
2

Least and Greatest Fixed Points in Linear Logic

DAVID BAELDE, University of Minnesota

The first-order theory of MALL (multiplicative, additive linear logic) over only equalities is a well-structured
but weak logic since it cannot capture unbounded (infinite) behavior. Instead of accounting for unbounded
behavior via the addition of the exponentials (! and ?), we add least and greatest fixed point operators. The
resulting logic, which we call μMALL, satisfies two fundamental proof theoretic properties: we establish
weak normalization for it, and we design a focused proof system that we prove complete with respect to
the initial system. That second result provides a strong normal form for cut-free proof structures that can
be used, for example, to help automate proof search. We show how these foundations can be applied to
intuitionistic logic.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]: Mathematical
Logic—Proof theory; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning
about Programs—Specification techniques; F.3.3 [Logics and Meanings of Programs]: Studies of
Program Constructs—Program and recursion schemes

General Terms: Design, Theory, Verification

Additional Key Words and Phrases: Fixed points, linear logic, (co)induction, recursive definitions, cut
elimination, normalization, focusing, proof search

ACM Reference Format:
Baelde, D. 2012. Least and greatest fixed points in linear logic. ACM Trans. Comput. Logic 13, 1, Article 2
(January 2012), 44 pages.
DOI = 10.1145/2071368.2071370 http://doi.acm.org/10.1145/2071368.2071370

1. INTRODUCTION

Inductive and coinductive definitions are ubiquitous in mathematics and computer sci-
ence, from arithmetic to operational semantics and concurrency theory. These recur-
sive definitions provide natural and very expressive ways to write specifications. The
primary means of reasoning on inductive specifications is by induction, which involves
the generalization of the tentative theorem in a way that makes it invariant under
the considered inductive construction. Although the invariant might sometimes be the
goal itself, it can be very different in general, sometimes involving concepts that are
absent from the theorem statement. When proving theorems, most of the ingenuity
actually goes into discovering invariants. Symmetrically, proving coinductive specifi-
cations is done by coinduction, involving coinvariants which again can have little to do
with the initial specification. A proof theoretical framework supporting (co)inductive
definitions can be used as a foundation for prototyping, model checking, and reason-
ing about many useful computational systems. But that great expressive power comes

This work has been supported in part by the National Science Foundation grant CCF-0917140 and by
INRIA through the “Equipes Associés” Slimmer. Opinions, findings, and conclusions or recommendations
expressed in this article are those of the author and do not necessarily reflect the views of the National
Science Foundation.
Author’s address: D. Baelde; email: david.baelde@ens-lyon.org.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of
this work in other works requires prior specific permission and/or a fee. Permissions may be requested from
the Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1529-3785/2012/01-ART2 $10.00

DOI 10.1145/2071368.2071370 http://doi.acm.org/10.1145/2071368.2071370

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

2:2 D. Baelde

with several difficulties such as undecidability, and even nonanalyticity: because of
(co)induction rules and their arbitrary (co)invariants, proofs do not enjoy any reason-
able form of subformula property. Nevertheless, we shall see that modern proof theory
provides useful tools for understanding least and greatest fixed points and controlling
the structure of proofs involving those concepts.

Arguably, the most important property of a logic is its consistency. In sequent calcu-
lus, consistency is obtained from cut elimination, which requires a symmetry between
one connective and its dual, or in other words between construction and elimination,
conclusion and hypothesis. The notions of polarity and focusing are more recent in
proof theory but their growing importance puts them on par with cut elimination. Fo-
cusing organizes proofs in stripes of asynchronous and synchronous rules, removing
irrelevant interleavings and inducing a reading of the logic based on macroconnectives
aggregating stripes of usual connectives. Focusing is useful to justify game theoretic
semantics [Delande and Miller 2008; Delande et al. 2010; Miller and Saurin 2006]
and has been central to the design of Ludics [Girard 2001]. From the viewpoint of
proof search, focusing plays the essential role of reducing the space of the search for
a cut-free proof, by identifying situations when backtracking is unnecessary. In logic
programming, it plays the more demanding role of correlating the declarative meaning
of a program with its operational meaning, given by proof search. Various computa-
tional systems have employed different focusing theorems: much of Prolog’s design
and implementations can be justified by the completeness of SLD resolution [Apt and
van Emden 1982]; uniform proofs (goal-directed proofs) in intuitionistic and intuition-
istic linear logics have been used to justify λProlog [Miller et al. 1991] and Lolli [Hodas
and Miller 1994]; the classical linear logic programming languages LO [Andreoli and
Pareschi 1991], Forum [Miller 1996] and the inverse method [Chaudhuri and Pfenning
2005] have used directly Andreoli’s general focusing result [Andreoli 1992] for linear
logic. In the presence of fixed points, proof search becomes particularly problematic
since cut-free derivations are not analytic anymore. Many systems use various heuris-
tics to restrict the search space, but these solutions lack a proof theoretical justifica-
tion. In that setting, focusing becomes especially interesting, as it yields a restriction
of the search space while preserving completeness. Although it does not provide a
way to decide the undecidable, focusing brings an appreciable leap forward, pushing
further the limit where proof theory and completeness leave place to heuristics.

In this article, we propose a fundamental proof-theoretic study of the notions of least
and greatest fixed point. By considering fixed points as primitive notions rather than,
for example, encodings in second-order logic, we shall obtain strong results about the
structure of their proofs. We introduce the logic μMALL which extends the multiplica-
tive and additive fragments of linear logic (MALL) with least and greatest fixed points
and establish its two fundamental properties, that is, cut elimination and focusing.
There are several reasons to consider linear logic. First, its classical presentation al-
lows us to internalize the duality between least and greatest fixed point operators, ob-
taining a simple, symmetric system. Linear logic also allows the independent study of
fixed points and exponentials, two different approaches to infinity. Adding fixed points
to linear logic without exponentials yields a system where they are the only source of
infinity; we shall see that it is already very expressive. Finally, linear logic is simply a
decomposition of intuitionistic and classical logics [Girard 1987]. Through this decom-
position, the study of linear logic has brought a lot of insight to the structure of those
more common systems. In that spirit, we provide in this paper some foundations that
have already been used in more applied settings.

The logic μMALL was initially designed as an elementary system for studying the
focusing of logics supporting (co)inductive definitions [Momigliano and Tiu 2003]; leav-
ing aside the simpler underlying propositional layer (MALL instead of LJ), fixed points

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

Least and Greatest Fixed Points in Linear Logic 2:3

are actually more expressive than this notion of definition since they can express mu-
tually recursive definitions. But μMALL is also relatively close to type theoretical
systems involving fixed points [Matthes 1999; Mendler 1991]. The main difference
is that our logic is a first-order one, although the extension to second-order would be
straightforward and the two fundamental results would extend smoothly. Inductive
and coinductive definitions have also been approached by means of cyclic proof sys-
tems [Brotherston 2005; Santocanale 2001]. These systems are conceptually appeal-
ing, but generally weaker in a cut-free setting; some of our earlier work [Baelde 2009]
addresses this issue in more details.

There is a dense cloud of work related to μMALL. Our logic and its focusing have
been used to revisit the foundations of the system Bedwyr [Baelde et al. 2007], a
proof search approach to model checking. A related work [Baelde 2009] carried out
in μMALL establishes a completeness result for inclusions of finite automata leading
to an extension of cyclic proofs. The treatment of fixed points in μMALL, as presented
in this paper, can be used in full linear logic (μLL) and intuitionistic logic (μLJ). μLL
has been used to encode and reason about various sequent calculi [Miller and Pimentel
2010]. μLJ has been given a game semantics [Clairambault 2009], and has been used
in the interactive theorem prover Tac where focusing provides a foundation for au-
tomated (co)inductive theorem proving [Baelde et al. 2010], and in Nigam [2009] to
extend a logical approach to tabling [Miller and Nigam 2007] where focusing is used to
avoid redundancies in proofs. Finally, those logics have also been extended with (min-
imal) generic quantification [Baelde 2008b; Miller and Tiu 2005], which fully enables
reasoning in presence of variable binding, e.g., about operational semantics, logics or
type systems.

The rest of this article is organized as follows. In Section 2, we introduce the logic,
provide a few examples, and study its basic proof theory. Section 3 establishes cut
elimination for μMALL, by adapting the candidates of reducibility argument to ob-
tain a proof of weak normalization. Finally, we investigate the focusing of μMALL in
Section 4, and present a simple application to intuitionistic logic.

2. μMALL

We assume some basic knowledge of simply typed λ-calculus [Barendregt 1992] which
we leverage as a representation framework, following Church’s approach to syntax.
This allows us to consider syntax at a high-level, modulo αβη-conversion. In this style,
we write Px to denote a formula from which x has been totally abstracted out (x does
not occur free in P), so that Pt corresponds to the substitution of x by t, and we write
λx.P to denote a vacuous abstraction. Formulas are objects of type o, and the syntactic
variable γ shall represent a term type, that is, any simple type that does not contain
o. A predicate of arity n is an object of type γ1 → . . . → γn → o, and a predicate
operator (or simply operator) of first-order arity n and second-order arity m is an object
of type τ1 → . . . → τm → γ1 → . . . → γn → o where the τi are predicate types of
arbitrary arity. We shall see that the term language can in fact be chosen quite freely:
for example terms might be first-order, higher-order, or even dependently typed, as
long as equality and substitution are defined.

We shall denote terms by s, t; formulas by P, Q; operators by A , B; term variables
by x, y; predicate variables by p, q; and atoms (predicate constants) by a, b . The syntax
of μMALL formulas is as follows:

P ::= P ⊗ P | P ⊕ P | P ` P | P & P | 1 | 0 | ⊥ | � | a�t | a⊥�t
| ∃γ x. Px | ∀γ x. Px | s =γ t | s
=γ t

| μγ1...γn(λpλ�x. Pp�x)�t | νγ1...γn(λpλ�x. Pp�x)�t | p�t | p⊥�t

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

2:4 D. Baelde

The quantifiers have type (γ → o)→ o and the equality and disequality (i.e.,
=) have
type γ → γ → o. The connectives μ and ν have type (τ → τ) → τ where τ is γ1 →
· · · → γn → o for some arity n ≥ 0. We shall almost always elide the references to
γ , assuming that they can be determined from the context when it is important to
know their value. Formulas with top-level connective μ or ν are called fixed point
expressions and can be arbitrarily nested (such as in ν(λp. p ⊗ μ(λq. 1 ⊕ a ⊗ q)),
written νp. p ⊗ (μq. 1 ⊕ a⊗ q) for short) and interleaved (e.g., μp. 1 ⊕ μq. 1 ⊕ p ⊗ q).
Nested fixed points correspond to iterated (co)inductive definitions while interleaved
fixed points correspond to mutually (co)inductive definitions, with the possibility of
simultaneously defining an inductive and a coinductive.

Note that negation is not part of the syntax of our formulas, except for atoms and
predicate variables. This is usual in classical frameworks, where negation is instead
defined as an operation on formulas.

Definition 2.1 Negation (P⊥,B). Negation is the involutive operation on formulas
satisfying the following equations:

(P ` Q)⊥ ≡ P⊥ ⊗ Q⊥ (P & Q)⊥ ≡ P⊥ ⊕ Q⊥

⊥⊥ ≡ 1 �⊥ ≡ 0
(s = t)⊥ ≡ s
= t (∀x. Px)⊥ ≡ ∃x. (Px)⊥

(νB�t)⊥ ≡ μB�t (a⊥�t)⊥ ≡ a�t (p⊥�t)⊥ ≡ p�t
B ≡ λp1 . . . λpmλx1 . . . λxn. (Bp⊥1 . . . p⊥mx1 . . . xn)⊥ for operators

P⊥ ≡ λx1 . . . λxn. (Px1 . . . xn)⊥ for predicates

An operator B is said to be monotonic when it does not contain any occurrence of
a negated predicate variable. We shall write P � Q for P⊥ ` Q, and P ˛ Q for
(P � Q) & (Q � P).

We shall assume that all predicate operators are monotonic, and do not have any
free term variable. By doing so, we effectively exclude negated predicate variables p⊥
from the logical syntax; they are only useful as intermediate devices when computing
negations.

Example 2.2. We assume a type n and two constants 0 and s of respective types n
and n→ n. The operator (λpλx. x = 0 ⊕ ∃y. x = s (s y) ⊗ p y) whose least fixed point
describes even numbers is monotonic, but (λpλx. x = 0 ⊕ ∃y. x = s y ⊗ (p y � 0)) is
nonmonotonic because of the occurrence of p⊥y that remains once the definition of �
has been expanded and negations have been computed.

A signature, denoted by 	, is a list of distinct typed variables. We write 	
 t : γ
when t is a well-formed term of type γ under the signature 	; we shall not detail how
this standard judgment is derived. A substitution θ consists of a domain signature 	,
an image signature 	′, and a mapping from each x : γ in 	 to some term t of type γ
under 	′. We shall denote the image signature 	′ by 	θ . Note that we do not require
each variable from 	θ to be used in the image of 	: for example, we do consider
the substitution from 	 to (, x) mapping each variable in 	 to its counterpart in
the extended signature. If 	
 t : γ , then tθ denotes the result of substituting free
variables in t by their image in θ , and we have 	θ
 tθ : γ .

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

Least and Greatest Fixed Points in Linear Logic 2:5

Our sequents have the form 	;
 � where the signature 	 denotes universally quan-
tified terms,1 and � is a multiset of formulas, that is, expressions of type o under
	. Here, we shall make an exception to the higher-order abstract syntax notational
convention: when we write 	;
 � using the metavariable 	 (i.e., without detailing
the contents of the signature) we allow variables from 	 to occur in �. It is often
important to distinguish different occurrences of a formula in a proof, or track a par-
ticular formula throughout a proof; such distinctions are required for a meaningful
computational interpretation of cut elimination, and they also play an important role
in our focusing mechanisms. In order to achieve this, we shall use the notion of lo-
cation. From now on, we shall consider a formula not only as the structure that it
denotes, namely an abstract syntax tree, but also as an address where this structure
is located. Similarly, subformulas have their own locations, yielding a tree of locations
and sublocations. We say that two locations are disjoint when they do not share any
sublocation. Locations are independent of the term structure of formulas: all instan-
tiations of a formula have the same location, which amounts to say that locations are
attached to formulas abstracted over all terms. We shall not provide a formal defini-
tion of locations, which would be rather heavy, but a high-level description should give
a sufficient understanding of the concept. A formal treatment of locations can be found
in Girard [2001], and locations can also be thought of as denoting nodes in proof nets
or variable names in proof terms. Locations allow us to make a distinction between
identical formulas, which have the same location, and isomorphic formulas which only
denote the same structure. When we talk of the occurrences of a formula in a proof, we
refer to identical formulas occurring at different places in that derivation. We shall as-
sume that formulas appearing in a sequent have pairwise disjoint locations. In other
words, sequents are actually sets of formulas-with-location, which does not exclude
that a sequent can contain several isomorphic formulas.

We present the inference rules for μMALL in Figure 1. Rules which are not in the
identity group are called logical rules, and the only formula whose toplevel connective
is required for the application of a logical rule is said to be principal in that rule appli-
cation. In the
= rule, θ is a substitution of domain 	 ranging over universal variables,
�θ is the result of applying that substitution to every term of every formula of �. In
the ν rule, which provides both induction and coinduction, S is called the (co)invariant,
and is a closed formula of the same type as νB, of the form γ1 → · · · → γn → o. We
shall adopt a proof search reading of derivations: for instance, we call the μ rule “un-
folding” rather than “folding,” and we view the rule whose conclusion is the conclusion
of a derivation as the first rule of that derivation.

Inference rules should be read from the locative viewpoint, which we illustrate with
a couple of key examples. In the ∀ and ∃ rules, the premise and conclusion sequents
only differ in one location: the principal location is replaced by its only sublocation.
The premise sequents of the
= rule are locatively identical to the conclusion sequent,
except for the location of the principal
= formula that has been removed. Similarly in
the & rule, the formulas of the context � are copied in the two premises, each of them
occurring (identically) three times in the rule. In the axiom rule, the two formulas are
locatively distinct but have dual structures. In the ν rule, the formulas from the co-
invariance proofs have new locations, as well as the co-invariant in the main premise.
This means that these locations can be changed at will, much like a renaming of bound
variables. A greatest fixed point has infinitely many sublocations, regarding the coin-
variants as its subformulas. In the μ rule, the formula B(μB)�t is the only sublocation

1Term constants and atoms are viewed as being introduced, together with their types, in an external,
toplevel signature that is never explicitly dealt with. Predicate variables are not found in either of those
signatures; they cannot occur free in sequents.

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

2:6 D. Baelde

Fig. 1. Inference rules for first-order μMALL.

of the least fixed point. Distinct occurrences of μB in B(μB) (resp. νB in B(νB)) have
distinct locations, so that the graph of locations remains a tree. It is easy to check that
inference rules preserve the fact that sequents are made of disjoint locations.

Note that μMALL is a conservative extension of MALL, meaning that a MALL for-
mula is derivable in MALL if and only if it is derivable in μMALL: it is easy to check
that MALL and μMALL have the same cut-free derivations of MALL formulas, and
cut elimination will allow us to conclude.

In the following, we use a couple of notational shortcuts. For conciseness, and when
it does not create any ambiguity, we may use • to denote implicitly abstracted vari-
ables, for instance, P•x denotes λy.Pyx. Similarly, we may omit abstractions, for in-
stance, ⊥ used as a coinvariant stands for λ�x. ⊥ and, when S1 and S2 are predicates of
the same type, S1 ` S2 stands for λ�x. S1�x ` S2�x. Finally, we shall omit the signature of
sequents whenever unambiguous, simply writing
 �.

2.1 Equality

The treatment of equality dates back to Girard [1992] and Schroeder-Heister [1993],
originating from logic programming. In the disequality rule, which is a case analysis
on all unifiers, csu stands for complete set of unifiers, that is, a set S of unifiers of u .= v
such that any unifier σ can be written as θσ ′ for θ ∈ S. For determinacy reasons, we
assume a fixed mapping from unification problems to complete sets of unifiers, always
taking {id} for csu(u .= u). Similarly, we shall need a fixed mapping from each uni-
fier σ ′ ∈ csu(uθ

.= vθ) to a σ ∈ csu(u .= v) such that θσ ′ = σθ ′ for some θ ′; existence
is guaranteed since θσ ′ is a unifier of u .= v. In the first-order case, and in general
when most general unifiers exist, the csu can be restricted to having at most one ele-
ment. But we do not rule out higher-order terms, for which unification is undecidable
and complete sets of unifiers can be infinite [Huet 1975]; in implementations, we re-
strict to well-behaved fragments such as higher-order patterns [Miller 1992]. Hence,
the left equality rule might be infinitely branching. But derivations remain inductive

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

Least and Greatest Fixed Points in Linear Logic 2:7

structures (they don’t have infinite branches) and are handled naturally in our proofs
by means of (transfinite) structural induction. Again, the use of higher-order terms,
and even the presence of the equality connectives are not essential to this work. All
the results presented below hold in the logic without equality, and do not make much
assumptions on the language of terms.

It should be noted that our “free” equality is more powerful than the more usual
Leibniz equality. Indeed, it implies the injectivity of constants: one can prove for
example that ∀x. 0 = s x � 0 since there is no unifier for 0 .= s x. This example
also highlights that constants and universal variables are two different things, since
only universal variables are subject to unification, which is why we avoid calling them
eigenvariables. It is also important to stress that the disequality rule does not and
must not embody any assumption about the signature, just like the universal quanti-
fier. That rule enumerates substitutions over open terms, not instantiations by closed
terms. Otherwise, with an empty domain we would prove ∀x. x = x � 0 (no possible
instantiation for x) and ∀x. x = x, but not (without cut) ∀x. 0. Similarly, by considering
a signature with a single constant c : τ2, so that τ1 is empty while τ1 → τ2 contains
only λx. c, we would indeed be able to prove ∀x. x = x and ∀x. x = x � ∃y. x = λa. y but
not (without cut) ∀x∃y. x = λa. y.

Example 2.3. Units can be represented by means of = and
=. Assuming that 2 and
3 are two distinct constants, then we have 2 = 2 ˛ 1 and 2 = 3 ˛ 0 (and hence
2
= 2 ˛ ⊥ and 2
= 3 ˛ �).

2.2 Fixed Points

Our treatment of fixed points follows from a line of work on definitions [Girard 1992;
McDowell and Miller 2000; Momigliano and Tiu 2003; Schroeder-Heister 1993]. In
order to make that lineage explicit and help the understanding of our rules, let us con-
sider for a moment an intuitionistic framework (linear or not). In such a framework,
the rules associated with least fixed points can be derived from Knaster-Tarski’s char-
acterization of an operator’s least fixed point in complete lattices: it is the least of its
pre-fixed points.2

�x; BS�x
 S�x
	; μB�t
 S�t

	; �
 B(μB)�t
	; �
 μB�t

As we shall see, the computational interpretation of the left rule is recursion. Obvi-
ously, that computation cannot be performed without knowing the inductive structure
on which it iterates. In other words, a cut on S�t cannot be reduced until a cut on
μB�t is performed. As a result, a more complex left introduction rule is usually con-
sidered (e.g., in Momigliano and Tiu [2003]), which can be seen as embedding this
suspended cut:

	; �, S�t
 P �x; BS�x
 S�x
	; �,μB�t
 P

	; �
 B(μB)�t
	; �
 μB�t

Notice, by the way, how the problem of suspended cuts (in the first set of rules) and
the loss of subformula property (in the second one) relate to the arbitrariness of S, or
in other words the difficulty of finding an invariant for proving �,μB�t
 P.

2Pre-fixed points of φ are those x such that φ(x) ≤ x.

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

2:8 D. Baelde

Greatest fixed points can be described similarly as the greatest of the post-fixed
points:

	; �, B(νB)�t
 P
	; �, νB�t
 P

	; �
 S�t �x; S�x
 BS�x
	; �
 νB�t

Example 2.4. Let Bnat be the operator (λNλx. x = 0 ⊕ ∃y. x = s y ⊗ N y) and nat
be its least fixed point μBnat. Then the following inferences can be derived from the
preceding rules.

	; �, S t
 P
 S 0 y; S y
 S (s y)
	; �, nat t
 P 	; �
 nat 0

	; �
 nat t
	; �
 nat (s t)

Let us now consider the translation of those rules to classical linear logic, using the
usual reading of �
 P as
 �⊥, P where (P1, . . . , Pn)⊥ is (P⊥1 , . . . , P⊥n). It is easy to
see that the above right introduction rule for μ (resp. ν) becomes the μ (resp. ν) rule
of Figure 1, by taking �⊥ for �. Because of the duality between least and greatest
fixed points (i.e., (μB)⊥ ≡ νB) the other rules collapse. The translation of the above
left introduction rule for ν corresponds to an application of the μ rule of μMALL on
(νB�t)⊥ ≡ μB�t. The translation of the left introduction rule for μ is as follows.

 �⊥, S⊥�t, P
 (BS�x)⊥, S�x

 �⊥, (μB�t)⊥, P

Without loss of generality, we can write S as S′⊥. Then (BS�x)⊥ is simply BS′�x and we
obtain exactly the ν rule of μMALL on νB.

 �⊥, S′�t, P
 BS′�x, S′⊥�x

 �⊥, νB�t, P

ν

In other words, by internalizing syntactically the duality between least and greatest
fixed points that exists in complemented lattices, we have also obtained the identifica-
tion of induction and coinduction principles.

Example 2.5. As expected from the intended meaning of μ and ν, ν(λp.p) is provable
(take any provable formula as the coinvariant) and its dual μ(λp.p) is not provable.
More precisely, μ(λp.p) ˛ 0 and ν(λp.p) ˛ �.

2.3 Comparison with Other Extensions of MALL

The logic μMALL extends MALL with first-order structure (∀, ∃, = and
=) and fixed
points (μ and ν). A natural question is whether fixed points can be compared with other
features that bring infinite behavior, namely exponentials and second-order quantifi-
cation.

In Baelde and Miller [2007], we showed that μMALL can be encoded into full
second-order linear logic (LL2), that is, MALL with exponentials and second-order
quantifiers, by using the well-known second-order encoding.

[μB�t] ≡ ∀S. !(∀x. [B]S�x � S�x) � S�t
This translation highlights the fact that fixed points combine second-order aspects (the
introduction of an arbitrary (co)invariant) and exponentials (the iterative behavior of
the ν rule in cut elimination). The corresponding translation of μMALL derivations
into LL2 is very natural; anticipating the presentation of cut elimination for μMALL,
cut reductions in the original and encoded derivations should even correspond quite
closely. We also provided a translation from LL2 proofs of encodings to μMALL proofs,

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

Least and Greatest Fixed Points in Linear Logic 2:9

under natural constraints on second-order instantiations; interestingly, focusing is
used to ease this reverse translation.

It is also possible to encode exponentials using fixed points, as follows.

[?P] ≡ μ(λp. ⊥⊕ (p` p) ⊕ [P]) [!P] ≡ [?P⊥]⊥

This translation trivially allows to simulate the rules of weakening (W), contraction
(C) and dereliction (D) for [?P] in μMALL: each one is obtained by applying the μ
rule and choosing the corresponding additive disjunct. Then, the promotion rule can
be obtained for the dual of the encoding. Let � be a sequent containing only formulas
of the form [?Q], and �⊥ denote the tensor of the duals of those formulas, we derive

 �, [!P] from
 �, [P] using �⊥ as a coinvariant for [!P].

 �,�⊥
⊗, init

 1

 �, 1 W

 �,�⊥
⊗, init
 �,�⊥

⊗, init

 �,�, �⊥ ⊗ �⊥

 �,�⊥ ⊗ �⊥
C
 �, [P]

 �, 1 & (�⊥ ⊗ �⊥) & [P]

 �, ν(λp. 1 & (p ⊗ p) & [P])

ν

Those constructions imply that the encoding of provable statements involving expo-
nentials is also provable in μMALL. But the converse is more problematic: not all
derivations of the encoding can be translated into a derivation using exponentials. In-
deed, the encoding of [!P] is an infinite tree of [P], and there is nothing that prevents
it from containing different proofs of [P], while !P must be uniform, always providing
the same proof of P. Finally, accordingly with these different meanings, cut reductions
are different in the two systems.

It seems unlikely that second-order quantification can be encoded in μMALL, or
that fixed points could be encoded using only second-order quantifiers or only expo-
nentials. In any case, if such encodings existed they would certainly be as shallow as
the encoding of exponentials, that is, at the level of provability, and not reveal a con-
nection at the level of proofs and cut elimination like the encoding of fixed points in
LL2.

2.4 Basic Metatheory

Definition 2.6. If θ is a term substitution, and � a derivation of 	;
 �, then we
define �θ , a derivation of 	θ ;
 �θ : �θ always starts with the same rule as �, its
premises being obtained naturally by applying θ to the premises of �.

The only non-trivial case is the
= rule. Assuming that we have a derivation �
where u
= v is principal, with a subderivation �σ for each σ ∈ csu(u .= v), we build a
subderivation of �θ for each σ ′ ∈ csu(uθ

.= vθ). Since θσ ′ is a unifier for u .= v, it can
be written as σθ ′ for some σ ∈ csu(u .= v). Hence, �σθ ′ is a suitable derivation for σ ′.
Note that some �σ might be unused in that process, if σ is incompatible with θ , while
others might be used infinitely many times.3

Note that the previous definition encompasses common signature manipulations
such as permutation and extension, since it is possible for a substitution to only per-
form a renaming, or to translate a signature to an extended one.

3Starting with a
= rule on x
= y z, which admits the most general unifier [(y z)/x], and applying the substitu-
tion θ = [u v/x], we obtain u v
= y z which has no finite csu. In such a case, the infinitely many subderivations
of �θ would be instances of the only subderivation of �.

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

2:10 D. Baelde

We now define functoriality, a proof construction that is used to derive the following
rule.

�x;
 P�x, Q�x
	;
 BP, BQ

B

In functional programming terms, it corresponds to a map function: its type is
(Q � P) � (BQ � BP) (taking Q⊥ as Q in the above inference). Functoriality
is particularly useful for dealing with fixed points: it is how we propagate reason-
ing/computation underneath B [Matthes 1999].

Definition 2.7 Functoriality, FB(�). Let � be a proof of �x;
 P�x, Q�x and B be a
monotonic operator such that 	
 B : (�γ → o) → o. We define FB(�), a derivation of
	;
 BP, BQ, by induction on the maximum depth of occurrences of p in Bp:

— When B = λp. P′, FB(�) is an instance of init on P′.
— When B = λp. p�t, FB(�) is �[�t/�x].
— Otherwise, we perform an η-expansion based on the toplevel connective of B and

conclude by induction hypothesis. We only show half of the connectives, because
dual connectives are treated symmetrically. There is no case for units, equality, and
disequality since they are treated as part of the vacuous abstraction case.
When B = λp. B1 p ⊗ B2 p:

FB1 (�)

	;
 B1 P, B1 Q

FB2 (�)

	;
 B2 P, B2 Q

	;
 B1 P ⊗ B2 P, B1 Q, B2 Q
⊗

	;
 B1 P ⊗ B2 P, B1 Q ` B2 Q
`

.

When B = λp. B1 p ⊕ B2 p:

FB1 (�)

	;
 B1 P, B1 Q

	;
 B1 P ⊕ B2 P, B1 Q
⊕

FB2 (�)

	;
 B2 P, B2 Q

	;
 B1 P ⊕ B2 P, B2 Q
⊕

	;
 B1 P ⊕ B2 P, B1 Q & B2 Q
&

.

When B = λp. ∃x. B′px:

FB′•x(�)

	, x;
 B′Px, B
′
Qx

	, x;
 ∃x. B′Px, B
′
Qx
∃

	;
 ∃x. B′Px,∀x. B
′
Qx
∀
.

When B = λp. μ(B′p)�t, we show that ν(B′P⊥) is a coinvariant of ν(B′Q):

	;
 μ(B′P)�t, ν(B′P⊥)�t init

F(λp.B′ p(μ(B′P))�x)(�)

�x;
 (B′P)(μ(B′P))�x, (B′Q)(ν(B′P⊥))�x
�x;
 μ(B′P)�x, (B′Q)(ν(B′P⊥))�x

μ

	;
 μ(B′P)�t, ν(B′Q)�t
ν

.

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

Least and Greatest Fixed Points in Linear Logic 2:11

PROPOSITION 2.8 ATOMIC INITIAL RULE. We call atomic the init rules acting on
atoms or fixed points. The general rule init is derivable from atomic initial rules.

PROOF. By induction on P, we build a derivation of
 P⊥, P using only atomic
axioms. If P is not an atom or a fixed point expression, we perform an η-expansion as
in the previous definition and conclude by induction hypothesis. Note that although
the identity on fixed points can be expanded, it can never be eliminated: repeated
expansions do not terminate in general.

The constructions used above can be used to establish the canonicity of all our logical
connectives: if a connective is duplicated into, say, red and blue variants equipped with
the same logical rules, then those two versions are equivalent. Intuitively, it means
that our connectives define a unique logical concept. This is a known property of the
connectives of first-order MALL, we show it for μ and its copy μ̂ by using our color-blind
expansion.

 ν̂B�t, μ̂B�t init

 B(ν̂B)�x, B(μ̂B)�x init

 B(ν̂B)�x, μ̂B�x μ̂

 νB �t, μ̂B�t
ν

PROPOSITION 2.9. The following inference rule is derivable:

 �, B(νB)�t

 �, νB�t νR .

PROOF. The unfolding νR is derivable from ν, using B(νB) as the coinvariant
S. The proof of coinvariance
 B(B(νB))�x, B(μB)�x is obtained by functoriality on

 B(νB)�x, μB�x, itself obtained from μ and init.

Example 2.10. In general the least fixed point entails the greatest. The following
is a proof of μB�t � νB�t, showing that μB is a coinvariant of νB.

 νB �t, μB�t init

 B(μB)�x, B(νB)�x init

 B(μB)�x, νB�x νR

 νB �t, νB�t ν on νB�t with S := μB

The greatest fixed point entails the least fixed point when the fixed points are Noethe-
rian, that is, predicate operators have vacuous second-order abstractions. Finally, the
νR rule allows to derive μB�t ˛ B(μB)�t, or equivalently νB�t ˛ B(νB)�t.
2.5 Polarities of Connectives

It is common to classify inference rules between invertible and noninvertible ones. In
linear logic, we can use the refined notions of positivity and negativity. A formula P
is said to be positive (resp. Q is said to be negative) when P ˛ !P (resp. Q ˛ ?Q).
A logical connective is said to be positive (resp. negative) when it preserves positivity
(resp. negativity). For example, ⊗ is positive since P ⊗ P′ is positive whenever P
and P′ are. This notion is more semantical than invertibility, and has the advantage
of actually saying something about noninvertible connectives/rules. Although it does
not seem at first sight to be related to proof-search, positivity turns out to play an
important role in the understanding and design of focused systems [Danos et al. 1993,
1995; Laurent 2002; Laurent et al. 2005; Liang and Miller 2007].

Since μMALL does not have exponentials, it is not possible to talk about positiv-
ity following this traditional definition. Instead, we are going to take a backwards

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

2:12 D. Baelde

approach: we shall first define which connectives are negative, and then check that
the obtained negative formulas have a property close to the original negativity. This
does not trivialize the question at all: it turns out that only one classification allows to
derive the expected property. We refer the interested reader to Baelde [2008a] for the
extension of that proof to μLL, that is, μMALL with exponentials, where we follow the
traditional approach.

Definition 2.11. We classify as negative the following connectives: `, ⊥, &, �, ∀,
=,
ν. Their duals are called positive. A formula is said to be negative (resp. positive) when
all of its connectives are negative (resp. positive). Finally, an operator λpλ�x.Bp�x is said
to be negative (resp. positive) when the formula Bp�x is negative (resp. positive).

Notice, for example, that λpλ�x.p�x is both positive and negative. But μp.p is only
positive while νp.p is only negative. Atoms (and formulas containing atoms) are nei-
ther negative nor positive: indeed, they offer no structure4 from which the following
fundamental property could be derived.

PROPOSITION 2.12. The following structural rules are admissible for any negative
formula P.

	;
 �, P, P
	;
 �, P C

	;
 �

	;
 �, P W

We can already note that this proposition could not hold if μ was negative, since
μ(λp.p) cannot be weakened (there is obviously no cut-free proof of
 μ(λp.p), 1).

PROOF. We first prove the admissibility of W. This rule can be obtained by cutting
a derivation of 	;
 P, 1. We show more generally that for any collection of negative
formulas (Pi)i, there is a derivation of
 (Pi)i, 1. This is done by induction on the
total size of (Pi)i, counting one for each connective, unit, atom or predicate variable
but ignoring terms. The proof is trivial if the collection is empty. Otherwise, if P0 is a
disequality we conclude by induction with one less formula, and the size of the others
unaffected by the first-order instantiation; if it is � our proof is done; if it is ⊥ then P0
disappears and we conclude by induction hypothesis. The ` case is done by induction
hypothesis, the resulting collection has one more formula but is smaller; the & makes
use of two instances of the induction hypothesis; the ∀ case makes use of the induction
hypothesis with an extended signature but a smaller formula. Finally, the ν case is
done by applying the ν rule with ⊥ as the invariant.

 (Pi)i, 1

 ⊥, (Pi)i, 1
 B(λ�x.⊥)�x, 1

 νB�t, (Pi)i, 1

The two subderivations are obtained by induction hypothesis. For the second one there
is only one formula, namely B(λ�x.⊥)�x, which is indeed negative (by monotonicity of B)
and smaller than νB.

We also derive contraction (C) using a cut, this time against a derivation of
 (P `
P)⊥, P. A generalization is needed for the greatest fixed point case, and we derive the
following for any negative n-ary operator A:

 (A(νB1) . . . (νBn) ` A(νB1) . . . (νBn))⊥, A(νB1 ` νB1) . . . (νBn ` νBn).

4This essential aspect of atoms makes them often less interesting or even undesirable. For example, in
our work on minimal generic quantification [Baelde 2008b] we show and exploit the fact that this third
quantifier can be defined in μLJ without atoms.

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

Least and Greatest Fixed Points in Linear Logic 2:13

We prove this by induction on A as follows.

— It is trivial if A is a disequality, � or ⊥.
— If A is a projection λ�p. pi�t, we have to derive
 (νBi�t` νBi�t)⊥, νBi�t` νBi�t, which is

an instance of init.
— If A is λ�p. A1 �p ` A2 �p, we can combine our two induction hypotheses to derive the

following:

 ((A1(νBi)i ` A1(νBi)i) ` (A2(νBi)i ` A2(νBi)i))⊥, A1(νBi)i ` A2(νBi)i.

We conclude by associativity-commutativity of the tensor, which amounts to use cut
against an easily obtained derivation of
 ((P1`P2)`(P1`P2)), ((P1`P1)`(P2`P2))⊥
for Pj := A j(νBi)i.

— If A is λ�p. A1 �p & A2 �p we introduce the additive conjunction and have to derive two
similar premises:

 ((A1 & A2)(νBi)i ` (A1 & A2)(νBi)i)⊥, A j(νBi ` νBi)i for j ∈ {1, 2}
To conclude by induction hypothesis, we have to choose the correct projections for
the negated &. Since the & is under the `, we have to use a cut; one can derive in
general
 ((P1 & P2) ` (P1 & P2))⊥, Pj ` Pj for j ∈ {1, 2}.

— When A is λ�p. ∀x. A ′ �px, the same scheme applies: we introduce the universal vari-
able and instantiate the two existential quantifiers under the ` thanks to a cut.

— Finally, we treat the greatest fixed point case: A is λ�p. ν(A ′ �p)�t. Let Bn+1 be
A ′(νBi)i≤n. We have to build a derivation of

 (νBn+1�t` νBn+1�t)⊥, ν(A ′(νBi ` νBi)i)�t.
We use the ν rule, showing that νBn+1 ` νBn+1 is a coinvariant of ν(A ′(νBi ` νBi)i).
The left subderivation of the ν rule is thus an instance of init, and the coinvariance
derivation is as follows.

 (A ′(νBi)i(νBn+1)�x ` A ′(νBi)i(νBn+1)�x)⊥, A ′(νBi ` νBi)i(νBn+1 ` νBn+1)�x �′

 (νBn+1�x ` νBn+1�x)⊥, A ′(νBi ` νBi)i(νBn+1 ` νBn+1)�x cut

Here, �′ derives
 (νBn+1�x`νBn+1�x)⊥, A ′(νBi)i(νBn+1)�x` A ′(νBi)i(νBn+1)�x, unfolding
νBn+1 under the tensor. We complete our derivation by induction hypothesis, with
the smaller operator expression A ′ and Bn+1 added to the (Bi)i.

The previous property yields some interesting remarks about the expressiveness
of μMALL. It is easy to see that provability is undecidable in μMALL, by encoding
(terminating) executions of a Turing machine as a least fixed point. But this kind of
observation does not say anything about what theorems can be derived, that is, the
complexity of reasoning/computation allowed in μMALL. Here, the negative struc-
tural rules derived in Proposition 2.12 come into play. Although our logic is linear, it
enjoys those derived structural rules for a rich class of formulas: for example, nat is
positive, hence reasoning about natural numbers allows contraction and weakening,
just like in an intuitionistic setting. Although the precise complexity of the normaliza-
tion of μMALL is unknown, we have adapted some remarks from [Alves et al. 2006;
Burroni 1986; Girard 1987] to build an encoding of primitive recursive functions in
μMALL [Baelde 2008a]; in other words, all primitive recursive functions can be proved
total in μMALL.

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

2:14 D. Baelde

2.6 Examples

We shall now give a few theorems derivable in μMALL. Although we do not provide
their derivations here but only brief descriptions of how to obtain them, we stress that
all of these examples are proved naturally. The reader will note that although μMALL
is linear, these derivations are intuitive and their structure resembles that of proofs
in intuitionistic logic. We also invite the reader to check that the μ-focusing system
presented in Section 4 is a useful guide when deriving these examples, leaving only the
important choices. It should be noted that atoms are not used in this section; in fact,
atoms are rarely useful in μMALL, as its main application is to reason about (fully
defined) fixed points.

Following the definition of nat from Example 2.4, we define a few least fixed points
expressing basic properties of natural numbers. Note that all these definitions are
positive.

even
def
= μ(λEλx. x = 0 ⊕ ∃y. x = s (s y) ⊗ E y)

plus
def
= μ(λPλaλbλc. a = 0 ⊗ b = c

⊕ ∃a′∃c′.a = s a′ ⊗ c = s c′ ⊗ P a′ b c′)

leq
def
= μ(λLλxλy. x = y ⊕ ∃y′. y = s y′ ⊗ L x y′)

half
def
= μ(λHλxλh. (x = 0 ⊕ x = s 0) ⊗ h = 0

⊕ ∃x′∃h′. x = s (s x′) ⊗ h = s h′ ⊗ H x′ h′)

ack
def
= μ(λAλmλnλa. m = 0 ⊗ a = s n

⊕ (∃p. m = s p ⊗ n = 0 ⊗ A p (s 0) a)
⊕ (∃p∃q∃b . m = s p ⊗ n = s q ⊗ A m q b ⊗ A p b a))

The following statements are theorems in μMALL. The main insights required
for proving these theorems involve deciding which fixed point expression should be
introduced by induction: the proper invariant is not the difficult choice here since the
context itself is adequate in these cases.

 ∀x. nat x � even x ⊕ even (s x)

 ∀x. nat x � ∀y∃z. plus x y z

 ∀x. nat x � plus x 0 x

 ∀x. nat x � ∀y. nat y � ∀z. plus x y z � nat z

In the last theorem, the assumption (nat x) is not needed and can be weakened, thanks
to Proposition 2.12. In order to prove (∀x. nat x � ∃h. half x h) the context does not pro-
vide an invariant that is strong enough. A typical solution is to use complete induction,
that is, use the strengthened invariant (λx. nat x ⊗ ∀y. leq y x � ∃h. half y h).

We do not know of any proof of totality for a nonprimitive recursive function in
μMALL. In particular, we have no proof of ∀x∀y. nat x � nat y � ∃z. ack x y z.
The corresponding intuitionistic theorem can be proved using nested inductions, but it
does not lead to a linear proof since it requires to contract an implication hypothesis (in
μMALL, the dual of an implication is a tensor, which is not negative and thus cannot
a priori be contracted).

A typical example of co-induction involves the simulation relation. Assume that
step : state → label → state → o is an inductively defined relation encoding a labeled
transition system. Simulation can be defined using the definition

sim
def
= ν(λSλpλq. ∀a∀p′. step p a p′ � ∃q′. step q a q′ ⊗ S p′ q′).

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

Least and Greatest Fixed Points in Linear Logic 2:15

Reflexivity of simulation (∀p. sim p p) is proved easily by coinduction with the co-
invariant (λpλq. p = q). Instances of step are not subject to induction but are treated
“as atoms”. Proving transitivity, that is,

∀p∀q∀r. sim p q � sim q r � sim p r

is done by coinduction on (sim p r) with the coinvariant (λpλr. ∃q. sim p q ⊗ sim q r).
The focus is first put on (sim p q)⊥, then on (sim q r)⊥. The fixed points (sim p′ q′) and
(sim q′ r′) appearing later in the proof are treated “as atoms,” as are all instances
of step. Notice that these two examples are also cases where the context gives a
coinvariant.

3. NORMALIZATION

In Baelde and Miller [2007], we provided an indirect proof of normalization based on
the second-order encoding of μMALL. However, that proof relied on the normalization
of second-order linear logic extended with first-order quantifiers, and more importantly
equality, but this extension of Girard’s result for propositional second-order linear logic
is only a (mild) conjecture. Moreover, such an indirect proof does not provide cut re-
duction rules, which usually illuminate the structure and meaning of a logic. In this
article, we give the first direct and full proof of normalization for μMALL: we provide a
system of reduction rules for eliminating cuts, and show that it is weakly normalizing
by using the candidates of reducibility technique [Girard 1987]. Establishing strong
normalization would be useful, but we leave it to further work. Note that the candi-
dates of reducibility technique is quite modular in that respect: in fact, Girard [1987]
provided only a proof of weak normalizability together with a conjectured standard-
ization lemma from which strong normalization would follow. Also note, by the way,
that Girard’s proof applies to proof nets, while we shall work directly within sequent
calculus; again, the adaptation is quite simple. Finally, the candidate of reducibility is
also modular in that it relies on a compositional interpretation of connectives, so that
our normalization proof (unlike the earlier one) should extend easily to exponentials
and second-order quantification using their usual interpretations.

Our proof can be related to similar work in other settings. While it would technically
have been possible to interpret fixed points as candidates through their second-order
encoding, we found it more appealing to directly interpret them as fixed point candi-
dates. In that respect, our work can be seen as an adaptation of the ideas from Mendler
[1991] and Matthes [1999] to the classical linear setting, where candidates of reducibil-
ity are more naturally expressed as biorthogonals. This adaptation turns out to work
really well, and the interpretation of least fixed points as least fixed points on candi-
dates yields a rather natural proof, notably proceeding by metalevel induction on that
fixed point construction. Also related, of course, is the work on definitions; although we
consider a linear setting and definitions have been studied in intuitionistic logic, we be-
lieve that our proof could be adapted, and contributes to the understanding of similar
notions. In addition to the limitations of definitions over fixed points, the only pub-
lished proof of cut elimination [Momigliano and Tiu 2003; Tiu 2004] further restricts
definitions to strictly positive ones, and limits the coinduction rule to coinvariants of
smaller “level” than the considered coinductive object. However, those two restrictions
have been removed in Tiu and Momigliano [2010], which relies (like our proof) on a full
candidate of reducibility argument rather than the earlier nonparametrized reducibil-
ity, and essentially follows (unlike our proof) a second-order encoding of definitions.

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

2:16 D. Baelde

We now proceed with the proof, defining cut reductions and then showing their
normalization. Instead of writing proof trees, we shall often use an informal term
notation for proofs, when missing details can be inferred from the context. We no-
tably write cut(�; �′) for a cut, and more generally cut(�; ��′) for the sequence of cuts
cut(. . . cut(�; �′1) . . . ; �′n). We also use notations such as � ⊗ �′, μ�, ν(�,�), etc. Al-
though the first-order structure does not play a role in the termination and complexity
of reductions, we decided to treat it directly in the proof, rather than evacuating it in a
first step. We tried to keep it readable, but encourage the reader to translate the most
technical parts for the purely propositional case in order to extract their core.

3.1 Reduction Rules

Rules reduce instances of the cut rule, and are separated into auxiliary and main
rules. Most of the rules are the same as for MALL. For readability, we do not show
the signatures 	 when they are not modified by reductions, leaving to the reader the
simple task of inferring them.

3.1.1 Auxiliary Cases. If a subderivation does not start with a logical rule in which the
cut formula is principal, its first rule is permuted with the cut. We only present the
commutations for the left subderivation, the situation being perfectly symmetric.

— If the subderivation starts with a cut, splitting � into �′, �′′, we reduce as follows.

 �′, P⊥, Q⊥
 �′′, Q

 �′, �′′, P⊥

cut
 P,�

 �′, �′′,�
cut

↓

 �′, Q⊥, P⊥
 P,�

 �′,�, Q⊥
cut
 Q, �′′

 �′, �′′,�
cut

Note that this reduction alone leads to cycles, hence our system is trivially not
strongly normalizing. This is only a minor issue, which could be solved, for example,
by using proof nets or a classical multicut rule (which amounts to incorporate the
required amount of proof net flexibility into sequent calculus).

— Identity between a cut formula and a formula from the conclusion: � is restricted
to the formula P and the left subderivation is an axiom. The cut is deleted and the
right subderivation is now directly connected to the conclusion instead of the cut
formula.

 P, P⊥
init �

 P,�

 P,�
cut −→

�

 P,�

— When permuting a cut and a ⊗, the cut is dispatched according to the splitting of
the cut formula. When permuting a cut and a &, the cut is duplicated. The rules `
and ⊕ are easily commuted down the cut.

— The commutations of � and ⊥ are simple, and there is none for 1 nor 0.
— When ∀ is introduced, it is permuted down and the signature of the other derivation

is extended. The ∃ rule is permuted down without any problem.

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

Least and Greatest Fixed Points in Linear Logic 2:17

— There is no commutation for equality (=). When a disequality (
=) is permuted down,
the other premise is duplicated and instantiated as follows.{

�θ

	θ ;
 �′θ, P⊥θ

}

	;
 �′, u
= v, P⊥

= �′

	;
 P,�

	;
 �′, u
= v,�
cut

↓⎧⎨
⎩

�θ

	θ ;
 �′θ, P⊥θ
�′θ

	θ ;
 Pθ,�θ

	θ ;
 �′θ,�θ
cut

⎫⎬
⎭

	;
 �′, u
= v,�

=

— � = �′, μB�t and that least fixed point is introduced.

 �′, B(μB)�t, P⊥

 �′, μB�t, P⊥
μ

 P,�

 �′, μB�t,� cut −→

 �′, B(μB)�t, P⊥
 P,�

 �′, B(μB)�t,� cut

 �′, μB�t,�
μ

— � = �′, νB�t and that greatest fixed point is introduced.

 �′, S�t, P⊥
 S�x⊥, BS�x

 �′, νB�t, P⊥

ν
 P,�

 �′, νB�t,� cut

↓

 �′, S�t, P⊥
 P,�

 �′, S�t,� cut
 S�x⊥, BS�x

 �′, νB�t,� ν

3.1.2 Main Cases. When a logical rule is applied on the cut formula on both sides, one
of the following reductions applies.

— In the multiplicative case, � is split into (�′, �′′) and we cut the subformulas.

 �′, P′
 �′′, P′′

 �′, �′′, P′ ⊗ P′′
⊗
 P′⊥, P′′⊥,�

 P′⊥ ` P′′⊥,�

`

 �′, �′′,�
cut

↓

 �′, P′

 �′′, P′′
 P′⊥, P′′⊥,�

 P′⊥, �′′,�
cut

 �′, �′′,�
cut

— In the additive case, we select the appropriate premise of &.

 �, Pi

 �, P0 ⊕ P1
⊕

 �, P⊥0
 �, P⊥1

 �, P⊥0 & P⊥1

&

 �,�
cut −→

 �, Pi
 �, P⊥i

 �,�

cut

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

2:18 D. Baelde

— The 1/⊥ case reduces to the subderivation of ⊥. There is no case for �/0.
— In the first-order quantification case, we perform a proof instantiation.

�l

	;
 �, Pt⊥

	;
 �, ∃x. Px⊥
∃

�r

	, x;
 Px,�

	;
 ∀x. Px,�
∀

	;
 �,�
cut −→

�l

	;
 �, Pt⊥
�r[t/x]

	;
 Pt,�
	;
 �,�

cut

— The equality case is trivial, the interesting part concerning this connective lies in
the proof instantiations triggered by other reductions. Since we are considering two
terms that are already equal, we have csu(u .= u) = {id} and we can simply reduce to
the subderivation corresponding to the identity substitution.

	;
 u = u
=

�id

	;
 �

	;
 u
= u,�

=

	;
 �
cut −→

�id

	;
 �

— Finally in the fixed point case, we make use of the functoriality transformation for
propagating the coinduction/recursion under B.

�′l
	;
 �, B(μB)�t

	;
 �,μB�t
μ

�′r
	;
 �, S�t

�

�x;
 S�x⊥, BS�x
	;
 �, νB�t

ν

	;
 �,�
cut

↓

�′r
	;
 �, S�t

�[�t/�x]

	;
 S�t⊥, BS�t

FB•�t(ν(Id,�))

	;
 BS⊥�t, B(νB)�t
�′l

	;
 B(μB)�t, �
	;
 BS⊥�t, � cut

	;
 S�t⊥, � cut

	;
 �,�
cut

One-step reduction � → �′ is defined as the congruence generated by these rules.
We now seek to establish that such reductions can be applied to transform any deriva-
tion into a cut-free one. However, since we are dealing with transfinite (infinitely
branching) proof objects, there are trivially derivations which cannot be reduced into a
cut-free form in a finite number of steps. A possibility would be to consider transfinite
reduction sequences, relying on a notion of convergence for defining limits. A simpler
solution, enabled by the fact that our infinity only happens “in parallel,” is to define
inductively the transfinite reflexive transitive closure of one-step reduction.

Definition 3.1 Reflexive transitive closure, WN . We define inductively � →∗ � to
hold when (1) � → �, (2) � →∗ �′ and �′ →∗ �, or (3) � and � start with the same
rule and their premises are in relation (i.e., for some rule R, � = R(�i)i, � = R(�i)i
and each �i→∗ �i). We say that � normalizes when there exists a cut-free derivation
�′ such that �→∗ �′. We denote by WN the set of all normalizing derivations.

From (1) and (2), it follows that if � reduces to � in n > 0 steps, then � →∗ �.
From (3) it follows that � →∗ � for any �. In the finitely branching case, that is, if
the
= connective was removed or the system ensured finite csu, the role of (3) is only

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

Least and Greatest Fixed Points in Linear Logic 2:19

to ensure reflexivity. In the presence of infinitely branching rules, however, it also
plays the important role of packaging an infinite number of reductions. In the finitely
branching case, one can show that � →∗ � implies that there is a finite reduction
sequence from � to � (by induction on �→∗ �), and so our definition of normalization
corresponds to the usual notion of weak normalization in that case.

PROPOSITION 3.2. If �→ �, then �θ →∗ �θ .

PROOF. By induction on �. If the redex is not at toplevel but in an immediate sub-
derivation �′, then the corresponding subderivations in �θ shall be reduced. If the
first rule of � is disequality, there may be zero, several or infinitely many subderiva-
tions of �θ of the form �′θ ′. Otherwise there is only one such subderivation. In both
cases, we show �θ →∗ �θ by (3), using the induction hypothesis for the subderivations
where the redex is, and reflexivity of→∗ for the others.

If the redex is at toplevel, then �θ → �θ . The only nontrivial cases are the two
reductions involving
=. In the auxiliary case, we have:

cut(
=(�σ)σ∈csu(u .=v); �r) ��

θ

��

=(cut(�σ ; �rσ))σ

θ

��
cut(
=(�′σ ′)σ ′∈csu(uθ

.=vθ); �rθ) ��
=(cut(�′σ ′ ; (�rθ)σ ′))σ ′

By Definition 2.6, �′σ ′ = �σσ ′′ for θσ ′ = σσ ′′, σ ∈ csu(u .= v). Applying θ on the reduct
of �, we obtain for each σ ′ the subderivation cut(�σ ; �rσ)σ ′′ = cut(�σσ ′′; �rσσ ′′) =
cut(�′σ ′ ; �rθσ ′).

In the main case, � = cut(
=(�id); u = u)→ �id and �θ = cut(
=(�′id); uθ = uθ)→ �′id =
�idθ .

PROPOSITION 3.3. If � is normalizing, then so is �θ .

PROOF. Given a cut-free derivation �′ such that �→∗ �′, we show that �θ →∗ �′θ
by a simple induction on �→∗ �′, making use of the previous proposition.

PROPOSITION 3.4. We say that � is an Id-simplification of � if it is obtained from
� by reducing an arbitrary, potentially infinite number of redexes cut(�; Id) into �. If
� is an Id-simplification of � and � is normalizable, then so is �.

PROOF. We show more generally that if � is a simplification of � and � →∗ �′
then � →∗ �′ for some simplification �′ of �′. This is easily done by induction on
� →∗ �′, once we will have established the following fact: If � is a simplification
of � and � → �′, then � →∗ �′ for a simplification �′ of �′. If the redex in � does
not involve simplified cuts, the same reduction can be performed in �, and the result
is a simplification of �′ (note that this could erase or duplicate some simplifications).
If the reduction is one of the simplications then � itself is a simplification of �′. If a
simplified cut is permuted with another cut (simplified or not) � is also a simplification
of �′. Finally, other auxiliary reductions on a simplified cut also yield reducts of which
� is already a simplification (again, simplifications may be erased or duplicated).

3.2 Reducibility Candidates

Definition 3.5 Type. A proof of type P is a proof with a distinguished formula P
among its conclusion sequent. We denote by IdP the axiom rule between P and P⊥, of
type P.

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

2:20 D. Baelde

In full details, a type should contain a signature under which the formula is closed
and well typed. That extra level of information would be heavy, and no real difficulty
lies in dealing with it, and so we prefer to leave it implicit.

If X is a set of proofs, we shall write � : P ∈ X as a shortcut for “� ∈ X and � has
type P”. We say that � and �′ are compatible if their types are dual of each other.

Definition 3.6 Orthogonality. For �,�′ ∈ WN , we say that � ‚ �′ when for any θ
and θ ′ such that �θ and �′θ ′ are compatible, cut(�θ ; �′θ ′) ∈ WN . For � ∈ WN and
X ⊆WN , � ‚ X iff � ‚ �′ for any �′ ∈ X , and X⊥ is { � ∈WN : � ‚ X }. Finally,
for X , Y ⊆WN , X ‚ Y iff � ‚ �′ for any � ∈ X , �′ ∈ Y .

Definition 3.7 Reducibility candidate. A reducibility candidate X is a set of normal-
izing proofs that is equal to its biorthogonal, that is, X = X⊥⊥.

That kind of construction has some well-known properties,5 which do not rely on the
definition of the relation ‚. For any sets of normalizable derivations X and Y , X ⊆ Y
implies Y⊥ ⊆ X⊥ and (X ∪ Y)⊥ = X⊥ ∩ Y⊥; moreover, the symmetry of ‚ implies that
X ⊆ X⊥⊥, and hence X⊥ = X⊥⊥⊥ (in other words, X⊥ is always a candidate).

Reducibility candidates, ordered by inclusion, form a complete lattice: given an arbi-
trary collection of candidates S, it is easy to check that (

⋃
S)⊥⊥ is its least upper bound

in the lattice, and
⋂

S its greatest lower bound. We check the minimality of (
⋃

S)⊥⊥:
any upper bound Y satisfies

⋃
S ⊆ Y , and hence (

⋃
S)⊥⊥ ⊆ Y⊥⊥ = Y . Concerning the

greatest lower bound, the only nontrivial thing is that it is a candidate, but it suffices
to observe that

⋂
S =

⋂
X∈SX⊥⊥ = (

⋃
X∈SX⊥)⊥. The least candidate is ∅⊥⊥ and the

greatest is WN . Having a complete lattice, we can use the Knaster-Tarski theorem:
any monotonic operator φ on reducibility candidates admits a least fixed point lfp(φ)
in the lattice of candidates.

Our definition of ‚ yields some basic observations about candidates. They are closed
under substitution, that is, � ∈ X implies that any �θ ∈ X . Indeed, � ∈ X is equiva-
lent to � ‚ X⊥ which implies �θ ‚ X⊥ by definition of ‚ and Proposition 3.3. Hence,
IdP belongs to any candidate, since for any � ∈ X⊥, cut(IdPθ ; �θ ′)→ �θ ′ ∈ X⊥ ⊆WN .
Candidates are also closed under expansion, that is, �′ → � and � ∈ X imply that
�′ ∈ X . Indeed, for any � ∈ X⊥, cut(�′θ ; �θ ′)→∗ cut(�θ ; �θ ′) by Proposition 3.3, and
the latter derivation normalizes.

A useful simplification follows from those properties: for a candidate X , � ‚ X if
for any θ and compatible �′ ∈ X , cut(�θ ; �′) normalizes; there is no need to explicitly
consider instantiations of members of X , and since Id ∈ X , there is no need to show
that � normalizes by Proposition 3.4.

The generalization over all substitutions is the only novelty in our definitions. It
is there to internalize the fact that proof behaviors are essentially independent of
their first-order structure. By taking this into account from the beginning in the
definition of orthogonality, we obtain biorthogonals (behaviors) that are closed under
inessential transformations like substitution. As a result, unlike in most candidate
of reducibility arguments, our candidates are untyped. In fact, we could type them
up-to first-order details, that is, restrict to sets of proofs whose types have the same
propositional structure. Although that might look more familiar, we prefer to avoid
those unnecessary details.

Definition 3.8 Reducibility. Let � be a proof of
 P1, . . . , Pn, and (Xi)i=1...n a collec-
tion of reducibility candidates. We say that � is (X1, . . . , Xn)-reducible if for any θ and
any derivations (�′i : Piθ

⊥ ∈ X⊥i)i=1...n, the derivation cut(�θ ; �′1, . . . ,�
′
n) normalizes.

5This so-called polar construction is used independently for reducibility candidates and phase semantics in
Girard [1987], but also, for example, to define behaviors in ludics [Girard 2001].

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

Least and Greatest Fixed Points in Linear Logic 2:21

From this definition, it immediately follows that if � is (X1, . . . , Xn)-reducible then
so is �θ . Also observe that IdP is (X , X⊥)-reducible for any candidate X , since for any
� ∈ X and �′ ∈ X⊥ cut(IdPθ ; �,�′) reduces to cut(�; �′) which normalizes. Finally,
any (X1, . . . , Xn)-reducible derivation � normalizes, by Proposition 3.4 and the fact
that cut(�; Id, . . . , Id) normalizes.

PROPOSITION 3.9. Let � be a proof of
 P1, . . . , Pn, let (Xi)i=1...n be a family of can-
didates, and let j be an index in 1 . . . n. The two following statements are equivalent: (1)
� is (X1, . . . , Xn)-reducible; (2) for any θ and (�′i : Piθ

⊥ ∈ X⊥i)i
= j, cut(�θ ; (�′i)i
= j) ∈ X j.

PROOF. (1) ⇒ (2): Given such θ and (�′i)i
= j, we show that the derivation
cut(�θ ; (�′i)i
= j) ∈ X j. Since X j = X⊥⊥j , it is equivalent to show that our derivation
is in the orthogonal of X⊥j . For each σ and �′′ : Pjθσ⊥ ∈ X⊥j , we have to show
that cut(cut(�θ ; (�′i)i
= j)σ ; �′′) normalizes. Using cut permutation reductions, we re-
duce it into cut(�θσ ; �′1σ, . . . ,�′′, . . . ,�′nσ), which normalizes by reducibility of �. (2)
⇒ (1) is similar: we have to show that cut(�θ ; �′1, . . . �

′
n) normalizes, we reduce it

into cut(cut(�θ ; (�′i)i
= j); �′j) which normalizes since �′j ∈ X⊥j and the left subderivation
belongs to X j by hypothesis.

3.3 Interpretation

We interpret formulas as reducibility candidates, extending Girard’s interpretation of
MALL connectives [Girard 1987].

Definition 3.10 Interpretation. Let P be a formula and E an environment mapping
each n-ary predicate variable p occurring in P to a candidate. We define by induction
on P a candidate called interpretation of P under E and denoted by [P]E .

[p�t]E = E(p) [a�u]E =
{

 a�v⊥, a�v

}⊥⊥
[0]E = ∅⊥⊥ [1]E =

{

 1

}⊥⊥

[P ⊗ P′]E =

⎧⎨
⎩

�

 �, Q
�′

 �′, Q′

 �,�′, Q ⊗ Q′ : � : Q ∈ [P]E ,�′ : Q′ ∈ [P′]E

⎫⎬
⎭
⊥⊥

[P0 ⊕ P1]E =

⎧⎨
⎩

�

 �, Qi

 �, Q0 ⊕ Q1 : i ∈ {0, 1},� : Qi ∈ [Pi]E

⎫⎬
⎭
⊥⊥

[∃x. Px]E =

⎧⎨
⎩

�

 �, Qt

 �, ∃x. Qx : � : Qt ∈ [Pt]E

⎫⎬
⎭
⊥⊥

[u = v]E =
{

 t = t

}⊥⊥
[μB�t]E = lfp(X �→ { μ� : � : B(μB)�t′ ∈ [Bp�t]E,p�→X }⊥⊥)

[P]E = ([P⊥]E)⊥ for all other cases

The validity of that definition relies on a few observations. It is easy to check that we
do only form (bi-)orthogonals of sets of proofs that are normalizing. More importantly,
the existence of least fixed point candidates relies on the monotonicity of interpreta-
tions, inherited from that of operators. More generally, [P]E is monotonic in E(p) if
p occurs only positively in P, and antimonotonic in E(p) if p occurs only negatively.
The two statements are proved simultaneously, following the definition by induction
on P. Except for the least fixed point case, it is trivial to check that (anti)monotonicity

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

2:22 D. Baelde

is preserved by the first clauses of Definition 3.10, and in the case of the last clause
[P]E = ([P⊥]E)⊥ each of our two statements is derived from the other. Let us now
consider the definition of [μB�t]E , written lfp(φE) for short. First, the construction is
well-defined: by induction hypothesis and monotonicity of B, [Bq�t]E,q �→X is monotonic
in X , and hence φE is also monotonic and admits a least fixed point. We then show
that lfp(φE) is monotonic in E(p) when p occurs only positively in B; antimonotonicity
would be obtained in a symmetric way. If E and E ′ differ only on p and E(p) ⊆ E ′(p),
we obtain by induction hypothesis that φE (X) ⊆ φE ′ (X) for any candidate X , and in
particular φE (lfp(φE ′)) ⊆ φE ′ (lfp(φE ′)) = lfp(φE ′), that is, lfp(φE ′) is a prefixed point of φE ,
and thus lfp(φE) ⊆ lfp(φE ′), that is to say [μB�t]E is monotonic in E(p).

PROPOSITION 3.11. For any P and E , ([P]E)⊥ = [P⊥]E .

PROPOSITION 3.12. For any P, θ and E , [P]E = [Pθ]E .

PROPOSITION 3.13. For any E , monotonic B and S, [BS]E = [Bp]E,p�→[S]E .

Those three propositions are easy to prove, the first one immediately following from
Definition 3.10 by involutivity of both negations (on formulas and on candidates), the
other two by induction (respectively on P and B). Proposition 3.12 has an important
consequence: � ∈ [P] implies �θ ∈ [Pθ], that is, our interpretation is independent of
first-order aspects. This explains some probably surprising parts of the definition such
as the interpretation of least fixed points, where it seems that we are not allowing the
parameter of the fixed point to change from one instance to its recursive occurrences.

In the following, when the term structure is irrelevant or confusing, we shall write
[S]E for [S�t]E . For a predicate operator expression (λ�p. B�p) of first-order arity 0, we
shall write [B]E for �X �→ [B�p]E,(pi �→Xi)i. When even more concision is desirable, we may
also write [B �X]E for [B]E �X . Finally, we simply write [P] and [B] when E is empty.

LEMMA 3.14. Let X and Y be two reducibility candidates, and � be a proof of

P�x, Q�x that is (X , Y)-reducible. Then FB(�) is ([B]X , [B]Y)-reducible.

LEMMA 3.15. Let X be a candidate and � a derivation of
 S�x⊥, BS�x that is
(X⊥, [B]X)-reducible. Then ν(IdS�t,�) is (X⊥, [νB �t])-reducible for any �t.

PROOF OF LEMMAS 3.14 AND 3.15. We prove them simultaneously, generalized as
follows for any monotonic operator B of second-order arity n + 1, and any predicates �A
and candidates �Z :

(1) For any (X , Y)-reducible �, FB �A (�) is ([B] �Z X , [B] �Z ⊥Y)-reducible.
(2) For any (X⊥, [B] �Z ⊥X)-reducible �, ν(IdS�t,�) is (X⊥, [ν(B �Z ⊥)�t])-reducible.

We proceed by induction on B: we first establish (1), relying on strictly smaller in-
stances of both (1) and (2); then we prove (2) by relying on (1) for the same B (modulo
size-preserving first-order details). The purpose of the generalization is to separate the

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

Least and Greatest Fixed Points in Linear Logic 2:23

main part of B from auxiliary parts �A, which may be large and whose interpretations
�Z may depend on X and Y , but play a trivial role.

(1) If B is of the form (λ�pλq. B′ �p), then FB �A (�) is simply IdB′ �A , which is trivially
([B′ �Z], [B′ �Z ⊥])-reducible since [B′ �Z ⊥] = [B′ �Z]⊥. If B is of the form (λ�pλq. q�t),
then FB �A (�) is �[�t/�x] which is (X , Y)-reducible.
Otherwise, B starts with a logical connective. Following the definition of FB, dual
connectives are treated in a symmetric way. The tensor case essentially consists in
showing that if �′
 P′, Q′ is ([P′], [Q′])-reducible and �′′
 P′′, Q′′ is ([P′′], [Q′′])-
reducible then the following derivation is ([P′ ⊗ P′′], [Q′ ` Q′′])-reducible:

�′

 P′, Q′
�′′

 P′′, Q′′

 P′ ⊗ P′′, Q′, Q′′
⊗

 P′ ⊗ P′′, Q′ ` Q′′ `

— The subderivation �′ ⊗ �′′ is ([P′ ⊗ P′′], [Q′], [Q′′])-reducible: By Proposition 3.9
it suffices to show that for any θ and compatible �′ ∈ [Q′]⊥ and �′′ ∈ [Q′′]⊥,
cut(�θ ; �′, �′′) belongs to [P′ ⊗ P′′]. This follows from: the fact that it reduces to
cut(�′θ ; �′) ⊗ cut(�′′θ ; �′′); that those two conjuncts are respectively in [P′] and
[P′′] by hypothesis; and that { u⊗ v : u ∈ [P′], v ∈ [P′′] } is a subset of [P′ ⊗ P′′]
by definition of the interpretation.

— We then prove that the full derivation, instantiated by θ and cut against any
compatible � ∈ [P′ ⊗ P′′]⊥, is in [Q′ ` Q′′]. Since the interpretation of ` is
{ u ⊗ v : u ∈ [Q′]⊥, v ∈ [Q′′]⊥ }⊥, it suffices to show that cut((`(�′ ⊗ �′′))θ ; �)
normalizes (which follows from the reducibility of �′ ⊗ �′′) and that for any
substitutions σ and σ ′, cut((`(�′ ⊗ �′′))θ ; �)σ normalizes when cut against any
such compatible (u⊗ v)σ ′. Indeed, that cut reduces, using cut permutations and
the main multiplicative reduction, into cut(cut((�′ ⊗ �′′)θσ ; �σ); uσ ′, vσ ′) which
normalizes by reducibility of �′ ⊗ �′′.

The additive case follows the same outline. There is no case for units, including =
and
=, since they are treated with all formulas where p does not occur.
In the case of first-order quantifiers, say B = λ�pλq. ∃x. B′ �pqx, we essentially have
to show that, assuming that � is ([Px], [Qx])-reducible, the following derivation is
([∃x. Px], [∀x. Qx])-reducible.

�

	, x;
 Px, Qx
	, x;
 ∃x. Px, Qx ∃
	;
 ∃x. Px,∀x. Qx ∀

— We first establish that the immediate subderivation ∃(�) is reducible, by consid-
ering cut(∃(�)θ ; �) for any θ and compatible � ∈ [Qx]⊥. We reduce that deriva-
tion into ∃(cut(�θ ; �)) and conclude by definition of [∃x. Px] and the fact that
cut(�θ ; �) ∈ [Px].

— To prove that ∀(∃(�)) is reducible, we show that cut(∀(∃(�))θ ; �) belongs to
[∀x. Qx] for any θ and compatible � ∈ [∃x. Px]⊥. Since [∀x. Qx] = { ∃�′ : �′ ∈
[Qt]⊥ }⊥, this amounts to show that our derivation normalizes (which follows
from the reducibility of ∃(�)) and that cut(cut(∀(∃(�))θ ; �)σ ; (∃�′)σ ′) normal-
izes for any σ , σ ′ and compatible �′ ∈ [Qt]⊥. Indeed, this derivation re-
duces, by permuting the cuts and performing the main ∀/∃ reduction, into
cut(∃(�)θσ [tσ ′/x]; �′σ ′, �σ), which normalizes by reducibility of ∃(�).

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

2:24 D. Baelde

Finally, we show the fixed point case in full details since this is where the general-
ization is really useful. When B is of the form λ�pλq. μ(B′ �pq)�t, we are considering
the following derivation.

 μ(B′ �A P)�t, ν(B′ �A⊥P⊥)�t init

FB′ �A•(μ(B′ �A P))�x(�)

 B′ �A P(μ(B′ �A P))�x, B′ �A⊥Q(ν(B′ �A⊥P⊥))�x

 μ(B′ �A P)�x, B′ �A⊥Q(ν(B′ �A⊥P⊥))�x

μ

 μ(B′ �A P)�t, ν(B′ �A⊥Q)�t
ν

We apply induction hypothesis (1) on B′′ := (λ�pλpn+1λq. B′ �pqpn+1�x), with
An+1 := μ(B′ �A P) and Z n+1 := [μ(B′ �Z X)], obtaining that the subderivation F...(�)
is ([B′′] �Z Z n+1 X , [B′′] �Z ⊥Z ⊥n+1Y)-reducible. Then, we establish that μ(F...(�))
is reducible: for any θ and compatible � ∈ [B′′] �Z Z n+1Y⊥, cut(μ(F...(�))θ ; �)
reduces to μ(cut(F...(�)θ ; �)) which belongs to [μ(B′ �Z X)�x] = { μ�′ : �′ ∈
[B′ �Z X (μ(B′ �Z X))�x] }⊥⊥ by reducibility of F...(�). We finally obtain the reducibility
of the whole derivation by applying induction hypothesis (2) on B′ with An+1 := Q⊥,
Z n+1 := Y⊥ and X := [μ(B′ �Z X)�x]⊥.

(2) Here we have to show that for any θ and any compatible � ∈ X , the derivation
cut(ν(IdS�t,�)θ ; �) belongs to [μ(B �Z)�t]⊥. Since only �t is affected by θ in such
derivations, we generalize on it directly, and consider the following set:

Y := { cut(ν(IdS�t′ ,�); �) : � : S�t′ ∈ X }⊥.
Note that we can form the orthogonal to obtain Y , since we are indeed considering
a subset of WN : any cut(ν(Id; �); �) reduces to ν(�; �), and � and � normalize.
We shall establish that Y is a pre-fixed point of the operator φ such that [μ(B �Z)�t]
has been defined as lfp(φ), from which it follows that [μ(B �Z)�t] ⊆ Y , which entails
our goal; note that this is essentially a proof by induction on [μ(B �Z)].
So we prove the pre-fixed point property:

{ μ� : � : B �A(μ(B �A)) �t′′ ∈ [B �Z Y�t′] }⊥⊥ ⊆ Y.

Observing that, for any A , B ⊆ WN , we have A⊥⊥ ⊆ B⊥ ⇔ A⊥⊥ ‚ B ⇔ B ⊆
A⊥ ⇔ B ‚ A, our property can be rephrased equivalently:

{ cut(ν(IdS�t′ ,�); �) : � : S�t′ ∈ X }‚ { μ� : � ∈ [B �Z Y�t′] }.
Since both sides are stable by substitution, there is no need to consider compat-
ibility substitutions here, and it suffices to consider cuts between any compatible
left and right-hand side derivations: cut(cut(ν(Id,�); �); μ�). It reduces, using cut
exchange, the main fixed point reduction and finally the identity reduction, into
the following.

�

 �, S�t′

�[�t′/�x]

 S⊥�t′, B �A⊥S�t′

FB �A•�t′ (ν(IdS�x,�))

 B �AS⊥�t′, B �A⊥(ν(B �A⊥))�t′
�

 B �A(μ(B �A))�t′,�

 B �AS⊥�t′,�

cut

 S⊥�t′,� cut

 �,�
cut

By hypothesis, � ∈ X , � ∈ [B �Z Y �t′] and �[�t′/�x] is (X⊥, [B �Z ⊥X �t′])-reducible.
Moreover, ν(IdS�x,�) is (X⊥, Y⊥)-reducible by definition of Y , and thus, by applying
(1) on the operator λ�pλq. B�pq�t′, which has the same size as B, we obtain that

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

Least and Greatest Fixed Points in Linear Logic 2:25

FB �A•�t′ (ν(IdS�x,�)) is ([B �Z X⊥�t′], [B �Z ⊥Y⊥�t′])-reducible.6 We can finally compose all
that to conclude that our derivation normalizes.

3.4 Normalization

LEMMA 3.16. Any proof of
 P1, . . . , Pn is ([P1], . . . , [Pn])-reducible.

PROOF. By induction on the height of the derivation �, with a case analysis on
the first rule. We are establishing that for any θ and compatible (γi ∈ [Pi]⊥)i=1...n,
cut(�θ ; �γ) normalizes. If �θ is an axiom on P ≡ P1θ ≡ P⊥2 θ , the cut against a
proof of [P] and a proof of [P]⊥ reduces into a cut between those two proofs, which
normalizes. If �θ = cut(�′θ ; �′′θ) is a cut on the formula P, cut(�θ ; �γ) reduces to
cut(cut(�′θ ; �γ ′); cut(�′′θ ; �γ ′′)) and the two subderivations belong to dual candidates [P]
and [P]⊥ by induction hypothesis and Proposition 3.9.

Otherwise, � starts with a rule from the logical group, the end sequent is of the
form
 �, P where P is the principal formula, and we shall prove that cut(�θ ; �γ) ∈ [P]
when �γ is taken in the duals of the interpretations of �θ , which allows to conclude
again using Proposition 3.9.

— The rules 1, ⊗, ⊕, ∃, = and μ are treated similarly, the result coming directly from
the definition of the interpretation.
Let us consider, for example, the fixed point case: � = μ�′. By induction hypothesis,
cut(�′θ ; �γ) ∈ [B(μB)�t]. By definition, [μB�t] = lfp(φ) = φ(lfp(φ)) = X⊥⊥ where X :=
{ μ� : � ∈ [B•�t][μB] }. Since [B(μB)�t] = [B•�t][μB], we obtain that μ(cut(�′θ ; �γ)) ∈
X and thus also in X⊥⊥. Hence cut(�θ ; �γ), which reduces to the former, is also in
[μB�t].

— The rules⊥, `,�, &, ∀,
=, and ν are treated similarly: we establish that cut(�θ ; �γ) ‚
X for some X such that [P] = X⊥. First, we have to show that our derivation
normalizes, which comes by permuting up the cuts, and concluding by induction
hypothesis — this requires that after the permutation the derivations �γ are still in
the right candidates, which relies on closure under substitution and hence signature
extension for the case of disequality and ∀. Then we have to show that for any σ
and σ ′, and any compatible � ∈ X , the derivation cut(cut(�θ ; �γ)σ ; �σ ′) normalizes
too. We detail this last step for two key cases.
In the ∀ case we have [∀x. Px] = { ∃�′ : �′ ∈ [Pt⊥] }⊥, so we consider
cut(cut((∀�′)θ ; �γ)σ ; (∃�′)σ ′), which reduces to cut(�′θ [t/x]; �γ σ,�σ ′). This normalizes
by induction hypothesis on �′[t/x], which remains smaller than �.
The case of ν is the most complex, but is similar to the argument developed for
Lemma 3.15. If � is of the form ν(�′,�) and P ≡ νB�t then cut(�; γ)θ has type νB�u
for u := �tθ . Since [νB�u] = { μ� : � ∈ [B•�u][μB] }⊥, we show that for any σ , σ ′ and
compatible � ∈ [B(μB)�u], the derivation cut(cut(ν(�′,�)θ ; �γ)σ ; (μ�)σ ′) normalizes.
Let �v be �uσ , the derivation reduces to:

cut(cut(�′θσ ; �γ σ); cut(�[�v/�x]; cut(FB•�v(ν(Id,�)); �σ ′)))

By induction hypothesis, cut(�′θσ ; �γ σ) ∈ [S�v], and � is ([S�x]⊥, [BS�x])-reducible. By
Lemmas 3.14 and 3.15 we obtain that FB•�v(ν(Id,�)) is ([BS⊥�v], [B(νB)�v])-reducible.
Finally, � ∈ [B(μB)�v]. We conclude by composing all these reducibilities using
Proposition 3.9.

6This use of (1) involving Y is the reason why our two lemmas need to deal with arbitrary candidates and
not only interpretations of formulas.

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

2:26 D. Baelde

THEOREM 3.17 CUT ELIMINATION. Any derivation can be reduced into a cut-free
derivation.

PROOF. By Lemma 3.16, any derivation is reducible, and hence normalizes.

The usual immediate corollary of the cut elimination result is that μMALL is con-
sistent, since there is obviously no cut-free derivation of the empty sequent. However,
note that unlike in simpler logics, cut-free derivations do not enjoy the subformula
property, because of the μ and ν rules. While it is easy to characterize the new formu-
las that can arise from μ, nothing really useful can be said for ν, for which no nontriv-
ial restriction is known. Hence, μMALL only enjoys restricted forms of the subformula
property, applying only to (parts of) derivations that do not involve coinductions.

4. FOCUSING

Andreoli [1992] identified some important structures in linear logic, which led to the
design of his focused proof system. This complete proof system for (second-order) lin-
ear logic structures proofs in stripes of asynchronous and synchronous rules. Choices
in the order of application of asynchronous rules do not matter, so that the real non-
determinism lies in the synchronous phase. However, the focused system tames this
nondeterminism by forcing to hereditarily chain these choices: once the focus is set
on a synchronous formula, it remains on its subformulas as its connectives are in-
troduced, and so on, to be released only on asynchronous subformulas. We refer the
reader to Andreoli [1992] for a complete description of that system, but note that Fig-
ure 2, without the fixed point rules, can be used as a fairly good reminder: it follows
the exact same structure, only missing the rules for exponentials.

Focusing μMALL can be approached simply by reading the focusing of second-order
linear logic through the encoding of fixed points. But this naive approach yields a
poorly structured system. Let us recall the second-order encoding of μB�t:

∀S. !(∀�x. BS�x � S�x) � S�t.
This formula starts with a layer of asynchronous connectives: ∀, � and ?, the dual of !.
Once the asynchronous layer has been processed, the second-order eigenvariable Srep-
resents μB and one obtains unfoldings of S into BS by focusing on the pre-fixed point
hypothesis. Through that encoding, one would thus obtain a system where several
unfoldings necessarily require several phase alternations. This is not satisfying: the
game-based reading of focusing identifies fully synchronous (positive) formulas with
data types, which should be built in one step by the player, that is, in one synchronous
phase. In μMALL, least fixed points over fully synchronous operators should be seen
as data types. That intuition, visible in previous examples, is also justified by the clas-
sification of connectives in Definition 2.11, and is indeed accounted for in the focused
system presented in Figure 2.

It is commonly believed that asynchrony corresponds to invertibility. The two no-
tions do coincide in many cases but it should not be taken too seriously, since this does
not explain, for example, the treatment of exponentials, or the fact that init has to be
synchronous while it is trivially invertible. In the particular case of fixed points, in-
vertibility is of no help in designing a complete focused proof system. Both μ and ν
are invertible (in the case of ν, this is obtained by using the unfolding coinvariant) but
this does not capture the essential aspect of fixed points, that is their infinite behavior.
As a result, a system requiring that the μ rule is applied whenever possible would not
be complete, notably failing on
 � ⊗ 1, μp.p or
 nat x � nat x. As we shall see,
the key to obtaining focused systems is to consider the permutability of asynchronous
rules, rather than their invertibility, as the fundamental guiding principle.

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

Least and Greatest Fixed Points in Linear Logic 2:27

Fig. 2. The μ-focused proof-system for μMALL.

We first design the μ-focused system in Section 4.1, treating μ synchronously, which
is satisfying for several reasons starting with its positive nature. We show in Sec-
tion 4.2 that it is also possible to consider a focused system for μMALL where ν is
treated synchronously. In Section 4.3, we apply the μ-focused system to a fragment
of μLJ.

4.1 A Complete μ-Focused Calculus

In this section, we call asynchronous (resp. synchronous) the negative (resp. positive)
connectives of Definition 2.11 and the formulas whose top-level connective is asyn-
chronous (resp. synchronous). Moreover, we classify nonnegated atoms as synchronous
and negated ones as asynchronous. As with Andreoli’s original system, this latter
choice is arbitrary and can easily be changed for a case-by-case assignment [Chaud-
huri et al. 2008; Miller and Saurin 2007].

We present the system in Figure 2 as a good candidate for a focused proof system
for μMALL. In addition to asynchronous and synchronous formulas as defined above,
focused sequents can contain frozen formulas P∗ where P is an asynchronous atom
or fixed point. Frozen formulas may only be found at toplevel in sequents. We use
explicit annotations of the sequents in the style of Andreoli: in the synchronous phase,
sequents have the form
 � ⇓ P; in the asynchronous phase, they have the form
 � ⇑
�. In both cases, � and � are sets of formulas of disjoint locations, and � is a multiset
of synchronous or frozen formulas. The convention on � is a slight departure from
Andreoli’s original proof system where � is a list: we shall emphasize the irrelevance
of the order of asynchronous rules without forcing a particular, arbitrary ordering.

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

2:28 D. Baelde

Although we use an explicit freezing annotation, our treatment of atoms is really the
same one as Andreoli’s; the notion of freezing is introduced here as a technical device
for dealing precisely with fixed points, and we also use it for atoms for a more uniform
presentation.

The μ-focused system extends the usual focused system for MALL. The rules for
equality are not surprising, the main novelty here is the treatment of fixed points.
Each of the fixed point connectives has two rules in the focused system: one treats
it “as an atom” and the other one as an expression with internal logical structure.
In accordance with Definition 2.11, μ is treated during the synchronous phase and ν
during the asynchronous phase.

Roughly, what the focused system implies is that if a proof involving a ν-expression
proceeds by coinduction on it, then this coinduction can be done at the beginning; oth-
erwise that formula can be ignored in the whole derivation, except for the init rule.
The latter case is expressed by the rule which moves the greatest fixed point to the
left zone, freezing it. Focusing on a μ-expression yields two choices: unfolding or ap-
plying the initial rule for fixed points. If the considered operator is fully synchronous,
the focus will never be lost. For example, if nat is the (fully synchronous) expression
μN.λx. x = 0 ⊕ ∃y. x = s y ⊗ N y, then focusing puts a lot of structure on a proof of

 � ⇓ nat t: either t is a closed term representing a natural number and � is empty, or
t = snt′ for some n≥ 0 and � only contains (nat t′)⊥.

We shall now establish the completeness of our focused proof system: If the un-
focused sequent
 � is provable then so is
⇑ �, and the order of application of
asynchronous rules does not affect provability. From the perspective of proofs rather
than provability, we are actually going to provide transformations from unfocused to
focused derivations (and back) which can reorder asynchronous rules arbitrarily. How-
ever, this result cannot hold without a simple condition avoiding pathological uses of
infinite branching, as illustrated with the following counterexample. The unification
problem s (f 0) .= f (s 0), where s and 0 are constants, has infinitely many solutions
[(λx. snx)/ f]. Using this, we build a derivation �ω with infinitely many branches, each
�n unfolding a greatest fixed point n times.

�0
def
=
 νp.p,� � �n+1

def
=

�n

 νp.p,�
 μp.p, νp.p init

 νp.p,� ν

�ω

def
=

�0 �1 . . . �n . . .

f ;
 s (f 0)
= f (s 0), νp.p,�
=

Although this proof happens to be already in a focused form, in the sense that focus-
ing annotations can be added in a straightforward way, the focused transformation
must also provide a way to change the order of application of asynchronous rules. In
particular it must allow to permute down the introduction of the first νp.p. The only
reasonable way to do so is as follows, expanding �0 into �1 and then pulling down the
ν rule from each subderivation, changing �n+1 into �n:

�ω �

�ω

f ;
 s (f 0)
= f (s 0), νp.p,�
 μp.p, νp.p init

f ;
 s (f 0)
= f (s 0), νp.p,� ν
.

This leads to a focusing transformation that may not terminate. The fundamental
problem here is that although each additive branch only finitely explores the asyn-
chronous formula νp.p, the overall use is infinite. A solution would be to admit in-
finitely deep derivations, with which such infinite balancing process may have a limit.

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

Least and Greatest Fixed Points in Linear Logic 2:29

But our goal here is to develop finite proof representations (this is the whole point of
(co)induction rules) so we take an opposite approach and require a minimum amount
of finiteness in our proofs.

Definition 4.1 Quasi-finite derivation. A derivation is said to be quasi-finite if it is
cut-free, has a finite height and only uses a finite number of different coinvariants.

This condition may seem unfortunate, but it appears to be essential when dealing
with transfinite proof systems involving fixed points. More precisely, it is related to
the choice regarding the introduction of asynchronous fixed points, be they greatest
fixed points in μ-focusing or least fixed points in ν-focusing. Note that quasi-finiteness
is trivially satisfied for any cut-free derivation that is finitely branching, and that
any derivation which does not involve the
= rule can be normalized into a quasi-finite
one. Moreover, quasi-finiteness is a natural condition from a practical perspective,
for example in the context of automated or interactive theorem proving, where
= is
restricted to finitely branching instances anyway. However, it would be desirable to
refine the notion of quasi-finite derivation in a way that allows cuts and is preserved
by cut elimination, so that quasi-finite proofs could be considered a proper proof frag-
ment. Indeed, the essential idea behind quasi-finiteness is that only a finite number of
locations are explored in a proof, and the cut-free condition is only added because cut
reductions do not obviously preserve this. We conjecture that a proper, self-contained
notion of quasi-finite derivation can be attained, but leave this technical development
to further work.

The core of the completeness proof follows Miller and Saurin [2007]. This proof
technique proceeds by transforming standard derivations into a form where focused
annotations can be added to obtain a focused derivation. Conceptually, focused proofs
are simply special cases of standard proofs, the annotated sequents of the focused
proof system being a concise way of describing their shape. The proof transformation
proceeds by iterating two lemmas which perform rule permutations: the first lemma
expresses that asynchronous rules can always be applied first, while the second one
expresses that synchronous rules can be applied in a hereditary fashion once the focus
has been chosen. The key ingredient of Miller and Saurin [2007] is the notion of focal-
ization graph, analyzing dependencies in a proof and showing that there is always at
least one possible focus.

In order to ease the proof, we shall consider an intermediate proof system whose
rules enjoy a one-to-one correspondence with the focused rules. This involves getting
rid of the cut, nonatomic axioms, and also explicitly performing freezing.

Definition 4.2 Freezing-annotated derivation. The freezing-annotated variant of
μMALL is obtained by removing the cut rule, enriching the sequent structure with
an annotation for frozen fixed points or atoms, restricting the initial rule to be applied
only on frozen asynchronous formulas, and adding explicit annotation rules.

 (a⊥�t)∗, a�t
 (νB �t)∗, μB�t

 �, (νB�t)∗

 �, νB�t

 �, (a⊥�t)∗

 �, a⊥�t

Atomic instances of init can be translated into freezing-annotated derivations.

 νB�t, μB �t −→

 (νB�t)∗, μB �t

 νB�t, μB �t
 a⊥�t, a�t −→

 (a⊥�t)∗, a�t

 a⊥�t, a�t

Arbitrary instances of init can also be obtained by first expanding them to rely only
on atomic init, using Proposition 2.8, and then translating atomic init as shown above.
We shall denote by init∗ this derived generalized axiom. Any μMALL derivation can

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

2:30 D. Baelde

be transformed into a freezing-annotated one by normalizing it and translating init
into init∗.

The asynchronous freezing-annotated rules (that is, those whose principal formula
is asynchronous) correspond naturally to asynchronous rules of the μ-focused system.
Similarly, synchronous freezing-annotated rules correspond to synchronous focused
rules, which includes the axiom rule. The switching rules of the μ-focused system do
not have a freezing-annotated equivalent: they are just book-keeping devices marking
phase transitions.

From now on we shall work on freezing-annotated derivations, simply calling them
derivations.

4.1.1 Balanced Derivations. In order to ensure that the focalization process terminates,
we have to guarantee that the permutation steps preserve some measure over deriva-
tions. The main problem here comes from the treatment of fixed points, and more
precisely from the fact that there is a choice in the asynchronous phase regarding
greatest fixed points. We must ensure that a given greatest fixed point formula is al-
ways used in the same way in all additive branches of a proof: if a greatest fixed point
is copied by an additive conjunction or
=, then it should either be used for coinduction
in all branches, or frozen and used for axiom in all branches. Otherwise it would not
be possible to permute the treatment of the ν under that of the & or
= while controlling
the size of the transformed derivation.

Definition 4.3 Balanced derivation. A greatest fixed point occurrence is used in a
balanced way if all of its principal occurrences are used consistently: either they are
all frozen or they are all used for coinduction, with the same coinvariant. We say that
a derivation is balanced if it is quasi-finite and all greatest fixed points occurring in it
are used in a balanced way.

LEMMA 4.4. If S0 and S1 are both coinvariants for B then so is S0 ⊕ S1.

PROOF. Let �i be the derivation of coinvariance for Si. The proof of coinvariance of
S0 ⊕ S1 is as follows.

φ0(�0)

 S⊥0 �x, B(S0 ⊕ S1)�x

φ1(�1)

 S⊥1 �x, B(S0 ⊕ S1)�x

 S⊥0 �x & S⊥1 �x, B(S0 ⊕ S1)�x &

The transformed derivations φi(�i) are obtained by functoriality as follows.

φi(�i) =

�i

 S⊥i �x, BSi�x

 S⊥i �y, Si�y init

 S⊥i �y, S0�y ⊕ S1�y
⊕

 BS⊥i �x, B(S0 ⊕ S1)�x B

 S⊥i �x, B(S0 ⊕ S1)�x cut

Notice that after the elimination of cuts, the proof of coinvariance that we built can be
larger than the original ones: this is why this transformation cannot be done as part
of the rule permutation process.

LEMMA 4.5. Any quasi-finite derivation of
 � can be transformed into a balanced
derivation of
 �.

PROOF. We first ensure that all coinvariants used for the same (locatively identical)
greatest fixed point are the same. For each νB on which at least one coinduction is

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

Least and Greatest Fixed Points in Linear Logic 2:31

performed in the proof, this is achieved by taking the union of all coinvariants used in
the derivation, thanks to Lemma 4.4, adding to this union the unfolding coinvariant
B(νB). Note that quasi-finiteness is needed here to ensure that we are only combining
finitely many coinvariants. Let SνB be the resulting coinvariant, of the form S0 ⊕ . . . ⊕
Sn ⊕ B(νB), and �νB be the proof of its coinvariance. We adapt our derivation by
changing every instance of the ν rule as follows.

 �, Si�t
�i

 S⊥i �x, BSi�x

 �, νB�t −→

 �, Si�t

 �, SνB�t

⊕ �νB

 S⊥νB�x, BSνB�x

 �, νB�t

It remains to ensure that a given fixed point is either always coinducted on or al-
ways frozen in the derivation. We shall balance greatest fixed points, starting with
unbalanced fixed points closest to the root, and potentially unbalancing deeper fixed
points in that process, but without ever introducing unbalanced fixed points that were
not initially occurring in the proof.

Let �0 be the derivation obtained at this point. We define the degree of a greatest
fixed point to be the maximum distance in the sublocation ordering to a greatest fixed
point sublocation occurring in �0, 0 if there is none. Quasi-finiteness ensures that
degrees are finite, since there are only finitely many locations occurring at toplevel in
the sequents of a quasi-finite derivation. We shall only consider derivations in which
greatest fixed points that are coinducted on are also coinducted on with the same coin-
variant in �0, and maintain this condition while transforming any such derivation into
a balanced one. We proceed by induction on the multiset of the degrees of unbalanced
fixed points in the derivation, ordered using the standard multiset ordering; note that
degrees are well defined for all unbalanced fixed points since they must also occur in
�0. If there is no unbalanced fixed point, we have a balanced proof. Otherwise, pick
an unbalanced fixed point of maximal degree. It is frozen in some branches and coin-
ducted on in others. We remove all applications of freezing on that fixed point, which
requires to adapt axioms7.

 (νB�t)∗, μB �t −→

 B(νB)�t, B(μB)�t init∗

 B(νB)�t, μB �t
μ

 SνB�t, μB �t ⊕
�νB

 S⊥νB�x, BSνB�x

 νB�t, μB �t

ν

The fixed point νB is used in a balanced way in the resulting derivation. Our use
of the derived rule init∗ might have introduced some new freezing rules on greatest
fixed point sublocations of B(νB) or B(μB). Such sublocations, if already present in
the proof, may become unbalanced, but have a smaller degree. Some new sublocations
may also be introduced, but they are only frozen as required. The new derivation
has a smaller multiset of unbalanced fixed points, and we can conclude by induction
hypothesis.

Balancing is the most novel part of our focalization process. This preprocessing is
a technical device ensuring termination in the proof of completeness, whatever rule
permutations are performed. It should be noted that balancing is often too strong, and
that many focused proofs are indeed not balanced. For example, it is possible to obtain

7Note that instead of the unfolding coinvariant B(νB) we could have used the coinvariant νB. This would
yield a simpler proof, but that would not be so easy to adapt for ν-focusing in Section 4.2.

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

2:32 D. Baelde

unbalanced focused proofs by introducing an additive conjunction before treating a
greatest fixed point differently in each branch.

4.1.2 Focalization Graph. We shall now present the notion of focalization graph and its
main properties [Miller and Saurin 2007]. As we shall see, their adaptation to μMALL
is trivial.8

Definition 4.6. The synchronous trunk of a derivation is its largest prefix containing
only applications of synchronous rules. It is a potentially open subderivation having
the same conclusion sequent. The open sequents of the synchronous trunk (which are
conclusions of asynchronous rules in the full derivation) and its initial sequents (which
are conclusions of init, 1 or =) are called leaf sequents of the trunk.

Definition 4.7. We define the relation ≺ on the formulas of the base sequent of a
derivation �: P ≺ Q if and only if there exists P′, asynchronous subformula9 of P, and
Q′, synchronous subformula of Q, such that P′ and Q′ occur in the same leaf sequent
of the synchronous trunk of �.

The intended meaning of P ≺ Q is that we must focus on P before Q. Therefore, the
natural question is the existence of minimal elements for that relation, equivalent to
its acyclicity.

PROPOSITION 4.8. If � starts with a synchronous rule, and P is minimal for ≺ in
�, then so are its subformulas in their respective subderivations.

PROOF. There is nothing to do if � simply consists of an initial rule. In all other
cases (⊗, ⊕, ∃ and μ) let us consider any subderivation �′ in which the minimal ele-
ment P or one of its subformulas P′ occurs — there will be exactly one such �′, except
in the case of a tensor applied on P. The other formulas occurring in the conclusion
of �′ either occur in the conclusion of � or are subformulas of the principal formula
occurring in it. This implies that a Q ≺ P or Q ≺ P′ in �′ would yield a Q′ ≺ P in �,
which contradicts the minimality hypothesis.

LEMMA 4.9. The relation ≺ is acyclic.

PROOF. We proceed by induction on the derivation �. If it starts with an asyn-
chronous rule or an initial synchronous rule, i.e., its conclusion sequent is a leaf of its
synchronous trunk, acyclicity is obvious since P ≺ Q iff P is asynchronous and Q is
synchronous. If � starts with ⊕, ∃ or μ, the relations ≺ in � and its subderivation
are isomorphic (only the principal formula changes) and we conclude by induction hy-
pothesis. In the case of ⊗, say � derives
 �,�′, P ⊗ P′, only the principal formula
P ⊗ P′ has subformulas in both premises
 �, P and
 �′, P′. Hence there cannot be
any ≺ relation between a formula of � and one of �′. In fact, the graph of ≺ in the
conclusion is obtained by taking the union of the graphs in the premises and merg-
ing P and P′ into P ⊗ P′. Suppose, ab absurdo, that ≺ has cycles in �, and consider
a cycle of minimal length. It cannot involve nodes from both � and �′: since only
P ⊗ P′ connects those two components, the cycle would have to go twice through it,
which contradicts the minimality of the cycle’s length. Hence the cycle must lie within
(�, P ⊗ P′) or (�′, P ⊗ P′) but then there would also be a cycle in the corresponding

8Note that we do not use the same notations: in Miller and Saurin [2007], ≺ denotes the subformula relation
while it represents accessibility in the focalization graph in our case.
9This does mean subformula in the locative sense, in particular with (co)invariants being subformulas of the
associated fixed points.

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

Least and Greatest Fixed Points in Linear Logic 2:33

premise (obtained by replacing P ⊗ P′ by its subformula) which is absurd by induction
hypothesis.

4.1.3 Permutation Lemmas and Completeness. We are now ready to describe the trans-
formation of a balanced derivation into a μ-focused derivation.

Definition 4.10. We define the reachable locations of a balanced derivation �, de-
noted by |�|, by taking the finitely many locations occurring at toplevel in sequents of
�, ignoring coinvariance subderivations, and saturating this set by adding the sublo-
cations of locations that do not correspond to fixed point expressions.

It is easy to see that |�| is a finite set. Hence |�|, ordered by strict inclusion, is a
well-founded measure on balanced derivations.

Let us illustrate the role of reachable locations with the following derivations.

 S�t, a` b ,� �
...

 S⊥�x, BS�x

 νB�t, a` b ,� ν

 νB�t, a, b ,� �

 νB�t, a` b ,� `

For the first derivation, the set of reachable locations is {νB�t, a ` b ,�, S�t, a, b}. For
the second one, it is {νB�t, a` b ,�, a, b}. As we shall see, the focalization process may
involve transforming the first derivation into the second one, thus loosing reachable
locations, but it will never introduce new ones. In that process, the asynchronous rule
` is “permuted” under the �, that is, the application of � is delayed by the insertion
of a new ` rule. This limited kind of proof expansion does not affect reachable loca-
tions. A more subtle case is that of “permuting” a fixed point rule under �. This will
never happen for μ. For ν, the permutation will be guided by the existing reachable
locations: if ν currently has no reachable sublocation it will be frozen, otherwise it will
be coinducted on, leaving reachable sublocations unchanged in both cases. The set
of reachable locations is therefore a skeleton that guides the focusing process, and a
measure which ensures its termination.

LEMMA 4.11. For any balanced derivation �, |�θ | is balanced and |�θ | ⊆ |�|.
PROOF. By induction on �, following the definition of �θ . The preservation of bal-

ancing and reachable locations is obvious since the rule applications in �θ are the
same as in �, except for branches that are erased by θ (which can lead to a strict
inclusion of reachable locations).

LEMMA 4.12 ASYNCHRONOUS PERMUTABILITY. Let P be an asynchronous for-
mula. If
 �, P has a balanced derivation �, then it also has a balanced derivation �′
where P is principal in the conclusion sequent, and such that |�′| ⊆ |�|.

PROOF. Let �0 be the initial derivation. We proceed by induction on its subderiva-
tions, transforming them while respecting the balanced use of fixed points in �0. If P
is already principal in the conclusion, there is nothing to do. Otherwise, by induction
hypothesis we make P principal in the immediate subderivations where it occurs, and
we shall then permute the first two rules.

If the first rule R is � or a nonunifiable instance of
=, there is no subderivation,
and a fortiori no subderivation where P occurs. In that case we apply an introduction
rule for P, followed by R in each subderivation. This is obvious in the case of `, &,
∀, ⊥,
= and � (note that there may not be any subderivation in the last two cases,
in which case the introduction of P replaces R). If P is a greatest fixed point that
is coinducted on in �0, we apply the coinduction rule with the coinvariance premise

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

2:34 D. Baelde

taken in �0, followed by R. Otherwise, we freeze P and apply R. By construction, the
resulting derivation is balanced in the same way as �0, and its reachable locations are
contained in |�0|.

In all other cases we permute the introduction of P under the first rule. The permu-
tations of MALL rules are simple. We shall not detail them, but note that if P is � or
a nonunifiable u
= v, permuting its introduction under the first rule erases that rule.
The permutations involving freezing rules are obvious, and most of the ones involving
fixed points, such as ⊗/ν, are not surprising.

 �, P, S�t
 BS�x, S�x⊥

 �, P, νB�t
 �′, P′

 �,�′, P ⊗ P′, νB�t −→

 �, P, S�t
 �′, P′

 �,�′, P ⊗ P′, S�t
 BS�x, S �x⊥

 �,�′, P ⊗ P′, νB�t

The &/ν and
=/ν permutations rely on the fact that the subderivations obtained by
induction hypothesis are balanced in the same way, with one case for freezing in all
additive branches and one case for coinduction in all branches.

�

 �, P, S�t
�

 BS�x, S�x⊥

 �, P, νB�t

�′

 �, P′, S�t
�

 BS�x, S�x⊥

 �, P′, νB�t

 �, P & P′, νB�t
↓

�

 �, P, S�t
�′

 �, P′, S�t

 �, P & P′, S�t

�

 BS�x, (S�x)⊥

 �, P & P′, νB�t
Another nontrivial case is ⊗/
= which makes use of Lemma 4.11.

{
�σ

 (�, P)σ : σ ∈ csu(u .= v)

}

 �, P, u
= v

�′

 �′, Q

 �,�′, P ⊗ Q, u
= v

↓⎧⎨
⎩

�σ

 (�, P)σ
�′σ

 (�′, Q)σ

 (�,�′, P ⊗ Q)σ : σ ∈ csu(u .= v)

⎫⎬
⎭

 �,�′, P ⊗ Q, u
= v

A simple inspection shows that in each case, the resulting derivation is balanced in the
same way as �0, and does not have any new reachable location; the set of reachable lo-
cations may strictly decrease only upon proof instantiation in ⊗/
=, or when permuting
� and trivial instances of
= under other rules.

LEMMA 4.13 SYNCHRONOUS PERMUTABILITY. Let � be a sequent of synchronous
and frozen formulas. If
 � has a balanced derivation � in which P is minimal for ≺
then it also has a balanced derivation �′ such that P is minimal and principal in the
conclusion sequent of �′, and |�′| = |�|.

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

Least and Greatest Fixed Points in Linear Logic 2:35

PROOF. We proceed by induction on the derivation. If P is already principal, there
is nothing to do. Otherwise, since the first rule must be synchronous, P occurs in a
single subderivation. We can apply our induction hypothesis on that subderivation:
its conclusion sequent still cannot contain any asynchronous formula by minimality of
P and, by Proposition 4.8, P is still minimal in it. We shall now permute the first two
rules, which are both synchronous. The permutations of synchronous MALL rules are
simple. As for 1, there is no permutation involving =. The permutations for μ follow
the same geometry as those for ∃ or ⊕. For instance, ⊗/μ is as follows.

 �, P

 �′, P′, B(μB)�t

 �′, P′, μB�t

μ

 �,�′, P ⊗ P′, μB�t ⊗ −→

 �, P
 �′, P′, B(μB)�t

 �,�′, P ⊗ P′, B(μB)�t ⊗

 �,�′, P ⊗ P′, μB�t
μ

All those permutations preserve |�|. Balancing and minimality are obviously pre-
served, respectively because asynchronous rule applications and the leaf sequents of
the synchronous trunk are left unchanged.

THEOREM 4.14. The μ-focused system is sound and complete with respect to
μMALL: If
⇑ � is provable, then
 � is provable in μMALL. If
 � has a quasi-finite
μMALL derivation, then
⇑ � has a (focused) derivation.

PROOF. For soundness, we observe that an unfocused derivation can be obtained
simply from a focused one by erasing focusing annotations and removing switching
rules (
 � ⇑ � gives
 �,� and
 � ⇓ P gives
 �, P). To prove completeness,
we first obtain a balanced derivation using Lemma 4.5. Then, we use permutation
lemmas to reorder rules in the freezing-annotated derivation so that we can translate
it to a μ-focused derivation. Formally, we first use an induction on the height of the
derivation. This allows us to assume that coinvariance proofs can be focused, which
will be preserved since those subderivations are left untouched by the following trans-
formations. Then, we prove simultaneously the following two statements.

(1) If
 �,� has a balanced derivation �, where � contains only synchronous and
frozen formulas, then
 � ⇑ � has a derivation.

(2) If
 �, P has a balanced derivation � in which P is minimal for ≺, and there is
no asynchronous formula in its conclusion, then there is a focused derivation of

 � ⇓ P.

We proceed by well-founded induction on |�| with a subinduction on the number of
nonfrozen formulas in the conclusion of �. Note that (1) can rely on (2) for the same
|�| but (2) only relies on strictly smaller instances of (1) and (2).

(1) If there is any, pick arbitrarily an asynchronous formula P, and apply Lemma 4.12
to make it principal in the first rule. The subderivations of the obtained proof can
be focused, either by the outer induction in the case of coinvariance proofs, or by
induction hypothesis (1) for the other subderivations: if the first rule is a freezing,
then the reachable locations of the subderivation and the full derivation are the
same, but there is one less nonfrozen formula; with all other rules, the principal
location is consumed and reachable locations strictly decrease. Finally, we obtain
the full focused derivation by composing those subderivations using the focused
equivalent of the rule applied on P.
When there is no asynchronous formula left, we have shown in Lemma 4.9 that
there is a minimal synchronous formula P in �,�. Let �′ denote �,� without P.

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

2:36 D. Baelde

Using switching rules, we build the derivation of
 � ⇑ � from
 �′ ⇓ P, the latter
derivation being obtained by (2) with � unchanged.

(2) Given such a derivation, we apply Lemma 4.13 to make the formula P principal.
Each of its subderivations has strictly less reachable locations, and a conclusion of
the form
 �′′, P′ where P′ is a subformula of P that is still minimal by Propo-
sition 4.8. For each of those we build a focused derivation of
 �′′ ⇓ P′: if the
subderivation still has no asynchronous formula in its conclusion, we can apply in-
duction hypothesis (2); otherwise P′ is asynchronous by minimality and we use the
switching rule releasing focus on P′, followed by a derivation of
 �′′ ⇑ P′ obtained
by induction hypothesis (1). Finally, we build the expected focused derivation from
those subderivations by using the focused equivalent of the synchronous freezing-
annotated rule applied on P.

In addition to a proof of completeness, we have actually defined a transformation
that turns any unfocused proof into a focused one. This process is in three parts: first,
balancing a quasi-finite unfocused derivation; then, applying rule permutations on un-
focused balanced derivations; finally, adding focusing annotations to obtain a focused
proof. The core permutation process allows to reorder asynchronous rules arbitrarily,
establishing that, from the proof search viewpoint, this phase consists of inessential
non-determinism as usual, except for the choice concerning greatest fixed points.

In the absence of fixed points, balancing disappears, and the core permutation pro-
cess is known to preserve the essence of proofs, that is, the resulting derivation be-
haves the same as the original one with respect to cut elimination. A natural question
is whether our process enjoys the same property. This is not a trivial question, because
of the merging of coinvariants which is performed during balancing, and to a smaller
extent the unfoldings also performed in that process. We conjecture that those new
transformations, which are essentially loop fusions and unrolling, do also preserve the
cut elimination behavior of proofs.

A different proof technique for establishing completeness consists in focusing a proof
by cutting it against focused identities [Laurent 2004; Chaudhuri et al. 2008]. The
preservation of the essence of proofs is thus an immediate corollary of that method.
However, the merging of coinvariants cannot be performed through cut elimination, so
this proof technique (alone) cannot be used in our case.

4.2 The ν-Focused System

While the classification of μ as synchronous and ν as asynchronous is rather satisfying
and coincides with several other observations, that choice does not seem to be forced
from the focusing point of view alone. After all, the μ rule also commutes with all other
rules. It turns out that one can design a ν-focused system treating μ as asynchronous
and ν as synchronous, and still obtain completeness. That system is obtained from the
previous one by changing only the rules working on fixed points as follows.

 � ⇑ B(μB)�t,�

 � ⇑ μB�t,�

 �, (μB�t)∗ ⇑ �

 � ⇑ μB�t,�

 � ⇓ S�t
⇑ BS�x, (S�x)⊥

 � ⇓ νB�t
 (μB�t)∗ ⇓ νB�t
Note that a new asynchronous phase must start in the coinvariance premise: asyn-

chronous connectives in BS�x or (S�x)⊥ might have to be introduced before a focus can
be picked. For example, if B is (λp. a⊥ `⊥) and S is a⊥, one cannot focus on S⊥ imme-
diately since a⊥ is not yet available for applying the init; conversely, if B is (λp. a) and
S is a⊗ 1, one cannot focus on BS immediately.

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

Least and Greatest Fixed Points in Linear Logic 2:37

THEOREM 4.15. The ν-focused system is sound and complete with respect to
μMALL: If
⇑ � is provable, then
 � is provable in μMALL. If
 � has a quasi-finite
μMALL derivation, then
⇑ � has a (focused) derivation.

PROOF SKETCH. The proof follows the same argument as for the μ-focused system.
We place ourselves in a logic with explicit freezing annotations for atoms and least
fixed points, and define balanced annotated derivations, requiring that any instance of
a least fixed point is used consistently throughout a derivation, either always frozen
or always unfolded; together with the constraint on its sublocations, this means that a
least fixed point has to be unfolded the same number of times in all (additive) branches
of a derivation. We then show that any quasi-finite annotated derivation can be bal-
anced; the proof of Lemma 4.5 can be adapted easily. Finally, balanced derivations can
be transformed into focused derivations using permutations: the focalization graph
technique extends trivially, the new asynchronous permutations involving the μ rule
are simple thanks to balancing, and the new synchronous permutations involving the
ν rule are trivial.

This flexibility in the design of a focusing system is unusual. It is not of the same
nature as the arbitrary bias assignment that can be used in Andreoli’s system: atoms
are noncanonical, and the bias can be seen as a way to indicate what is the synchrony
of the formula that a given atom might be instantiated with. But our fixed points have
a fully defined logical meaning, they are canonical. The flexibility highlights the fact
that focusing is a somewhat shallow property, accounting for local rule permutability
independently of deeper properties such as positivity.

Although we do not see any practical use of such flexibility, it is not excluded that
one is discovered in the future, like with the arbitrary bias assignment on atoms in
Andreoli’s original system.

It is not possible to treat both least and greatest fixed points as asynchronous. Be-
sides creating an unclear situation regarding init, this would require to balance both
kinds of fixed points, which is impossible. In μ-focusing, balancing greatest fixed points
unfolds least fixed points as a side effect, which is harmless since there is no balanc-
ing constraint on those. The situation is symmetric in ν-focusing. But if both least
and greatest fixed points have to be balanced, the two unfolding processes interfere
and may not terminate anymore. It is nevertheless possible to consider mixed bias as-
signments for fixed point formulas, if the init rule is restricted accordingly. We would
consider two logically identical variants of each fixed point: μ+ and ν+ being treated
synchronously, μ− and ν− asynchronously, and the axiom rule would be restricted to
dual fixed points of opposite bias.

 (μB�t)+, (νB�t)−
 (νB�t)+, (μB�t)−
This restriction allows to perform simultaneously the balancing of ν− and μ− without
interferences. Further, we conjecture that a sound and complete focused proof system
for that logic would be obtained by superposing the μ-focused system for μ+, ν− and
the ν-focused system for μ−, ν+.

4.3 Application to μLJL

The examples of Section 2.6 showed that despite its simplicity and linearity, μMALL
can be related to a more conventional logic. In particular we are interested in drawing
some connections with μLJ [Baelde 2008a], the extension of LJ with least and greatest
fixed points. In the following, we show a simple first step to this program, in which
we capture a rich fragment of μLJ even though μMALL does not have exponentials.
In this section, we make use of the properties of negative formulas (Definition 2.11),

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

2:38 D. Baelde

which has two important consequences: we shall use the μ-focused system, and could
not use the alternative ν-focused one, since it does not agree with the classification;
moreover, we shall work in a fragment of μMALL without atoms, since atoms do not
have any polarity.

We have observed (Proposition 2.12) that structural rules are admissible for nega-
tive formulas of μMALL. This property allows us to obtain a faithful encoding of a
fragment of μLJ in μMALL despite the absence of exponentials. The encoding must be
organized so that formulas appearing on the left-hand side of intuitionistic sequents
can be encoded positively in μMALL. The only connectives allowed to appear neg-
atively shall thus be ∧, ∨, =, μ and ∃. Moreover, the encoding must commute with
negation, in order to translate the (co)induction rules correctly. This leaves no choice
in the following design.

Definition 4.16 H, G, μLJL. The fragments H and G are given by the following
grammar.

G ::= G ∧ G | G ∨ G | s = t | ∃x.Gx | μ(λpλ�x.G p�x)�t | p�t
| ∀x.Gx | H ⊃ G | ν(λpλ�x.G p�x)�t

H ::= H ∧H | H ∨H | s = t | ∃x.Hx | μ(λpλ�x.Hp�x)�t | p�t

The logic μLJL is the restriction of μLJ to sequents where all hypotheses are in the
fragment H, and the goal is in the fragment G. This implies a restriction of induction
and coinduction rules to (co)invariants in H.

Formulas in H and G are translated in μMALL as follows.

[P ∧ Q]
def
= [P] ⊗ [Q]

[P ∨ Q]
def
= [P] ⊕ [Q]

[s = t]
def
= s = t

[∃x.Px]
def
= ∃x.[Px]

[μB�t] def
= μ[B]�t

[∀x.Px]
def
= ∀x.[Px]

[νB�t] def
= ν[B]�t

[P ⊃ Q]
def
= [P] � [Q]

[λpλ�x.Bp�x]
def
= λpλ�x.[Bp�x]

[p�t] def
= p�t

For reference, the rules of μLJL can be obtained simply from the rules of the focused
system presented in Figure 3, by translating �; �′
 P into �,�′
 P, allowing both
contexts to contain any H formula and reading them as sets to allow contraction and
weakening.

PROPOSITION 4.17. Let P be a G formula, and � a context of H formulas. Then
�
 P has a quasi-finite μLJL derivation if and only if
 [�]⊥, [P] has a quasi-finite
μMALL derivation, under the restrictions that (co)invariants in μMALL are of the form
λ�x. [S�x] for S�x ∈ [H].

PROOF. The proof transformations are simple and compositional. The induction rule
corresponds to the ν rule for (μ[B]�t)⊥, the proviso on invariants allowing the transla-
tions.

�, S�t
 G BS�x
 S�x
�,μB�t
 G ←→

 [�]⊥, [S]⊥�t, [G]
 [B][S]⊥�x, [S]�x

 [�]⊥, ν[B]�t, [G]

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

Least and Greatest Fixed Points in Linear Logic 2:39

Fig. 3. Focused proof system for μLJL.

Here, [S] stands for λ�x. [S�x], and the validity of the translation relies on the fact
that [B][S]⊥�x is the same as [BS�x]⊥. Note that BS belongs to H whenever both S and
B are in H, meaning that for any p and �x, Bp�x ∈ H. The coinduction rule is treated
symmetrically, except that in this case B can be in G.

�
 S�t S�x
 BS�x
�
 νB�t ←→

 [�]⊥, [S]�t
 [S]⊥�x, [B][S]�x

 [�]⊥, ν[B]�t

In order to restore the additive behavior of some intuitionistic rules (e.g., ∧R) and
translate the structural rules, we can contract and weaken the negative μMALL for-
mulas corresponding to encodings of H formulas.

Linear logic provides an appealing proof theoretic setting because of its emphasis
on dualities and of its clear separation of concepts (additive vs. multiplicative, asyn-
chronous vs. synchronous). Our experience is that μMALL is a good place to study
focusing in the presence of least and greatest fixed point connectives. To get similar
results for μLJ, one can either work from scratch entirely within the intuitionistic
framework or use an encoding into linear logic. Given a mapping from intuitionistic to
linear logic, and a complete focused proof system for linear logic, one can often build a
complete focused proof-system for intuitionistic logic.

 F

��

��
 [F]

��

⇑ F
⇑ [F]��

The usual encoding of intuitionistic logic into linear logic involves exponentials,
which can damage focusing structures by causing both synchronous and asynchronous

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

2:40 D. Baelde

phases to end. Hence, a careful study of the polarity of linear connectives must be done
[Danos et al. 1993; Liang and Miller 2007] in order to minimize the role played by the
exponentials in such encodings. Here, as a result of Proposition 4.17, it is possible to
get a complete focused system for μLJL that inherits exactly the strong structure of
linear μ-focused derivations.

This system is presented in Figure 3. Its sequents have the form �; �′
 P where �′
is a multiset of synchronous formulas (fragment H) and the set � contains frozen least
fixed points in H. First, notice that accordingly with the absence of exponentials in the
encoding into linear logic, there is no structural rule. The asynchronous phase takes
place on sequents where �′ is not empty. The synchronous phase processes sequents
of the form �;
 P, where the focus is without any ambiguity on P. It is impossible to
introduce any connective on the right when �′ is not empty. As will be visible in the
following proof of completeness, the synchronous phase in μLJL does not correspond
exactly to a synchronous phase in μMALL: it contains rules that are translated into
asynchronous μMALL rules, namely implication, universal quantification and coin-
duction. We introduced this simplification in order to simplify the presentation, which
is harmless since there is no choice in refocusing afterwards.

PROPOSITION 4.18 SOUNDNESS AND COMPLETENESS. The focused proof system
for μLJL is sound and complete with respect to μLJL: any focused μLJL derivation
of �′; �
 P can be transformed into a μLJL derivation of �′, �
 P; any quasi-finite
μLJL derivation of �
 P can be transformed into a μLJL derivation of · ; �
 P.

PROOF. The soundness part is trivial: unfocused μLJL derivations can be obtained
from focused derivations by removing focusing annotations. Completeness is estab-
lished using the translation to linear logic as outlined above. Given a μLJL derivation
of �
 P, we obtain a μMALL derivation of [�]
 [P] using Proposition 4.17. This
derivation inherits quasi-finiteness, so we can obtain a μ-focused μMALL derivation
of
⇑ [�]⊥, [P]. All sequents of this derivation correspond to encodings of μLJL se-
quents, always containing a formula that corresponds to the right-hand side of μLJL
sequents. By permutability of asynchronous rules, we can require that asynchronous
rules are applied on right-hand side formulas only after any other asynchronous rule
in our μ-focused derivation. Finally, we translate that focused derivation into a fo-
cused μLJL derivation. Let � be a multiset of least fixed points in H, �′ be a multiset
of H formulas, and P be a formula in G.

(1) If there is a μ-focused derivation of
 ([�]⊥)∗ ⇑ [�′]⊥, [P] or
 ([�]⊥)∗, [P] ⇑ [�′]⊥
then there is a focused μLJL derivation of �; �′
 P.

(2) If there is a μ-focused derivation of
 ([�]⊥)∗ ⇓ [P] then there is a focused μLJL
derivation of �;
 P.

We proceed by a simultaneous induction on the μ-focused derivation.

(1) Since [P] is the only formula that may be synchronous, the μ-focused derivation
can only start with two switching rules: either [P] is moved to the left of the arrow,
in which case we conclude by induction hypothesis (1), or �′ is empty and [P] is
focused on, in which case we conclude by induction hypothesis (2).
If the μ-focused derivation starts with a logical rule, we translate it into a μLJL
focused rule before concluding by induction hypothesis. For instance, the & or
=
rule, which can only be applied to a formula in [�′]⊥, respectively correspond to a
left disjunction or equality rule. Other asynchronous μMALL rules translate dif-
ferently depending on whether they are applied on [�]⊥ or [P]: ` can correspond to
left conjunction or right implication; ν to left μ (induction) or right ν (coinduction);
∀ to left ∃ or right ∀. Note that in the case where [P] is principal, the constraint

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

Least and Greatest Fixed Points in Linear Logic 2:41

on the order of asynchronous rules means that � is empty, which is required by
synchronous μLJL rule. Finally, freezing is translated by the μLJL rule moving a
least fixed point from �′ to �.

(2) If the μ-focused derivation starts with the switching rule releasing focus from [P]
we conclude by induction hypothesis (1). Otherwise it is straightforward to trans-
late the first rule and conclude by induction hypothesis (2): ⊗, ⊕, =, ∃ and μ re-
spectively map to the right rules for ∧, ∨, =, ∃ and μ.
Note, however, that the tensor rule splits frozen formulas in ([�]⊥)∗, while the
right conjunction rule of μLJL does not. This is harmless because weakening is
obviously admissible for the frozen context of μLJL focused derivations. This slight
mismatch means that we would still have a complete focused proof system for μLJL
if we enforced a linear use of the frozen context. We chose to relax this constraint,
as it does not make a better system for proof search.

Although μLJL is only a small fragment of μLJ, it catches many interesting and
useful problems. For example, any Horn-clause specification can be expressed in H as a
least fixed point, and theorems that state properties such as totality or functionality of
predicates defined in this manner are in G. Theorems that state more model-checking
properties, of the form ∀x. P x ⊃ Q x, are in G provided that P and Q are in H. Further,
implications can be chained through a greatest fixed point construction, which allows
to specify various relations on process behaviors. For example, provided that one-step
transitions u→ v are specified in H, simulation is naturally expressed in G as follows.

νSλxλy. ∀x′. x→ x′ ⊃ ∃y′. y→ y′ ∧ S x′ y′

Finally, the theorems about natural numbers presented in Section 2.6 are also in G.
Although a formula in G can a priori be a theorem in μLJ but not in μLJL, we have
shown [Baelde 2009] that μLJL is complete for inclusions of nondeterministic finite
automata — A ⊆ B being expressed naturally as ∀w. [A]w ⊃ [B]w.

Interestingly, the μLJL fragment has already been identified in LINC [Tiu et al.
2005] and the Bedwyr system [Baelde et al. 2007] implements a proof-search strat-
egy for it that is complete for finite behaviors, that is, proofs without (co)induction nor
axiom rules, where a fixed point has to be treated in a finite number of unfoldings.
This strategy coincides with the focused system for μLJL, where the finite behavior
restriction corresponds to dropping the freezing rule, obtaining a system where proof
search consists in eagerly eliminating any left-hand side (asynchronous) formula be-
fore working on the goal (right-hand side), without ever performing any contraction
or weakening. The logic μLJ is closely related to LINC, the main difference being the
generic quantifier ∇, which allows to specify and reason about systems involving vari-
able binding, such as the π -calculus [Tiu 2005]. But we have shown [Baelde 2008b]
that ∇ can be added in an orthogonal fashion in μLJ (or μMALL) without affecting
focusing results.

5. CONCLUSION

We have defined μMALL, a minimal and well-structured proof system featuring fixed
points, and established the two main properties for that logic. The proof of cut elimina-
tion is the first contribution of this paper, improving on earlier work and contributing
to the understanding of related works. The second and main contribution is the study
and design of focusing for that logic. This challenging extension of focused proofs forces
us to reflect on the foundations of focusing, and brought new proof search applications
of focusing. We have shown that μMALL is a good logic for the foundational study of
fixed points, but also a rich system that can directly support interesting applications:

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

2:42 D. Baelde

combining observations on admissible structural rules with our μ-focused system, we
were able to derive a focused proof system for an interesting fragment of μLJ.

Although carried out in the simple logic μMALL, this work on fixed points has
proved meaningful in richer logics. We have extended our focusing results to μLL
and μLJ [Baelde 2008a], naturally adapting the designs and proof techniques devel-
oped in this article. However, focused systems obtained by translating the target logic
into μMALL (or μLL) are often not fully satisfying, and better systems can be crafted
and proved complete from scratch, using the same techniques as for μMALL, with a
stronger form of balancing that imposes uniform asynchronous choices over all con-
tractions of a formula.

Further work includes various projects relying on μMALL and its extensions, from
theory to implementation. But we shall focus here on important open questions that
are of general interest concerning this formalism. An obvious first goal would be to
strengthen our weak normalization proof into a strong normalization result. The rela-
tionship between cut elimination and focusing also has to be explored more; we conjec-
tured that focusing preserves the identity (cut elimination behavior) of proofs, and that
the notion of quasi-finiteness could be refined so as to be preserved by cut elimination.
Finally, it would be useful to be able to characterize and control the complexity of nor-
malization, and consequently the expressiveness of the logic; here, one could explore
different classes of (co)invariants, or other formulations of (co)induction.

ACKNOWLEDGMENTS

This article owes a lot to the anonymous reviewers of an earlier version, and I thank them for that. I
also wish to thank Dale Miller with whom I started this work, Olivier Laurent and Alexis Saurin for their
insights on focusing, and Pierre Clairambault, Stéphane Gimenez, Colin Riba and especially Alwen Tiu for
helpful discussions on normalization proofs.

REFERENCES
ALVES, S., FERNÁNDEZ, M., FLORIDO, M., AND MACKIE, I. 2006. The power of linear functions. In

Proceedings of the International Workshop on Computer Science Logic. 119–134.
ANDREOLI, J.-M. 1992. Logic programming with focusing proofs in linear logic. J. Logic Comput. 2, 3,

297–347.
ANDREOLI, J. M. AND PARESCHI, R. 1991. Linear objects: Logical processes with built-in inheritance.

New Gen. Comput. 9, 3–4, 445–473.
APT, K. R. AND VAN EMDEN, M. H. 1982. Contributions to the theory of logic programming. J. ACM 29, 3,

841–862.
BAELDE, D. 2008a. A linear approach to the proof-theory of least and greatest fixed points. Ph.D. thesis,

Ecole Polytechnique.
BAELDE, D. 2008b. On the expressivity of minimal generic quantification. In Proceedings of the Inter-

national Workshop on Logical Frameworks and Meta-Languages: Theory and Practice. A. Abel and
C. Urban Eds., Electronic Notes in Theoretical Computer Science, No. 228, 3–19.

BAELDE, D. 2009. On the proof theory of regular fixed points. In Proceedings of the 18th International
Conference on Automated Reasoning with Analytic Tableaux and Related Methods. M. Giese and
A. Waller Eds., Lecture Notes in Computer Science, vol. 5607, 93–107.

BAELDE, D. AND MILLER, D. 2007. Least and greatest fixed points in linear logic. In Proceedings of the
International Conference on Logic for Programming and Automated Reasoning (LPAR). N. Dershowitz
and A. Voronkov Eds., Lecture Notes in Computer Science, vol. 4790, 92–106.

BAELDE, D., GACEK, A., MILLER, D., NADATHUR, G., AND TIU, A. 2007. The Bedwyr system for model
checking over syntactic expressions. In Proceedings of the 21th Conference on Automated Deduction
(CADE). F. Pfenning Ed., Lecture Notes in Computer Science, vol. 4603, Springer, 391–397.

BAELDE, D., MILLER, D., AND SNOW, Z. 2010. Focused inductive theorem proving. In Proceedings of the 5th
International Joint Conference on Automated Reasoning. J. Giesl and R. Hahnle Eds., Lecture Notes in
Computer Science, vol. 6173, 278–292.

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

Least and Greatest Fixed Points in Linear Logic 2:43

BARENDREGT, H. 1992. Lambda calculus with types. In Handbook of Logic in Computer Science.
S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum Eds., Vol. 2. Oxford University Press, 117–309.

BROTHERSTON, J. 2005. Cyclic proofs for first-order logic with inductive definitions. In Proceedings of the
18th International Conference on Automated Reasoning with Analytic Tableaux and Related Methods.
B. Beckert Ed., Lecture Notes in Computer Science, vol. 3702, Springer, 78–92.

BURRONI, A. 1986. Récursivité graphique (lère partie): Categorie des fonctions recursives primitives
formelles. Cah. Topologie Geom. Differ. Categoriques 27, 1, 49–79.

CHAUDHURI, K. AND PFENNING, F. 2005. Focusing the inverse method for linear logic. In Proceedings of
the International Workshop on Computer Science Logic. C.-H. L. Ong Ed., Lecture Notes in Computer
Science, vol. 3634, Springer, 200–215.

CHAUDHURI, K., PFENNING, F., AND PRICE, G. 2008. A logical characterization of forward and backward
chaining in the inverse method. J. Automat. Reason. 40, 2–3, 133–177.

CLAIRAMBAULT, P. 2009. Least and greatest fixpoints in game semantics. In Proceedings of the 12th Inter-
national Conference on the Foundations of Software Science and Computational Structures. L. de Alfaro
Ed., Lecture Notes in Computer Science, vol. 5504, Springer, 16–31.

DANOS, V., JOINET, J.-B., AND SCHELLINX, H. 1993. The structure of exponentials: Uncovering the dy-
namics of linear logic proofs. In Proceedings of the Kurt Gödel Colloquium. G. Gottlob, A. Leitsch, and
D. Mundici Eds., Lecture Notes in Computer Science, vol. 713, Springer, 159–171.

DANOS, V., JOINET, J.-B., AND SCHELLINX, H. 1995. LKT and LKQ: Sequent calculi for second order logic
based upon dual linear decompositions of classical implication. In Advances in Linear Logic. J.-Y. Girard,
Y. Lafont, and L. Regnier Eds., London Mathematical Society Lecture Note Series, vol. 222, Cambridge
University Press, 211–224.

DELANDE, O. AND MILLER, D. 2008. A neutral approach to proof and refutation in MALL. In Proceedings
of the 23rd Symposium on Logic in Computer Science. F. Pfenning Ed., IEEE, 498–508.

DELANDE, O., MILLER, D., AND SAURIN, A. 2010. Proof and refutation in MALL as a game. Ann. Pure
Appl. Logic 161, 5, 654–672.

GIRARD, J.-Y. 1987. Linear logic. Theor. Comput. Sci. 50, 1–102.
GIRARD, J.-Y. 1992. A fixpoint theorem in linear logic. An email posting to the mailing list

linear@cs.stanford.edu.
GIRARD, J.-Y. 2001. Locus solum: From the rules of logic to the logic of rules. Math. Struct. Comput. Sci. 11,

3, 301–506.
HODAS, J. AND MILLER, D. 1994. Logic programming in a fragment of intuitionistic linear logic. Inform.

Comput. 110, 2, 327–365.
HUET, G. 1975. A unification algorithm for typed A-calculus. Theor. Comput. Sci. 1, 27–57.
LAURENT, O. 2002. Etude de la polarisation en logique. Ph.D. thesis, Université Aix-Marseille II.
LAURENT, O. 2004. A proof of the focalization property of linear logic. Unpublished note.
LAURENT, O., QUATRINI, M., AND DE FALCO, L. T. 2005. Polarized and focalized linear and classical proofs.

Ann. Pure Appl. Logic 134, 2–3, 217–264.
LIANG, C. AND MILLER, D. 2007. Focusing and polarization in intuitionistic logic. In Proceedings of the

International Workshop on Computer Science Logic. J. Duparc and T. A. Henzinger Eds., Lecture Notes
in Computer Science, vol. 4646, Springer, 451–465.

MATTHES, R. 1999. Monotone fixed-point types and strong normalization. In Proceedings of the Interna-
tional Workshop on Computer Science Logic. G. Gottlob, E. Grandjean, and K. Seyr Eds., Lecture Notes
in Computer Science, vol. 1584, 298–312.

MCDOWELL, R. AND MILLER, D. 2000. Cut-elimination for a logic with definitions and induction. Theor.
Comput. Sci. 232, 91–119.

MENDLER, N. P. 1991. Inductive types and type constraints in the second order lambda calculus. Ann. Pure
Appl. Logic 51, 1, 159–172.

MILLER, D. 1992. Unification under a mixed prefix. J. Symb. Comput. 14, 4, 321–358.
MILLER, D. 1996. Forum: A multiple-conclusion specification logic. Theor. Comput. Sci. 165, 1, 201–232.
MILLER, D. AND NIGAM, V. 2007. Incorporating tables into proofs. In Proceedings of the International

Workshop on Computer Science Logic. J. Duparc and T. A. Henzinger Eds., Lecture Notes in Computer
Science, vol. 4646, Springer, 466–480.

MILLER, D. AND PIMENTEL, E. 2010. A formal framework for specifying sequent calculus proof systems.
Available from authors’ Web sites.

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

2:44 D. Baelde

MILLER, D. AND SAURIN, A. 2006. A game semantics for proof search: Preliminary results. In Proceedings of
the Mathematical Foundations of Programming Semantics (MFPS ’05). Electronic Notes in Theoretical
Computer Science, vol. 155, 543–563.

MILLER, D. AND SAURIN, A. 2007. From proofs to focused proofs: A modular proof of focalization in linear
logic. In Proceedings of the International Workshop on Computer Science Logic. J. Duparc and T. A.
Henzinger Eds., Lecture Notes in Computer Science, vol. 4646, Springer, 405–419.

MILLER, D. AND TIU, A. 2005. A proof theory for generic judgments. ACM Trans. Comput. Logic 6, 4,
749–783.

MILLER, D., NADATHUR, G., PFENNING, F., AND SCEDROV, A. 1991. Uniform proofs as a foundation for
logic programming. Ann. Pure Appl. Logic 51, 125–157.

MOMIGLIANO, A. AND TIU, A. 2003. Induction and co-induction in sequent calculus. In Proceedings of the
International Workshop on Types for Proofs and Programs. M. Coppo, S. Berardi, and F. Damiani Eds.,
Lecture Notes in Computer Science, vol. 3085, 293–308.

NIGAM, V. 2009. Exploiting non-canonicity in the sequent calculus. Ph.D. thesis, Ecole Polytechnique.
SANTOCANALE, L. 2001. A calculus of circular proofs and its categorical semantics. BRICS Report Series

RS-01-15, BRICS, Department of Computer Science, University of Aarhus.
SCHROEDER-HEISTER, P. 1993. Rules of definitional reflection. In Proceedings of the 8th Annual Symposium

on Logic in Computer Science. M. Vardi, Ed., IEEE, 222–232.
TIU, A. 2004. A logical framework for reasoning about logical specifications. Ph.D. thesis, Pennsylvania

State University.
TIU, A. 2005. Model checking for π -calculus using proof search. In Proceedings of the International Con-

ference on Concurrency Theory. M. Abadi and L. de Alfaro Eds., Lecture Notes in Computer Science,
vol. 3653, Springer, 36–50.

TIU, A. AND MOMIGLIANO, A. 2010. Cut elimination for a logic with induction and co-induction.
CoRR abs/1009.6171.

TIU, A., NADATHUR, G., AND MILLER, D. 2005. Mixing finite success and finite failure in an automated
prover. In Proceedings of the Workshop on Empirically Successful Automated Reasoning in Higher-Order
Logics (ESHOL’05). 79–98.

Received October 2009; revised July 2010; accepted September 2010

ACM Transactions on Computational Logic, Vol. 13, No. 1, Article 2, Publication date: January 2012.

