
Combining Deduction Modulo and
Logics of Fixed-Point Definitions

David Baelde
IT University of Copenhagen

Gopalan Nadathur
University of Minnesota

Abstract—Inductive and coinductive specifications are widely
used in formalizing computational systems. Such specifications
have a natural rendition in logics that support fixed-point defi-
nitions. Another useful formalization device is that of recursive
specifications. These specifications are not directly complemented
by fixed-point reasoning techniques and, correspondingly, do not
have to satisfy strong monotonicity restrictions. We show how to
incorporate a rewriting capability into logics of fixed-point defini-
tions towards additionally supporting recursive specifications. In
particular, we describe a natural deduction calculus that adds a
form of “closed-world” equality—a key ingredient to supporting
fixed-point definitions—to deduction modulo, a framework for
extending a logic with a rewriting layer operating on formulas.
We show that our calculus enjoys strong normalizability when the
rewrite system satisfies general properties and we demonstrate
its usefulness in specifying and reasoning about syntax-based
descriptions. The integration of closed-world equality into deduc-
tion modulo leads us to reconfigure the elimination principle for
this form of equality in a way that resolves long-standing issues
concerning the stability of finite proofs under proof reduction.

I. Introduction

Fixed-point definitions constitute a widely used specification
device in computational settings. The process of reasoning
about such definitions can be formalized within a logic by
including a proof rule for introducing predicates from their
definition, and a case analysis rule for eliminating such predi-
cates in favor of the definitions through which they might have
been derived. For example, given the following definition of
natural numbers

nat 0 4
= > nat (s x) 4

= nat x

the introduction and elimination rules would respectively build
in the capabilities of recognizing natural numbers and of
reasoning by case analysis over them. When definitional
clauses are positive, they are guaranteed to admit a fixed point
and the logic can be proved to be consistent. Further, least
(resp. greatest) fixed points can be characterized by adding an
induction (resp. coinduction) rule to the logic. These kinds of
treatments have been added to second-order logic [1], [2], type
theory [3] and first-order logics [4]–[7].

The case analysis rule, which corresponds under the Curry-
Howard isomorphism to pattern matching in computations,
is complex in many formulations of the above ideas, and
the (co)induction rules are even more so. By identifying and
utilizing a suitable notion of equality, it is possible to give
these rules a simple and elegant rendition. For example, the

two clauses for nat can be transformed into the following form:

nat x 4
= x = 0 ∨ ∃y. x = s y ∧ nat y

The case analysis rule can then be derived by unfolding a nat
hypothesis into its single defining clause and using elimination
rules for disjunction and equality. However, to obtain the ex-
pected behavior, equality elimination has to internalize aspects
of term equality such as disjointness of constructors; e.g., the
0 branch should be closed immediately if the instantiation of
x has the form s n. The introduction of this separate notion of
equality, which we refer to as closed-world equality, has been
central to the concise formulation of generic (co)induction
rules [7]. Further, fixed-point combinators can be introduced
to make the structure of (co)inductive predicates explicit rather
than relying on a side table of definitions. Thus, the (inductive)
definition of natural numbers may simply be rendered as
µ (λNλx. x = 0 ∨ ∃y. x = s y ∧ N y). Fixed point combinators
simplify and generalize the theory, notably enabling mutual
(co)induction schemes from the natural (co)induction rules [8],
[9]. The logics resulting from this line of work, which we
refer to as logics of fixed-point definitions from now on,
have a simple structure that is well-adapted to automated
and interactive proof-search [10], [11]. Moreover, they can be
combined with features such as generic quantification that are
useful in capturing binding structure to yield calculi that are
well-suited to formalizing the meta-theory of computational
and logical systems [12]–[14].

Logics featuring (co)inductive definitions can be made more
powerful by adding another genre of definitions: recursive
definitions based on inductive sets. A motivating context for
such definitions is provided by the Tait-style strong normaliz-
ability argument [15], which figures often in the meta-theory
of computational systems. For the simply typed λ-calculus,
this argument relies on a reducibility relation specified by the
following clauses:

red ι e 4
= sn e

red (t1 → t2) e 4
= ∀e′. red t1 e′ ⊃ red t2 (e e′)

We assume ι to be the sole atomic type here and that sn is
a predicate that recognizes strong normalizability. The speci-
fication of red looks deceptively like a fixed-point definition.
However, treating it as such is problematic because the second
clause in the definition does not satisfy the positivity condition.
More importantly, the Tait-style argument does not involve

reasoning on red like we reason on fixed-point definitions.
Instead of performing case-analysis or induction on red,
properties are proved about it using an (external) induction
on types and the clauses for red mainly support an unfolding
of the definition once the structure of a type is known [16].
Generally, recursive definitions are distinguished by the fact
that they embody computations or rewriting within proofs
rather than the case analysis and speculative rewriting that
is characteristic of fixed-point based reasoning.

In this paper, we show how to incorporate the capability
of recursive definitions into logics of fixed-point definitions.
At a technical level, we do this by introducing least and
greatest fixed points and the idea of closed-world equality
into deduction modulo [17], a framework for extending a
logic with a rewriting layer that operates on formulas and
terms. This rewriting layer allows for a transparent treatment
of recursive definitions, but a satisfactory encoding of closed-
world equality (and thus fixed-point definitions) seems outside
its reach. This dichotomy actually highlights the different
strengths of logics of fixed-point definitions and deduction
modulo: while the former constitute excellent vehicles for
dealing with (co)inductive definitions, the rewriting capability
of the latter is ideally suited for supporting recursive def-
initions. By extending deduction modulo with closed-world
equality and fixed points, we achieve a combination of these
strengths. This combination also clarifies the status of our
equality: we show that it is compatible with a theory on terms
and is thus richer than a simple “syntactic” form of equality.

The main technical result of this paper is a strong nor-
malizability property for our enriched version of deduction
modulo. The seminal work in this context is that of Dowek and
Werner [18], who provide a proof of strong normalizability for
deduction modulo that is modular with respect to the rewriting
system being used. In the course of adapting this proof to
our setting, we rework previous logical treatments of closed-
world equality in a way that, for the first time, lets us require
that proofs be finite without sacrificing their stability under
reduction. For the resulting system, we are able to construct a
proof of strong normalizability which follows very naturally
the intended semantics of fixed-point and recursive definitions:
the former are interpreted as a whole using a semantic fixed-
point, while the latter are interpreted instance by instance.
Regarding the normalization of least and greatest fixed-point
constructs, our work adapts that of Baelde [9] from linear
to intuitionistic logic. We use a natural deduction style in
presenting our logic that has the virtue of facilitating future
investigations of connections with functional programming.

The rest of the paper is structured as follows. In Section II,
we motivate and present our logical system. Section III de-
scribes reductions on proofs. Section IV provides a proof of
strong normalizability that is modular in the rewrite rules being
considered. We use this result to facilitate recursive definitions
in Section V and we illustrate their use in formalizing the
meta-theory of programming languages. Section VI discusses
related and future work.

II. DeductionModulo with Fixed-Points and Equality

We present our extension to deduction modulo in the form
of a typing calculus for appropriately structured proof terms.
This gives us a convenient tool for defining proof reductions
and proving strong normalizability in later sections.

A. Formalizing closed-world equality

We first provide an intuition into our formalization of
the desired form of equality. The rule for introducing an
equality is the expected one: two terms are equal if they are
congruent modulo the operative rewriting relation. Denoting
the congruence by ≡, this rule can simply be

Γ ` t = t′ t ≡ t′

The novelty is in the elimination rule that must encapsulate the
closed-world interpretation. This can be captured in the form
of a case analysis over all unifiers of the eliminated equality;
the unifiers that are relevant to consider here would instantiate
variables of universal strength, called eigenvariables, in the
terms. One formulation of this idea that has been commonly
used in the literature is the following:

Γ ` t = t′ { Γθi ` Pθi | θi ∈ csu(t, t′) }
Γ ` P

The notation csu(t, t′) is used here to denote a complete set of
unifiers for t and t′ modulo ≡, i.e., a set of unifiers such that
every unifier for the two terms is subsumed by a member of
the set. The closed world assumption is expressed in the fact
that Γ ` P needs to be proved under only these substitutions.
Note in particular that the set of right premises here is empty
when t and t′ are not unifiable, i.e., have no common instances.

The equality left rule could have simply used the set of
all unifiers for t and t′. Basing it on csus instead allows
the cardinality of the premise set to be controlled, typically
permitting it to be reduced to a finite collection from an
infinite one. However, a problem with the way this rule is
formulated is that this property is not stable under substitution.
For example, consider the following derivation in which x and
y are variables:

p x, x = y ` x = y (p x, x = y)[y/x] ` (p y)[y/x]
p x, x = y ` p y

If we were to apply the substitution [t1/x, t2/y] to it, the
branching structure of the derivation would have to be changed
to reflect the nature of a csu for t1 and t2; this could well be an
infinite set. A related problem manifests itself when we need
to substitute a proof π for an assumption into the derivation. If
we were to work the proof substitution eagerly through each
of the premises in the equality elimination rule, it would be
necessary to modify the structure of π to accord with the term
substitution that indexes each of the premise derivations. In the
context of deduction modulo, the instantiation in π can create
new opportunities for rewriting formulas. Since the choice of
the “right” premise cannot be determined upfront, the eager
propagation of proof substitutions into equality eliminations

can lead to a form of speculative rewriting which, as we shall
see, is problematic when recursive definitions are included.

We avoid these problems by formulating equality elimina-
tion in a way that allows for the suspension of term and proof
substitutions. Specifically, this rule is

Γ′ ` tθ = t′θ Γ′ ` Γθ { Γθi ` Pθi | θi ∈ csu(t, t′) }
Γ′ ` Pθ

Here, Γ′ ` Γθ means that there is a derivation of Γ′ ` Q for any
Q ∈ Γθ. This premise, that introduces a form of cut, allows to
delay the propagation of proof substitutions over the premises
that represent the case analysis part of the rule. Notice also
that we consider csus for t and t′ and not tθ and t′θ over
these premises, i.e., the application of the substitution θ is
also suspended. Of course, these substitutions must eventually
be applied. Forcing the application becomes the task of the
reduction rule for equality that also simultaneously selects the
right branch in the case analysis.

Our equality elimination rule also has the pleasing property
of allowing the structure of proofs to be preserved under
substitutions. For example, the proof

p x, x = y ` x = y p x, x = y ` p x (p x)[y/x] ` (p y)[y/x]
p x, x = y ` p y

under the substitution θ := [t1/x, t2/y] becomes

Γ ` (x = y)θ Γ ` (p x)θ (p x)[y/x] ` (p y)[y/x]
Γ ` p t2

where Γ = (p t1, t1 = t2).

B. The logic µNJ modulo

The syntax of our formulas is based on a language of typed
λ-terms. We do not describe these in detail and assume only
that it is equipped with standard notions of variables and
substitutions. We distinguish o as the type of propositions.
Term types, denoted by γ, are ones that do not contain o.
Predicates are expressions of type γ1 → . . . → γn → o. Both
formulas and predicates are denoted by P or Q. We use p or
q for predicate variables and a for predicate constants. Terms
are expressions of term types, and shall be denoted by t, u
or v. We use x, y or z for term variables. All expressions
are considered up-to β- and η-conversion. In addition to that
basic syntactic equality, we assume a congruence relation ≡.
In Section V, we will describe sufficient conditions on that
congruence for ensuring consistency of the logic.

Definition 1. A unifier of u and v is a substitution θ such
that uθ ≡ vθ. A complete set of unifiers for u and v, written
csu(u, v) is a set { θi }i of unifiers of u and v, such that any
other unifier of u and v is of the form θiθ

′ for some i and θ′.
Note that complete sets of unifiers are not unique. However,
this ambiguity will be harmless in our setting.

Definition 2. Formulas are built as follows:

P ::= > | ⊥ | P ⊃ Q | P ∧ Q | P ∨ Q | ∀x.P | ∃x.P |

t = t′ | (µ B ~t) | (ν B ~t) | (p ~t) | (a ~t)

Here, ∧, ∨ and ⊃ are connectives of type o→ o→ o, equality
has type γ → γ → o and quantifiers have type (γ → o) →
o for any γ. Expressions of the form a~t are called atomic
formulas. The least and greatest fixed point combinators µ
and ν have the type (τ → τ) → τ for any τ of the form
~γ → o. The first argument for these combinators, denoted by
B, must have the form λpλ~x.P called a predicate operator.
Every predicate variable occurrence must be within such an
operator, bound by the first abstraction in it. An occurrence of
p in a formula is positive if it is on the left of an even number
of implications, and it is negative otherwise and λpλ~x.P is
said to be monotonic (resp. antimonotonic) if p occurs only
positively (resp. negatively) in P. We restrict the first argument
of fixed-point combinators to be monotonic operators.

We now introduce a language of proof terms, and define
type assignment. The constructs and typing rules are standard
(e.g., see [18]), with the exception of those for equality and
fixed points. Following the Curry-Howard correspondence,
(proof-level) types correspond to formulas, typing derivations
correspond to proofs, and the reduction of proof terms corre-
sponds to proof normalization. The guidelines determining the
form of the new proof terms are that all information needed for
reduction should be included in them and that type checking
should be easily decidable. The details of our choices should
become clear when we present the typing rules.

Definition 3. Proof terms, denoted by π and ρ, are given by
the following syntax rules:

π ::= α | 〈〉 | δ⊥(π)
| λα.π | (π π′)
| 〈π, π′〉 | proj1(π) | proj2(π)
| in1(π) | in2(π) | δ∨(π1, α.π2, β.π3)
| λx.π | (π t)
| 〈t, π〉 | δ∃(π, x.α.π′)
| refl | δ=(Γ, θ, σ, u, v, P, π, (θ′i .πi)i)
| µ(B,~t, π) | δµ(π, ~x.α.π′)
| ν(π, α.π′) | δν(B,~t, π)

Here and later, we use α, β, γ to denote proof variables, and σ
to denote substitutions for proof variables. The notation (θ′i .πi)i

in the equality elimination construct stands for an arbitrary
number of subterms; it may be empty, but it must always be
finite. In the expression θ.π, all free variables of π must be in
the range of the substitution θ — this is not restrictive since
θ may be extended at will with identity substitutions. Finally,
the notation x.π or α.π denotes a binding construct, i.e., x
(resp. α) is bound in π. As usual, terms are identified up to
renaming of bound variables, and renaming is used to avoid
capture when propagating a substitution under a binder.

Definition 4. A proof term π has type P under the context Γ

if Γ ` π : P is derivable using the rules in Figure 1. We also
say that Γ′ ` σ : Γ holds if Γ and σ have the same domain
and Γ′ ` σ(α) : Γ(α) holds for each α in that domain.

Γ ` α : P
P ≡ Q, (α : Q) ∈ Γ

Γ ` 〈〉 : P P ≡ > Γ ` π : ⊥
Γ ` δ⊥(π) : P

Γ, α : P1 ` π : P2

Γ ` λα.π : P
P ≡ P1 ⊃ P2

Γ ` π : Q ⊃ P Γ ` π′ : Q
Γ ` π π′ : P

Γ ` π1 : P1 Γ ` π2 : P2

Γ ` 〈π1, π2〉 : P
P ≡ P1 ∧ P2

Γ ` π : P1 ∧ P2

Γ ` proji(π) : P′i
P′i ≡ Pi, i ∈ {1, 2}

Γ ` π : Pi

Γ ` ini(π) : P
P ≡ P1 ∨ P2

Γ ` π : P1 ∨ P2 Γ, α : P1 ` π1 : P Γ, β : P2 ` π2 : P
Γ ` δ∨(π, α.π1, β.π2) : P

Γ ` π : Q
Γ ` λx.π : P

P ≡ ∀x.Q
Γ ` π : ∀x.Q
Γ ` π t : P

P ≡ Q[t/x]

Γ ` π : Q[t/x]
Γ ` 〈t, π〉 : P

P ≡ ∃x.Q
Γ ` π : ∃x.Q Γ, α : Q ` π′ : P

Γ ` δ∃(π, x.α.π′) : P

Γ ` refl : P
P ≡ (t = t)

Γ′ ` π : uθ = vθ Γ′ ` σ : Γθ (Γθ′i ` πi : Qθ′i)i

Γ′ ` δ=(Γ, θ, σ, u, v,Q, π, (θ′i .πi)i) : P
(θ′i)i ∈ csu(u, v), P ≡ Qθ

Γ ` π : B (µB) ~t

Γ ` µ(B,~t, π) : P
P ≡ µ B ~t

Γ ` π : µ B ~t Γ, α : B S ~x ` π′ : S ~x
Γ ` δµ(π, ~x.α.π′) : P P ≡ S ~t

Γ ` π : S ~t Γ, α : S ~x ` π′ : B S ~x
Γ ` ν(π, ~x.α.π′) : P P ≡ ν B ~t

Γ ` π : ν B~t
Γ ` δν(B,~t, π) : P

P ≡ B (ν B) ~t

Variables bound in proof terms are assumed to be new in instances of typing rules, i.e., they should not occur free in the
base sequent. Specifically, α, β, x are assumed to be new in the introduction rules for implication, universal quantification and
greatest fixed-point, as well as elimination rules for disjunction, existential quantification, equality and least fixed-point.

Fig. 1: µNJ: Natural deduction modulo with equality and least and greatest fixed points

C. Expressiveness of the logic

The logic µNJ modulo inherits from logics of fixed-point
definitions a simplicity in the treatment of (co)inductive sets
and relations and from deduction modulo the ability to blend
computation and deduction in the course of reasoning. We
illustrate this aspect through a few simple examples here.

Natural numbers may be specified through the following
least fixed point predicate:

nat
de f
= µ(λNλx. x = 0 ∨ ∃y. x = s y ∧ N y)

Specialized for this predicate, the least fixed point rules
immediately give rise to the following standard derived rules:

Γ ` nat 0
Γ ` nat x

Γ ` nat (s x)

Γ ` nat x Γ ` P 0 Γ, P y ` P (s y)
Γ ` P x

y new

Having natural numbers, we can easily obtain the rest of
Heyting arithmetic. Addition may be defined as an inductive
relation, but the congruence also allows it to be defined more
naturally as a term-level function, equipped with the rewrite
rules 0 + y y and (s x) + y s (x + y). Treating it in
the latter way allows us to exploit the standard dichotomy
between deduction and computation in deduction modulo to
shorten proofs [19]. For example, (s 0)+ (s 0) = s (s 0) can be
proved in one step by using the fact that the two terms in the
equation are congruent to each other. More general properties

about addition defined in this way must be conditioned by
assumptions about the structure of the terms. For instance,
commutativity of addition should be stated as follows:

∀x∀y. nat x ⊃ nat y ⊃ x + y = y + x

This theorem is proved by induction on the nat hypotheses,
with the computation of addition being performed implicitly
in the congruence when the structure of the first summand
becomes known. Note that we do not have to know how to
compute csus modulo arithmetic to build that derivation: all
that is needed is the substitutivity principle ∀x∀y. x = y ⊃
P x ⊃ P y which only involves shallow unification.

III. Reductions on Proof Terms

As usual, we consider reducing proof terms in which an
elimination rule for a logical symbol immediately follows
an introduction rule for the same symbol. Substitutions for
both term-level and proof-level variables play an important
role in describing such reductions. They are defined as usual,
extended as shown on Figure 2 for equality and for the least
and greatest fixed-point constructs. Note that substitutions are
suspended over the parts representing case analysis in the
equality elimination rule as discussed earlier. The next two
lemmas show that this treatment of substitution is coherent.

Lemma 1. Term-level substitution preserves type assignment:
Γ ` π : P implies Γθ ` πθ : Pθ.

(δ=(Γ, θ′, σ, u, v, P, π, (θ′′i .πi)i))θ
de f
= δ=(Γ, θ′θ, σθ, u, v, P, πθ, (θ′′i .πi)i)

(δ=(Γ, θ′, σ′, u, v, P, π, (θ′′i .πi)i))σ
de f
= δ=(Γ, θ′, σ′σ, u, v, P, πσ, (θ′′i .πi)i)

(µ(B,~t, π))θ
de f
= µ(Bθ,~tθ, πθ) (δµ(π, ~x.α.π′))θ

de f
= δµ(πθ, ~x.α.π′θ)

(µ(B,~t, π))σ
de f
= µ(B,~t, πσ) (δµ(π, ~x.α.π′))σ

de f
= δµ(πσ, ~x.α.π′σ)

(ν(π, ~x.α.π′))θ
de f
= ν(πθ, ~x.α.π′θ) (δν(B,~t, π))θ

de f
= δν(Bθ,~tθ, πθ)

(ν(π, ~x.α.π′))σ
de f
= ν(πσ, ~x.α.π′σ) (δν(B,~t, π))σ

de f
= δν(B,~t, πσ)

Fig. 2: Term and proof-level substitutions into equality, least and greatest fixed-point proof terms

Proof: This is easily checked by induction on the typing
derivation. An interesting case is that of equality elimination.
Consider the following derivation:

Γ′ ` π : uθ′ = vθ′ Γ′ ` σ : Γθ′ (Γθ′′i ` πi : P′θ′′i)i

Γ′ ` δ=(Γ, θ′, σ, u, v, P′, π, (θ′′i .πi)i) : P P ≡ P′θ′

By the induction hypothesis, Γ′θ ` πθ : uθ′θ = vθ′θ and Γ′θ `
σθ : Γθ′θ have derivations. From these we build the derivation

Γ′θ ` πθ : uθ′θ = vθ′θ Γ′θ ` σθ : Γθ′θ (Γθ′′i ` πi : P′θ′′i)i

Γ′θ ` δ=(Γ, θ′θ, σθ, u, v, P′, πθ, (θ′′i .πi)i) : Pθ

Lemma 2. If Γ ` π : P and Γ′ ` σ : Γ then Γ′ ` πσ : P.

Proof: This is shown also by induction on the typing deriva-
tion. An interesting case, again, is that of equality elimination.
Consider the following derivation:

Γ ` π : uθ = vθ Γ ` σ′ : Γ′′θ (Γ′′θ′i ` πi : P′θ′i)i

Γ ` δ=(Γ′′, θ, σ′, u, v, P′, π, (θ′i .πi)i) : P P ≡ P′θ

By the induction hypothesis, Γ′ ` πσ : uθ = vθ and Γ′ ` σ′σ :
Γ′′θ have derivations. From this we build the derivation

Γ′ ` πσ : uθ = vθ Γ′ ` σ′σ : Γ′′θ (Γ′′θ′i ` πi : P′θ′i)i

Γ′ ` δ=(Γ′′, θ, σ′σ, u, v, P′, πσ, (θ′i .πi)i) : P

The most interesting reduction rules are those for the least
and greatest fixed-point operators. In the former case, the rule
must apply to a proof of the form

Γ ` π : B (µ B) ~t

Γ ` µ(B,~t, π) : µ B ~t Γ, α : B S ~x ` π′ : S ~x

Γ ` δµ(µ(B,~t, π), ~x.α.π′) : S ~t

This redex can be eliminated by generating a proof of Γ ` S ~t
directly from the derivation of Γ ` π : B (µ B) ~t: doing this
effectively means that we move the redex (cut) deeper into
the iteration that introduces the least fixed point. To realize
this transformation, we proceed as follows:
• Using the derivation π′, we can get a proof of S ~t from

B S ~t. Thus, the task reduces to generating a proof of
B S ~t from B (µ B) ~t.

• Using again π′, we get a derivation for Γ, β : µ B ~x `
δµ(β, ~x.α.π′) : S ~x. If we can show how to “lift” this

derivation over the operator λp.(B p ~t), we obtain the
needed derivation of B S ~t from π : B (µ B) ~t.

For the latter step, we use the notion of functoriality [2]. For
any monotonic operator B, we define the functor FB for which
the following typing rule is admissible:

Γ, α : P~x ` π : P′~x
Γ ` FB(~x.α.π) : (B P) ⊃ (B P′)

Definition 5 (Functoriality, FB(π)). Let B be an operator of
type (~γ → o) → o, and π be a proof such that α : P ~x ` π :
P′ ~x. We define F+

B(~x.α.π) of type B P ⊃ B P′ for a monotonic
B and F−B(~x.α.π) of type B P′ ⊃ B P for an antimonotonic B
by induction on the maximum depth of an occurrence of p in
B p through the rules in Figure 3. In these rules, ∗ denotes
any polarity (+ or −) and −∗ denotes the complementary one.
We write F+

B(~x.α.π) more simply as FB(~x.α.π).

Checking the admissibility of the typing rule pertaining to
FB is mostly routine. We illustrate how this is to be done by
considering the least fixed point case in Figure 4; the greatest
fixed point case is shown in Figure 7 in the appendix.

The full collection of reduction rules is presented in Fig-
ure 5. Note that the reduction rule for equality is not deter-
ministic as stated: determinism can be forced if needed by
suitable assumptions on csus or by forcing a particular choice
of θ′i and θ′′ in case of multiple possibilities.

Theorem 1 (Subject reduction). If Γ ` π : P and π→ π′ then
Γ ` π′ : P.

Proof: This follows from the above substitution lemmas.
For example, consider the equality case. If uθ ≡ vθ then
δ=(Γ′, θ, σ, u, v, P, refl, (θ′i .π

′
i)i) → π′iθ

′′σ where θ = θ′iθ
′′. We

have a derivation of Γ′θ′i ` π
′
i : Pθ′i . Hence, by applying θ′′

and using Lemma 1, Γ′θ ` π′iθ
′′ : Pθ must have a derivation.

Finally, since Γ ` σ : Γ′θ has a derivation, by Lemma 2 there
must be one for Γ ` π′iθ

′′σ : Pθ.

Proposition 1. For any proof terms π, π′ and ρ and any term
t, π → π′ implies π[ρ/α] → π′[ρ/α] and π → π′ implies
π[t/x]→ π′[t/x].

Proof: Both statements are easily checked.
A proof is said to be normal if there are no redexes in the

proof term that represents it. One of the uses of this notion,

F+

λp.p~t
(~x.α.π) = λα.π[~t/~x] F∗λp.Q(~x.α.π) = λβ.β if p does not occur in Q

F∗λp.(B1 p)∧(B2 p)(~x.α.π) = λβ.〈F∗B1
(~x.α.π) (proj1(β)), F∗B2

(~x.α.π) (proj2(β))〉
F∗λp.(B1 p)∨(B2 p)(~x.α.π) = λβ.δ∨(β, γ.in1(F∗B1

(~x.α.π) γ), γ.in2(F∗B2
(~x.α.π) γ))

F∗λp.(B1 p)⊃(B2 p)(~x.α.π) = λβ.λγ.F∗B2
(~x.α.π) (β (F−∗B1

(~x.α.π) γ))
F∗λp.∀x.(B p x)(~x.α.π) = λβ.λx.F∗λp.B p x(~x.α.π) (β x)
F∗λp.∃x.(B p x)(~x.α.π) = λβ.δ∃(β, x.γ.〈x, F∗λp.B p x(~x.α.π) γ〉)

F∗
λp.µ (B p)~t

(~x.α.π) = λβ.δµ(β, ~x.γ.µ(B P′, ~x, F∗
λp.B p (µ (B P′)) ~x(~x.α.π) γ))

F∗
λp.ν (B p)~t

(~x.α.π) = λβ.ν(β, ~x.γ.F∗(λp.B p (ν (B P)) ~x)(~x.α.π) δν(B P, ~x, γ))

Fig. 3: Definition of functoriality

Γ, β : µ (B P)~t ` β : µ (B P)~t

Γ, β : µ (B P)~t, γ : B P (µ (B P′)) ~x ` Fλp.B p (µ (B P′)) ~x(~x.α.π) γ : B P′ (µ (B P′)) ~x

Γ, β : µ (B P)~t, γ : B P (µ (B P′)) ~x ` µ(B P′, ~x, . . .) : µ (B P′) ~x

Γ, β : µ (B P)~t ` δµ(β, . . .) : µ (B P′)~t

Γ ` F+

λp.µ (B p)~t
(~x.α.π) : µ (B P)~t ⊃ µ (B P′)~t

Fig. 4: Typing functoriality for least fixed-points

(λα.π) π′ → π[π′/α] proji(〈π1, π2〉) → πi δ∨(ini(π), α.π1, α.π2) → πi[π/α]
(λx.π) t → π[t/x] δ∃(〈t, π〉, x.α.π′) → π′[t/x][π/α]

δµ(µ(B,~t, π), ~x.α.π′) → π′[~t/~x][
(
Fλp.B p~t(~x.β.δµ(β, ~x.α.π′)) π

)
/α]

δν(B,~t, ν(π, ~x.α.π′)) → Fλp.B p~t(~x.β.ν(β, ~x.α.π
′)) (π′[~t/~x][π/α])

δ=(Γ, θ, σ, u, v, P, refl, (θ′i .πi)i) → πiθ
′′σ where θ = θ′iθ

′′

Fig. 5: Reduction rules for µNJ proof terms

and of the normalizability of proof terms, is in showing the
consistency of a logic.

Lemma 3. Provided that ≡ is defined by a confluent rewrite
system, rewriting terms to terms and atomic propositions to
propositions, there is no normal proof of ` ⊥.

Proof: We first observe that typed normal forms are char-
acterized as usual: no introduction term is ever found as the
main parameter of an elimination. This standard property is
not affected by our new constructs. For example, consider the
case of equality: δ=(. . . , refl, (θi.πi)i) can always be reduced
by definition of complete sets of unifiers. The rest of the
proof follows the usual lines: the proof cannot end with
an elimination, otherwise it would have to be a chain of
eliminations terminated with a proof variable, and there is
no variable in the environment; it also cannot end with an
introduction since there is no introduction for ⊥ and the
congruence cannot equate it with another connective.

IV. Strong Normalizability

In a fashion similar to [18], we now establish strong nor-
malizability for proof reductions when the congruence relation
satisfies certain general conditions. The proof is based on the
framework of reducibility candidates, and borrows elements
from earlier work in linear logic [9] regarding fixed-points.

Definition 6. A proof term is neutral iff it is not an introduc-
tion, i.e., it is a variable or an elimination construct.

Definition 7. A set R of proof terms is a reducibility candidate
if (1) R ⊆ SN; (2) π ∈ R and π→ π′ implies π′ ∈ R; and (3)
if π is neutral and all of its one-step reducts are in R, then
π ∈ R. We denote by C the set of all reducibility candidates.

Note that conditions (2,3) are positive and compatible with
(1) so that for any set of SN proofs there is a least candi-
date containing that set; let us call this operation saturation.
Reducibility candidates, equipped with inclusion, form a com-
plete lattice: the intersection of a family of candidates gives
their infimum and the saturated union gives their supremum.
Having a complete lattice, we can define least and greatest
fixed points of monotonic operators. Finally, all this is lifted
pointwise for functions from terms to candidates, which we
call predicate candidates. We use X or Y to denote candidates
and predicate candidates.

Definition 8. A pre-model M consists in the interpretation of
atomic formulas by reducibility candidates: for any predicate
constant a of type γ1 → . . . γn → o, its interpretation â is a
function from |γ1| × . . .× |γn| to C, where |γ| denotes the set of
(potentially open) terms of type γ.

Definition 9. LetM be a pre-model. Let P be a formula and E

a context of candidates that covers all free predicate variables
of P. We define the candidate |P|E, called interpretation of P,
by induction on the structure of P as shown in Figure 6.

We now justify this definition, i.e., we show that |P|E is
always a candidate and that the fixed points formed in the
interpretation actually exist. This is done by induction on
P, simultaneously establishing that |P|E is a candidate and
that |P|E is monotonic (resp. anti-monotonic) in E(p) for
any variable p that only occurs positively (resp. negatively)
in P. Except in the fixed point cases it is easy to check that
(anti)monotonicity is preserved by our constructions (in the
implication case, each statement follows from the other) and
that the three conditions for being a reducibility candidate are
obviously satisfied. The treatment of the two fixed point com-
binators is similar. We only detail the least fixed point case,
i.e., |µB~t|E = lfp(φ). First, this is well-defined: by induction
hypothesis on Bp~t′, φ is a monotonic mapping from candidates
to candidates, hence it admits a least fixed point in the lattice of
candidates. Next, we check that monotonicity is preserved. Let
us consider E and E′ differing only on a variable p occurring
only positively in µB~t, with E(p) ⊆ E′(p). Unfolding the
definition, we have |µB~t|E = lfp(φ) and |µB~t|E

′

= lfp(φ′). By
induction hypothesis, φ(X) ⊆ φ′(X) for any candidate X, and
in particular φ(|µB~t|E

′

) ⊆ φ′(|µB~t|E
′

) = |µB~t|E
′

. The least fixed
point being contained in all prefixed points, we obtain the
expected result: |µB~t|E = lfp(φ) ⊆ |µB~t|E

′

. Antimonotonicity is
established in a symmetric fashion.

Notation 1 (Interpretation of predicates and operators). When
P is a predicate, i.e., an object of type ~γ → o, we define |P|E to
be the mapping ~t 7→ |P~t|E. For a predicate operator B, i.e., an
object of type (~γ → o)→ o, we define |B|E to be the mapping
X 7→ |Bp|E+〈p,X〉. For conciseness we write directly |BX~t|E for
|λp. Bp~t|EX, which is also equivalent to |B|EX~t.

Lemma 4. Interpretation commutes with second-order substi-
tution: |B[P/p]|E = |B|E+〈p,|P|E〉.

Proof: Straightforward, by induction on B.
We naturally extend the interpretation to typing contexts:

if Γ = (α1 : P1, . . . , αn : Pn), |Γ|E = (α1 : |P1|
E, . . . , αn :

|Pn|
E). We also write σ ∈ |Γ|E when σ is of the form

[π1/α1, . . . , πn/αn] with πi ∈ |Pi|
E for all i.

Definition 10. If π is a proof term with free variables
α1, . . . , αn and Y,X1, . . . ,Xn are reducibility candidates, we
say that π is (α1 : X1, . . . , αn : Xn ` Y)-reducible if π[π′i/αi]i ∈

Y for any (π′i)i ∈ (Xi)i. When it is not ambiguous, we may
omit the variables and simply say that π is (X1, . . . ,Xn ` Y)-
reducible.

Definition 11. A pre-modelM is a pre-model of ≡ iff any two
congruent formulas have the same interpretation with respect
to M.

In the rest of this section, we assume a pre-model of the
congruence, and we shall establish that any term Γ ` π : P is
(|Γ|E ` |P|E)-reducible. In order to do so, we prove adequacy

lemmas, showing that each typing rule can be simulated in the
interpretation.

Lemma 5. The following adequacy properties hold.
(⊃) – If π is (α : |P|E ` |Q|E)-reducible,

then λα.π ∈ |P ⊃ Q|E.
– If π ∈ |P ⊃ Q|E and π′ ∈ |P|E, then π π′ ∈ |Q|E.

(∧) – If π1 ∈ |P1|
E and π2 ∈ |P2|

E, then 〈π1, π2〉 ∈ |P1∧P2|
E.

– If π ∈ |P1 ∧ P2|
E,

then proj1(π) ∈ |P1|
E and proj2(π) ∈ |P2|

E.
(∨) – If π ∈ |Pi|

E for i ∈ {1, 2}, then ini(π) ∈ |P1 ∨ P2|
E.

– If π ∈ |P1 ∨ P2|
E and each πi is (α : |Pi|

E ` |Q|E)-
reducible, then δ∨(π, α.π1, α.π2) ∈ |Q|E.

(>) – The proof 〈〉 belongs to |>|E.
(⊥) – If π ∈ |⊥|E, then δ⊥(π) ∈ |P|E for any P.
(∀) – If π[t/x] ∈ |P[t/x]|E for any t, then λx.π ∈ |∀x. P|E.

– If π ∈ |∀x. P|E, then πt ∈ |P[t/x]|E.
(∃) – If π ∈ |P[t/x]|E, then 〈t, π〉 ∈ |∃x. P|E.

– If π ∈ |∃x. P|E and π′[t/x] is (α : |P[t/x]|E ` |Q|E)-
reducible for any t, then δ∃(π, x.α.π′) ∈ |Q|E.

(=) – It is always the case that refl ∈ |t = t|E.
– If π ∈ |tθ = t′θ|E, σ ∈ |Γθ|E and π′iθ

′ is
(|Γθiθ

′|E ` |Pθiθ
′|E)-reducible for any i and θ′, then

δ=(Γ, θ, σ, t, t′, P, π, (θi.πi)i) ∈ |Pθ|E.
(µ) – If π ∈ |B(µB)~t|E, then µ(B,~t, π) ∈ |µB~t|E.
(ν) – If π ∈ |νB~t|E, then δν(B,~t, π) ∈ |B(νB)~t|E.

Proof: We illustrate this standard proof technique on a few
cases; more details may be found in Appendix A. All intro-
duction cases follow a similar pattern. Consider for example
the case of least fixed-points. We need to show that for any
π ∈ |B(µB)~t|E, µ(B,~t, π) ∈ |µB~t|E = lfp(φ)(~t) = φ(|µB|E)(~t) =

{ ρ ∈ SN | ρ →∗ µ(B,~t, π′) implies π′ ∈ |B(µB)~t|E }. Indeed,
for any reduction µ(B,~t, π) →∗ µ(B,~t, π′) it must be the case
that π→∗ π′ and thus π′ ∈ |B(µB)~t|E.

The elimination of greatest fixed points follows immedi-
ately from the definition of the interpretation since |νB~t|E =

{ π | δν(B,~t, π) ∈ |B(νB)~t|E }. Other elimination cases
follow a scheme that we illustrate on equality elimina-
tion. Under the above mentionned conditions, we show that
δ=(Γ, θ, σ, t, t′, P, π, (θi.πi)i) ∈ |Pθ|E. We proceed by induction
on the strong normalizability of the subderivations π, σ and
πi. In order to show that a neutral term belongs to a candidate,
it suffices to consider all its one-step reducts. Reductions
occurring inside subterms are handled by induction hypothesis.
We may also have a toplevel redex when tθ ≡ t′θ and π = refl,
reducing to πiθ

′σ where θ′ is such that θiθ
′ ≡ θ. By hypothesis,

πiθ
′ is (|Γθiθ

′|E ` |Pθiθ
′|E)-reducible and σ ∈ |Γθ|E = |Γθiθ

′|E,
and thus we have πiθ

′σ ∈ |Pθ|E as expected.
Although adequacy is easily proved for our new equality

formulation, a few important observations should be made
here. First, the proof crucially relies on the fact that we are
considering only syntactic pre-models, and not the general
notion of pre-model of Dowek and Werner where terms may
be interpreted in arbitrary structures. This requirement makes
sense conceptually, since closed-world equality internalizes
the fact that equality can only hold when the congruence

|⊥|E = |>|E = |u = v|E = SN |p t1 . . . tn|E = E(p)(t1, . . . , tn) |a t1 . . . tn|E = â(t1, . . . , tn)
|P ⊃ Q|E = { π ∈ SN | π→∗ λα.π1 implies π1[π′/α] ∈ |Q|E for any π′ ∈ |P|E }
|P ∧ Q|E = { π ∈ SN | π→∗ 〈π1, π2〉 implies π1 ∈ |P|E and π2 ∈ |Q|E }
|P1 ∨ P2|

E = { π ∈ SN | π→∗ ini(π′) implies π′ ∈ |Pi|
E }

|∀x. P|E = { π ∈ SN | π→∗ λx.π′ implies π′[t/x] ∈ |P[t/x]|E for any t }
|∃x. P|E = { π ∈ SN | π→∗ 〈t, π′〉 implies π′[t/x] ∈ |P[t/x]|E }
|µB~t|E = lfp(φ)(~t) where φ(X) = ~t′ 7→ { π ∈ SN | π→∗ µ(B,~t′, π′) implies π′ ∈ |Bp~t′|E+〈p,X〉 }

|νB~t|E = gfp(φ)(~t) where φ(X) = ~t′ 7→ { π | δν(B, ~t′, π) ∈ |Bp~t′|E+〈p,X〉 }

Fig. 6: Interpretation of formulas as candidates

allows it, and is thus incompatible with further equalities that
could hold in non-trivial semantic interpretations. Second, the
suspension of proof-level substitutions in equality elimination
goes hand in hand with the independence of interpretations
for different predicate instances, which in turn is necessary to
interpret recursive definitions. Indeed, when applying a proof-
level substitution σ ∈ |Γ|E on an eager equality elimination,
we are forced us to apply the csu substitutions on σ, and we
need σ ∈ |Γθi|

E which essentially forces us to have a term-
independent interpretation [9].

We now address the adequacy of functoriality, induction and
coinduction.

Lemma 6. Let π be a proof, and let X and X′ be predicate
candidates such that π[~t/~x] is (α : X~t ` X′~t)-reducible for any
~t. If B is a monotonic (resp. antimonotonic) operator, then
F+

B(~x.α.π) ∈ |BX ⊃ BX′| (resp. F−B(~x.α.π) ∈ |BX′ ⊃ BX|).

Lemma 7. Let π be a proof and X a predicate candidate. If
π[~t/~x] is (α : |B|X~t ` X~t)-reducible for any ~t, then δµ(β, ~x.α.π)
is (β : |µB~t′| ` X~t′)-reducible for any ~t′.

Lemma 8. Let π be a proof and X a predicate candidate. If
π[~t/~x] is (α : X~t ` |B|X~t)-reducible for any ~t, then ν(β, ~x.α.π)
is (β : X~t′ ` |νB~t′|)-reducible for any ~t′.

Proof: Those lemmas must be proved simultaneously, in a
generalized form that is detailed in the appendix. There is no
essential difficulty in proving the functoriality lemma, using
previously proved adequacy properties as well as the other two
lemmas for the fixed point cases. The next two lemmas are the
interesting ones, since they involve using the properties of the
fixed point interpretations to justify the (co)induction rules. In
the case of induction, we need to establish that δµ(ρ, ~x.α.π) ∈
X~t when ρ ∈ |µB~t|. In order to do this, it suffices to show that
Y := ~t 7→ { ρ | δµ(ρ, ~x.α.π) ∈ X~t } is included in |µB|. This
follows from the fact that Y is a pre-fixed point of the operator
φ such that |µB| = lfp(φ), which can be proved easily using
the adequacy property for functoriality. We proceed similarly
for the coinduction rule, showing that

Y := ~t 7→ { π ∈ SN | π→∗ ν(ρ, ~x.α.π) implies ρ ∈ X~t and
π[~t′/~x] is (α : X~t′ ` |B|X~t′)-reducible for any ~t′ }

is a post-fixed point of the operator φ such that |νB| = gfp(φ).
In both cases, note that the candidate Y is a priori not the
interpretation of any predicate; this is where we use the power

of reducibility candidates.

Theorem 2 (Adequacy). Let ≡ be a congruence, M a pre-
model of ≡ and Γ ` π : P a derivable judgment. Then πσ ∈ |P|
for any substitution σ ∈ |Γ|.

Proof: By induction on the height of π, using the previous
adequacy properties.

The usual corollaries hold. Since variables belong to any
candidate by condition (3), we can take σ to be the identity
substitution, and obtain that any well-typed proof is strongly
normalizable. Together with Lemma 3, this means that our
logic is consistent. Note that the suspended computations in
the (co)induction and equality elimination rules do not affect
these corollaries, because they can only occur in normal forms
of specific types. For instance, equality elimination cannot
hide a non-terminating computation if there is no equality
assumption in the environment.

V. Recursive definitions

We now identify a class of rewrite rules relative to which
we can always build a pre-model. This class supports recursive
definitions whose use we illustrate through a sound formaliza-
tion of a Tait-style argument.

A. Recursive rewriting that admits a pre-model

The essential idea behind recursive definitions is that they
are formed gradually, following the inductive structure of one
of their arguments, or more generally a well-founded order
on arguments. In order to reflect this idea into a pre-model
construction, we need to identify all the atom interpretations
that could be involved in the interpretation of a given formula.
This is the purpose of the next definition.

Definition 12. We say that P may occur in Q when P = P′θ,
P′ occurs in Q, and θ is a substitution for variables quantified
over in Q.

For example, (a t) may occur in (a′ x ∧ ∃y. a y) for any t.

Theorem 3. Let ≡ be a congruence defined by a rewrite
system rewriting terms to terms and atomic propositions to
propositions, and let M be a pre-model of ≡. Consider the
addition of new predicate symbols a1, . . . , an in the language,
together with the extension of the congruence resulting from
the addition of rewrite rules of the form ai~t B. There

is a pre-model of the extended congruence in the extended
language, provided that the following conditions hold.
(1) If (ai~t)θ ≡ (ai~t′)θ′, ai~t B and ai~t′ B′, then Bθ ≡ B′θ′.
(2) There exists a well-founded order ≺ such that a j~t′ ≺ (ai~t)θ

whenever ai~t B and a j~t′ may occur in B′θ.

Note that condition (1) is not obviously satisfied, even
when there is a single rule per atom. Consider, for example,
a (0 × x) a′ x in a setting where 0 × x ≡ 0: our condition
requires that a′ x ≡ a′ y for any x and y, which is a priori
not guaranteed. Condition (2) restricts the use of quantifiers
but still allows useful constructions. Consider for example
the Ackermann relation, built using a double induction on its
first two parameters: ack 0 x (s x) >, ack (s x) 0 y
ack x (s 0) y and ack (s x) (s y) z ∃r. ack (s x) y r∧ack x r z.
The third rule requires that ack x r z ≺ ack (s x) (s y) z for any
x, y, z and r, which is indeed satisfied with a lexicographic
ordering.
Proof: We only present the main idea here; a detailed proof
may be found in the appendix. We first build pre-models
Mai~t that are compatible with instances a j~t′ B of the new
rewrite rules for a j~t′ � ai~t. This is done gradually following
the order ≺, using a well-founded induction on ai~t. We build
Mai~t by aggregating smaller pre-models Ma j~t′ for a j~t′ ≺ ai~t,
and adding the interpretation âi~t. To define it, we consider
rule instances of the form ai~t B. If there is none we
use a dummy interpretation: âi~t = SN . Otherwise, condition
(1) imposes that there is essentially a single possible such
rewrite modulo the congruence, so it suffices to choose |B| as
the interpretation âi~t to satisfy the new rewrite rules. Finally,
we aggregate interpretations from all the pre-models Mai~t to
obtain a pre-model of the full extended congruence.

This result can be used to obtain pre-models for complex
definition schemes, such as ones that iterate and interleave
groups of fixed-point and recursive definitions. Consider, for
example, a (s n) a n ⊃ a (s n). While this rewrite rule
does not directly satisfy the conditions of Theorem 3, it can
be rewritten into the form a (s n) µQ. a n ⊃ Q, which does
satisfy these conditions.

B. An application of recursive definitions
Our example application is the formalization of the Tait-

style argument of strong normalizability for the simply typed
λ-calculus. We assume term-level sorts tm and ty corre-
sponding to representations of λ-terms and simple types, and
symbols ι : ty, arrow : ty → ty → ty, app : tm → tm → tm
and abs : (tm → tm) → tm. We identify well-formed types
through an inductive predicate:

isty
de f
= µ(λTλt. t = ι ∨ ∃t′∃t′′. t = arrow t′ t′′ ∧ T t′ ∧ T t′′)

We assume a definition of term reduction and strong normal-
ization, denoting the latter predicate by sn. Finally, we define
red m t, expressing that m is a reducible λ-term of type t, by
the following rewrite rules:

red m ι sn m

red m (arrow t t′) ∀n. red n t ⊃ red (app m n) t′

This definition satisfies the conditions of Theorem 3, taking
as ≺ the order induced by the subterm ordering on the second
argument of red. We can thus safely use it.

With these definitions, our logic allows us to mirror very
closely the strong normalization proof presented in [16]. For
instance, consider proving that reducible terms are strongly
normalizing:

∀m∀t. isty t ⊃ red m t ⊃ sn m

The paper proof is by induction on types, which corresponds
in the formalization to an elimination on isty t. In the base
case, we have to derive red m ι ⊃ sn m which is simply
an instance of P ⊃ P modulo our congruence. In the arrow
case, we must prove red m (arrow t t′) ⊃ sn m. The
hypothesis red m (arrow t t′) is congruent to ∀n. red n t ⊃
red (app m n) t′ and we can show that variables are always
reducible,1 which gives us red (app m x) t′. From there, we
obtain sn (app m x) by induction hypothesis, from which we
can deduce sn m with a little more work.

The full formalization, which is too detailed to present here,
is available from the authors. This formalization has been
tested using the proof assistant Abella [20]. The logic that
underlies Abella features fixed-point definitions, closed-world
equality and generic quantification. The last notion is useful
when dealing with binding structures, and we have employed
it in our formalization although it is not available yet in our
logic. Abella does not actually support recursive definitions.
To get around this fact, we have entered the one we need
as an inductive definition, and ignored the warning provided
about the non-monotonic clause while making sure to use
an unfolding of this inductive definition in the proof only
when this is allowed for recursive definitions. In the future,
we plan to extend Abella to support recursive definitions
based on the theory developed in this paper. This would mean
allowing such definitions as a separate class, building in a
test that they satisfy the criterion described in Theorem 3
and properly restricting the use of these definitions in proofs.
Such an extension is obviously compatible with all the current
capabilities of Abella and would support additional reasoning
that is justifiably sound.

VI. Related and FutureWork

The logical system that we have developed is obviously
related to deduction modulo. In essence, it extends that
system with a simple yet powerful treatment of fixed-point
definitions. The additional power is obtained from two new
features: fixed-point combinators and closed-world equality.
If our focus is only on provability, the capabilities arising
from these features may perhaps be encoded in deduction
modulo. Dowek and Werner provide an encoding of arithmetic
in deduction modulo, and also show how to build pre-models
for some more general fixed-point constructs [18]. Regarding
equality, Allali [21] has shown that a more algorithmic version

1This actually has to be proved simultaneously with red m t ⊃ sn m, but
we ignore it for the simplicity of the presentation.

of equality may be defined through the congruence, which
allows to simplify some equations by computing. Thus, it
simulates some aspects of closed-world equality. However,
the principle of substitutivity has to be recovered through a
complex encoding involving inductions on the term structures.
In any case, our concern here is not simply with provability;
in general, we do not follow the project of deduction modulo
to have a logic as basic as possible in which stronger systems
are then encoded. Rather, we seek to obtain meaningful proof
structures, whose study can reveal useful information. For
instance, in the context of proof-search, it has been shown that
a direct treatment of fixed-point definitions allows for stronger
focused proof systems [9] which have served as a basis for
several proof-search implementations [10], [11]. This goal also
justifies why we do not simply use powerful systems such as
the Calculus of Inductive Constructions [3] which obviously
supports inductive as well as recursive definitions; here again
we highlight the simplicity of our (co)induction rules and of
our rich equality elimination principle.

Our logic is also related to logics of fixed-point defini-
tions [4]–[6]. The system we have described represents an
advance over these logics in that it adds to them a rewriting
capability. As we have seen, this capability can be used to sup-
port recursive definitions as well as to blend computation and
deduction in natural ways. This paper also makes important
contributions to the understanding of closed-world equality.
We have shown that it is compatible with an equational theory
on terms. We have, in addition, resolved some problematic
issues related to this notion that affect the stability of finite
proofs under reduction. This has allowed us to prove for the
first time a strong normalizability result for logics of fixed-
point definitions. Our calculus is, at this stage, missing a
treatment of generic quantification present in some of the
alternative logics [12]–[14]. We plan to include this feature
in the future, and do not foresee any difficulty in doing so
since it has typically been added in a modular fashion to such
logics. This addition would make our logic an excellent choice
for formalizing the meta-theory of computational and logical
systems.

An important topic for further investigation of our system is
proof search. The distinction between computation and deduc-
tion is critical for theorem proving with fixed point definitions.
For instance, in the Tac system [11], which is based on logics
of definitions, automated (co)inductive theorem proving relies
heavily on ad-hoc annotations that identify computations. In
that context, our treatment of recursive definitions seems
like a good candidate more a more principled separation
of computation and deduction. Finally, now that we have
refactored equality rules to simplify the proof normalization
process, we should study their proof search behavior. The new
equality elimination rule seems difficult to analyze at first.
However, we hope to gain some insights from studying its use
in settings where the old rule (which it subsumes) is practically
satisfactory, progressively moving to newer contexts where
it offers advantages. We note in this regard that the new
complexity is in fact welcome: the earlier infinitely branching

treatments of closed-world equality had a simple proof-search
treatment in theory, but did not provide a useful handle to
study the practical difficulties of automated theorem proving
with complex equalities.

References
[1] N. P. Mendler, “Inductive types and type constraints in the second order

lambda calculus,” Annals of Pure and Applied Logic, vol. 51, no. 1, pp.
159–172, 1991.

[2] R. Matthes, “Monotone fixed-point types and strong normalization,” in
CSL 1998: Computer Science Logic, ser. LNCS, G. Gottlob, E. Grand-
jean, and K. Seyr, Eds., Berlin, 1999, vol. 1584, pp. 298–312.

[3] C. Paulin-Mohring, “Inductive definitions in the system Coq: Rules and
properties,” in Proceedings of the International Conference on Typed
Lambda Calculi and Applications, M. Bezem and J. F. Groote, Eds.
Utrecht, The Netherlands: Springer LNCS 664, Mar. 1993, pp. 328–
345.

[4] P. Schroeder-Heister, “Rules of definitional reflection,” in 8th Symp. on
Logic in Computer Science, M. Vardi, Ed., IEEE Computer Society
Press. IEEE, Jun. 1993, pp. 222–232.

[5] R. McDowell and D. Miller, “Cut-elimination for a logic with definitions
and induction,” Theoretical Computer Science, vol. 232, pp. 91–119,
2000.

[6] A. Tiu and A. Momigliano, “Induction and co-induction in sequent
calculus,” CoRR, vol. abs/0812.4727, 2008.

[7] A. Tiu, “A logical framework for reasoning about logical specifications,”
Ph.D. dissertation, Pennsylvania State University, May 2004.

[8] D. Baelde, “A linear approach to the proof-theory of least and greatest
fixed points,” Ph.D. dissertation, Ecole Polytechnique, Dec. 2008.

[9] ——, “Least and greatest fixed points in linear logic,” vol. 13, no. 1,
Jan. 2012, ACM Transactions on Computational Logic.

[10] D. Baelde, A. Gacek, D. Miller, G. Nadathur, and A. Tiu, “The Bedwyr
system for model checking over syntactic expressions,” in 21th Conf. on
Automated Deduction (CADE), ser. LNAI, F. Pfenning, Ed., no. 4603.
New York: Springer, 2007, pp. 391–397.

[11] D. Baelde, D. Miller, and Z. Snow, “Focused inductive theorem proving,”
in Fifth International Joint Conference on Automated Reasoning, ser.
LNCS, J. Giesl and R. Hähnle, Eds., no. 6173, 2010, pp. 278–292.

[12] A. Gacek, “A framework for specifying, prototyping, and reasoning
about computational systems,” Ph.D. dissertation, University of Min-
nesota, 2009.

[13] A. Gacek, D. Miller, and G. Nadathur, “Nominal abstraction,” Informa-
tion and Computation, vol. 209, no. 1, pp. 48–73, 2011.

[14] D. Miller and A. Tiu, “A proof theory for generic judgments,” ACM
Trans. on Computational Logic, vol. 6, no. 4, pp. 749–783, Oct. 2005.

[15] W. W. Tait, “Intensional interpretations of functionals of finite type I,”
J. of Symbolic Logic, vol. 32, no. 2, pp. 198–212, 1967.

[16] J.-Y. Girard, P. Taylor, and Y. Lafont, Proofs and Types. Cambridge
University Press, 1989.

[17] G. Dowek, T. Hardin, and C. Kirchner, “Theorem proving modulo,” J.
of Automated Reasoning, vol. 31, no. 1, pp. 31–72, 2003.

[18] G. Dowek and B. Werner, “Proof normalization modulo,” Journal of
Symbolic Logic, vol. 68, no. 4, pp. 1289–1316, 2003.

[19] G. Burel, “Unbounded proof-length speed-up in deduction modulo,” in
CSL 2007: Computer Science Logic, ser. LNCS, J. Duparc and T. A.
Henzinger, Eds., vol. 4646. Springer, 2007, pp. 496–511.

[20] A. Gacek, “The Abella interactive theorem prover (system description),”
in Fourth International Joint Conference on Automated Reasoning, ser.
LNCS, A. Armando, P. Baumgartner, and G. Dowek, Eds., vol. 5195.
Springer, 2008, pp. 154–161.

[21] L. Allali, “Algorithmic equality in heyting arithmetic modulo,” in
TYPES, ser. LNCS, M. Miculan, I. Scagnetto, and F. Honsell, Eds.,
vol. 4941. Springer, 2007, pp. 1–17.

Appendix

A. Proof of Lemma 5

All introduction rules are treated in a similar fashion:
• If π is (α : |P| ` |Q|)-reducible, then λα.π ∈ |P ⊃ Q|.

First, λα.π is SN, like all reducible proof-terms, because
variables belong to all candidates, and candidates are sets
of SN proofs. Now, assuming λα.π →∗ λα.π′, we seek
to establish that π′[π′′/α] ∈ |Q| for any π′′ ∈ |P|. By
definition of reducibility, π[π′′/α] belongs to |Q|, and we
conclude by stability of candidates under reduction since
π[π′′/α]→∗ π′[π′′/α].

• The cases for ∧, ∨ and ∃ are proved similarly.
• The cases for > and equality are trivial.
• If π[t/x] ∈ |P[t/x]| for any t, then λx.π ∈ |∀x. P|.

Assume λx.π→∗ λx.π′. It must be the case that π→∗ π′,
and for any ~t we have π[t/x]→∗ π′[t/x] by Proposition 1
and thus π′[t/x] ∈ |P[t/x]| as needed.

• If π ∈ |B(µB)~t|, then µ(B,~t, π) ∈ |µB~t|.
We need to show that µ(B,~t, π) ∈ |µB~t| = lfp(φ)(~t) =

φ(|µB|)(~t) = { ρ ∈ SN | ρ →∗ µ(B,~t, π′) implies π′ ∈
|B(µB)~t| }. Indeed, for any reduction µ(B,~t, π) →∗

µ(B,~t, π′) it must be the case that π →∗ π′ and thus
π′ ∈ |B(µB)~t|.

Elimination rules also follow a common scheme:
• If π ∈ |P ⊃ Q| and π′ ∈ |P|, then π π′ ∈ |Q|.

We proceed by induction on the strong normalizability
of π and π′. By the candidate of reducibility condition
on neutral terms, it suffices to show that all immediate
reducts π π′ → π′′ belong to |Q|. If π′′ is obtained by a
reduction inside π or π′, then we conclude by induction
hypothesis since the resulting subterm still belongs to the
expected interpretation. Otherwise, it must be that π =

λα.ρ and the reduct is ρ[π′/α]. In that case we conclude
by definition of π ∈ |P ⊃ Q|.

• The cases of ∧, ∨ and ⊥ are treated similarly.
• If π ∈ |∀x. P|, then π t ∈ |P[t/x]|.

We proceed by induction on the strong normalizability of
π, considering all one-step reducts of the neutral term π t.
Internal reductions are handled by induction hypothesis.
If π = λx.π′, our term may reduce at toplevel into π′[t/x].
In that case we conclude by definition of |∀x. P|.

• If π ∈ |∃x. P| and π′[t/x] is (α : |P[t/x]| ` |Q|)-reducible
for any t, then δ∃(π, x.α.π′) ∈ |Q|.
We proceed by induction on the strong normalizability of
π and π′, considering all one-step reducts. The internal re-
ductions are handled by induction hypothesis. A toplevel
reduction into π′[t/x][π′′/α] may occur when π = 〈t, π′′〉
in which case we have π′′ ∈ |P[t/x]| by hypothesis on π
and definition of |∃x. P|. We conclude by hypothesis on
π′[t/x].

• If π ∈ |tθ = t′θ|, σ ∈ |Γθ| and π′iθ
′ is

(|Γθiθ
′| ` |Pθiθ

′|)-reducible for any i and θ′, then
δ=(Γ, θ, σ, t, t′, P, π, (θi.πi)i) ∈ |Pθ|.
We proceed by induction on the strong normalizability
of the subderivations π, σ and πi. In order to show

that a neutral term belongs to a candidate, it suffices to
consider all its one-step reducts. Reductions occurring
inside subterms are handled by induction hypothesis.
We may also have a toplevel redex when tθ ≡ t′θ and
π = refl, reducing to πiθ

′σ where θ′ is such that θiθ
′ ≡ θ.

By hypothesis, πiθ
′ is (|Γθiθ

′| ` |Pθiθ
′|)-reducible and

σ ∈ |Γθ| = |Γθiθ
′|, and thus we have πiθ

′σ ∈ |Pθ| as
expected.

• The case of δν is singular: it follows directly from the
definition of the interpretation of greatest fixed points.

B. Proof of Lemmas 6, 7 and 8

Let us first introduce the following notation for conciseness:
we say that π is (~x,X~x ` Y~x)-reducible when π[~t/~x] is (X~t `
Y~t)-reducible for any ~t.

We prove the three lemmas simultaneously, generalized as
follows for a predicate operator B of second-order arity2 n+1,
predicates ~A and predicate candidates ~Z:
(1) For any (~x,X~x ` X′~x)-reducible π, F+

B~A
(~x.α.π) ∈ |B~ZX ⊃

B~ZX′|.
(2) For any (~x,X~x ` X′~x)-reducible π, F−

B~A
(~x.α.π) ∈ |B~ZX′ ⊃

B~ZX|.
(3) For any (~x, |B|~ZX~x ` X~x)-reducible π, δµ(β, ~x.α.π) is

(|µ(B~Z)~t| ` X~t)-reducible.
(4) For any (~x,X~x ` |B|~ZX~x)-reducible π, ν(β, ~x.α.π) is (X~t `
|ν(B~Z)~t|)-reducible.

We proceed by induction on the number of logical connectives
in B. The purpose of the generalization is to keep formulas
~A out of the picture: those are potentially large but are
treated atomically in the definition of functoriality, moreover
they will be interpreted by candidates ~Z which may not be
interpretations of formulas. We first prove (3) and (4) by
relying on smaller instances of (1), then we show (1) and
(2) by relying on smaller instances of all four properties but
also instances of (3) and (4) for an operator of the same size.
(1) We proceed by case analysis on B. When B = λ~pλq.q~t, we

have to establish that F+

B~A
(~x.α.π) = λβ.π[~t/~x][β/α] ∈ |P~t ⊃

P~t′|. It simply follows from Lemma 5 and the hypothesis
on π. When B = λ~pλq.B′~p where q does not occur in B′,
we have to show F+

B~A
(~x.α.π) = λβ.β ∈ |B′~Z ⊃ B′~Z|, which

is trivial.
In all other cases, we use the adequacy properties and
conclude by induction hypothesis. Most cases are straight-
forward, relying on the adequacy properties. In the im-
plication case, i.e., B is B1 ⊃ B2, we use induction
hypothesis (2) on B1 and (1) on B2. Let us only detail
the least fixed point case:

F+

λq.µ(B~Aq)~t
(~x.α.π)

de f
=

λβ. δµ(β, ~x.γ.µ(B~AP′, ~x, F+

λq.B~Aq(µ(B~AP′))~x
(~x.α.π)γ))

By induction hypothesis (1) with B :=
λ~pλpn+1λq.B~pqpn+1~x, An+1 := µ(B~AP′) and

2In (1) and (2), B has type on+1 → o. In (3) and (4) we are considering B
of type on → (~γ → o)→ (~γ → o).

. . . ` β : ν (B P)~t

. . . ` δν(B P, ~x, γ) : B P (ν (B P)) ~x . . . ` F+
(λp.B p (ν (B P)) ~x)(~x.α.π) : B P (ν (B P))~x ⊃ B P′ (ν (B P)) ~x

. . . , γ : ν (B P) ~x ` (F∗(λp.B p (ν (B P)) ~x)(~x.α.π)) δν(B P, ~x, γ) : B P′ (ν (B P))~x

Γ, β : ν (B P)~t ` ν(β, . . .) : ν (B P′) ~t

Γ ` F+

λp.ν (B p)~t
(~x.α.π) : ν (B P)~t ⊃ ν (B P′)~t

Fig. 7: Typing functoriality for greatest fixed-points

Zn+1 := |µ(B~ZX′)|, we have:

F+
...(~x.α.π) ∈ |B~ZX(µ(B~ZX′))~x ⊃ B~ZX′(µ(B~ZX′))~x|

We can now apply the ⊃-elimination and µ-introduction
principles to obtain that µ(B~AP′, ~x, (F+

...(~x.α.π))γ) is (γ :
|B~ZX(µ(B~ZX′))~x| ` |µ(B~ZX′)~x|)-reducible. Finally, we
conclude using induction hypothesis (3) with B :=
λ~pλpn+1λqλ~x. B~ppn+1q~x, An+1 := P, Zn+1 := X and
X := |µ(B~ZX′)|: F+

λq.µ(B~Aq)~t
is (|µ(B~ZX)~t| ` |µ(B~ZX′)~t|)-

reducible.
(2) Antimonotonicity: symmetric of monotonicity, without

the variable case.
(3) Induction: we seek to establish that δµ(ρ, ~x.α.π) ∈ X~t

when ρ ∈ |µ(B~Z)~t| and π is (~x, |B|~ZX~x ` X~x)-reducible.
We shall show that |µ(B~Z)~t| is included in the set of proofs
for which this holds, by showing that (a) this set is a
candidate and (b) it is a prefixed point of φ such that
|µ(B~Z)~t| = lfp(φ). Let us consider

Y := ~t 7→ { ρ | δµ(ρ, ~x.α.π) ∈ X~t }

First, Y~t is a candidate for any ~t: conditions (1) and
(2) are inherited from X~t, only condition (3) is non-
trivial. Assuming that every one-step reduct of a neutral
derivation ρ belongs to Y, we prove δµ(ρ, ~x.α.π) ∈ X~t.
This is done by induction on the strong normalizability
of π. Using condition (3) on X~t, it suffices to consider
one-step reducts: if the reduction takes place in ρ we
conclude by hypothesis; if it takes place in π we conclude
by induction hypothesis; finally, it cannot take place at
toplevel because ρ is neutral.
We now establish that φ(Y) ⊆ Y: assuming ρ ∈

φ(Y)~t, we show that δµ(ρ, ~x.α.π) ∈ X~t. This is done
by induction on the strong normalizability of ρ and
π, and it suffices to show that each one step reduct
belongs to X~t, with internal reductions handled sim-
ply by induction hypothesis. Therefore we consider the
case where ρ = µ(B~A,~t, π′) and our derivation reduces
to π[~t/~x][Fλq.B~Aq~t(~x.β.δµ(β, ~x.α.π))π′/α]. Now, recall that
π[~t/~x] is (|B~Z|X~t ` X~t)-reducible. Since µ(B~A,~t, π′) = ρ ∈
φ(Y)~t, we also have π′ ∈ |B~ZY~t|. By induction hypothesis
(1) we obtain that Fλq.B~Aq~t(~x.β.δµ(β, ~x.α.π)) is (|B~ZY~t| `
|B~ZX~t|)-reducible, since δµ(β, ~x.α.π) is (~x, β : Y~x ` X~x)-
reducible by definition of Y. We conclude by composing
all that.

(4) Coinduction is similar to induction. Let us consider

Y := ~t 7→ { π ∈ SN | π→∗ ν(ρ, ~x.α.π) implies
ρ ∈ X~t and π is (~x, α : X~x ` |B|~ZX~x)-reducible }

It is easy to show that Y is a predicate candidate, and if
we show that Y ⊆ |ν(B~Z)| we can conclude because the
properties on ρ and π are preserved by reduction.
We have |ν(B~Z)| = gfp(φ), so it suffices to establish that
Y is a post-fixed point of φ, or in other words that for any
~t and π ∈ Y~t, δν(B~A,~t, π) ∈ |B|~ZY~t. We do this as usual
by induction on the strong normalizability of π and the
only interesting case to consider is the toplevel reduction,
which can occur when π = ν(ρ, ~x.α.π′). The reduct is
Fλp.B~Ap~t(~x.β.ν(β, ~x.α.π

′)) (π′[~t/~x][ρ/α]). It does belong to
|B~ZY~t| because: ρ ∈ X~t by definition of π ∈ Y~t; π′[~t/~x]
is (α : X~t ` |B|~ZX~t)-reducible for the same reason; and
finally Fλp. B~Ap~t(~x.β.ν(β, ~x.α.π

′)) ∈ |B~ZX~t ⊃ B~ZY~t| by
(1) since ν(α, ~x.α.π′) is (~x;α : X~x ` Y~x)-reducible by
definition of Y.

C. Proof of Theorem 2

We proceed by induction on the height of π. If π is a
variable, then πσ = σ(α). Thus, it belongs to |Γ(α)| by
hypothesis, and since we are considering a pre-model of the
congruence, and P ≡ Γ(α), we have πσ ∈ |P|.

Other cases follow from the adequacy properties established
previously. For instance, if π is of the form λα.π′, then
P ≡ P1 ⊃ P2 and |P| = |P1 ⊃ P2|. By induction hypothesis,
π′ is (Γ, α : |P1| ` |P2|)-reducible. Equivalently, π′σ is
(|P1| ` |P2|)-reducible, and we conclude using Lemma 5. In the
case where π = λx.π′, we need to establish that each π′σ[t/x]
belongs to |P′[t/x]|. We obtain this by induction hypothesis,
since π′[t/x] has the same height as π′, which is smaller
than π, and we do have Γ[t/x] ` π′[t/x] : P′[t/x]. Simi-
larly, when π = δ=(Γ′, θ′, σ′, t, t′, P′, π′, (θi.πi)i), we establish
πσ ∈ |P′θ′| by using the induction hypothesis to obtain that
σ′σ ∈ |Γ′θ′|, π′σ ∈ |tθ′ = ~t′θ′| and, for any i and θ′′, πiθ

′′ is
(|Γ′θiθ

′′| ` |P′θiθ
′′|)-reducible.

D. Proof of Theorem 3

We define ≡ai~t (resp. ≡≺ai~t) to be the congruence resulting
from the extension of ≡ with rule instances a j~t′ B for
a j~t′ � ai~t (resp. a j~t′ ≺ ai~t). Let us also write P � ai~t (resp.
P ≺ ai~t) when a j~t′ � ai~t (resp. a j~t′ ≺ ai~t) for any a j~t′ which
may occur in P. We shall build a family of pre-models Mai~t

such that:

(a) for any ai~t ≺ a j~t′, |a j~t′|
Mai~t

= SN ;
(b) for any P � a j~t′ and a j~t′ ≺ ai~t, |P|

M
a j
~t′

= |P|
Mai~t

;

(c) Mai~t is a pre-model of ≡ai~t.

We proceed by well-founded induction. Assuming that Ma j~t′

is defined for all a j~t′ ≺ ai~t, we shall thus build Mai~t.
We first define M≺ai~t by taking each â j~t′ to be the same as

in Ma j~t′ when a j~t′ ≺ ai~t and SN otherwise. By this definition
and property (b) of our pre-models, we have

|P|
M≺ai~t

= |P|
M

a j
~t′

for any P � a j~t′ and a j~t′ ≺ ai~t.

Next, we observe thatM≺ai~t is a pre-model of ≡≺ai~t. It suffices
to check it separately for each rewrite rule. An instance P Q
of a rule defining the initial congruence cannot involve the new
predicates, so in that case we do have

|P|
M≺ai~t

= |P|
M

= |Q|
M

= |Q|
M≺ai~t

.

For a rule instance a j~t′ B with a j~t′ ≺ ai~t, the property is
similarly inherited from Ma j~t′ because B � a j~t′ by (2):

|a j~t′|
M≺ai~t

= |a j~t′|
M

a j
~t′

= |B|
M

a j
~t′

= |B|
M≺ai~t

We finally build Mai~t to be the same as M≺ai~t except for
âi~t which is defined as follows:
• If there is no rule ai ~t′′ B such that ~t′′θ ≡ ~t, we define

âi~t to be SN .
• Otherwise, pick any such B, and define âi~t to be |Bθ|

M≺ai~t
.

This is uniquely defined: for any other ai~t′ B′ such
that ai~t = (ai~t′)θ′, we have Bθ ≡ B′θ′ by (1), and thus
|B′θ′|

M≺ai~t
= |Bθ|

M≺ai~t
sinceM≺ai~t is a fortiori a pre-model

of ≡.
This extended pre-model satisfies (a) by construction. It is also
simple to show that it satifies (b). To check that it verifies
(c) we check separately each instance of a rewrite rule: by
construction, our pre-model is compatible with instances of
the form ai~t B, and it inherits that property from M≺ai~t for
other instances.

Finally, we define our new pre-model M′ by taking each
âi~t in Mai~t. It is a pre-model of the extended congruence: it
is easy to check that it is compatible with all rewrite rules.

