (Strong) DSRG
K, J, |C1|,
|C2|, |C3|

St. St.(Esm. + Ev.) Peak St. Peak SRG

RESRG
St. Peak SRG

RESRG
St. SRG

DSRG

6-6-2-2-2 97,495 4,255+456 4,264 7,138 7,615 13.65 4,460 7,588 21.85 8,179 11.92
6-4-2-2-2 247,498 16,393+40,044 715,321 93,118 157,304 2.65 19,913 154,602 12.42 150,125 1.64
6-2-2-2-2 724,758 39,157+67,322 499,014 469,442 606,258 1.54 49,251 606,458 14.71 427,255 1.69

8-6-2-2-2 336,933 10,833+823 10,323 13,716 14,193 24.56 11,038 14,166 30.52 14,757 22.83
8-4-2-2-2 571,293 29,139+30,934 215,217 144,210 246,497 3.96 34,349 248,895 16.63 235,248 2.45

6-8-3-3-2 1,054,508 15,224+129,002 34,724 29,837 30,574 35.20 25,933 30,529 40.66 30,463 34.61
6-6-3-3-2 1,969,954 58,547+13,770 897,166 666,669 944,634 2.95 72,497 939,113 27.17 933,475 2.11

10-6-2-2-2 953,287 25,575+799 23,004 28,458 28,931 33.49 25,780 28,908 36.97 29,499 32.31
12-6-2-2-2 2,319,433 55,087+1,345 46,773 57,970 58,443 40.01 55,292 58,420 41.94 59,011 39.30
14-6-2-2-2 5,035,095 109,351+2,840 87,829 112,234 112,707 44.86 109,556 112,684 45.95 113,257 44.45

10-8-3-3-2 20,687,084 153,518+7,654 406,776 168,131 168,868 123.041 154,227 168,823 134.13 168,757 122.58
12-8-3-3-2 - out of memory - - - - - - - 424,573 -

Table 1: Experiment results on the net of Fig. 6
SRG ESRG RESRG (Exact) RESRG (Strong) DSRG

K, J, |C1|,
|C2|, |C3|

St. St.(Esm. + Ev.) Peak St. Peak SRG

RESRG
St. Peak SRG

RESRG
St. SRG

DSRG

6-6-2-2-2 182,690 6,466+679 5,987 6,362 6,446 28.71 6,195 6,446 29.48 6,466 28.25
6-4-2-2-2 524,050 26,355+10,345 341,798 492,786 524,050 1.06 26,456 347,806 19.06 121,791 4.30
6-2-2-2-2 569,926 32,915+23,456 387,674 561,573 569,926 1.04 33,016 393,682 17.26 133,619 4.26

8-6-2-2-2 575,432 16,197+1,123 14,882 16,372 16,456 35.08 16,205 16,456 35.50 16,476 34.92
8-4-2-2-2 1,417,537 60,213+45,457 842,543 1,347,762 1,417,537 1.05 60,338 858,561 23.49 60,492 23.43

6-8-3-3-2 2,451,382 26,128+3,400 64,938 26,872 26,872 91.22 26,156 26,872 93.72 26,800 91.46
6-6-3-3-2 - out of memory - - - - - - - 138,312 -

10-6-2-2-2 1,507,582 37,309+10,342 32,483 37,484 37,568 40.21 37,317 37,568 40.39 37,588 40.10
12-6-2-2-2 3,456,440 77,701+15,334 64,001 77,876 77,960 44.38 77,709 77,960 44.47 77,980 44.32
14-6-2-2-2 7,163,594 149,407+18,342 116,610 149,582 149,666 47.89 149,415 149,666 47.94 149,686 47.85

10-8-3-3-2 - out of memory - - - - - - - 223,003 -
12-8-3-3-2 - out of memory - - - - - - - 561,136 -

Table 2: Experiment results on the net of Fig. 7

23

metrical part. Hence, the submodelN1 represents the symmetrical stage,N2 the synchronization
stage andN3 the asymmetrical one.

The experiment results on this net are summarized in Table 2,where the columns have the same
meaning of the columns in the Table 1. The same considerations discussed previously hold true,
therefore the efficiency of the two approaches seems not to beinfluenced by the stage order inside
the round of the loop, but by the degree of overlapping among the symmetrical and asymmetrical
behaviors.

5.2. Expected efficiency of the behavior of the methods

We can compare the proposed methods w.r.t. different criteria. The size of the lumped chain is
generally smaller with the TLS method as it is based on the minimization of a MC w.r.t. lumpabil-
ity. However the TLS method requires to explicitly develop “asymmetrical” set of states during the
refinement process thus facing the problem of a peak in memoryusage, contrary to the DS method.
Moreover considering instantiation of the TLS method w.r.tto the SWN formalism, a further peak
in memory usage raises during the ESRG generation; in fact the ESRG algorithm maintains ex-
plicitly the lower-level representation of reached markings until the set can be compacted into a
symmetrical higher-level representation.

The memory peak in the refinement process can be reduced by discarding all lower-level nodes
in a block and rebuilding them when needed, while the ESRG memory peak cannot be mitigated,
so that it may prevent a solution to be reached (e.g. the case12 − 8 − 3 − 3 − 2 in Table 1, the
ESRG cannot be computed due to its memory occupation peak).

On the one hand, when a model is efficiently handled by the methods, the final sizes are
of the same magnitude order. On the other hand, when the asymmetry of the model propagates
throughout the state space, it may yield a combinatorial explosion and the size of the lumped chain
of the DS method may become bigger than the original one. Thiscannot happen by construction
with the TLS method. Notice that in [24] an extension of the DSmethod has been proposed in
order to cope with this problem. Finally, the DS method is parametrized in the following sense:
as lumping is based on labels the modeler can freely change the numerical values associated with
labels without need to recompute the graph associated with the lumped chain; only the numerical
values have to be updated. In order for the TLS method to support such a parametrization the
refinement algorithm must be based on transition labels instead of rate values.

In the next section new experiments are presented, referring to models of actual systems rather
than abstract patterns, and the above considerations verified in a more applicative setting.

6. Case studies

6.1. A readers writers example

The readers writers example in Fig. 8 models a database whichis accessed by users for read or
write operations. Readings may be simultaneous while writings are mutually exclusive w.r.t both
the readings and the writings. Thus as soon as a writing is queued, it waits for all the readings to
end before performing its transaction without concurrent accesses.

Readings are operations with less variability than writings. Thus we have chosen to represent
their distribution by an Erlang distribution while the writing have two exponential distributions
depending on the class of users: ordinary ones that perform unitary updates while administrators

24

perform a batch of updates (given for instance by an auxiliary file).
Let us map this model on the patterns presented in the previous section: the synchronization

points occur after every writing. Then there is a (possibly empty) stage of readings which cor-
responds to the symmetrical part of the behavior (submodelN1). The asymmetrical part of the
behavior (submodelN2) starts at the beginning of a writing since only in that case the kind of user
matters. Observe that there is no overlapping between the two stages since the readings end before
the writing starts. So the results are very good as witnessedby Table 3. The experiment parameters
are (in order) the number of stages of the Erlang distribution, the number of administrators and the
number of ordinary users (see the first column).

Moreover the columns labeled “St.” represent the number of constructed states for each struc-
ture. The columns labeled “Peak” contain the total number ofintermediate states stored to obtain
the final structure (only for ESRG and RESRGs). Finally the seventh, tenth and twelfth columns
show the reduction factor obtained using these three methods.

Observe that the parameter that has more impact on the reduction factor is the number of
system users (ordinary and administrator users), so that the reduction factor increases w.r.t to this
parameter. For instance the experiment with 13 users (|M | + |N | = 3 + 10) leads to a reduction
factor of approximately 30 whatever the method.

6.2. A client-server example

The client-server example, in Fig. 9, is composed of a finite number of terminals and a Remote
Terminal Server (RTS). Via a terminal, a client tries to opena connection with the RTS. This
connection is accepted if the maximum load of the RTS has not been reached yet and then it is
authenticated. Once authenticated, a client asks for a service that can benon-critical (submodel
N3) or critical (submodelN4, N5 andN6). Non-critical services can be handled simultaneously,
while a critical service must be performed in mutual exclusion with any other service. The system
ensures a weak priority for non-critical services based on awavemechanism. The wave consists of
the clients currently accepted by the RTS (submodelN2). Once a client chooses a critical service
accepted by the RTS, no more clients can join the wave. Critical services are performed only
when there are no more clients in the authentication stage orin a non-critical service execution.
When the last critical service of the wave completes, a new wave can start. For efficiency reasons,
during a wave the RTS accepts a limited number of different concurrent user classes in the critical
services. A critical service request related to a user classnot yet in competition is rejected if the
maximum number of concurrent user classes has been reached.

A critical service is divided into two sequential stages: a preprocessing step that can be per-
formed concurrently and a main step that is performed in mutual execution. A priority rule is
applied and the requests access the critical section following the order of the user classes. Observe
that in this case the first critical service that has achievedits preprocessing step must wait if it does
not belong to the highest priority user class in competition.

This example is a refinement of the previous one when we consider the critical services as
write processes and the non-critical as read processes. First the synchronization step occurs at the
end of a wave which includes multiple critical services. Furthermore the overlapping of the asym-
metrical part of the behavior and the symmetrical one is moreimportant since the preprocessing
step of critical service is symmetrical whereas the entrance in the critical section is asymmetrically

25

Figure 8: SWN model implementing the Reader-Writer pattern.

SRG ESRG RESRG (Exact) RESRG (Strong) DSRG
Z,|M|,|N| St. St.(Esm. + Ev.) Peak St. Peak SRG

RESRG
St. Peak SRG

RESRG
St. SRG

DSRG

6,1,3 1,535 491+3 141 492 492 3.12 491 491 3.12 491 3.12
6,1,6 21,338 4,951+3 1,263 4,952 4,952 4.30 4,951 4,951 4.30 4,951 4.30
6,1,8 75,968 15,731+3 3,625 15,732 15,732 4.82 15,731 15,731 4.82 5,732 4.82
6,1,10 216,218 41,407+3 8,682 41,407 41,407 5.22 41,406 41,406 5.22 41,406 5.22

6,2,6 97,358 9,076+3 5,387 9,077 9,077 10.72 9,076 9,078 10.72 9,076 10.72
6,2,8 344,192 26,027+3 15,716 26,028 26,028 13.22 26,027 26,027 13.22 26,028 10.72
6,2,10 974,976 63,701+3 37,896 63,702 63,702 15.30 63,701 63,701 15.30 63,701 15.30

6,3,6 321,638 15,731+4 16,641 15,732 15,732 20.44 15,731 15,731 20.44 15,731 20.44
6,3,8 1,131,671 41,406+4 49,369 41,407 41,407 22.92 41,406 41,406 22.92 41,406 22.92
6,3,10 3,195,194 95,201+4 120,085 95,202 95,202 33.56 95,201 95,201 33.56 95,202 33.56

8,1,6 77,816 16732+3 3,667 16,733 16,733 4.65 16,732 16,733 4.65 16,732 4.65
10,1,6 228,230 46,476+3 8,985 46,477 46,477 4.91 46,476 46,476 4.91 46,476 4.91
12,1,6 574,394 112,269+3 19,427 112,270 112,270 5.11 112,269 112,269 5.11 112,269 5.11

Table 3: Results for the Reader-Writer example in Fig. 8.

26

managed. However the propagation of asymmetry depends on two factors: the maximal load of
the RTS and the maximum number of simultaneous user classes.

Let us examine in more details Table 4. The first column shows the experiment parameters:
Local, GC, LC, Prio.

• Local: represents the number of terminals, affects only the “frontal” behavior of the system
(outside the server). The increase of the number of terminals does not affect the internal
activities of the server

• GC(≤ Local): represents the maximum number of users allowed to simultaneously access
the server. This parameter has crucial impact on the global behavior of the server. Actually,
its value affects the symmetric part as well as the asymmetric one.

• Prio: represents the cardinality of the color classC. Since there is a bijection between this
cardinality and the number of different priority classes, we observe a strong dependency
between the value of this parameter and the efficiency of the different approaches.

• LC(≤ Prio): the maximum number of user classes allowed to access, simultaneously,
the critical part. The value of this parameter will affect, essentially, the behavior of the
asymmetric part (with some side effect on the symmetric part).

The other columns have the same meaning of the columns in the previous table.
We notice here the significant reduction achieved by the DSRGand ESRG w.r.t. the SRG.

For instance, in case 8,5,3,5 the ESRG reduction factor (both strong and exact) is45.53, while the
DSRG reduction is27.95. However, we remark that in this model the memory peaks of thetwo
approaches based on the ESRG have a high impact. For instance, for 8,5,3,8 the ESRG cannot be
computed due to its computation peak. Hence the final aggregation obtained by the two approaches
based on the ESRG is better, but that the number of real ESMs and eventualities stored during the
computation is greater than that of the DSRG.

6.3. A workflow example

A workflow is a set of tasks organized through a model that describes the triggering conditions
for every task. It is usually described by operators like sequential flow, parallel flow, choice flow,
etc. that are easily modeled by an ordinary Petri net. In addition, with every task is associated a
set of agents which are allowed to perform it. A job is an instance of a workflow and we consider
simultaneous executions of jobs with the same workflow.

Our experiment is based on the fixed control flow shown in the SWN model in Fig. 10. The
asymmetry is due to the set of agents which are divided in groups{Gi}i∈{1,2,3}, according to their
authorization levels: an agentg ∈ Gi has less authorizations than an agentg′ ∈ Gj s.t. j > i. We
specify for every taskT an execution thresholdi(T): an agent inGi is allowed to perform taskT
if i ≥ i(T).

The execution cost of a task depends both on the execution time and on its execution threshold.
Thus this model enforces a policy that aims at minimizing theexecution time of special tasks with
a high execution threshold. So with every execution threshold we associate a maximum number

27

Figure 9: SWN model representing a client-server with critical section example.

SRG ESRG RESRG (Exact) RESRG (Strong) DSRG
Local, GC,
LC, Prio

St. St. (Esm. + Ev.) Peak St. Peak SRG

RESRG
St. Peak SRG

RESRG
St. SRG

DSRG

3,3,2,5 19,108 981 + 470 4,050 998 1,727 19.14 998 1,727 19.14 1,217 15.70
3,3,2,8 72,772 981 + 1,316 17,028 998 3,185 72.91 998 3,185 72.91 1,436 50.67

3,3,3,3 4,778 1,028+179 846 1,064 1,128 4.49 1,060 1,228 4.49 1,142 4.18
3,3,3,5 19,918 1,028+850 4,080 1,064 2,326 18.71 1,060 2,326 18.71 1,613 12.34
3,3,3,8 77,308 1,028+ 3,444 17,196 1,064 6,498 72.93 1,060 6,498 72.63 2,765 27.95

8,5,3,3 496,618 90,429 + 4,522 59,187 92,600 96,088 5.36 92,224 96,088 5.36 94,593 5.25
8,5,3,5 4,788,499 108,205 + 28,040 691,390 110,376 159,104 45.53 110,000 159,104 45.53 134,553 35.58
8,5,3,8 - out of memory - - - - - - - 193,401 -

Table 4: Results for the clients-server example in Fig. 9

28

Figure 10: SWN of the workflow example.

of simultaneous executions. Then, when a task is triggered,it is queued and later on it is executed.
A task is executed if the following conditions are fulfilled:

• there is no running or waiting special task with higher execution threshold;

• there are only running tasks with the same execution threshold;

• the maximum number of simultaneous executions corresponding to its execution threshold
is not reached.

Most of the tasks can be executed by every agent, we call itnormal tasks; the other ones
are calledspecial tasks. The symmetrical behavior corresponds to a wave of executing normal
tasks (submodelN1) whereas the asymmetrical behavior corresponds to a wave ofspecial task
executions with the same execution threshold (submodelN2). The synchronization steps occur
after every wave execution. Observe here that between two synchronization steps there is either a
symmetrical behavior or an asymmetrical one but not both.

Let us examine in more details Table 5, that shows some experiments performed on this model
for different values of its parameters: the number of total tasks (K), the maximum number of si-
multaneous executions for each threshold (ai), the number of normal agents (|G1|) and the number
of special agents (|G2| + |G3|). We observe that both these methods reach the same reduction
factor; moreover the parameters that have more impact on thereduction factor are the number of
total tasks and the maximum number of simultaneous executions for normal tasks. The reduction
factor is increasing w.r.t to these two parameters.

29

SRG ESRG RESRG (Exact) RESRG (Strong) DSRG
K, a1, a2, a3,|G1|,
|G2|+|G3|

St. St.(Esm. + Ev.) Peak St. Peak SRG

RESRG
St. Peak SRG

RESRG
St. SRG

DSRG

5-4-2-1-2-2 3,550 1,003+274 682 1,003 1,244 3.53 1,003 1,244 3.53 1,003 3.53
10-4-2-1-2-2 40,060 9,643+2,199 5,447 9,643 11,444 4.15 9,643 11,444 4.15 9,643 4.15
15-4-2-1-2-2 151,045 34,933+6,614 17,417 34,933 40,869 4.32 34,933 40,869 4.32 34,933 4.32

5-4-3-2-2-4 7,994 1,429+1044 1,878 2,437 2,440 3.28 1,429 2,440 5.59 1,429 5.59
10-4-3-2-2-4 108,789 13,889+10,504 17,708 24,147 24,175 4.50 13,889 24,175 7.82 13,899 7.82
15-4-3-2-2-4 431,134 50,399+38,289 63,413 87,932 88,010 4.90 50,399 88,010 8.55 50,399 8.55

15-4-2-1-3-2 200,467 34,933+6,614 23,483 34,933 40,869 5.73 34,933 40,869 5.73 34,933 5.73
15-6-2-1-4-2 383,108 55,497+6,814 40,776 55,497 61,433 6.90 55,497 61,433 6.90 55,497 6.90
15-8-2-1-6-2 655,095 74,951+7,023 62,540 74,951 80,887 8.74 74,951 80,887 8.74 80,887 8.74
15-10-2-1-8-2 885,630 89,075+7,467 70,031 89,075 95,011 9.94 89,075 95,011 9.94 95,011 9.94
15-12-2-1-10-2 1,026,425 96,401+9,453 71,517 96,401 102,337 10.64 96,401 102,337 10.64 102,337 10.64
15-15-2-1-13-2 1,086,911 98,556+10,345 71,573 98,556 104,492 11.02 98,556 104,492 11.02 98,556 11.02

Table 5: Results for the workflow example in Fig 10

6.4. A cluster computing example

This pattern corresponds to a finite set of machines grouped in clusters. Each cluster hasa
mastermachine and a set ofslavemachines. Every machine can fail while being idle or working.
While idle, the failing of a slave machine means its removingfrom the cluster, for (local) updat-
ing/maintenance reasons. It is put back in its environment as soon as it is reconfigured. Instead,
if it fails while working because of a hardware/software problem then its last stable state is saved.
Afterwards it is repaired and finally restarted.

The failing of a master has a different consequence: the whole cluster is no longer reachable.
Actually, even if the slave machines of the cluster are not ina fail state, the absence of a master
makes the cluster in an unstable state. In such a case, the cluster becomes unavailable until the
recover of the master machine.

The system presents a symmetrical behavior until the first failure. However after this failure we
cannot identify synchronization steps. Thus the achieved reduction is poor as detailed in Table 6.
The SWN model implementing the cluster computing pattern isshown in Fig. 11. It is divided
in four submodels:N1, N2, N3 andN4. N1 models the jobs submission and the cluster/machine
assignment,N2 the machines and clusters states,N3 the correct job execution (without failure),
andN4 the job failure due to the failure of the machine or the cluster where it is running.

Several experiments have been performed on this SWN model for different values of the system
parameters: the number of jobs (|Job|), the number of clusters (|Cl|) and the number of machines
per cluster (|M |), but the best result obtained for the reduction factor is less than3. It is worth
noting that the number of ESM and eventualities stored during the generation of the ESRG and
during the refinement steps is close to the|SRG|; moreover the DSRG size in the worst case is
higher than the SRG one (e.g. case 16-2-8-2).
Remarks. The reader may refer to [25] for a detailed description of allthe models presented in
this section. Let us add few comments on the computation times of the experiments performed on
these case studies and on the benchmark models. In general, it is not easy to forecast the required
memory and time resources required by each method for a givenSWN model just analysing its
structure From the experimental results we observed that the DSRG computation time is lower
than the ESRG one for the reader-writer model and those experiments on the benchmark models

30

Figure 11: SWN representing an example of cluster computing.

when there is a complete sequentialization between the symmetric and the asymmetric behaviors.
For instance, for the case 6-1-8 of reader-writer model the DSRG computation time is 633s, while
the ESRG(exact) one is 871s.

Instead, the DSRG computation time is higher than the ESRG one for the workflow model,
the client-server model and those experiments on benchmarkmodels when there is no complete
sequentialization between the symmetric and the asymmetric behaviors leading to a number of
states in the DSRG significantly above the number of ESMs. Forthe case 6-6-3-3-2 of the first
benchmark model the DSRG computation time is∼57h, while the ESRG(exact) one is∼38h.

Finally, in the cluster computing example the DSRG computation is considerably higher than
ESRG one. For instance, for the case 5-2-5-3 the DSRG computation time is 148s, while the
ESRG one is 32s.

7. Application of the methods to other models

7.1. DS for Stochastic Automata Networks

Stochastic Automata Networks [23] describe a system as a setof subsystems that interact. Each
subsystem is modeled by an automaton with stochastic features such that, given an appropriate
semantics, the whole system is a CTMC. More precisely, everytransition is labeled by alocal
or asynchronizedevent. A synchronized event occurs in several automata, oneof them being its
triggering automaton; a local event only occurs in its triggering automaton. In addition, every
transition is labeled by a rate in the corresponding triggering automaton. At last, the rate may
be a function of theglobal state. In a global state (i.e. one state per automaton) an event is
enabled when there is a possible transition in the states of the associated automata. Its rate is then
obtained by applying the corresponding function to the current state. The interest of this model

31

SRG ESRG RESRG (Exact) RESRG (Strong) DSRG
|Job|,|Cl|,|M| St. St. (Esm. + Ev.) Peak St. Peak SRG

RESRG
St. Peak SRG

RESRG
St. SRG

DSRG

2,2,2,2 1,803 220+1,601 1,634 897 1,803 2.10 625 1,795 2.84 2,008 0.9

5,2,2,3 3,776 408+3,318 3,352 1,790 3,776 2.10 1,254 3,703 3.01 3,646 1.03
5,2,2,4 6,295 641+5,468 5,330 2,790 6,295 2.25 1,861 6,080 3.38 5,771 1.09
5,2,2,5 9,002 900 +7,642 7,202 3,712 9,002 2.42 2,474 8,507 3.63 7,565 1.18

5,2,5,2 15,369 910+14,457 15,198 7,625 15,369 2.01 6,752 15,350 2.27 15,343 1
5,2,5,3 35,246 1,779+33,415 34,788 17,293 35,246 2.03 13,117 35,171 2.68 35,037 1
5,2,5,4 66,413 2,971+63,226 65,162 32,217 66,413 2.06 20,602 66,168 3.22 65,575 1.01
5,2,5,5 109,118 4,483+103,947 105,744 52,039 109,118 2.09 35,032 108,486 3.11 106,374 1.02

16,1,8,2 734 459+327 575 733 741 1 707 730 1.03 731 1
16,2,4,2 8,797 627+8,168 8,626 8,615 8,797 1.02 4,106 8,778 2.14 9,105 0.96

16,1,16,2 2,418 1,547+971 2,124 2,409 2,433 1.00 2,381 2,414 1.01 2,415 1.00
16,2,8,2 52,713 2,077+50,634 52,542 51,919 52,713 1.00 22,406 52,694 2.35 53,010 0.99

Table 6: Results for the cluster computing example in Fig. 11

lies in the expression of its infinitesimal generator which is a tensorial expression of matrices
whose dimension are the the size of the local state spaces thus leading to a drastic reduction of the
required memory. In [4], the model is specialized: Stochastic Automata Networks with replicas
are defined by a partition of automata. Inside a set of the partition called areplica, the automata
have the same behavior. Furthermore synchronization and functions of rates must be symmetric.
In that case, a local lumping is possible and one still has a tensorial expression where the matrices
are now related to the aggregation inside the replicas.

In order to allow partial symmetry and still obtain a tensorial expression, asymmetries should
only occur in local events. The asymmetries could be defined by a set of control automata, one per
replica that never disable synchronizing event. With this assumption, we could apply a specializa-
tion of algorithm 1.

Observe that this algorithm operates at a symbolical level and thus does not require any rate
computation in order to buildGA. The specialization is easier than the one for SWNs and couldbe
seen as a particular case with a single class. On the contrary, once the aggregated states are built,
the computation of the rates of the local matrices is more involved but can be obtained following
the method of [4].

7.2. TLS for Stochastic Activity Networks

The Stochastic Activity Network formalism [6] is a Petri Netlike language with features that
make it easier to model quite complex systems. The feature that is more relevant in the context of
this paper is the way models can be composed from submodels and how this can be exploited to
build a more compact reachability graph and corresponding CTMC [6, 7]. A Stochastic Activity
Network model is defined hierarchically by instantiating subnets, and joining subnets on shared
places. When a subnet is instantiated it can be replicated several times: since the replicas are
identical, their state can be described in a compact way, namely, instead of keeping track of the
state of each single (and uniquely identified) subnet in the set, only the number of subnets in each
state is recorded, disregarding the information on which specific subnet is in a given state. This is
a type of symmetry that could be easily captured by the SRG algorithm on an SWN-like version of
the Stochastic Activity Network model (by using colored places and transitions in the subnet to be
replicated). Although the subnets replication mechanism offered by Stochastic Activity Network

32

is less powerful than using colors, from the point of view of the modeler this mechanism can be
more intuitive and easier to use, and it should be used instead of colors whenever appropriate.
Also the more abstract state representation is simpler thanthe symbolic marking one devised for
the SWNs. A little extension to the Stochastic Activity Network formalism may allow to take into
account situations leading to partial symmetries and in this case the TLS method could be applied.

The extension could be as follows: when specifying a subnet it could be associated with a set
of ”versions”, e.g.V ersions = {A, B, C}; the transitions in the subnet are annotated with subsets
of V ersions (the default being the whole setV ersions). The intended meaning is that we have
slightly different versions of the same subnet (e.g. the various versions may have identical structure
but a few transitions with different rate), and that the transitions enabling is conditioned on the
version a given subnet belongs to. The replicate operator inthe extended formalism must provide
the number of instances of the subnet for each element inV ersions. This extension introduces
something similar to static subclasses in the SWN color classes. In the current Stochastic Activity
Network formalism such a situation would require to define separate submodels and to use several
replication operators, one for each ”subnet version”.

On such extended Stochastic Activity Network formalism theTLS method could be applied:
indeed the more abstract state representation is the one that considers all subnets as completely
symmetric. As long as only symmetric transitions are enabled (i.e. the ones annotated with the
whole setV ersions) then the abstract state representation can be kept, and transition can be fired
from such representation leading to another abstract representation; only when at least one of
the asymmetric transitions (i.e. one transition annotatedwith a proper subset ofV ersions) is
enabled, then a refinement is needed, and the different refined markings separating the various
subnet versions are generated: the asymmetric transitionsare fired from the more refined markings,
and lead to refined markings (associated with a more abstractrepresentation). The final structure
derived by applying this procedure is similar to the ESRG forSWNs, and it must be checked
against one lumpability condition and possibly refined to obtain a proper lumped Markov chain.

8. Conclusion and future work

In this paper the DS and TLS methods have been presented: their goal is to generate a lumped
CTMC from a partially symmetrical and almost symmetrical CTMC specification respectively.
They can be efficiently applied only if the MCs on which they operate can be handled symbolically,
exploiting the apriori known presence of symmetries: this happens when they are derived from
a higher level model, such as an SWN, where the presence of similarly behaving components
is made explicit. Implementation issues have also been discussed referring to SWNs. Six case
studies are presented to show the methods effectiveness andtheir applicative interest. Moreover
we have presented a characterization of the type of models that can fully exploit the potential of
the presented methods, based on their structural properties.

A possible line of development is to complement these methods with the possibility of com-
puting bounds on the performance indices by transforming the partially symmetrical MC into a
symmetrical one, and using stochastic ordering arguments.Finally the presentation of the meth-
ods in a general setting could be a good starting point to extend their application to other high
level formalisms able to highlight the presence of similarly behaving components: two examples
of application have been suggested in the paper.

33

[1] P. Huber, A. M. Jensen, L. O. Jepsen, K. Jensen, Towards Reachability Trees for High Level Petri Nets, in: Proc.
of EWATPN, Aarhus, Denmark, 1984.

[2] C. Norris, D. L. Dill, Better verification through symmetry, FMSD 9 (1/2) (1996) 41–75.
[3] E. Emerson, A. Prasad Sistla, Symmetry and Model Checking, FMSD’96 9 (1996) 307–309.
[4] A. Benoit, L. Brenner, P. Fernandes, B. Plateau, Aggregation of Stochastic Automata Networks with replicas,

Linear Algebra and its Applications 386 (2004) 111–136.
[5] G. Chiola, C. Dutheillet, G. Franceschinis, S. Haddad, Stochastic well-formed coloured nets for symmetric

modelling applications, IEEE Transactions on Computers 42(11) (1993) 1343–1360.
[6] W. Sanders, J. J.F. Meyer, Reduced Base Model Construction Methods for Stochastic Activity Networks, IEEE

Journal on Selected Areas in Communications 9 (1) (1991) 25–36.
[7] W. Obal II, W. Sanders, Measure-adaptive state-space construction, Performance Evaluation 44 (1-4) (2001)

237–258.
[8] S. Baarir, S. Haddad, J.-M. Ilié, Exploiting Partial Symmetries in Well-formed nets for the Reachability and the

Linear Time Model Checking Problems, in: Proc. of WODES’04,Springer Verlag, Reims - France, 2004.
[9] E. A. Emerson, R. J. Trefler, From Asymmetry to Full Symmetry: New Techniques For Symmetry Reduction

in Model Checking, in: Proc. of CHARME’99, LNCS, Springer Verlag, Bad Herrenalb - Germany, 1999, pp.
142–156.

[10] S. Haddad, J. Ilié, K. Ajami, A model checking method for partially symmetric systems, in: Proceedings of
FORTE/PSTV’00, Kluwer Academic Publishers, Pisa, Italy, 2000, pp. 121–136.

[11] S. Haddad, J. Ilié, M. Taghelit, B. Zouari, Symbolic Reachability Graph and Partial Symmetries, in: Proc. of the
16th ICATPN, Vol. 935 of LNCS, Springer Verlag, Turin, Italy, 1995, pp. 238–257.

[12] S. Baarir, C. Dutheillet, S. Haddad, J.-M. Ilié, On theuse of exact lumpability in partially symmetrical Well-
formed Nets, in: Proc. of 2nd Int. Conf. on the Quantitative Evaluation of Systems, IEEE C.S. press, Torino -
Italy, 2005, pp. 23–32.

[13] M. Beccuti, S. Baarir, G. Franceschinis, J.-M. Ilié, Efficient lumpability check in partially symmetric systems,
in: 3rd Int. Conf. on Quantitative Evaluation of Systems, IEEE Computer Society, Riverside, CA, USA, 2006,
pp. 211–221.

[14] S. Baarir, M. Beccuti, D. Cerotti, M. D. Pierro, S. Donatelli, G. Franceschinis, The GreatSPN Tool: Recent
Enhancements, ACM Performance Evaluation Review Spec.Issue on Tools for Perf.Eval.

[15] A. S. Miner, G. Ciardo, S. Donatelli, Using the exact state space of a Markov model to compute approximate
stationary measures, in: Proc. of the 2000 ACM SIGMETRICS Int. Conf. on Measurement and modeling of
computer systems, ACM, Santa Clara, CA, USA, 2000, pp. 207–216.

[16] P. Bazan, R. German, Approximate Analysis of Stochastic Models by Self-Correcting Aggregation, in: Proc. of
2nd Int. Conf. on the Quantitative Evaluation of Systems, IEEE C. S., Torino, Italy, 2005, pp. 134–144.

[17] J. Kemeny, J. Snell, Finite Markov chains, D. Van Nostrand-Reinhold, New York, NY, 1960.
[18] J. Ledoux, Weak lumpability of finite Markov chains and positive invariance of cones, Tech. rep., IRISA (1996).
[19] P. J. Schweitzer, Aggregation methods for large Markovchains, in: Proc. of IWCPR, 1984, pp. 275–286.
[20] R. Paige, R. E. Tarjan, Three partition refinement algorithms, SIAM J.Comput.16 (6) (1987) 973–989.
[21] S. Derisavi, H. Hermanns, W. H. Sanders, Optimal State-Space Lumping in Markov Chains, Information Pro-

cessing Letters 87 n.6 (6) (2003) 309–315.
[22] A. Valmari, G. Franceschinis, SimpleO(m logn) Time Markov Chain Lumping, in: 16th Int. Conf. on Tools and

Algorithms for the Construction and Analysis of Systems, Vol. 6015 of LNCS, Springer, Paphos, Cyprus, 2010,
pp. 38–52.

[23] B. Plateau, On the Stochastic Structure of Parallelismand Synchronization Models for Distributed Algorithms,
in: ACM Sigmetrics Conference on Measrurement and Modelling of Computer Systems, Austin, Texas, 1985.

[24] S. Baarir, M. Beccuti, C. Dutheillet, G. Franceschinis, From partially to fully lumped Markov chains in Stochas-
tic Well Formed Petri Nets, in: 4th Int. Conf. on Performance Methodologies and Tools, ACM Digital Library,
Pisa, Italy, 2009.

[25] S. Baarir, M. Beccuti, C. Dutheillet, G. Franceschinis, S. Haddad, Performance analysis of partially symmet-
ric SWNs: efficiency characterization through some case studies , Tech. Rep. TR-INF-2009-07-06-UNIPMN,
Dipartimento di Informatica, Università del Piemonte Orientale, http://www.di.unipmn.it/Tecnical-R (2009).

34

