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Abstract

Performance and dependability evaluation of complex systgy means of dynamic stochas-
tic models (e.g. Markov chains) may be impaired by the cooiral explosion of their state
space. Among the possible methods to cope with this proldgmmetry-based ones can be ap-
plied to systems including several similar components.e®fiowever these systems are only
partially symmetric: their behaviour is in general symnuetixcept for some local situation when
the similar components need to be differentiated.

In this paper two methods to efficiently analyze partiallypnsyetrical models are presented in
a general setting and the requirements for their efficieptementation are discussed. Some case
studies are presented to show the methods effectiveneshaindpplicative interest.
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1. Introduction

As software systems and hardware architectures are morenarelcomplex, their verifica-
tion and evaluation become critical issues. Analysis nigtlare often subject to the problem of
combinatorial explosion due to the increasing system ceriyl Several approaches have been
undertaken to cope with this problem: decomposition methtale advantage of the modular
structure of the system; for performance evaluation, apprate and bounding methods substi-
tute a simpler system to the original one; diagram decisasedd methods symbolically manage
sets of states rather than representing states explieitty, Here, we present symmetry-based
methods that exploit the presence of several similar compsrin the system.

The general principle of these methods consists to subsstituthe state graph a quotient
graph w.r.t. some equivalence relation. This relation m®rs two states as equivalent if they
can be obtained from each other permuting equivalent coemgsn These methods have been
first introduced in order to check safeness properties (se¢le 2]), then generalized in order to
check temporal logic formulae (see e.qg. [3]) and also ad&ptperformance evaluation (through a
Markov chain)via the quantitative counterpart of symmetry, lempability(see e.g. [4, 5, 6, 7]).

It should be stressed that the requirements w.r.t. lumipglbile generally stronger than the ones
that ensure equivalence between qualitative (symmelfiieddaviors and thus the design of such
methods needs more elaboration.
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In order to successfully exploit symmetries it is required1l) define in a generic way, at
the conceptual level, what method can be used to reducedteesgiace through symmetries (2)
select a formalism where symmetries are automaticallyctksdg3) define how the method can be
efficiently implemented in practice. The design at the cptea level is based on the operations
of a permutation group; the formalism must allow a simple wagxpress similar components;
the implementation should be based on a symbolic reprasamtat set of states and transitions
and their efficient manipulation.

However, the systems seldom have completely symmetriofmah(@r example in distributed
algorithms we often have a symmetric specification, togeth# some symmetry-breaking cri-
teria - e.g. based on unique process identity - to solve etsifidleadlocks, etc.) so it is useful to
define and implement methods to deal with partial symmetirethe literature partial symmetry
methods have been proposed for qualitative analysis [8),9,11].

In this paper we propose two methods to apply lumping in gllytsymmetrical models: they
are here presented for the first time generic methods, applicable to any kind of formalism
that may originate partially symmetric models, while thegrevoriginally proposed in [12, 13]
in the specific context of the Stochastic Well-Formed Net (§vibrmalism [5]. The first one,
called Dynamic Symmetry (DS) method, starts from the symeized product of a completely
symmetric Markov chain (MC) and an additional automata desg the asymmetries: in this
case alumped MC satisfying the exact lumpability conditgouilt. The second one, called Two-
Levels Symmetry (TLS) method, instead starts from an oggregated MC from which a lumped
MC can be derived by applying a refinement algorithm: it cameither the strong lumpability or
the exact lumpability condition (which have different ingpan the type of performance indices
that can be computed and may lead to different degrees oégatjon).

In the paper we show how the two methods can be efficientlyiegppd SWN models, in
fact this formalism is designed so that symmetries can benaatically detected and exploited.
However since they are here presentedjasericmethods, it is also possible to adapt them to
other kinds of high level stochastic models (as we show far éwamples, Stochastic Automata
Networks and Stochastic Activity Networks, discussed tolwdhe end of the paper). One of the
main differences between the two methods is that the TLS odatises two different aggregation
criteria depending on the current phase of the behaviorigsstmc or asymmetric), while the DS
method aggregates states in a more dynamic way, possiloly ssveral different aggregation cri-
teria which may correspond to a more articulated classibioaif the behavior phases: symmetric
behavior or one among several asymmetric behaviors.

We have implemented our methods in the GreatSPN tool [1d\vallg us to perform several
experiments. Six case studies are presented in the papee&ysnof the SWN formalism. The
experimental results show that relevant savings in the Sjpéce size can be achieved through
both approaches, and that they can be alternatively apipligx® most appropriate situations.

The paper unifies and extends the results presented in [12reéd3siting them in a more
general setting and giving a particular emphasis to the saagbes. It is organized as follows:
in Sec. 2 some basic notions on MC and lumpability are defime&ec. 3 the TLS and DS

1ISWNs are high level stochastic Petri nets with a specificasyfdr expressing color domains of places and
transitions, arc functions and transition guards, thapsupautomatic symmetry exploitation.
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methods are presented; in Sec. 4 we show how they have beentiated in the SWN formalism
and we discuss about the implementation in GreatSPN. Seesd&ides which kind of partially
symmetrical systems leads more effective state spacetredutn Sec. 6 significant case studies
are presented and analyzed. Finally in Sec. 7 we give sont& d¢ninpossible efficient application
to other formalisms. We conclude in Sec. 8.

2. Markov chain lumpability
2.1. Strong, weak and exact lumpability

The quantitative evaluation of dynamic systems proposetisgnpaper implies the following
three steps (a) the specification of the stochastic proegsgssenting the target system, (b) the
definition of the required performance (or dependabilitgices and (c) the possibility of applying
efficient algorithms for transient or steady state meastwagoutation.

The analysis of stochastic processes in general is a habdiepnoin fact often simulation is
the only viable option, while in some cases algorithms fer¢cbmputation of approximations or
bounds on the desired measures can be applied.

When the dynamic system behavior can be described throughita Discrete Time MC
(DTMC) or Continuous Time MC (CTMC), the solution is conocegity simpler, however, in
realistic case studies, it is still computationally expesasfor this reason state space reduction
techniques have been studied, such as the so calletiM@ingtechniquée.

Lumping of (finite) MCs is a useful method for dealing withdarchains [17]. The principle
is simple: substitute to the MC an “equivalent” one, wherehestate of the lumped chain is a
set of states of the original one. There are different vessf lumpability related to the fact that
the lumpability condition holds for every initial distriban (strong lumpability or for at least
one (veak lumpability. First, we briefly introduce MCs. Due to space constrawesonly deal
with CTMCs. However our methods also apply to DTMCs and weciaig |later on the interest of
dealing with DTMCs even in a continuous time setting.

Definition 1 (Markov Chains). A CTMCC = (S, @, m) is defined by a state spacg an in-
finitesimal generatog) that is a.S x S matrix whose off-diagonal elements are non negative reals,
while each diagonal element is definedgs, s] = — > _,, Q[s, s'], andm, an initial probability
distribution overS. We note{X;},_|g _ the associated stochastic process.

Notation. S, denotes the subset of “initial” states, i.8g,= {s € S | m(s) > 0}.
We now introduce lumpability concepts.

Definition 2. LetC be a CTMC and S, },c; be a partition of the state space. Létbe a random
variable defined by; = ¢ < X, € S;. Then:
e () is strongly lumpablev.r.t. {S;}.c;
iff Vo, {Y;f}te]RM isa CTMC,
e (Q isweakly lumpablev.r.t. {S;};c;
iff 3mo s.t. {Y;},.r_, isa CTMC.

2When a partition of states satisfies the lumpability condit is possible to perform the aggregation of states
efficiently without introducing approximations as it happevith other methods like e.g. [15, 16]
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Whereas the characterization of strong lumpability wting. infinitesimal generator is straight-
forward, checking for weak lumpability is much harder [18Ere, we introduce the exact lumpa-
bility, a simpler case of weak lumpability.

Definition 3. LetC be a CTMC and S, },; be a partition of the state space. Létbe a random
variable defined by; =i < X, € S;. Then:
e An initial distribution, is equiprobable w.r.t{S;};c;
if Vi € 1,Vs,s" € 5;,mo(s) = mo(s').
e () is exactly lumpablev.r.t. {S;};c; iff
Vo equiprobable w.r.t{S;}ic; {Yt}teIR>0 isa CTMC.

Exact and strong lumpability have easy characterizatid®kdiven by the following proposition.

Proposition 4. LetC be a CTMC and S; };<; be a partition of the state space. Then:
e () is strongly lumpable w.r.t{ S; };c; iff Vi # j € I,
Vs, s € S, Zs"eSj Q($> 5”) = Zs"eSj Q(Sla s"),
e () is exactly lumpable w.r.{.S;};c; iff Vi, j € 1,
Vs, s' € S, Zs"eSj Q(SH> S) = Zs"eSj Q(SH> s').

The following corollary establishes a sufficient conditifam exact lumpability in CTMCs
which will be useful in order to check the correctness of oheus methods.

Corollary 5. LetC be a CTMC and S;};c; be a partition of the state space. Thénis exactly
lumpable w.r.t{S;}.c; if:
1.Vi#£j€el, Vs, s €S,
Sares, As"s8) = Lyes, Qs o).
2.Vie I, Vs, s eS;,

25"7&8651' Q(S”7 S) = Zs”#s’e& Q(S”’ 8,)'
3.Viel,Vs, s €85;,Q(s,s) =Q(, ).

When the strong lumpability condition holds the infinitealrgenerator of the lumped chain
can be directly computed from the original generator asesg®d by the following proposition.

Proposition 6. Let C be a CTMC that is strongly lumpable w.r.t. a partition of thate space
{S;}icr. LetQ™ be the generator associated with this lumped CTMC, then:

Vi,j e 1,Vs € S;,Q"(i,5) = Zs'esj Q(s,s).

As for strong lumpability, also in case of exact lumpabititye infinitesimal generator of the
lumped chain can be directly computed from the original gatoe. Observe that starting with the
probability mass equidistributed on the states of evergsudf the partition, the distribution at any
time is still equidistributed. Consequently, if the CTMGCeigodic, its steady-state distribution is
equidistributed between states of every subset of thetipartin other words, with the knowledge
of the lumped chain generator, one may compute its steadg-gistribution, and deduce (hlycal
equidistribution) the steady-state distribution of thiggimal chain. It must be emphasized that this
last step is impossible with strong lumpability since it soet ensure equiprobability of the states
in an aggregate.
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Proposition 7. Let C be a CTMC that is exactly lumpable w.r.t. a partition of thatstspace
{S;}icr. LetQ™ be the generator associated with this lumped CTMC, then:
oVi,jcl,VselS;,
Q(i,) = (S yes, Q') x (15,1/11)
o IfVie I,Vs, s €5;,m(s) =mo(s') thenVt € Ry,
Vie I, Vs, s €S5;,m(s) =m(s'),
wherer; is the probability distribution at time.
e If () is ergodic andr is its steady-state distribution
thenVi € 1,Vs,s' € S;,m(s) = m(s').

Observation: the above aggregation equations for strong and exact luiiipatan be derived

. . s/ LT 5/ s . Q 5,75 . .
from the general aggregation equatioff (i, j) = > ESZZ( )SZ ?S/) =) applying the equations
s'e 7;71— S

in Proposition 4 and the fact that when exact lumpabilitydsahe steady state distributianis
equiprobable w.r.t{S; };c;.

2.2. Dealing with DTMCs.

As said before, very similar results hold for DTMCs. Furthere even in a continuous time
setting, there are two situations where choosing DTMCsnseoient. Some semi-Markovian pro-
cesses are analyzable anembeddedTMC which only takes into account state changes. This
DTMC could be lumpable thus enlarging this technique to sElaikovian processes. Further-
more, it may happen that even in a case of CTMC, the embedd&tDiTas a greater reduction
factor by lumpability. We have experienced this phenomemban benchmarking our methods.

2.3. Computation of performance indices.

Let us now recall how it is possible to characterize the perémce index (or indices) of
interest on a given CTMC, and then discuss the implicatidhsmoping on its computability.

The performance indices of interest can be computed in aigahor steady state setting.
Examples of performance indices are the steady state bhiylaf a server, the probability that
a given connection be active at time instanor the average number of clients being served in a
system.

A general way of defining performance indices on CTMCs isugfothe use ofeward func-
tions their domain is the se$ of CTMC states while the co-domain IB. In fact, a function
r can be seen as a performance index and, given a (steady statsmgient) state probability
distribution7, the (average or instantaneous) performance index meaauarbe expressed as:
Y oeesT(8) - 7(s).

If the reward function- expressing the performance index of interest is constathinveach
aggregate, then the probability distribution of the aggteg is enough to compute the value of
the performance index (we can say that the reward functiconspatible with the aggregation).
However if this is not the case, only exact lumpability gilles us the possibility to compute the
performance index value.

Finally observe that the efficient computation of perforem@mdices corresponding to uncon-
strained reward functions in the exact lumpability caseimeg a way of efficiently computing the



0/3

7 = {a}

72 = {b} -

3.«

Figure 1: A labeled CTMC and its control automaton Figure 2: CTMC(CG)"?

cardinality of each aggregate, and of the subset of statbgmihe aggregate characterized by the
same reward function value.

3. The DS and TLS methods
3.1. Lumpability of partially symmetrical MCs

This section presents tli®ynamic Symmetmnethod applied to partially symmetrical MCs.
Partially symmetrical CTMCs. The model of partially symmetrical systems that we devekmeh
is defined as a CTMC obtained by some synchronized produateleeta (symmetrical) CTMC
and a control automaton. Let us first formalize this prod&nchronizing the behavior of the
two components requires to “label” the CTMC with events.

Notation. LetC be a CTMC, we associate with each pair of statess’ a label in some alphabet
Y. U {e}, denoted\ (s, s’). We require that\ (s, s') = ¢ iff Q(s,s’) =0.

Since the automaton is introduced in order to modify the ieihaf the CTMC, the label
of each edge is a predicate that selects the events allow&ztto in the current location of the
automaton.

Definition 8. LetC be a CTMC, themd = (L, l,, —) a control automaton of is defined by:
e [, the set of automaton locations,
e [y, the initial location,
e —C L x 2% x L, the transitions of the automaton.
A transition(l, v, I') will be denoted by 5 1.

Furthermore, ifl % ' andl 2> I with v # ~/
theny N~ = 0.

In standard automata, the last requirement can be easilyeshby merging the two transitions
into a single one labeled byu /. However the interest of letting distinct the two transisowill
be discussed later.

Fig.1 represents a CTMC and its control automaton. Starldtets are labels, while Greek
letters represent transition rates. The initial distiidis: 7(r¢) = 1.

In the synchronized product defined below, the CTMC is théVat component whereas the
automaton is the “passive” component waiting for a traositf the CTMC in order to synchronize
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it with one of its transitions. Consequently, the ratesfreise initial distribution) associated with
the product depends only on the rates (resp. the initialibligton) of the CTMC.

Definition 9. LetC be a CTMC and4 some control automaton 6f The synchronized product of
CandA,Cy = (S x L, 7, Q') isa CTMC defined by:
o Vs, m(s,ly) = mo(s) AV # 1o, m)(s,1) =0
oVs#s € SVILI'c Lifl L1 AN(s,s) €y
then@’((s, 1), (s', ') = Q(s. s')
elseQ’((s,1),(s',1')) =0
eVse SV e L, Q((s,10),(s,0)=0

Remarks. Due to the constraint on the labeling functidna transition with null rate cannot be
synchronized with an automaton transition. The requirdmaated to transitions of the control
automaton ensures that given a current locatjaa possible next locatiofi and a labelr € X
(triggered by a transition of the CTMC) there is at most or@dition of the automaton that
reacheg’ from [ accepting labedv. In realistic applications, the control automaton is orggd in
order to restrict the behavior of the original CTMC. Howewbserve that the outgoing transition

rate of a statés, /) can be greater than the one ©f Take for instancé\(s, s') = «, [ oy

and! % " and assume thab(s,s) = —Q(s,s’) (i.e., s’ is the only successor of). Then
Q((s,1),(s,1)) = 2Q(s, s) due to the two automaton arcs. We choose this more genetialgset
since for specific applications, it could be useful.

In the example of Fig.1, the control automaton actually iidstiransitions that are not labeled
with a or b. HenceC 4 is obtained fronC by removing the dotted arcs. Formally, the states pf
are pairgs;, [) but as there is only one location in the automaton, we willtanin the represen-
tation of states throughout the example.

From a theoretical point of view, the specification of thetegs symmetries relies on group
theory, applied to the states and the events of the systeen@&tt definition recalls the appropriate
notions.

Definition 10. LetG be a group, with neutral elemetit and whose internal operation is denoted
(o). Let E' be a set.
e Anoperationof G on F is a mapping fronG x E
to E s.t. the image ofg, ¢), denoted by;.e, fulfills:
Ve € Eyide=eNVg,g € G, (gog').e =g.(d€)
e Theisotropy subgroupf a subse’ C E is defined by:
Gp={9e€G|Veec E gecFE'}
e Let H be a subgroup of7, theorbit of e by H
denotedH..e, is defined by{g.e | g € H}.
The set of orbits by/ defines a partition of-.

We simultaneously introduce the notions of symmetrical padially symmetrical CTMCs.
Informally, a CTMC issymmetrical.r.t. some group if the operation of the group on the state
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space preserves its initial distribution and stochastiab®or. A CTMC ispartially symmetricalf
itis a synchronized product of a symmetrical CTMC with a (sgmmetrical) control automaton.

Definition 11. A CTMCC is symmetrical w.r.t. a grou@x operating onS andX: iff: Vg € G, Vs #
s € S, m(g.s) = mo(s) ANQ(g.s,9.8") = Q(s,s') andA(g.s, g.s") = g.A(s, s).

LetC be symmetrical w.r.tG and.A be a control automaton @f, thenC 4 is said to be partially
symmetrical w.r.t(G.

We associate with each occurring in a transition ofA a subgroupH, C G defined by:
ge HyiffVae ¥, acy & gachy.

The size of the subgrouff,, is an indicator of the symmetry of the associated edge. When
H., = @, the edge is “fully” symmetrical whilst whef/, = {id}, the edge is “fully” asym-
metrical. Here we see the interest of keeping distinct tti@ms of the control automaton with
same sources and destinations. Indeed when merging thesyligroup associated with the new
transition could be smaller than one of (or even both) thgsalps associated with the original
transitions.

Back to the example of Fig.1, |&t be the group of permutations éf, 2,3} generated by
binary permutationg; ; which exchange andj. The operations off on .S andX are defined by:
VDijs Dij-To = To A pij.a =a
VDijs Dij-Si = 8§ A pij.ti =t
Vpiyj,pi,j.sj = S; /\pi,j‘tj = tz
Vi k & {i,5},pij-Sk = Sk A Dijte =tk
Pi2b=cApia.c=0Api2d=d
pigb=dApigc=cApzd=0>
pgyg.b =bA P2,3.C = d N pgyg.d =C

It is easy to verify that the CTMC is symmetrical w.r&z. The subgroups associated with
the labels of4 are 7., = G andH,, = {id,p,3}. Observe that if instead we had merged the
transitions, the group would have begr, p, 5} and thus the full symmetry of the edgewould
have been lost.

A subset construction for lumpability. Given a partially symmetrical CTMC 4, our method
builds a smaller (but equivalent) CTMC based on the buildigpme “subset” reachability graph
that we callg 4. Algorithm 1 describes its construction.

Let us detail how it works. The nodes of this graph are pairsisting in a location oA and
a subset of states 6¢fwhich equivalently denotes a subset of stateS ptvith same location. An
edge of this graph is labeled by a transitior> I’ of A and it represents a (non empty) set of
transitions ofC 4. More precisely, such a transition links some state of thec®subset to some
state of the destination subset that can be reached using.

The key idea of this construction is the following: along gagh of this graph (and indepen-
dently on the instants of transition firings correspondmghe arcs of this path) starting from the
initial distribution, the occurrence probability of allasés of the subset associated with the last
node of this path are identical.

In fact, the construction maintains the following invatsn(1) The graph represents all behav-
iors except possibly the ones that start from some destimatbde of an edge that is present in the
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Algorithm 1 : Building of G4

1 nodes = 0; edges = 0;

2 PartitionSo = &J?ﬁlsoﬂ;

3 s.t. everySy ; is the orbit of some; € Sy by G;
4 add 1 tonodes

5 fori e {1,...,no} do

init

L push(stack, L—= (lo, S0,:));
while stack is not emptglo
(I,R) = (I, R') = pop(stack);

9 Computel’ = {~ | IV i 1”,3¢ e R',3s" € S, A(s',s") e v'};
10 ComputeH = Gg' N ﬂwer H.,;
11 Partition R’ = W™ | R; s.t. everyR; is the orbit of some; € R’ by H;
12 forie{1,...,m}do

[«2)

0 ~

13 if (I',R;) € nodes then

14 L add(l, R) - (I, R;) to edges

15 else

16 add(l', R;) to nodes

17 add(l, R) - (I, R;) to edges

18 for ! 25 1 do

19 ComputeSETS = {H.s* | A(r;, s*) € v'};
20 for S’ € SETS do

21 L push(stack, (I, R;) X (1", S"));

stack. (2) The nodes (i.e., the corresponding subset @3tat the graph fulfill all the conditions
of corollary 5. (3) The subsets which are destination of agedd the stack fulfill the first two
conditions of corollary 5.

Thewhile loop extracts an edge from the stack (line 8). Then it sgiésdestination subsé
(lines 9-11) in order to ensure the third condition of caofl5 since inside a subsat, the states
allow the same transitions of the control automaton. Funtloge,r; € R; is selected. IfR; is a
node of the graph (lines 13-14) then one adds the edge todpa gwhile preserving the conditions
of corollary 5). Otherwise one creat®&s as a new node and the corresponding incoming edge and
computes the outgoing edges Bf (lines 18-24). The variabl6£7 S contains orbits w.r.t.H
reachable fromR; using a transition whose label belongsyto These edges are pushed onto the
stack. Again by construction, the destination subsetsaiéstfulfill the first two conditions of
corollary 5. Furthermore, the choice of the(line 19) is irrelevant sincé; is the orbit underrd
of any of its item. So whatever the choice, the set of SURSEBS will be identical.

The initial stage consists in partitioning the initial €81S,) w.r.t. G (line 2). Since there is
no incoming edge the two first conditions of corollary 5 ares$i@d. We have added a fictitious
node_L in order to handle the), ; subsets in the main loop (lines 3-6).

We have not represented the computation of rates in theitlgom order to focus on the
qualitative aspects. We explain it now: L@t R) = (I, R;) be an edge of 4. We apply proposi-
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tion 7; so we select a statec R; and compute) ., Q(s',s)) x (|R;|/| R|). The first term only
depends or and so it is efficiently computed. Varying with the specificatformalisms, the com-
putation of cardinalities can be done more or less efficydmtk it is always a local computation
and then it does not suffer a combinatorial explosion. Farrttore some tricks are possible. For
instance R is the orbit of any state € R by some group sa§/. So we haveR| = |H|/|H NG, |
(by an elementary result on groups). With some formalisresctimputations of cardinalities of
such groups is straightforward and leading to efficientliaob R)|.

In order to prove the soundness of this construction, weifitsbduce a CTMCCS, which
is bigger thanC4. In C§, states ofC4 are replicated in instances, and instances are organized
w.r.t. the subsets associated with the nodes ©fBy construction, all the instances that belong to
the same subset have the same associated location of tmeadato We will denotés, [, R) the
instance of s, 1) s.t. s belongs to such a subskt In the next definitionnodegresp.edgej refers
to the nodes (resp. edges)®f.

Definition 12. LetC 4 be partially symmetrical CTMC w.r.t7, then the CTMCS = (S”, 7}, Q")
is defined by:
e The set of stateS” is defined by:
S" ={(s,[,R) | (I, R) € nodes N\ s € R}.
evVie {l,...,n0},VR s.t. Ris an item of the partition
of Soi, Vs € R, w( (s, ly, R) = m}(s,lo)(= mo(s)).
For every other(s, [, R) € S”, nj(s,l,R) = 0.
oV(s,I,R) # (s,I',R") € S",If (I,R) = (I', R")
is in edges then@"((s, [, R), (s',I', R')) = Q(s, ).
OtherwiseQ"((s, [, R), (s',I',R")) = 0.

The stochastic process we want to build is obtained by forggethe instances and only mem-
orizing the subsets.

Definition 13. Let C4 be partially symmetrical w.rt.GG, then the stochastic proce$§%)? is
defined by:X;” = (R, 1) iff X/ € {(s,1, R)}.

The next proposition is the theoretical core of our methostates thatC$)" is obtained from
C 4 by the inverse of a strong followed by an exact lumping.

Proposition 14. LetC 4 be partially symmetrical w.r.t&z, then:
e Denoting(so, lo) - - -, (Sn, 1) the state space @y,
C4 is a strong lumping of § w.r.t. the partitionls si;
wheresl; = {(s;,1;, R) € S"}.
e Denoting{(Ro, o), - - ., (R, lx) } the state space of
(€)', (CS)'™ is an exact lumping cf§ w.r.t. the
partition |+ Rl; whereRl; = {(s,l;, R;) € S"}.

Proof
Let (s,1) be a state of 4 and let(s, [, R) be an instance of this state @, we show that there
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is a bijective mapping from the transitions out @f /) onto the transitions out dfs,/, R). So
we can suppose thatis examined when looking for successorgbfR). Then3s', 3l - I’ s.t.
A(s,s) € vy < 3R,3s € R, 5 I's.t. A(s,s') € v with (', R") a successor dfl, R). Since
this mapping preserves the rate of the transitions the gondf Prop. 4 for strong lumpability is
fulfilled.

Let (s1,[, R) and(s», [, R) be two states of§, we show that there is a bijective mapping from
the input transitions ofsy, [, R) onto the input transitions dk,, [, R). Let (v, ’, R') be such that
31" 5 landA(vy, s1) € 7. Let H be the group of line 10 related to R', thendg € H C GrNH,
S.t. s, = g.s1. Now definevy = g.vq, thenuy € R' andA(vg, s5) € 7. This implies the existence of
the required mapping. Since this mapping preserves theohteansitions, the first two conditions
of corollary 5 for exact lumpability are fulfilled. The thiwhe is ensured by the splitting of line
11 which has produced, R). O

lllustration. We illustrate the algorithm on the CTMC of Fig. 1. The lumpeahC (C%)”

is given in Fig. 2. We have represented inside each node #tesstorresponding to the subset
associated with that node. Let us describe the first stefeatflgorithm. We push on the stack the
edge L ™% (1o, {ro}). When we pick it, we determine that only the automaton ttasiabeled
by a can be synchronized. Thus the subgroup of lineH@s equal toG.

The transition(rg, lo) = (s1,1o) (resp.(ro,lo) — (t1,1o)) yields to push on the stack an edge
whose destination set{s, s2, s3} (resp.{t1, t2, t3}). When the edge with destinatidr, s, s3 }
is popped, the two transitions of the automaton can be sgncted and thus the group of line
10 becomeqid, p23}. The orbits of{sy, se,s3} w.rt. H are {s;} and{s, s3}. At the end,
observe that statésappear twice: iq{t;, t5, t3} and in some orbit ofid, p» 3}. We can intuitively
explain it as follows. When the CTMC reaches directly theéestg from r, then their occurrence
is equiprobable which is only the case ferandt; when going through;.

Our generic method can now be described. Assume first th&TMC C 4 associated with the
high-level modelM we want to analyze is partially symmetrical. Assume als¢ Weare able
to compute directly(C%)"? from M. Noter, the unknown distribution of 4 at timet and 7"
the (computed) distribution dC$)” at timet. Thenm,(s, ) = Y. x(1/|R]) x 7 (R,1). The
equality also holds for the steady-state distributions.

Although theoretically difficult, we can give some hints ofdthe space complexity decreases
using our approach. In the lumped CTMC, the original statestbeen substituted by subsets.
Note that these subsets may intersect. However these swysedlways the orbit of a state by a
subgroup of. Thus, the larger these subgroups, the better the methadd.thet each time a new
subset is built, the group is reduced (by intersection watine groups?,) and then is enlarged by
implicitly substituting to these intersections, the isply subgroup of the subset. Interpreting this
phenomenon at the model level, we deduce that the compledtyction factor is high whenever
the effect of an asymmetrical event is forgotten in a closertu Experimentations will illustrate
this interpretation.

3.2. Lumpability of Almost Symmetrical MCs

In this section we shall define the second method for ther(gtar exact) lumpability of a
finite CTMC, calledTwo-Levels Symmet(yLS) method.
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f(Sl) = {I’l,I'S}
f(s,) = {r,,1,}
f(s;) = {r,, 15}

1) ={s;,s,}
£1(r,) = {s,, 85}
f1(ry) = {s,, 85}

Figure 3: A simple CTMC and its almost symmetrical specifarat

The starting point is aalmost symmetrical specificatiar the CTMC. This specification is
a graph, whose nodes are aggregates of a partition of CTMEsst&hese nodes are connected
by two types of arcs:genericand instantiatedarcs. Generic arcs result from the presence of
symmetries in the system: the actions that they represenperformed similarly from all the
states belonging to the same partition aggregate. Herese tircs can be defined at the aggregate
level. On the contraryinstantiatedarcs result from asymmetry and represent actions that are
performed individually. A simple example of almost symmestt specification of a CTMC is
presented in Fig. 3.

Such arc specification leads to a compact representatidre @ TMC; unfortunately this rep-
resentation may not not satisfy any lumpability conditiare do the presence of instantiated arcs.
Hence, the idea is to derive from this structure a new one foctviumpability holds. To do so a
partition refinement algorithm is applied.

Definition 15 (Almost symmetrical CTMC). An almost symmetrical specification of a CTMC
C = (S, m, Q) is defined by:

e a partition of the state spacgS; }ic; such thatS = W, {S;}

e for S;, S; € {S;}icr, two types of state transition arcs:

generic arcs S; 2, S; where) € R is a rate, andf is a functionf : S; — 2%, such
that

0.VseS; : re f(s)=Q[s,r] >\,
1. Vs, s" € 55, | f(s) = [£(s)],

2.Vr, 1" € S | fH ) = 10,
where f~1 is the functionS; — 2% defined byf~*(r) = {s | r € f(s)}.

instantiated arcs s & r wheres € S, r € S;andyu € IR+ is a rate, such that :

Qls,rl= D> A+> n

A,
Si=Ls5; ref(s) s

12



Remark: Point (0.) of definition 15 relies on the fact that when transition rate froms to r
is greater than, it can always be decomposed into (at least) two arcs, onéichis labeled by.

A direct consequence of the definition is that, if the almgshetrical specification of a
CTMC is such that:
VS;, S;,Vs, s € S, Z Qls,r] = Z Qls',r]
TES]' TES]'
then@ is strongly lumpable with respect &, },c;. To ensure this property, it is sufficient that
ZTGS = > .~ (. Inthis case, the infinitesimal generator of the lumped CTisIC

reS;:s/—r

given by (see Proposition 6):

Q"(i,5) = Qls,r] = Z AMFOD+C D n) (1)

resi S —>S TES]-:SLM"

On the other hand, if the almost symmetrical specificatioa 6TMC is such that:

VS, S, V' € S, Z Qls,r] = Z Qls, ']

seS; s€eS;

plus the following initial condition¥: € I,Vs, s € S;, mo(s) = mo(s'), then@ is exactly lumpable
with respect tdS; }.c;. To ensure this property, it is sufficient t@SESi:er p=>" oW

sES;:s—>r!

In this case, the infinitesimal generator of the lumped CTNIGiven by (see Proposition 7) :

Q"(0.0) = S Q= (X M OD+(C S 0)

"
SE8i Si—>’ Sj SES;:s—>r

AsVs € S, |f71(r)|.|S;] = | f(s)].|S:], we obtain

Q"(i, ) = Z AS(s) “ "( S ) @)

"
SES;:s—>r

z

The above conditions for lumpability do not hold in geneaaldn almost symmetrical CTMC
specification, hence we propose an algorithm that itergtnedines the partition of the CTMC
until the desired lumping condition is satisfied. Considgrihe example in Fig. 3, our algorithm
will produce the structures in Fig 4, depending on whethemaat to ensure (a) strong or (b)
exact lumpability.

Our algorithm is based on (an adaptation of) Paige and Tarfartition refinement algo-
rithm [20, 21, 22] and exploits the properties of genericsanhienever possible to reduce the
number of checks to be performed.

It is worth noting that the achieved lumpable CTMC can havesnmodes than the one obtained
with a coarser initial partition, however in the case whéeeinitial aggregates cannot anyway be

13



(a) Strong (b) Exact

Figure 4: Refinement applied to the example of Fig. 3

Algorithm 2 : Algorithm for the exact lumpability check

1 A, X :SetOf Sets of States (SSS);

2 B,D: Set Of States (SS);

3 Lel : Set of tuples (real,integer, S); Algorithm 3: SSSM
4 PartLel : Set of tuples (S, real,integer); Split(PartLel)

5 X.Create(AS_-CTMC); 1 Set, A; : SSM,

6 A= X.PreSplit(); .

7 while X # A do 2 for (S, rate,i) € PartLel do
8 D = X.Remove() S.t.YA; € A, A; # D, 3 Set = 0; ,
o | B=APick(D)stIBC D= VA, C D,|B| > |Al; 4 | A = GetElement(i);
10 X.Insert(B); ° Set :_Ai \ S;

1 X.Insert(D\ B); 6 Substitute(i, Set);

12 Lel = CompAllSuce(B); ! Add(S);

13 PartLel = Partition_wrt_rate_A(Lel);

14 A.Split(PartLel) ;

15 return A;

lumped, then the number of steps of the present algorithessthan the number of steps required
when applying the algorithm directly on the original CTMC.

In practice, the choice of the initial partition is usuallyided by the need to have an efficient
(implicit and symbolic) representation of aggreates ofalmeost symmetrical CTMC. Moreover
it can be related to the way performance indices are spe¢éigd through a reward function that
is forced to have uniform value for all states within the sanital aggregate).

The efficiency of the proposed method relies on a compactl§elio) representation of both
generic arcs and partition aggregates. Of course a way réviety ordinary states and/or arcs
must be given, as it is needed during the refinement.

The algorithm for checking exact lumpability A mapping between thstability conditionof
Paige and Tarjan’s algorithm and the strong or exact lunipaloondition is possible. This is
easy for strong lumpability condition, since the stabiigndition is implied by it. In fact the
stability condition requires that all elements in each aggte reach the same set of destination
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aggregates, while the strong lumpability condition alsqurees that they do so with the same rate.
Instead for the exact lumpability the mapping requires toswter the arcs as if they were

reversed: when considering reversed arcs, again theistatmhdition is weaker than the exact

lumpability condition. In fact the “reversed arcs” statyilcondition requires that all elements in

each aggregate are reached by the same set of source aggmwbde the exact lumpability con-

dition also requires that they do so with the same rate; nverawe use the additional requirement

that the global output rate of states in the same aggregatebrawequal (Corollary 5 condition 3).
Like the Paige and Tarjan’s Partition refinement algoritloom, algorithm uses the following

data structures:

(1) A is the current partition of stat&severy element of the list will be callddlock A single block

contains a set of elements of tyNede Moreover aNodecan be a single state if it represents only

one state; or “macrostate” if it represents an aggregate.

(2) X represents another possible partition into aggregateh, thatA is a refinement oX and

A satisfies the lumpability condition with respect to everydid of X.

Algorithm 2 shows the pseudo-code of the algorithm. It hasrvain phases: the initialization
(lines 5-6) and the iterative refinement (lines 7-14).

(1) The initial phaseCreate initializes the setX (of the set of states, hereafter called blocks) on
the basis of the initial partition of the almost symmetriCaIMC specification: for each aggregate
having only generic input and output arcs, a new block isrieseinto X, containing only one
element of type “macrostate”. For each aggregate havingadsantiated input and/or output arcs
a new subset s inserted ink, containing as many elements of type “state” as the statesic@d

in this aggregates. In the simple example of Fig. 5@)initially contains three blocks, two of
which contain a single element of type “macrostate” (aggtesS,, S2), the third contains three
elements of type ’'state’ (states, s, andss of aggregates;). The notation used in the sequel for
Xis: X ={xg={So}, x1 = {s1, 52,83}, 19 = {Sa}}.

PreSplit (line 6) returns a refined set of, such that each element; in this refined set
satisfies the exact lumpability condition with respect tohe@lement ofX .

Vsi, 80 € A, Z U1 = Z M2 (3)

M1 o2
SREX 8k —S1 SREXj, 8k — 52

wherey, ; represent the rate associated with the arc fspno s,. Observe that this condition will
be also the invariant of the iterative refinement phase.

The new refinement is obtained by splitting those setX dhat are reached by one or more
instantiated arcs and/or such that one or more instantsateddepart from them. The splitting of
such sets is performed considering the weights and sougregajes of the ingoing instantiated

31t will be clarified later how the initial partition is chosemd how the iterated refinement steps leading to each
successive refinement work.
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transitions, plus the global output rate of each $tafally (line 6), the new refinement is stored
in A. In the simple exampled and X sets after the pre-splitting arel = {ag = {So}, a1 =

{s1},a0 = {52}, a3 = {s2,53}}

(2) The iterative refinement phasghe algorithm core consists of repeatingginement stepntil
X converges tod (X = A). The so-called refinement step is performed as follows:

In the partitionX, an elemen® that has been refined in a previous step is selected (line 8),
then the largestelementB € A s.t. B C D is chosen (line 9). FinallyX is updated by replacing
D with B andD \ B (lines 10-11). In the exampleX block x; is chosen and thd block a; is
chosen in the role aB. All successors oB are computed and the following information are stored
in Lel (line 12): the successor, the rate with which it is reachebthaA-element index containing
it. Then, the functionPartition_wrt_rate_A performs a partitioning of.el grouping the tuples
with the same second and third element. In particular allfthed “macrostate” elements are
instantiated, so that the “macrostate” elements will besstilied by all the states that represent,
and the generic arcs are instantiated using functidn the example the “macrostats;, reached
by blockas, is instantiated iy, s; andsg, andPartLel is {p1({ss, s¢}, 0, a2) } (there is only one
set of states, belonging to bloek, reached by:; with rate5).

At this point, A must be refined according to the new partition representeddoyLel, as shown
in Algorithm 3. In Algorithm 3, for each elemeis, rate, i) € PartLel, we remove the elements
of S from A;. Line 6 replaces the old representatiordpf while line 7 insertsS as a new set inl.

In the example the block, is split in two blocksa, = {s;} anday = {s;,ss}, So that
list Ais {CLQ = {S()},CLl = {81},6L2 = {S4},CL3 = {82,83},CL4 = {85,86}}, while list X is
{zo = {So}, 21 = {s1}, 22 = {54, 85,56}, x5 = {s2,3}}. The refinement is repeated choosing
blocka, in the role of B. This does not cause any new splitting: the final partiticinésone ofA
above as illustrated in Fig. 5(b).

Observe that the algorithm may have to instance some stadiesres that will be aggregated
again in the final CTMC, so that the peak of memory usage dwexegution exceeds the size of
the final lumped CTMC, and may limit the applicability of thesthod.

Algorithm for strong lumpability check. It is easy to adapt the previous algorithm to check the
strong lumpability condition instead of the exact lumpipibne. In fact only a small part of the
previous algorithm must be modified. First we need to modighsly the pre-splitting phase. In
line 6 the new refinement is derived by splitting those sefs @fhere one or more instantiated arcs
depart from them. In the example of Fig. 5(a) the pre-splagehfor strong lumpability provides
the same result as the one already presented for exact luitypab

In the refinement step only the following change is necessdtgr selecting the block and
updatingX, for everyNode element inB we compute the elements reaching it, and the following
information are stored ihel (line 12): the predecessor, the rate with which predecessahes it
and theA-element index containing predecessor.

4This is sufficient to assure the condition ( 3), because thsefs that are not reached by any instantiated arcs
and/or such that no instantiated arcs depart from it do ned mefinement, they already satisfy Eq. (3)
SIn terms of number of contained elements.
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fl : fl(SO) = {Si7i = 17273})7 f2 : fQ(SO) = {Si7i = 47576}7 7f3 : f3(37?) = {37?—0—377: = 17273} f4 : f4(97) = {5077: = 47576}
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Figure 5: A simple example of almost symmetrical CTMC (a) #melresult of exact (b) and strong (c) lumpability
algorithm application.

After this, the refinement step works similarly to the exachpability version.

In the example:; is chosen again in the role @& but now the listPartLel is: PartLel =
{p1{{so}, @, ap)}. This step requires the instantiation of aggregatend of the generic arc la-
beleda, f;. SinceS, contains onlys, no split is performed and the algorithm ends.

Comparing the two final partitions (obtained using the twgoathms) we can observe that
the strong lumpability condition for this example requitesnstance less “macrostate” w.r.t the
exact one. This is not always true, it depends on the chaistate of the model to be studied. For
selecting the better one w.r.t. a particular model a firsiaghmust be driven by the performance
measures that we want to compute. If probabilities of irdiial markings (SMs) are needed, then
the strong lumpability cannot be used since it only givespgiababilities of aggregates Instead
if the performance measures can be expressed at the levghoégates, then both approaches
are suitable and a heuristic rule for defining the approaafimizing the number of instanced
“macrostates” can be used.

Computation of the infinitesimal generator of the lumped CTMC. If the CTMC is strongly
lumped, the infinitesimal generator is obtained by applfagation 1.

In the case of exact lumpability, the splitting of an aggtegsdfects the computation of transi-

tion rates in the following way :

S;
Qi) = (o Z NFOD+( X ) @
. . sGSizsi)s’

wheres € S; ands’ € S;, andorig(S;) denotes the aggregate to which stateS;ibelonged in the
initial almost symmetrical CTMC. This is needed becauseeth@ght be generic arcs connecting
a non split aggregate to an aggregate that has been spi# (thiebe a replica of such generic arc
for each refined aggregate substituting the original one).
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Figure 6: An example of SWN related to the Benchmark pattern.

In the examples of Figg. 5(b) and 5(c) the instantiated axeated during the algorithm execu-
tion are shown instead of the arcs in the final lumped CTMd|dstrate the algorithm operation
and the memory peak problem. There will be only one arc betwaeh pair of aggregates in the
lumped CTMC, whose rate can be easily derived from the abaweiflae: e.g. in Fig. 5(c) the
rate fromS, to S; is 3a. Indeed, from Eq. 1 we obtain thE LY A f(s0)| ) is 3, since there

is only one generic arc with rateand| f»(so)| = 3, and)_ | gy s M is 0, since no instantiated
S 2:50 s’

arcs connecting any states®fto S, exist. Instead, the rate froisy to S is ¢, since there is only
one generic arc with rateand|f4(s4)| = | f5(s5)| = | fe(s6)| = 1 and no instantiated arcs.
In Fig. 5(b) the rate fron%|, to S, is 2«, indeed from Eg. 4 we obtain th@ T )\|f(so)\:o

since no generic arcs connectifgto S, exist, {g“} 2 and)
instantiated arc exists betwespand.S,.

Finally, in the refinements in Fig. 4 we have both instantiadad generic arcs between the
same aggregates. Then in Fig. 4(a) we observe that the caeSf; and.S; is 2\ + u because
using Eq. 1 we obtain thaz g Alf(s;)| ) is 2A since there is only one generic arc with

rate A and|f(s;)| = 2, andzs e

1. Instead, in Fig. 4(b), we observe that the rate frénand S;; is £ + £ because using 4 we

. |S;1] 1 . . .
obtain \ong&-m = 3 Zsiisﬂ Alf(s;)] is 2X since there is only one generlc arc with ratand

f(s0)] =2, 52 = is L andy”

4. Instantiation of methods: the SWN formalism

A ! smce only one

L is 11 since there is only one instantiated arc with rate

e oty M is i, since there is only one instantiated arc with rate
4.1. Stochastic well-formed nets

Both methods handle sets of states which require a symlagresentation to efficiently man-
age them and a symbolic computation of the set of succed3ecssion Diagrams (DD) could be
used to this aim. However DD would not take into account thasé sets are somewhat special
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since they are orbits of subgroups. By contrast, some fasmalare tailored to take advantage of
the symmetries during the modeling and the analysis stages.

Thus we have implemented our methods using the SWN formdb$na kind of high-level
Petri nets that is the starting point of numerous efficiemsetry-based analysis methods already
implemented in the GreatSPN tool [14]. Alternatively we Icbloave instantiated our methods on
symmetrical Stochastic Activity Networks [6] or on Stoctia®utomata Networks [23].

Here we only describe the main features of SWNs illustratitvegm with the net of figure 6.
In an SWN and more generally in a colored netahor domainis associated with places and
transitions. The colors of a place label the tokens containghis place, whereas the colors of
a transition define different ways of firing it. In order to sgg these firings, aolor functionis
attached to every arc which, given a color of the transitionnected to the arc, determines the
colored tokens that will be added to or removed from the spwading place. Finally the initial
marking is defined by a multi-set of colored tokens in eackhala

The specification of the stochastic behavior is given firsiggociating priorities to transitions.
Transitions with priority O are triggered by a negative exatial law whereas transition with non
null priority are immediate (they fire in O time). Thus one@sates a rate with transitions of
priority O while one associates a weight with other transi$i that is used in a random choice
between enabled transitions with the same priority. Inbitarcs (with their usual meaning) are
also used in order to obtain concise models.

SWN are a particular case of colored nets with a simple synta8WN, a color domain is
a Cartesian product afolor classesvhich may be viewed as primitive domains. A class can be
divided intostatic subclassed he colors of a class have the same nature (e.g. processeas
the colors inside a static subclass have the same poteatiakvtor (e.g. batch processes). In the
net of figure 6, there is a single color classand the color domains of places are eitbeor ¢ the
neutral domain consisting of a single color (as in ordinatsh For instance, the color domain of
placeSwitch is € while the color domain of placédie is C. ClassC' models a set of tasks with
three static subclassés= C; W Cy W C5. (] is a set of interactive tasks);, is a set of batch tasks
and(C; is a set of tasks that alternate between interactive anth leacution.

A color function is built by standard operations (linear donation, composition, etc.) on
predefined basic functions. The most often used basic fumigia projection which selects an item
of atuple and is denoted by a typed variable (e:gy). Transitions can be guarded by expressions.
An expression is a Boolean combination of predefined atomddipates likgz # y]. In the net
of Fig. 6, there are two functions.is the identity ovelC’ meaning for instance that the color that
instantiates transitiofi/nd E'rl must be present in pladewput Erl and it will be consumed by its
firing. S is the constant color function that returns the bag of cajors . c whatever the domain
of the transition. For instance, in order to féart1, all task colors must be present in plac&e
and they will be moved in placénput Erl. The guardi(xz) = C, of transitionChoice3 means
that this transition may only be instantiated by a color afistsubclasg’s. This net will be fully
described in section 5.

4.2. Symbolic reachability graph buildings for SWN

The implicit symmetry of an SWN, obtained by its restrictsymtax, leads to a grou@ op-
erating on color classes (and by extension on markings and firstances)G is the intersection

19



of the isotropy subgroups of static subclasses. In othedsyany permutation it maps any
static subclass onto itself. Given a markimgand a permutatiop of &, the behavior of the net
from the markingg.m is the same as the behavior framup to permutatiory. The Symbolic
Reachability Graph (SRG) construction lies on symbolickimgs, namely a compact represen-
tation for a set of equivalent ordinary markings. A symbatarking is a generic representation,
where the actual color of tokens is forgotten and only thisitrdbutions among places are stored.
Tokens with the same distribution and belonging to the saaitec ssubclass are grouped into a
so-calleddynamic subclassThen, the SRG can be automatically built using a symbolitdfirule
that directly applies to symbolic markings [5].

The critical factor for efficiency of the SRG method is thetji@mn of a class into static sub-
classes. Finer is the partition, less effective is the rednof the state space. Thus the implemen-
tation of both DS and TLS methods aims at keeping this pantiis coarse as possible (locally).

In order to implement the DS method for a partially symmelri€CTMC, we specify this
chain as the synchronized product of an SWN without statbrissses (soi is the group of
all permutations on color classes) representing the synoabMC, and a control automaton
whose labels are sets of instances of transitions{like, b),t(b,b),t(a,a), t(b,a)} equivalently
denoted\/myye{avb} t(z,y). Thus the isotropy subgroup of a transition may be represeby a
“local partition” in static subclasses (e.d{a, b}, {c,d}} for the label described above). The
symbolic representation of a state of the lumped MC is theergby a local partition of color
classes (corresponding to the isotropy subgroup of thd associated states), a symbolic marking
w.r.t. this partition, and a state of the automaton. The syalfiring rule is close to the original
one except that a refinement w.r.t. to the partitions of timekyonized transitions must epriori
performed, and a merging of static subclasses muatgwesterioriperformed in order to represent
the isotropy subgroup of the new set of states. The graphhaibuilt is called Dynamical SRG
(DRSG), emphasizing that the partition in static subclas®pends on each node.

In order to implement the TLS method for an almost symmdt@BVC, we specify this
chain through an SWN where the transitions are split in sytrioa transitions, whose specifica-
tion does not depend on static subclasses, and asymmetniesiwhose specification depends on
them. An almost symmetrical CTMC is then generated from gpiscification. It corresponds to
the Extended SRG (ESRG) [11] whose main feature is that a nasla two-level representation.
At the higher level, a node is a symbolic marking w.r.t. thel$Without static subclasses: this
symbolic marking is enough to check and fire symmetricalgitions. At the lower level, the
symbolic marking is substituted by a set of symbolic markitaking into account the static sub-
classes partitions allowing to check and fire asymmetrreasitions. These two representations
correspond to the same set of ordinary markings. The aimeoE®RG construction is to avoid
developing the lower level representation for nodes asi@$gpossible. This can be done when all
ordinary makings of the node are known to be reachable and wbee allows an asymmetrical
firing (these conditions can be symbolically checked). Thihe ESRG is the starting point of
our adaptation of the Paige-Tarjan’s algorithm where sovoelad lower level representations are
now developed (if needed) in order to meet the lumpabiligureements.

The different approaches developed in this paper have beplemented in the GreatSPN
tool (www.di.unito.it~-greatspn) [14]. Actually, the kernel of the package, itijideveloped to
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perform on global symmetries (the SRG approach), has betemaed to handle dynamic and
partial symmetries (the ESRG and DSRG approaches).

5. Analysis of efficiency: characterization of the approprate models
5.1. Pattern characterization

As for every state-based reduction method, it is not eashaoacterize the kind of models for
which our methods bring a relevant reduction of the stateespeze. There are least two problems
related with this characterization: (1) the “degree” ofragyetry of the system is not proportional
to the number of asymmetrical transitions of the systemdithier when they occur in the dynamics
of the system. This was already experienced by the quaktpartially symmetrical methods; (2)
the asymmetry may propagate due to the constraints assoeidh the lumping conditions.

In the light of these two problems and with the help of numermwodels that we have tested
since the development of these methods, we can suggest Micajon patterns for which our
algorithms perform efficiently. The behavior of these sysean be schematized as an infinite
loop where every cycle of the loop consists of:

e a synchronization stage where the consequences of thegyastreetrical behavior can be
safely forgotten. This corresponds to reaching one or mageheration states” w.r.t. the
history of asymmetrical behavior.

e a symmetrical and an asymmetrical stage that may overlap.

Here, we present two different patterns: the behavior offitisé pattern is characterized as fol-
lows: a cycle of the loop consists of a synchronization stafjewed first by a symmetrical
stage and then by an asymmetrical one (not overlapping).b€&haviors of the second pattern is
characterized as follows: a cycle of the loop consists ofrarsgtrical stage followed first by a
synchronization stage then by an asymmetrical one.

An example of net modeling the first pattern is shown in FigTéis pattern models a sys-
tem where a set of repetitive tasks are processed accoalthgit types: interactive ones, batch
ones and mixed ones. The first type represents the intezdetiks that prompt the user for such
input, while the second represents the batch tasks thateaanbto completion without human
interaction. The last type represents tasks that altebedteeen interactive and batch executions.

The model can be divided in three partd;, N, and N3; where the submodeV; is the
synchronization stagéy, the symmetrical stage ané; the asymmetrical one. In the submodel
N, all tasks are simultaneously started (transitsom-t1). Then, in the submodéY, every task
perform some preprocessing whose time distribution is dang# wherek is the number of
stages. This is concisely modeled in the net with transsti@n/SymStage, EndErl). When at
leastJ tasks (withl < J < #task) have achieved their preprocessing the third part can dtart
the third part (submodéVs), every task acts depending on its type: the interactivieities are
modeled by transition§'hoice3 andChoice4 while the batch activities are modeled by transitions
Choicel andChoice2. As said before, the mixed tasks alternate between inteeaahd batch
activities chosen at each start of cycle (when the synchabioin stage is performed) with place
Switch controlling this alternation.
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Figure 7: SWN model related to the Benchmark pattern.

The critical factor for the efficiency of the methods is thgde of overlapping of the sym-
metrical and asymmetrical behaviors. The more they areesdlized the better the methods
perform. The last point that can be emphasized is that the@adstbased on exact aggregation
perform better when the symmetrical behavior starts firdt\ace versa for the method based on
strong aggregation. This is certainly due to the way thettamts on lumping propagate (forward
for exact lumpability, backward for strong lumpability).

In particular, in our example the critical parametet/isince it rules the overlapping of the
symmetric and asymmetric behaviors. If= #task then there is a complete sequentialization
whereas it/ = 1 there is a complete overlapping.

Let us examine the experiment results on the net of Fig. 6 sanmaed in Table 1. The first
column shows the values of the experiment parameters: tmdauof stages of the Erland),
the level of overlapping of the symmetrical and asymmeitbehaviors (), the number of tasks
for each type. The Columns labeled “St.” represent the nurabeonstructed states for each
structure®. The columns labeled “Peak” contain the total number ofrmeaiate states stored to
obtain the final structure (only for ESRG and RESRGs). Fn#ie seventh, tenth and twelfth
columns show the reduction factor obtained using these tmethods.

We have to highlight that a good level of reduction is obteibg both the approaches when
there is a complete sequentialization between the symoreatd asymmetric behaviors. For in-
stance, the experiment with parametlis 8 —3—3—2 leads to a reduction factor of approximately
120 whatever method.

In Fig. 7 an example of net modeling the second pattern is shdlis model is obtained by
the previous one (Fig. 6) discarding the initial synchratizn and inserting it just before the sym-

5for the ESRG are also shown the number of Extended Symboli&iNg (ESM, first level representation) plus
the Eventualities (Ev, second level representation)
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SRG ESRG RESRG (Exact) RESRG (Strong) DSRG
K, J,|C1], St. St(Esm. +Ev.) Peak St. Peak AL St. Peak LT St. SRG
c2, |c3
6-6-2-2-2 97,495 4,255+456 4,264 7,138 7,615 13.65 4,460 7,588 21.85 8,179 11.92
6-4-2-2-2 247,498 16,393+40,044 | 715,321 || 93,118 157,304 | 2.65 19,913 154,602 | 12.42 150,125 | 1.64
6-2-2-2-2 724,758 39,157+67,322 | 499,014 || 469,442 | 606,258 | 1.54 49,251 606,458 | 14.71 427,255 | 1.69
8-6-2-2-2 | 336,933 10,833+823 10,323 13,716 | 14,193 | 24.56 11,038 | 14,166 | 30.52 14,757 | 22.83
8-4-2-2-2 | 571,293 29,139+30,934 | 215,217 || 144,210 | 246,497 | 3.96 34,349 | 248,895 | 16.63 235,248 | 2.45
6-8-3-3-2 | 1,054,508 || 15,224+129,002| 34,724 29,837 | 30,574 | 35.20 25,933 | 30,529 | 40.66 30,463 | 34.61
6-6-3-3-2 | 1,969,954 || 58,547+13,770 | 897,166 || 666,669 | 944,634 | 2.95 72,497 | 939,113 27.17 933,475 2.11
10-6-2-2-2 | 953,287 25,575+799 23,004 28,458 | 28,931 | 33.49 25,780 | 28,908 | 36.97 29,499 | 32.31
12-6-2-2-2 | 2,319,433 || 55,087+1,345 | 46,773 57,970 | 58,443 | 40.01 55,292 | 58,420 | 41.94 59,011 | 39.30
14-6-2-2-2 | 5,035,095 109,351+2,840 | 87,829 112,234 | 112,707 | 44.86 109,556 | 112,684 | 45.95 113,257 | 44.45
10-8-3-3-2 | 20,687,084| 153,518+7,654 | 406,776 | 168,131 | 168,868 | 123.041 || 154,227 | 168,823 | 134.13 168,757 | 122.58
12-8-3-3-2 - out of memory - - - - - - - 424,573 -

Table 1: Experiment results on the net of Fig. 6

SRG ESRG RESRG (Exact) RESRG (Strong) DSRG
K, J,|C1], St. St(Esm. +Ev.) Peak St. Peak R St. Peak P e St. .
c2, |c3)
6-6-2-2-2 | 182,690 6,466+679 5,987 6,362 6,446 28.71 6,195 6,446 29.48 6,466 28.25
6-4-2-2-2 | 524,050 26,355+10,345 | 341,798 || 492,786 | 524,050 1.06 26,456 | 347,806 | 19.06 121,791 | 4.30
6-2-2-2-2 | 569,926 32,915+23,456 | 387,674 || 561,573 | 569,926 1.04 33,016 | 393,682 | 17.26 133,619 | 4.26
8-6-2-2-2 | 575,432 16,197+1,123 14,882 16,372 16,456 35.08 16,205 | 16,456 | 35.50 16,476 | 34.92
8-4-2-2-2 1,417,537 60,213+45,457 | 842,543 || 1,347,762| 1,417,537| 1.05 60,338 858,561 | 23.49 60,492 23.43
6-8-3-3-2 | 2,451,382 26,128+3,400 64,938 26,872 26,872 91.22 26,156 | 26,872 | 93.72 26,800 | 91.46
6-6-3-3-2 - out of memory - - - - - - - 138,312 -
10-6-2-2-2 | 1,507,582 37,309+10,342 | 32,483 37,484 37,568 40.21 37,317 | 37,568 | 40.39 37,588 | 40.10
12-6-2-2-2 | 3,456,440 77,701+15,334 | 64,001 77,876 77,960 44.38 77,709 77,960 | 44.47 77,980 | 44.32
14-6-2-2-2 | 7,163,594 | 149,407+18,342| 116,610 || 149,582 149,666 47.89 149,415 | 149,666 | 47.94 149,686 | 47.85
10-8-3-3-2 - out of memory - - - - - - - 223,003 -
12-8-3-3-2 - out of memory - - - - - - - 561,136 -

Table 2: Experiment results on the net of Fig. 7
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metrical part. Hence, the submodé| represents the symmetrical stag®, the synchronization
stage andV; the asymmetrical one.

The experiment results on this net are summarized in Tab&re the columns have the same
meaning of the columns in the Table 1. The same considegtizcussed previously hold true,
therefore the efficiency of the two approaches seems notittfloenced by the stage order inside
the round of the loop, but by the degree of overlapping ambagymmetrical and asymmetrical
behaviors.

5.2. Expected efficiency of the behavior of the methods

We can compare the proposed methods w.r.t. different @it€he size of the lumped chain is
generally smaller with the TLS method as it is based on themization of a MC w.r.t. lumpabil-
ity. However the TLS method requires to explicitly develagymmetrical” set of states during the
refinement process thus facing the problem of a peak in meusaye, contrary to the DS method.
Moreover considering instantiation of the TLS method worthe SWN formalism, a further peak
in memory usage raises during the ESRG generation; in facEBRG algorithm maintains ex-
plicitly the lower-level representation of reached magsuntil the set can be compacted into a
symmetrical higher-level representation.

The memory peak in the refinement process can be reduceddaydiisg all lower-level nodes
in a block and rebuilding them when needed, while the ESRG ongpeak cannot be mitigated,
so that it may prevent a solution to be reached (e.g. thekkhse8 — 3 — 3 — 2 in Table 1, the
ESRG cannot be computed due to its memory occupation peak).

On the one hand, when a model is efficiently handled by the mdesththe final sizes are
of the same magnitude order. On the other hand, when the asygnof the model propagates
throughout the state space, it may yield a combinatoridoskpn and the size of the lumped chain
of the DS method may become bigger than the original one. ddnsot happen by construction
with the TLS method. Notice that in [24] an extension of the D&thod has been proposed in
order to cope with this problem. Finally, the DS method isapagtrized in the following sense:
as lumping is based on labels the modeler can freely chamgautmerical values associated with
labels without need to recompute the graph associated gtlutnped chain; only the numerical
values have to be updated. In order for the TLS method to stigpch a parametrization the
refinement algorithm must be based on transition labelsauakstf rate values.

In the next section new experiments are presented, refielmimodels of actual systems rather
than abstract patterns, and the above considerationsedarfia more applicative setting.

6. Case studies
6.1. A readers writers example

The readers writers example in Fig. 8 models a database wdédtessed by users for read or
write operations. Readings may be simultaneous whilengstiare mutually exclusive w.r.t both
the readings and the writings. Thus as soon as a writing isegjaet waits for all the readings to
end before performing its transaction without concurrecesases.

Readings are operations with less variability than wrginghus we have chosen to represent
their distribution by an Erlang distribution while the vimigg have two exponential distributions
depending on the class of users: ordinary ones that perfaitary updates while administrators

24



perform a batch of updates (given for instance by an auyifite).

Let us map this model on the patterns presented in the prewection: the synchronization
points occur after every writing. Then there is a (possilthpey) stage of readings which cor-
responds to the symmetrical part of the behavior (submaggl The asymmetrical part of the
behavior (submodeV,) starts at the beginning of a writing since only in that cémeekind of user
matters. Observe that there is no overlapping between instiwges since the readings end before
the writing starts. So the results are very good as witngsgddble 3. The experiment parameters
are (in order) the number of stages of the Erlang distrilotiee number of administrators and the
number of ordinary users (see the first column).

Moreover the columns labeled “St.” represent the numbepo§tructed states for each struc-
ture. The columns labeled “Peak” contain the total numbentermediate states stored to obtain
the final structure (only for ESRG and RESRGS). Finally theea#h, tenth and twelfth columns
show the reduction factor obtained using these three msthod

Observe that the parameter that has more impact on the readattor is the number of
system users (ordinary and administrator users), so teaettuction factor increases w.r.t to this
parameter. For instance the experiment with 13 udérs { |N| = 3 + 10) leads to a reduction
factor of approximately 30 whatever the method.

6.2. A client-server example

The client-server example, in Fig. 9, is composed of a finit@ber of terminals and a Remote
Terminal Server (RTS). Via a terminal, a client tries to ogenonnection with the RTS. This
connection is accepted if the maximum load of the RTS has eehlbeached yet and then it is
authenticated. Once authenticated, a client asks for aceetivat can beon-critical (submodel
N3s) or critical (submodelV,, N5 and Ng). Non-critical services can be handled simultaneously,
while a critical service must be performed in mutual exauaswith any other service. The system
ensures a weak priority for non-critical services basedwavemechanism. The wave consists of
the clients currently accepted by the RTS (submadgl Once a client chooses a critical service
accepted by the RTS, no more clients can join the wave. @riservices are performed only
when there are no more clients in the authentication stage @mnon-critical service execution.
When the last critical service of the wave completes, a newewan start. For efficiency reasons,
during a wave the RTS accepts a limited number of differentaaent user classes in the critical
services. A critical service request related to a user e¢lasget in competition is rejected if the
maximum number of concurrent user classes has been reached.

A critical service is divided into two sequential stages:regpocessing step that can be per-
formed concurrently and a main step that is performed in alugMecution. A priority rule is
applied and the requests access the critical section foliptlae order of the user classes. Observe
that in this case the first critical service that has achiésgareprocessing step must wait if it does
not belong to the highest priority user class in competition

This example is a refinement of the previous one when we cen#ig critical services as
write processes and the non-critical as read processeastii@rsynchronization step occurs at the
end of a wave which includes multiple critical services.tRarmore the overlapping of the asym-
metrical part of the behavior and the symmetrical one is nmoportant since the preprocessing
step of critical service is symmetrical whereas the engramthe critical section is asymmetrically
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Figure 8: SWN model implementing the Reader-Writer pattern

SRG ESRG RESRG (Exact) RESRG (Strong) DSRG
Z,|M[,IN] St. StEsm. +Ev) [ Peak St. | Peak [ pSRG_ St. | Peak [ pSRG_ St. | BEa
6,1,3 1,535 491+3 141 492 492 3.12 491 491 3.12 491 3.12
6,1,6 21,338 4,951+3 1,263 4,952 4,952 4.30 4,951 4,951 4.30 4,951 4.30
6,1,8 75,968 15,731+3 3,625 15,732 15,732 | 4.82 15,731 15,731 | 4.82 5,732 4.82
6,1,10 216,218 41,407+3 8,682 41,407 | 41,407 5.22 41,406 | 41,406 5.22 41,406 | 5.22
6,2,6 97,358 9,076+3 5,387 9,077 9,077 10.72 9,076 9,078 10.72 9,076 10.72
6,2,8 344,192 26,027+3 15,716 26,028 26,028 13.22 26,027 26,027 13.22 26,028 10.72
6,2,10 974,976 63,701+3 37,896 63,702 | 63,702 | 15.30 63,701 | 63,701 | 15.30 63,701 | 15.30
6,3,6 321,638 15,731+4 16,641 15,732 15,732 20.44 15,731 15,731 20.44 15,731 | 20.44
6,3,8 1,131,671 || 41,406+4 49,369 41,407 | 41,407 22.92 41,406 | 41,406 22.92 41,406 | 22.92
6,3,10 3,195,194 || 95,201+4 120,085 || 95,202 | 95,202 | 33.56 95,201 | 95,201 | 33.56 95,202 | 33.56
8,1,6 77,816 16732+3 3,667 16,733 | 16,733 | 4.65 16,732 | 16,733 | 4.65 16,732 | 4.65
10,1,6 228,230 46,476+3 8,985 46,477 | 46,477 | 4.91 46,476 | 46,476 | 4.91 46,476 | 4.91
12,1,6 574,394 112,269+3 19,427 112,270 | 112,270| 5.11 112,269 | 112,269 | 5.11 112,269 | 5.11

Table 3: Results for the Reader-Writer example in Fig. 8.
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managed. However the propagation of asymmetry dependsmfatitors: the maximal load of
the RTS and the maximum number of simultaneous user classes.

Let us examine in more details Table 4. The first column shtvesekperiment parameters:
Local, GC, LC, Prio.

e Local: represents the number of terminals, affects only the tatimehavior of the system
(outside the server). The increase of the number of termidaeés not affect the internal
activities of the server

e GC(< Local): represents the maximum number of users allowed to sinesiasly access
the server. This parameter has crucial impact on the gladde\aor of the server. Actually,
its value affects the symmetric part as well as the asymmetre.

e Prio: represents the cardinality of the color cl@ssSince there is a bijection between this
cardinality and the number of different priority classe® @bserve a strong dependency
between the value of this parameter and the efficiency of iffexreht approaches.

e LC(< Prio): the maximum number of user classes allowed to access, taimealusly,
the critical part. The value of this parameter will affecssentially, the behavior of the
asymmetric part (with some side effect on the symmetric)part

The other columns have the same meaning of the columns irr¢heps table.

We notice here the significant reduction achieved by the D8RG ESRG w.r.t. the SRG.
For instance, in case 8,5,3,5 the ESRG reduction factoh @obng and exact) ¥5.53, while the
DSRG reduction i27.95. However, we remark that in this model the memory peaks ofwize
approaches based on the ESRG have a high impact. For instan8¢5,3,8 the ESRG cannot be
computed due to its computation peak. Hence the final aggoagzbtained by the two approaches
based on the ESRG is better, but that the number of real ES¥ewamntualities stored during the
computation is greater than that of the DSRG.

6.3. A workflow example

A workflow is a set of tasks organized through a model thatriless the triggering conditions
for every task. It is usually described by operators likeusgdjial flow, parallel flow, choice flow,
etc. that are easily modeled by an ordinary Petri net. Intanfdiwith every task is associated a
set of agents which are allowed to perform it. A job is an ins&aof a workflow and we consider
simultaneous executions of jobs with the same workflow.

Our experiment is based on the fixed control flow shown in theNSWodel in Fig. 10. The
asymmetry is due to the set of agents which are divided ingg¢d; }c(1,2,3), according to their
authorization levels: an agente G; has less authorizations than an aggnt G s.t. j > i. We
specify for every tasi’ an execution threshold7"): an agent irG; is allowed to perform tasi’
if i >4(T).

The execution cost of a task depends both on the executieratn on its execution threshold.
Thus this model enforces a policy that aims at minimizingagkecution time of special tasks with
a high execution threshold. So with every execution thriesive associate a maximum number
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Figure 9: SWN model representing a client-server with caitsection example.
SRG ESRG RESRG (Exact) RESRG (Strong) DSRG

Local, GC, St. St. (Esm. + Ev.) Peak St. ‘ Peak ‘ e St. ‘ Peak ‘ P St. o
LC, Prio

3,325 | 19,108 981 + 470 4,050 998 1,727 | 19.14 998 1,727 [ 19.14 1,217 [ 15.70
3,328 | 72,772 981 + 1,316 17,028 || 998 3,185 | 7291 998 3,185 | 72.91 1,436 | 50.67
3333 | 4,778 1,028+179 846 1,064 | 1,128 | 4.49 1,060 | 1,228 | 4.49 1,142 | 418
3335 | 19,918 1,028+850 4,080 1,064 | 2,326 | 18.71 1,060 | 2,326 | 18.71 1613 | 12.34
3,338 | 77,308 1,028+ 3,444 17,196 || 1,064 | 6,498 | 72.93 1,060 | 6,498 | 72.63 2,765 | 27.95
85,3,3 | 496,618 || 90,429 +4,522 | 59,187 || 92,600 | 96,088 | 5.36 92,224 | 96,088 | 5.36 94,593 [ 5.25
85,3,5 | 4,788,499 108,205 + 28,040 691,390 || 110,376 | 159,104 | 45.53 110,000 | 159,104 | 45.53 134,553 | 35.58
8,5,3,8 - out of memory - - - - - - - 193,401 -

Table 4:

Results for the clients-server example in Fig. 9
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Figure 10: SWN of the workflow example.

of simultaneous executions. Then, when a task is triggéresdjueued and later on it is executed.
A task is executed if the following conditions are fulfilled:

e there is no running or waiting special task with higher exiecuthreshold,;
e there are only running tasks with the same execution thidsho

e the maximum number of simultaneous executions correspgridiits execution threshold
IS not reached.

Most of the tasks can be executed by every agent, we cabhrinal tasks the other ones
are calledspecial tasks The symmetrical behavior corresponds to a wave of exegutarmal
tasks (submodel;) whereas the asymmetrical behavior corresponds to a waspemfial task
executions with the same execution threshold (submo@el The synchronization steps occur
after every wave execution. Observe here that between tachsynization steps there is either a
symmetrical behavior or an asymmetrical one but not both.

Let us examine in more details Table 5, that shows some erpats performed on this model
for different values of its parameters: the number of taaks (<), the maximum number of si-
multaneous executions for each threshalyl, the number of normal agentg; |) and the number
of special agents|G2| + |G3|). We observe that both these methods reach the same raductio
factor; moreover the parameters that have more impact orethestion factor are the number of
total tasks and the maximum number of simultaneous exewutar normal tasks. The reduction
factor is increasing w.r.t to these two parameters.
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SRG ESRG RESRG (Exact) RESRG (Strong) DSRG

}‘<, al‘, a‘xz, a’flGl I St. St(Esm. +Ev) Peak St. ‘ Peak ‘ o BG St. ‘ Peak ‘ e St. SEG
Ga|+|G3

5-4-2-1-2-2 3,550 1,003+274 682 1,003 | 1,244 3.53 1,003 | 1,244 3.53 1,003 3.53
10-4-2-1-2-2 40,060 9,643+2,199 5,447 9,643 11,444 | 4.15 9,643 11,444 | 4.15 9,643 4.15
15-4-2-1-2-2 151,045 34,933+6,614 | 17,417 || 34,933 | 40,869 | 4.32 34,933 | 40,869 | 4.32 34,933 | 4.32
5-4-3-2-2-4 7,994 1,429+1044 1,878 2,437 2,440 3.28 1,429 2,440 5.59 1,429 5.59
10-4-3-2-2-4 108,789 13,889+10,504| 17,708 || 24,147 | 24,175 | 4.50 13,889 | 24,175 | 7.82 13,899 | 7.82
15-4-3-2-2-4 431,134 50,399+38,289| 63,413 || 87,932 | 88,010 | 4.90 50,399 | 88,010 | 8.55 50,399 | 8.55
15-4-2-1-3-2 200,467 34,933+6,614 | 23,483 || 34,933 | 40,869 | 5.73 34,933 | 40,869 | 5.73 34,933 | 5.73
15-6-2-1-4-2 383,108 55,497+6,814 | 40,776 || 55,497 | 61,433 | 6.90 55,497 | 61,433 | 6.90 55,497 | 6.90
15-8-2-1-6-2 655,095 74,951+7,023 | 62,540 || 74,951 | 80,887 | 8.74 74,951 | 80,887 | 8.74 80,887 | 8.74
15-10-2-1-8-2 | 885,630 89,075+7,467 | 70,031 || 89,075| 95,011 | 9.94 89,075 | 95,011 | 9.94 95,011 | 9.94
15-12-2-1-10-2| 1,026,425 96,401+9,453 | 71,517 || 96,401 | 102,337 | 10.64 96,401 | 102,337 | 10.64 102,337 | 10.64
15-15-2-1-13-2| 1,086,911 || 98,556+10,345| 71,573 || 98,556 | 104,492 | 11.02 98,556 | 104,492 | 11.02 98,556 | 11.02

Table 5: Results for the workflow example in Fig 10

6.4. A cluster computing example

This pattern corresponds to a finite set of machines groupetusters. Each cluster has
mastermachine and a set gfavemachines. Every machine can fail while being idle or working
While idle, the failing of a slave machine means its removiogn the cluster, for (local) updat-
ing/maintenance reasons. It is put back in its environmsrsio®@n as it is reconfigured. Instead,
if it fails while working because of a hardware/softwarelgem then its last stable state is saved.
Afterwards it is repaired and finally restarted.

The failing of a master has a different consequence: theewtlakter is no longer reachable.
Actually, even if the slave machines of the cluster are na fail state, the absence of a master
makes the cluster in an unstable state. In such a case, sterchecomes unavailable until the
recover of the master machine.

The system presents a symmetrical behavior until the fitstéa However after this failure we
cannot identify synchronization steps. Thus the achieeddction is poor as detailed in Table 6.
The SWN model implementing the cluster computing pattershiswvn in Fig. 11. It is divided
in four submodelsVy, N,, N3 and N,. N; models the jobs submission and the cluster/machine
assignment)V, the machines and clusters statdg,the correct job execution (without failure),
and N, the job failure due to the failure of the machine or the clugtigere it is running.

Several experiments have been performed on this SWN maddiffierent values of the system
parameters: the number of jodd ¢b|), the number of clusters(/|) and the number of machines
per cluster (M), but the best result obtained for the reduction factor $s lhan3. It is worth
noting that the number of ESM and eventualities stored duitie generation of the ESRG and
during the refinement steps is close to {R&G|; moreover the DSRG size in the worst case is
higher than the SRG one (e.g. case 16-2-8-2).

Remarks. The reader may refer to [25] for a detailed description otlal models presented in
this section. Let us add few comments on the computatiorstmhéhe experiments performed on
these case studies and on the benchmark models. In gehesaot easy to forecast the required
memory and time resources required by each method for a §VéN model just analysing its

structure From the experimental results we observed teaD®RG computation time is lower
than the ESRG one for the reader-writer model and those iexeets on the benchmark models
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Figure 11: SWN representing an example of cluster computing

when there is a complete sequentialization between the gyritand the asymmetric behaviors.
For instance, for the case 6-1-8 of reader-writer model t8®0B computation time is 633s, while
the ESRG(exact) one is 871s.

Instead, the DSRG computation time is higher than the ESR&fanthe workflow model,
the client-server model and those experiments on benchmadels when there is no complete
sequentialization between the symmetric and the asynergehaviors leading to a number of
states in the DSRG significantly above the number of ESMs.tl®icase 6-6-3-3-2 of the first
benchmark model the DSRG computation time-is7h, while the ESRG(exact) oneAs38h.

Finally, in the cluster computing example the DSRG compartais considerably higher than
ESRG one. For instance, for the case 5-2-5-3 the DSRG cotnputame is 148s, while the
ESRG oneis 32s.

7. Application of the methods to other models
7.1. DS for Stochastic Automata Networks

Stochastic Automata Networks [23] describe a system asd sebsystems that interact. Each
subsystem is modeled by an automaton with stochastic fssaguch that, given an appropriate
semantics, the whole system is a CTMC. More precisely, etransition is labeled by &cal
or asynchronizecvent. A synchronized event occurs in several automatapbtieem being its
triggering automaton; a local event only occurs in its triggering awton. In addition, every
transition is labeled by a rate in the corresponding trigmeautomaton. At last, the rate may
be a function of theglobal state In a global stateife. one state per automaton) an event is
enabled when there is a possible transition in the statdseeaitsociated automata. Its rate is then
obtained by applying the corresponding function to theentrstate. The interest of this model
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SRG ESRG RESRG (Exact) RESRG (Strong) DSRG
|Joh,|CI[,|M] St. St.(Esm.+Ev) | Peak St. | Peak | SEG_ St. [ Peak | SEG_ St. Eyen
(2222 [ 1,808 || 220+1,601 | 1,634 | 897 | 1,803 | 210 || 625 | 1,795 | 2.84 || 2,008 | 0.9
52,2,3 3,776 408+3,318 3,352 1,790 | 3,776 2.10 1,254 | 3,703 3.01 3,646 1.03
52,2,4 6,295 641+5,468 5,330 2,790 | 6,295 2.25 1,861 6,080 3.38 5,771 1.09
52,25 9,002 900 +7,642 7,202 3,712 9,002 2.42 2,474 8,507 3.63 7,565 1.18
52,52 15,369 910+14,457 15,198 7,625 15,369 | 2.01 6,752 15,350 | 2.27 15,343 | 1
52,5,3 35,246 1,779+33,415 | 34,788 17,293 | 35,246 | 2.03 13,117 | 35,171 | 2.68 35037 | 1
52,5,4 66,413 2,971+63,226 | 65,162 32,217 | 66,413 | 2.06 20,602 | 66,168 | 3.22 65,575 | 1.01
52,55 109,118 || 4,483+103,947| 105,744 | 52,039 | 109,118 | 2.09 35,032 | 108,486 | 3.11 106,374 | 1.02
16,1,8,2 734 459+327 575 733 741 1 707 730 1.03 731 1
16,2,4,2 8,797 627+8,168 8,626 8,615 | 8,797 1.02 4,106 | 8,778 2.14 9,105 0.96
16,1,16,2 2,418 1,547+971 2,124 2,409 2,433 1.00 2,381 2,414 1.01 2,415 1.00
16,2,8,2 52,713 2,077+50,634 | 52,542 51,919 | 52,713 | 1.00 22,406 | 52,694 | 2.35 53,010 | 0.99

Table 6: Results for the cluster computing example in Fig. 11

lies in the expression of its infinitesimal generator whishaitensorial expression of matrices
whose dimension are the the size of the local state spacesetiaing to a drastic reduction of the
required memory. In [4], the model is specialized: Stodbastitomata Networks with replicas
are defined by a partition of automata. Inside a set of thetioartalled areplica, the automata
have the same behavior. Furthermore synchronization araifuns of rates must be symmetric.
In that case, a local lumping is possible and one still hassotigal expression where the matrices
are now related to the aggregation inside the replicas.

In order to allow partial symmetry and still obtain a tenabexpression, asymmetries should
only occur in local events. The asymmetries could be defiyealdet of control automata, one per
replica that never disable synchronizing event. With tssuanption, we could apply a specializa-
tion of algorithm 1.

Observe that this algorithm operates at a symbolical lendlthus does not require any rate
computation in order to builg 4. The specialization is easier than the one for SWNs and dmauld
seen as a particular case with a single class. On the contraoy the aggregated states are built,
the computation of the rates of the local matrices is morelvad but can be obtained following
the method of [4].

7.2. TLS for Stochastic Activity Networks

The Stochastic Activity Network formalism [6] is a Petri Nite language with features that
make it easier to model quite complex systems. The featategimore relevant in the context of
this paper is the way models can be composed from submod#lscanthis can be exploited to
build a more compact reachability graph and correspondinfC [6, 7]. A Stochastic Activity
Network model is defined hierarchically by instantiatindgpsets, and joining subnets on shared
places. When a subnet is instantiated it can be replicategtaeimes: since the replicas are
identical, their state can be described in a compact waygehanmmstead of keeping track of the
state of each single (and uniquely identified) subnet in &éteamly the number of subnets in each
state is recorded, disregarding the information on whigtsjg subnet is in a given state. This is
a type of symmetry that could be easily captured by the SRGrighgn on an SWN-like version of
the Stochastic Activity Network model (by using coloredgaa and transitions in the subnet to be
replicated). Although the subnets replication mechaniffered by Stochastic Activity Network
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is less powerful than using colors, from the point of view o imodeler this mechanism can be
more intuitive and easier to use, and it should be used idsiéaolors whenever appropriate.
Also the more abstract state representation is simplertti@symbolic marking one devised for
the SWNs. A little extension to the Stochastic Activity Netk formalism may allow to take into
account situations leading to partial symmetries and m¢hse the TLS method could be applied.

The extension could be as follows: when specifying a sulireetLild be associated with a set
of "versions”, e.g.Versions = { A, B, C'}; the transitions in the subnet are annotated with subsets
of Versions (the default being the whole setersions). The intended meaning is that we have
slightly different versions of the same subnet (e.g. thewsrversions may have identical structure
but a few transitions with different rate), and that the siians enabling is conditioned on the
version a given subnet belongs to. The replicate operatiweiextended formalism must provide
the number of instances of the subnet for each elemeVikiions. This extension introduces
something similar to static subclasses in the SWN coloselssin the current Stochastic Activity
Network formalism such a situation would require to defingesate submodels and to use several
replication operators, one for each "subnet version”.

On such extended Stochastic Activity Network formalism Th&S method could be applied:
indeed the more abstract state representation is the onedhsiders all subnets as completely
symmetric. As long as only symmetric transitions are erdafile. the ones annotated with the
whole setV ersions) then the abstract state representation can be kept, arsitioa can be fired
from such representation leading to another abstract septation; only when at least one of
the asymmetric transitions (i.e. one transition annotaigd a proper subset of ersions) is
enabled, then a refinement is needed, and the different defiragkings separating the various
subnet versions are generated: the asymmetric transérerised from the more refined markings,
and lead to refined markings (associated with a more abs#&pisentation). The final structure
derived by applying this procedure is similar to the ESRGSWYNs, and it must be checked
against one lumpability condition and possibly refined ttaoba proper lumped Markov chain.

8. Conclusion and future work

In this paper the DS and TLS methods have been presentedgtaiis to generate a lumped
CTMC from a partially symmetrical and almost symmetricalNOT specification respectively.
They can be efficiently applied only if the MCs on which thegogie can be handled symbolically,
exploiting the gpriori known presence of symmetries: this happens when they areeddrom
a higher level model, such as an SWN, where the presence dasynrbehaving components
is made explicit. Implementation issues have also beenuslssd referring to SWNs. Six case
studies are presented to show the methods effectivenegb@in@pplicative interest. Moreover
we have presented a characterization of the type of modais#m fully exploit the potential of
the presented methods, based on their structural propertie

A possible line of development is to complement these methdath the possibility of com-
puting bounds on the performance indices by transformiegpirtially symmetrical MC into a
symmetrical one, and using stochastic ordering argumé&intslly the presentation of the meth-
ods in a general setting could be a good starting point tonelxtieeir application to other high
level formalisms able to highlight the presence of simyldaéhaving components: two examples
of application have been suggested in the paper.
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