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Abstract. The first-order theory of MALL (multiplicative, additive linear logic)
over only equalities is an interesting but weak logic since it cannot capture u
bounded (infinite) behavior. Instead of accounting for unboundédwher via
the addition of the exponentials (! and ?), we add least and greatestpfiket
operators. The resulting logic, which we gaMALL ~, satisfies two fundamental
proof theoretic properties. In particulaMALL ~ satisfies cut-elimination, which
implies consistency, and has a complete focused proof system. Thisdsesult
about focused proofs provides a strong normal form for cut{freef structures
that can be used, for example, to help automate proof search. Wedhsider
applying these two results abqui¥lALL = to derive a focused proof system for
an intuitionistic logic extended with induction and co-induction. The traditional
approach to encoding intuitionistic logic into linear logic relies heavily on us-
ing the exponentials, which unfortunately weaken the focusing disciplieegét/

a better focused proof system by observing that certain fixed point$ysiues
structural rules of weakening and contraction (without using exponghtigne
resulting focused proof system for intuitionistic logic is closely related to tiee on
implemented in Bedwyr, a recent model checker based on logic progirzg.

We discuss how our proof theory might be used to build a computatiostdray
that can partially automate induction and co-induction.

1 Introduction

In order to justify the design and implementation architeeiof a computational logic
system, foundational results concerning the normal forhpsanfs are often used. One
starts with thecut-elimination theoreraince it usually guarantees other properties of the
logic (e.g, consistency) and that there is no need to automate théaredtlemmas
during proof search. In many situations, the cut-elimiratiheorem implies that all
formulas considered during the search for a proof are sohftas of the original, pro-
posed theorem. This does not hold, in particular, when ighder (relation) variables
are used, which is the case in this paper where the rulesdaction and co-induction
use such higher-order variables. A second normal form émpusually related téo-
cused proof$§And92] is also important to establish. Such “focusing”drems provide
normal forms that organize invertible and non-invertilbifierence rules into collections:
such striping of the inference rules in a cut-free derivattan be used to understand
which choices in building proofs might need to be reconsidgvia backtracking) and
which do not. As we shall see, focusing yields useful stmgcin cut-free proofs, even
when the subformula property does not hold.



Various computational systems have employeftedent focusing theorems: much
of Prolog’s design and implementations can be justified leyctbmpleteness of SLD-
resolution [AVE82]; uniform proofs (goal-directed propiis intuitionistic and intuition-
istic linear logics have been used to justifirolog [MNPS91] and Lolli [HM94]; the
classical linear logic programming languages LO [AP91] Bacum [Mil96] have used
directly Andreoli’s general focusing result [And92] foné&ar logic.

In this paper, we establish these two foundational proeététic properties for the
following logic. We first extend the multiplicative and atide fragment of linear logic
(MALL) with equality and quantification (vi&Z and ) over simply typedi-terms.
Because of the bounded use of formulas during proof congirygrovability in this
logic, call it MALL=, can be reduced to deciding unification problems (under &aix
prefix) which is decidable for the first-order fragment\ALL=. An elegant and well
known way to make this logic more expressive is to add the egptals ! and ? and
the rules of inference that allow for certain occurrence®ohulas marked with these
systems to be contracted and weakened [Gir87]. Such miké@abperators are not,
however, without their problems. In particular, the expaias are not canonical since
there are dferent ways to formulate the rules for the promotion and stratrules for
exponentials and some of these choices leadfferént versions of logic (for example,
elementary and light linear logics [Gir98] and soft lineagit [Laf04]). Even if we
fix the inference rules for the exponentials, as in standaeeht logic, the rules do
not describe unique exponentials. If one gives a red tenwbadlue tensor the same
inference rules, then one can prove that these two tensargdact, equivalent. All of
linear logic connectives except the exponentials yieldlaimtheorems. It is certainly
possible to consider a (partially ordered) collection gb@xentials on top of MALL
(see, for example, [DJIS93]).

An alternative to strengthen MALL with exponentials is totend it with fixed
points. Early approaches to adding fixed points [Gir92,3H®®lved inference rules
that could only unfold fixed point descriptions: as a consege, such logics could
not discriminate between a least and greatest fixed poirdn@er systems that allow
induction [MMOQ] as well as co-induction [Tiu04,MTO03] indle inference rules using
a higher-order variable that ranges over prefixed or postfp@nts (invariants). Of
course, approaches that use (co)induction are not withaltlgms as well: various
restrictions on fixed point expressions and on invariantg need to be considered. In
any case, we shall explore this alternative to exponenfiaisarticular, we extend the
logic MALL"= to uMALL ~ by adding the two fixed poin{s andv.

Besides considering fixed points as alternatives to therexuiials, there are other
reasons for examiningMALL ~. First, least and greatest fixed points are de Morgan
duals of one another and, hence, the classical nature @frlingic should ffer some
economy and elegance in developing their proof theory, mtrest to intuitionistic
logic. Second, since linear logic can be seen as the logimtehtuitionistic logic,
it will be rather easy to develop a focusing proof system fduitionistic logic and
fixed points based on the structure of the one we developMLL ~.

It is important to stress that we are using linear logic hexéthe logic behind
computational logic” and not, as it is more traditionallydenstood, as the logic of
resource management (in the sense of multiset rewritirigbdae updates, Petri nets,



etc). Instead, we find the proof theory of linear logic an appiate and powerful setting
for exploring the structure of proofs in various intuitistic logics (see [LM07] for
another such use of linear logic).

In the next section, we defineMALL ~ and prove some of the most basic aspects
of its proof theory, including the cut-elimination theoreBection 3 presents a focused
proof system that is complete faMALL ~. In Section 4 we describe a few examples of
(focused) derivations ipMALL ~. Section 5 shows how the proof theoryg¥ALL =
can be applied to an intuitionistic logic extended with iotlon and co-induction, and
to the intuitionistic logic of fixed point unfoldings that iee foundation of the recent
computational system Bedwyr [BGN7].

2 Linear logic extended with fixed points

For clarity, we will use simply typed-calculus as our language of formulas. We assume
that formulas are always jgy-long form. We make few restrictions on the language of
terms in this work and choose simply typgetalculus for them as well: we assume
that the reader understands the basics involving substituéquality, and complete
set of unifiers for such terms. In most of our examples vaemlill be of ground
type, and thus the possibly infinite complete set of unifiarsloe replaced by the most
general unifier when there is one. Depending on one’s irterié$s possible to choose
weaker €.g, first-order) or more powerfule(g, dependently typed) terms.

In the following, terms are denoted tsyt; vectors of terms are denoted Isyt;
formulas (objects of typ®) are denoted by, Q; eigenvariables are denoted kyc.
Finally, the syntactic variablB represents a formula abstracted over by a predicate and
nterms @pAx; ... x,.Ppx ... Xy). We have the following formula constructors:

P:=P®P|PeP|P®P|P&P|1|0|L|T
| 3,XPX|V,xPx| SZt]S# |, . Bt| vy, Bt

The syntactic variable ranges over all simple types that do not contiiThe quan-
tifiers have type — 0) — o and the equality and inequality have type»> y — o.
The connectives andv have typet — 7) —» v wheretisy; - -+ - y, > 0
for some arityn > 0. We shall almost always elide the referencesg,tassuming that
they can be determined from context when it is important mktheir value. Formulas
with top-level connective or v are called fixed point expressions and can be arbitrarily
nested. The first argument of a fixed point expression, ddrimt®, is called itsbody.
Quantifiers and (in)equality are not new and play a small ioldae proof theory
results: they are, however, crucial for our example appboa. The central feature
here is the fixed point constructs. Finally, note that theeer@ atoms in theMALL ~
grammar. We shall see in the following the advantages ofjfsted points instead.

Definition 1. We define th@egationB of a body B, and extend the usual definition of
the involutivenegationas follows:

def )J_ dgf

BE pax BUx.(pY)x)*t  (s=t* T'sxt @Bt ' yBt



MALL rules First-order structure

_ vLP +v4,Q +LRPQ [ F TPt +I,Pc cnew

1l +LAP®Q +ILP®Q +I,L FIL,AXPX R ILYXPX
+rLLP +1,Q FILP {FT0:6¢ccsys=1))

A, T FILP&Q FI,Po® Py Ft=t FI,s#t

Fixed points (wheré& is closed x is new)

+ I, B(uB)t +I,St + BSX, (Sx)*

y —_—
+ I, uBt +I,vBt + uBt, vBt

Fig. 1. Inference rules fotMALL ~

A body B is said to benonotonicwhen for any variables p ant] the negation normal
and A-normal form of Bp does not contain any negated instance of p.

We shall assume thatl bodies are monotonidn other words, negation{ for
formulas ande for bodies) is not part of the syntax since negation nhormahfof
formulas and bodies without atoms do not contain negatiodssance we forbid them
explicitly in fixed point expressions. When we write negatiorsome inference rules,
we shall be considering it as implicitly computing the néganormal form.

The monotonicity of a function is also a natural conditiontfte existence of fixed
points in lattices or other models. The condition of mondatityis used only syntacti-
cally here since we are not studying the semantigaVbALL ~.

We present the inference rules favlALL ~ in Figure 1. The initial rule is restricted
to fixed points. In the rule, which provides both induction and coinducti&ns called
the (co)invariant, and has the same type/Bsof the formy; — --- - y, — 0. The
treatment of equality dates back to [Gir92,SH93]. In theyiradity rule,csustands for
complete set of unifiers. This set has at most one elemengifirtit-order case, but can
be infinite in presence of higher-order term variables, Wiwe do not exclude. In that
case, the proofs are infinitely branching but still have adidiepth. They are handled
easily in our proofs by means of transfinite inductions. Agé#e use of higher-order
terms, and even the presence of the equality connectiveraessential to this work.
All the results presented below hold in the logic without &y, and they do not make
much assumptions on the language of terms.

Proposition 1. The following inference rules are derivable:

it " I, B(vB)t
F PP F T, vBt

v

These results are standard, cf. [Tiu04]. The proof of thes@éone relies on mono-
tonicity and is obtained by applying therule with B(vB) as the co-invariant.

Definition 2. We classify agssynchronougresp.synchronousthe connective®, L,
&, T,V,#,v(resp.®, 1,8,0, 3, =, u). Aformulais said to be asynchronous (resp. syn-
chronous) when its top-level connective is asynchronasp(rsynchronous). A formula



is said to bdully asynchronougresp.fully synchronouywhen all of its connectives are
asynchronous (resp. synchronous). Finally, a bagyx.Bpx is said to be fully asyn-
chronous (resp. fully synchronous) when the formula Byfully asynchronous (resp.
fully synchronous).

Notice, for example, thatpax.px is fully asynchronous and fully synchronous.

Proposition 2. The following structural rules are admissible providedttigais fully

asynchronous:
+ I, vBt, vBt F I

F Bt "C FroBt

yW

Hence, the following structural rules hold for any fully asfironous formula P:

FILPP Fr
FILP C I—F,PW

The proof of this proposition can be found in [BMO7]. This pesty plays a central
role in the focusing proof system presented in Section 3 auducial in Section 5 for
our encoding of intuitionistic logic extended with leastiagreatest fixed points.

Example 1.Units can be represented by means-aind+. Assuming that 2 and 3 are
two distinct constants, then we have-2 o~ 1and 2= 3 oo 0(and hence 2 2 oo 1L
and 2+ 3 o—o T). Here,P oo Q denotes- (P - Q) & (Q — P) andP — Q denotes
the formulaP+ % Q.

Example 2.Theu (resp.v) connective is meant to represent least (resp. greatest) fix
points. For example(Ap.p) is provable (take any provable formula as the co-invajjant
while its dualu(Ap.p) is not provable. More precisely(Ap.p) oo 0andyv(1p.p) o—- T.

Example 3.The least fixed point, as expected, entails the greatestfdllogving is a
proof of uBt — vBt.

+ B(uB)x, B(vB)x R
S —— I —
+ B(uB)x, vBx + uBt, vBt
+ vBt, vBt

ny

vonvBt with S := uB

The greatest fixed point entails the least fixed point wheffixee points are noetherian,
i.e., all unfoldings ofB andB terminate.

In this paper we are investigating how far one can go withb&tetxponentials, get-
ting the infinite behavior from the meaning of fixed pointsté&asl of modalities. If we
were to add, however, the usual inference rules for expaisnthe resulting proof sys-
tem would yielduBt oo ! uBt (and equivalently Bt o— vBt) provided thaB is fully
synchronous. In the language of the Logic of Unity (LU) [Gi[Sfully asynchronous
(resp. fully synchronous) would be negative (resp. pasjtir right-permeable (resp.
left-permeable) formulas. Mixing synchronous and asyoebus connectives would
yield a neutral formula.



We now outline the proof of cut-elimination. Although it isdirect and relies on
cut-elimination for full second-order linear logic (LLZhis is still a syntactic proof
of cut-elimination. It yields consistency @MALL ~ as well as relative soundness and
completeness with respect to LL2.

Theorem 1. The logicuMALL" enjoys cut-elimination.

Proof  Our proof consists in first translatindMALL = formulas and proofs into full
second-order linear logic derivations, which are then radizad and focused, and fi-
nally translated back to cut-freggMALL = derivations. Formally speaking, the previous
work on proof normalization for LL2 does not include equalibut all the previous
work on equality has shown that it has little role to play inmalization.

We first define the translation from first-order to secondear@he translation com-
mutes with the connectives of MALLand the negation, and is defined as follows on
the least fixed points:

[uBX] = VS . I(Yy . [B]Sy — Sy) — Sx

The corresponding transformation of proofs is straightsond, relying on the mono-
tonicity of bodies. We get a proof where all second-ordetaingations are either of the
form 17 (from v rules) or second-order eigenvariables (franrules). Cut-elimination
and focusing never change these instantiations.

It is possible to normalize the resulting LL2 derivationsgddhen apply Andreoli’s
result to yield even more structured normal forms. (We steafiporarily assume that
the reader is familiar with the focusing proof system in [A8H A description of this
kind of system may otherwise be found in Section 3.) Doingve®,get exactly the
derivations we want for transforming them baclutdALL ~. For example, focusing on
an unfolding hypothesis translates immediately toithele:

FO: T |[B1Siy +6O:Sx| (Six)*
FO:T,Sx | [B1Six ® (Six)*
O [,Six | AY[B1Sy® (Siy)*

Similarly, focusing on the translation ofigives us either an instance of theule:

FO:[Bly—oly]
F O VY.[Bly — ly]
FOIVy[Bly—oly]l +O:T|[IX]*+
FO T (VY[BI[Iy — [17y) ® [1X]*
FO: T ] 3ASN(VyY.[BISy — Sy) ® (Sx)*

=TI

or an instance qgiv (the unfolding hypothesis fd is in @):

FO :U!Vy.rB]Sy —- Sy +6:Sx]| (Sx)*
FO:Sx| (IVy.[BISy — Sy) ® (Sx)*
F O : Sx || AS.!(Vy.[B]Sy — Sy) ® (Sx)*




For a more detailed proof, see [BMO7]. O

As shown in the above proof, fixed points can be encoded by sneeecond-
order quantification and exponentials. However, first-ofd@LL with exponentials
and first-order MALL with fixed points are incomparable.

It has been observed [Gir92,SH93] that exponentials anehmamotonic definitions
combine to yield inconsistency: for example, the definitpe p* (that is, the fixed
pointuAp.p*) does not lead to an inconsistency, whereas the definitisr?(p*) (that
is, udp. ?(p*)) does. To reproduce the latter inconsistencyMALL =, one needs to
be able to unfold the expressienip.!(p*). But this is not implied by Proposition 1
since its body is not monotonic. Thus, even in presence afretials, we currently
do not have any example of non-monotonic definition thatlidases the consistency
of uMALL ~.

3 Focused proofs

As we have explained in the introduction, completeness afcaded proof system is
a valuable property for a logic to possess. Focused proafs &pplications in proof-
search since it reduces the proof-search space by limhmgituations when backtrack-
ing is necessary. Focused proofs are also useful for justifyame theoretic semantics
[MS05] and have been central to the design of Ludics [Gir01].

A good focused proof system faMALL ~ is not a simple consequence of the trans-
lation of fixed points into LL2 that is used in the proof of Them 1: applying linear
logic focusing to the result of that translation leads to arpostructured system that is
not consistent with our classification of connectives asielssonous and synchronous.
On the contrary, we present the proof system in Figure 2 asod gandidate for a
focused proof system fQtMALL ~. We use explicit annotations of the sequents in the
style of Andreoli. In the synchronous phase sequents havéotim+ I" || P. In the
asynchronous phase they have the ferii f} 4 wherel” and4 are both multisets of
formulas. In both sequents,is a multiset of synchronous formulas anéxpressions.
The convention od is a slight departure from Andreoli’s original proof systesmnere/
is a list (which can be used to provide a fixed but arbitraryedrdy of the asynchronous
phase).

The rules for equality are not surprising. The main nove#tyehis the treatment of
fixed points. Depending on the body, bgttandy rules can be applied any number of
times — but not with any co-invariant concerning\otice for example that an instance
of uv can ben-expanded into a larger derivation, unfolding both fixednp®ito apply
(v on the recursive occurrences. As a result, each of the fixied gannectives has two
rules in the focused system: one treats it as “an atom” anottier one as an expression
with “internal structure.”

In accord with Definition 2y is treated during the synchronous phaseaddring
the asynchronous phase. (Alternatives to this choice arigsed later.) Roughly, what
the focused system implies is that if a proof involving-axpression proceeds by co-
induction on it, then this co-induction can be done at theirbegg; otherwise that
formula can be ignored in the whole derivation, except fertihrule. Focusing on a-
expression yields two choices: unfolding or applying thigahrule for fixed points. If



Asynchronous phase Synchronous phase

1P Q4 rINBA PI1Q4 FIUP FIPUQ  FTUP
FINP® Q4 FINP& Q.4 " TI1P8Q iTiPoP,
FL N4 {rIOM40:6¢ecsys=t)}
Fr L4 vT(T,4 Frs£t4 U1 Hlt=t
ernPed o _HT4P
FT Q) YXPx A F I IxPx
FrSt4 M BSXSx: o FLvBt14 FrUBBx
I vBt, 4 F I vBt, A FIJuBx  FvBx | uBx

Switching (whereP is synchronousQ asynchronous)

FLPMA4 vTUP v Q
FICMPRPA +LLPY RTUQ

Fig. 2. A focused proof-system farMALL ~

the body is fully synchronous, the focusing will never be.lé®r example, ihatis the
(fully synchronous) expressigr(AnatAx. x = 0 @ Jy.X = s y® nat y), then focusing
puts a lot of structure on a proof &f || nat t eithert is a ground term representing a
natural number anfl is empty, ot = s"x for somen > 0 andr" is {(nat X*}.

Theorem 2. The focused system is sound and complete with respgbtAdL".

Proof Soundness is trivial. We only give an outline of the complets proof: see
[BMO7] for more details. The proof is by (transfinite) indiget on (,(/7), |71]) where
h,(I7) is the height ofi7 in terms of fixed point rules, and/| is the size of the deriva-
tion’s conclusion. We first prove two permutation lemmasahtpreserve this measure:
one shows that if there is any asynchronous formula in thelosion, the proof can
be transformed such that this formula is active in the caicly the other shows that
when there is no more asynchronous in the conclusion, itgsipte to focus on a syn-
chronous if it ismaximal Finally we prove that there is always a maximal formula in
such a sequent. The notion of maximality is due to Alexis BS07] and is crucial
to make the proof clear and simple.

It is worth pointing out, however, that there is a non-trivp@rmutation of & and
v in the first of these lemmas. This permutation, which reguihe ability to sum co-
invariants (a consequence of the monotonicity assumptiofixed point expressions)
is illustrated in Figure 3. O

4 Examples

We shall now give a few theorems iMALL ~. Although we do not give their deriva-
tions here, we stress that all of these examples are provadhiigin the focused proof



b 1ls T Ils
+IP.St +BSx,Sxt +I,P,St +BSXxS'x*

+ I, P,vBt +I,P,vBt
FI,P& P,vBt
U
1l 1
v I, P, St FILP LSt $1(I1s) $o(ls)
FILPSte St +rI,P,SteS't +FB(S®S)X (Sx)* +B(S®S)X, (Sx)*
+ILP& P,Ste S't FB(S® S)x ((Se S)x)*+
FI,P & P,vBt

Fig. 3. The permutation of the & and the co-induction rules.

system. The reader will also note that althou@§)hALL ~ is linear, these derivations are
intuitive and their structure resemble that of proofs imitionistic logic.

We first define a few least fixed points expressing basic ptigseof natural num-
bers. We assume two constamtand s of respective types andn — n. Note that all
these definitions are fully synchronous.

def
nat = u(dnatix. x=z&® Jy. Xx=sy® naty)
f
even™ u(levenx. x=ze Jy. x=s(sy) ® eveny

pIusdgfp(/lplusla/lb/lc. a=z®b=c
@Jaddc.a=sd®@c=sc@plusdbc)

leq dgfp(/lleq/lx/ly. x=yoAy.y=sy ®leqxy)
half €' u(ihalfixih. (x=z@ x=s @ h=z
@ IXIN. x=s(sX)®h=sH @ half X i)

The following statements are theorems, all of which can begat by induction. The
main insights required for proving these theorems involeeiding which fixed point
expression should be introduced by induction: the propariant is not the diicult
choice here since the context itself is adequate in thesscas

F VX nat Xx— even x® even(s X

F VX nat Xx— Yydz plus xy z

F VX hat X— plus x z X

F VX nat x— Yy. naty— Yz plus Xy z— nat z

In the last theorem, the assumptioraf XY+ is not needed and can be weakened, thanks
to Proposition 2. In order to prov&' k. nat x— Jh. half x h) one has to use a complete
induction,i.e., use the strengthened invariank(nat x® Yy. leqy x— 3h. halfy h).

A typical example of co-induction involves the simulatioglation. Assume that
step: state— label — state— ois an inductively defined relation encoding a labeled



transition system. Simulation can be defined using the digimi

sim %' v(AsimipAq. Yavp'. steppap— dq. stepgag® sim g ).

Reflexivity of simulation ¥p. sim p p is proved easily by co-induction with the co-
invariant @pAqg. p = q). Instances oktepare not subject to induction but are treated
“as atoms”. Proving transitivity, that is,

YpYqgvr. sim pg— simqr—o simpr

is done by co-induction ors{m p 1) with the co-invariant{pAar. 3g. sim p q® sim q1).
The focus is first put onsim p g+, then on éim g n*. The fixed points¢im g ')
and im d r’) appearing later in the proof are treated “as atoms”, as laregative
instances oftep

Except for the totality ofalf, all these theorems seem simple to prove using a
limited number of heuristics. For example, one could firgtttr treat fixed points “as
atoms”, an approach that would likely fail quickly if inaggriate. Second, depending
on the “rigid” structure of the arguments to a fixed point egsion, one might choose
to either unfold the fixed point or attempt to use the surringpndontext to generate an
invariant.

5 Translating Intuitionistic Logic

The examples in the previous section make it clear that teegpisimplicity and linear-
ity, uMALL ~ can be related to a more conventional logic. In particulaaregnterested
in drawing some connections with an extension of intuistioilogic with inductive
and coinductive definitions. We will show that the focusifguMALL = derivations
yields a similar result in the intuitionistic setting. A gaal approach for making such
a connection is to first encode intuitionistic logic @ALL =, focus the derivations
of encodings, and translate them back to intuitionistiavdgions. When doing so, it
is interesting to minimize the use of exponentials in theoeimy since these connec-
tives weaken the focusing discipline. This is precisely itha extension of the asyn-
chronougsynchronous classification allows. In the following, we st simple first
step to this program, in which we actually capture a norigrivagment of intuitionis-
tic logic extended with fixed points even thougMALL = does not have exponentials
at all.

We shall consider an intuitionistic logic in which there aeatomic formulas but
were there are (positive) equalities and the two fixed podmistructorsu andv. Let
uLJ™ be the proof system that extends Gentzen'’s cut-free LJ [@emiéh the following
rules for equality and (co)inductive expressions.

{(I'rG)9:fecsus=t)}

Is=trG L Fri=t =R
BSx+Sx I,St+rG L u I+ B(uB)t
TLuBtr G K TuBtr uBt ° T+ uBt
I,B(vB)t+ G vy SXKBSx I'kSt o
rLvBtrG ” I,vBt r vBt T+ vBt v
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We have observed (Prop. 2) that structural rules are adstesgr fully asyn-
chronous formulas giIMALL ~. This property will allow us to get a faithful encoding of
afragment ofiLJ™ in uMALL ~ despite the absence of exponentials. The encoding must
be organized so that formulas appearing in the left-harel&idLJ™ sequents must be
encoded as fully asynchronouALL = formulas. The only connectives allowed to
appear negatively will thus be, v, =, u and3. Moreover, the encoding must com-
mute with negation, in order to translate the (co)inductigies correctly. This leaves
no choice in the following design.

Definition 3. We restrict formulas to two fragments described by the twtesyic vari-
ablesGg and‘H:

Gi=GAG|IGVG|s=t|uApx.gpx)t|IXGX
| YXGX|H D G| v(Apx.Gpx)t
Hi=HAH|HVH|s=t]|u@px.-Hpx)t | IXHX

Formulas inH and G are translated iruMALL" as follows:

def
[PAQ] = [Pl®[Q] [VxPxX <= vx[PX

def
[Tsv:(:g o iPi ie [Ql [vBt] :2: V[B]t
o [P>Q E'[P] < [Q]

def
ApAx.B = ApAX.[B
[Ax.PX] def Ax[PX [1pAx.BpX pAx.[BpX

Proposition 3. For any Pe G, P is provable inuLJ= if and only if[P] is provable in
UMALL=, under the restrictions that (co)invariantx.Sx in uMALL= (resp.uLJ") are
such that X is in [H] (resp.H).

Proof The proof transformations are simple and compositionaé iRlduction rule
is mapped tor rule for uBt)*; the left unfolding for co-inductives tg for (vBt)*. In
order to restore the additive behavior of some intuitiooistles €.9, AR) and translate
the structural rules, we can contract and weaken our fullpesronous formulas on the
left of uLJ~ sequents. O
Linear logic provides an appealing proof theoretic settiegause of its empha-
sis on dualities and on its clear separation of conceptsitiagjchultiplicative, asyn-
chronougsynchronous). Our experience is thdMALL ~ is a good place to study fo-
cusing in the presence of least and greatest fixed point twpsrdo get similar results
for intuitionistic logic, one can either work from scratchtieely within, say,ulLJ™, or
use an encoding into linear logic. Given a mapping from tidnistic to linear logic,
and a complete focused proof system for linear logic, oneofem build a complete
“focalized” proof-system for intuitionistic logic. The ual encoding of intuitionistic
logic into linear logic involves exponentials, which canrdage focusing structures (by
causing both synchronous and asynchronous phases to esmye Ha careful study of
the polarity of linear connectives must be done (cf. [DJER®7]) in order to minimize
the role played by the exponentials in such encodings. Hera result of Proposition 3,
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it is possible to get a complete focused systemulod~ on G (under the assumptions
that (co)invariants are ifH) that inherits the strong structure of the linear focusing
derivations.

Although G is not as expressive as fulLJ™, it catches many interesting and use-
ful problems. For example, any Horn-clause specificationtmaexpressed it as a
least fixed point and theorems that state properties suabtalgyt or functionality of
predicates defined in this manner arggdnTheorems that state more model-checking
properties, for examplé&,x.p(x) > q(x), wherep andq are one-placed least fixed point
expressions ovetH], are also inG. Finally, the theorems about natural numbers pre-
sented in Section 4 are withig] although two of the derivations (for the totality b&lf
and that the sum of natural numbers is a natural number) deatisfy the restriction
on co-invariants.

The logiculLJ™ is closely related to LINC [Tiu04]. The mainfiierence is the ab-
sence of th& quantifier in our system: we suspect tivatan be added toMALL ~ in
the same relatively orthogonal fashion that LINC added itioThe resulting exten-
sion touMALL = (anduLJ™) should allow natural ways to reason about specifications
involving variable bindings, in the manner illustrated BGM*07,Tiu04,Tiu05]. An-
other diference is that fixed points in LINC have to satisfy a stratificacondition,
which is strictly stronger than monotonicity; co-invarialso have to satisfy a techni-
cal restriction related to stratification. While our systel@rived from linear logic, does
not share such restrictions, neithefféience is relevant when we restrict our attention
to formulas inG.

Interestingly, the fragmeng has already been identified in LINC [TNMO5], and
the Bedwyr system [BGNO7] implements a proof-search strategy for it that is com-
plete under the assumption that all fixed points are noeth€and hence that least and
greatest fixed points coincide and that (co)induction camestricted to unfolding).
This strategy coincides with the focused systemuflai™ restricted to noetherian fixed
points: there is no need for any explicit contraction and gan always eagerly elimi-
nate left-hand side (asynchronous) connectives beforkimgon the goal (right-hand
side); moreover there is no need for the initial rule

6 Discussion about the focusing system

The design of the above focused proof systemufdALL ~ is rather satisfactory. For
example, its treatment @f as synchronous andas asynchronous is consistent with
a similar treatment of these operators via game semanties @i [MS05,Sti96]. Fo-
cusing is also natural and helpful when trying to prove teews inuMALL =, such as
the examples proposed in Section 4. Finally, as we have segedtion 5, this focused
proof system yields another one for an intuitionistic logjimilarly extended with fixed
points, and accounts for the proof search strategy underlyie implemented prover
Bedwyr [BGM*07]. It is worth noting, however, two unusual aspects of fmmiproofs
in uMALL ~.
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6.1 A choice inside asynchronous rules.

As we noted, there are two rules for each of the fixed point eotives. Having a
choice of rules in the asynchronous phase is, at first, ratngrising since it is during
this phase of proof construction that we expect to see iientules and no choices.
One way to look at this is that, in fact, threconnective should bannotatedr divided
into an infinite number of dierent connectives. In particular, consider replacingithe
constructor with bothv, (with the same types and arity ay andvs (whereS is an
annotated formula abstraction of the appropriate typejv Slansider the proof system
that results from replacing the three rules involvinip Figure 2 by the rules

L St,4 +)) BSx, Sxt F 1 veBx 0 4

X new —_— - =
+ I vsBt, 4 I veBx, 4 FveBx | uBx

Notice that using such annotated formulas, there is no loagg choice in the asyn-
chronous phase. Furthermore, if in the expressigBi it is really the case theb is a
co-invariant,.e., (BSx, Sx*) is provable, then the first inference rule is invertible.

From afocused proof d¥, itis possible to extract an annotationfothat is provable
in the disambiguated focused system. This extraction regtine non-trivial composi-
tion of co-invariants in a manner similar to that used for pleemutation ofv and &.
Such annotations might be useful for the partial automatioproof search involving
induction and co-induction. For exampbeconnectives could be labeled with partial
information about what to do with the connective in the asyonous phase: unfold,
freeze {.e, treat as atomic), use the sequent as the invariant, etb. I8nts might be
enough to mechanize a large amount of simple but tediousfpimo(co)induction.
Notice that since we have annotatetiut notu, we should not think that's with an-
notations are logical connectives: instead, such anwotthint at the structure of a
particular proof involving that annotated expression.

6.2 Are the polarities ofu and v forced?

While the classification gf as synchronous andas asynchronous is rather satisfying
and is backed by several other observations, that choicerduieseem to be forced from
the focusing point of view alone. Mayhecan be handled in the asynchronous phase,
instead? After all the rule is invertible. Consider replacing the fixed point ruleshe
focused proof system in Figure 2 with the following four irdace rules:

+ I ) B(uB)t,4 FLuBt 1 4 FI | St +ff BSx, (Sx)*
F Tt uBt, 4 F I uBt,4 r I | vBt +F uBt || vBt

We conjecture that the resulting proof system is complatgfbALL ~. The non-trivial
step in such a proof would involve the permuting of the infeeerules foru and &.
The invertibility of 4 allows it, but we have not proved the termination of the whole
transformation.

To go one step further, one wonders if arbitrary assignmgfitias” to expressions
such asgBt) and ¢Bt) can be made in a fashion similar to the way literals are given
fixed but arbitrary “bias” in Andreoli’s original focused guf system [And92]. Thus,
maybe some@ expressions can be synchronous while others are asynalgono
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7 Conclusion and Future Work

UMALL ~ is an elegant logic supporting reasoning on inductive anthdoctive spec-
ifications. We have shown that it has two important prooftieé&c properties: namely,
cut-elimination and the completeness of focused proofe. ddsign and completeness
of a focused proof system is the major contribution of thipggaWe have also shown
that uMALL ~ is expressive and formally connected it to a fragment ofifilwiistic
logic extended with fixed points, a step that bripy8ALL ~ closer to applications. Fi-
nally, we have identified an implemented system that atterpfind focused proofs
within the noetherian part of this logic.

There are a number of interesting open questions to consékerAt the proof the-
ory level, we would like to understand better whether or mopging the monotonicity
requirement leads to inconsistency or not and to what extergan provide alternative
assignment of polarities (synchrongasynchronous) to fixed points. We can also con-
sider adding exponentials and atomic formulagMALL ~ so that all ofulLJ™ could be
encoded (in which case, a precise connection to the focusad gystems of [LMO7]
should be explored). Such an extensiondALL = could also be used to generalize
the uses of induction in the linear logic programming sgtbh[PMO05]. At the system
designing and implementation level, our focused proofesysthould help in designing
a logic engine that attempts to prove formulas involvinguictibn and co-induction.
Our hope is that the focused proof system would help in unaeding the strengths
and limitations of various heuristics for generating in&ats and co-invariants.
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