
The Bedwyr system for model checking over

syntactic expressions

David Baelde1, Andrew Gacek2, Dale Miller1, Gopalan Nadathur2, and
Alwen Tiu3

1 INRIA & LIX, École Polytechnique
2 Digital Technology Center and Dept of CS, University of Minnesota

3 Australian National University and National ICT Australia

1 Overview

Bedwyr is a generalization of logic programming that allows model checking di-
rectly on syntactic expressions possibly containing bindings. This system, written
in OCaml, is a direct implementation of two recent advances in the theory of
proof search. The first is centered on the fact that both finite success and finite
failure can be captured in the sequent calculus by incorporating inference rules
for definitions that allow fixed points to be explored. As a result, proof search
in such a sequent calculus can capture simple model checking problems as well
as may and must behavior in operational semantics. The second is that higher-
order abstract syntax is directly supported using term-level λ-binders and the
quantifier known as ∇. These features allow reasoning directly on expressions
containing bound variables.

2 Foundations

The logical foundation of Bedwyr is the logic called LINC [9], an acronym for
“lambda, induction, nabla, and co-induction” that also describes its major com-
ponents. LINC extends intuitionistic logic in two directions.

Fixed points via definitions. Clauses such as A
△
= B are used to provide (mutual)

recursive definitions of how instances of the atom A can be unfolded to the same
instance of the body B. After fixing a set D of definition clauses, LINC contains
the following inference rules for introducing defined atomic formulas. Unfolding
atoms on the right of the sequent arrow is specified by the following definition-

right rule.
Σ : Γ ⊢ Bθ
Σ : Γ ⊢ A

, provided A′
△
= B ∈ D and A′θ = A

This rule resembles backchaining in more conventional logic programming lan-
guages. The definition-left rule is a case analysis justified by a closed-world read-
ing of a definition.

{Σθ : Γθ, Bθ ⊢ Gθ | A′
△
= B ∈ D and θ ∈ csu(A, A′)}

Σ : Γ, A ⊢ G

Notice that this rule makes uses unification: the eigenvariables of the sequent
(stored in the signature Σ) are instantiated by θ, which is a member of a complete
set of unifiers (csu) for atoms A and A′. Bedwyr implements a subset of this rule
that is restricted to higher-order pattern unification and, hence, to a case where
csu can be replaced by mgu. If an atom on the left fails to unify with the head
of any definition, the premise set of this inference rule is empty and, hence, the
sequent is proved: thus, a unification failure is turned into a proof search success.

Notice that this use of definitions as fixed points implies that logic specifi-
cations are not treated as part of a theory from which conclusions are drawn.
Instead, the proof system itself is parametrized by the logic specification. In
this way, definitions remain fixed during proof search and the closed world as-

sumption can be applied to the logic specification. For earlier references to this
approach to fixed points see [2, 8, 3].

Nabla quantification Bedwyr supports the λ-tree syntax [4] approach to higher-
order abstract syntax [7] by implementing a logic that provides (i) terms that
may contain λ-bindings, (ii) variables that can range over such terms, and
(iii) equality (and unification) that follows the rules of λ-conversion. Bedwyr
shares these attributes with systems such as λProlog: however, the closed-world
aspects of LINC could not be fully exploited without the addition of the ∇-
quantifier. This quantifier can be read informally as “for any fresh variable”, and
is accommodated easily within the sequent calculus with the introduction of a
new kind of local context scoped over formulas. We refer the reader to [5] for more
details. We point out here, however, that ∇ can always be given minimal scope by
using the equivalences ∇x.(Ax ⊃ Bx) ≡ (∇x.Ax) ⊃ (∇x.Bx) (also where ∧ and
∨ replace ⊃) and the fact that ∇ is self-dual: ∇x.¬Bx ≡ ¬∇x.Bx. When ∇ is
moved under ∀ and ∃, it raises the type of the quantified variable: in particular, in
the equivalences ∇x∀y.Fxy ≡ ∀h∇x.Fx(hx) and ∇x∃y.Fxy ≡ ∃h∇x.Fx(hx),
the variable y is replaced with a functional variable h. Finally, when ∇ is scoped
over equations, the equivalence ∇x(Tx = Sx) ≡ (λx.Tx) = (λx.Sx) allows it to
be completely removed. As a result, no fundamentally new ideas are needed to
implement ∇ in a framework where λ-term equality is supported.

3 Architecture

Bedwyr implements a fragment of LINC which still allows interesting applica-
tions of fixed points and ∇. In this fragment, all the left rules are invertible.
Consequently, we can use a simple proof strategy that alternates between left
and right-rules, with the left-rules taking precedence over the right rules.

Two provers. The fragment of LINC implemented in Bedwyr is given by the
following grammar:

L0 ::= ⊤|A|L0 ∧ L0|L0 ∨ L0|∇x. L0|∃x. L0

L1 ::= ⊤|A|L1 ∧ L1|L1 ∨ L1|∇x. L1|∃x. L1|∀x. L1|L0 ⊃ L1

The formulas in this fragment are divided into level-0 formulas, given by L0
above, and level-1 formulas, given by L1. Implicit in the above grammar is the
partition of atoms into level-0 atoms and level-1 atoms. Restrictions apply to
goal formulas and definitions: goal formulas can be level-0 or level-1 formulas,

and in a definition A
△
= B, A and B can be level-0 or level-1 formulas, provided

that the level of A is higher or equal to the level of B.

Level-0 formulas are essentially a subset of goal formulas in λProlog (with
∇ replacing ∀). Proof search for a defined atom of level-0 is thus the same as in

λProlog. We can think of a level-0 definition, say, p x
△
= B x, as defining a set

of elements x satisfying B x. A successful proof search for p t means that t is in
the set characterized by B. A level-1 statement like ∀x.p x ⊃ R x would then
mean that R holds for all elements of the set characterized by p. That is, this
statement captures the enumeration of a model of p and its verification can be
seen as a form of model checking. To reflect this operational reading of level-1
implications, the proof search engine of Bedwyr uses two subprovers: the Level-0
prover (a simplified λProlog engine), and the Level-1 prover. The latter is a usual
depth-first goal-directed prover but with a novel treatment of implication. When
the Level-1 prover reaches the implication A ⊃ B, it calls the Level-0 prover on
A and gets in return a stream of answer substitutions: the Level-1 prover then
checks that, for every substitution θ in that stream, Bθ holds. In particular if
Level-0 finitely fails with A, the implication is proved.

As with most depth-first implementations of proof search, Bedwyr suffers
from some aspects of incompleteness: for example, the prover can easily loop
during a search although different choices of goal or clause ordering can lead to
a proof, and certain kinds of unification problems should be delayed instead of
attempted eagerly. For a more detailed account on the incompleteness issues, we
refer the reader to [11]. Bedwyr does not currently implement static checking of
types and the stratification of definitions (which is required in the cut-elimination
proof for LINC). This allows us to experiment with a wider range of examples
than those allowed by LINC.

Higher-order pattern unification. We adapt the treatment of higher-order pat-
tern unification due to Nadathur and Linnell [6]. This implementation uses the
suspension calculus representation of λ-terms. We avoid explicit raising, which is
expensive, by representing ∇-bound variables by indices and associating a global

and a local level annotations with other quantified variables. The global level
ignores the ∇-quantifiers and counts alternations in the universal and existen-
tial quantifier prefix. The local level counts the number of ∇ quantifiers under
which the variable occurs. Using this annotation scheme, the scoping aspects
of ∇ quantifiers are reflected into new conditions on local levels but the overall
structure of the higher-order pattern unification problem and its mgu properties
are preserved.

Tabling. We introduced tabling in Bedwyr to cut-down exponential blowups
caused by redundant computations and to detect loops during proof-search. The
first optimization is critical for applications such as weak bisimulation checking.
The second one proves useful when exploring reachability in a cyclic graph.

Tabling is currently used in Bedwyr to experiment with proof search for in-
ductive and co-inductive predicates. A loop over an inductive predicate causes
a divergence that can be recognized instead as failure. Conversely, in the co-
inductive case, loops yield success. This interpretation of loops as failure or
success is not part of the meta-theory of LINC. Its soundness is currently con-
jectured, although we do not see any inconsistency of this interpretation on the
numerous examples that we tried.

Inductive proof-search with tabling is implemented effectively in provers like
XSB using, for example, suspensions. The implementation of tables in Bedwyr
fits simply in the initial design of the prover but is much weaker. We only table
a goal in Level-1 when it does not have any logic variables and in Level-0 when
it does not have any free variables. Nevertheless, this implementation of tabling
has proved useful in several cases, ranging from graph examples to bisimulation.

4 Examples

We give here a brief description of the range of applications of Bedwyr. We
refer the reader to http://slimmer.gforge.inria.fr/bedwyr and Bedwyr’s
user manual [1] for more details about a range of examples.

Model-checking. If the two predicates P and Q are defined using Horn clauses,
then the Level-1 prover is capable of attempting a proof of ∀x. P x ⊃ Q x.
This covers most (un)reachability checks common in model-checking. Related
examples in the Bedwyr distribution include the verification of a 3 bits addition
circuit and graph cyclicity checks.

Games, strategies, and bisimulations. Checking bisimulations and finding win-
ning strategies for games is also achieved through specifications of the form:

win B
△
= ∀B′. step B B′ ⊃ ∃B′′. step B′ B′′ ∧ win B′′

If this property is tabled during proof search, the resulting table provides mean-
ingful information, such as the winning strategy or the bisimulation relation.

Meta-level reasoning. Because Bedwyr incorporates λ-tree syntax approach and
the ∇ quantifier, it’s possible to specify provability in an object logic and to rea-
son to some extent about what is and is not provable. The example object.def
(see the distribution) defines the predicate pv for object-level provability from a
Horn clause program. If we assume that this object-level program states that the
ternary predicate q holds whenever two of its parameters are equal, then Bedwyr
can prove easily the following meta-theorem, where ∀ denotes the object-level
universal quantification:

∀x∀y∀z. pv (∀u∀v. q 〈u, x〉 〈v, y〉 〈v, z〉) ⊃ y = z

Reasoning over syntactic expressions with bindings Along the same lines, spec-
ifying and reasoning over one-step transitions for the π-calculus [10] or simple
typability for the λ-calculus is supported in a fully declarative way.

5 Future Work

We are working on several improvements to Bedwyr, among others, a more
sophisticated tabling, e.g., by allowing suspended goals as in XSB, and allow-
ing non-higher-order-pattern goals, by suspending them until they are instan-
tiated to higher-order pattern goals. We will also explore the use of tabling
to export fixed points since these can often act as certificates: for example,
in the process of determining if two processes are bisimilar, the table stores
an actual bisimulation. Bedwyr is an open source project and we welcome
contributions to the project. More details about Bedwyr can be found at
http://slimmer.gforge.inria.fr/bedwyr/.

Acknowledgments. Support has been obtained for this work from the following
sources: from INRIA through the “Equipes Associées” Slimmer, from the ACI
grant GEOCAL and from the NSF Grants OISE-0553462 (IRES-REUSSI) and
CCR-0429572 that also includes support for Slimmer.

References

1. David Baelde, Andrew Gacek, Dale Miller, Gopalan Nadathur, and Alwen Tiu. A

User Guide to Bedwyr, November 2006.
2. Jean-Yves Girard. A fixpoint theorem in linear logic. An email posting to the

mailing list linear@cs.stanford.edu, February 1992.
3. Raymond McDowell and Dale Miller. A logic for reasoning with higher-order

abstract syntax. In Glynn Winskel, editor, 12th Symp. on Logic in Computer

Science, pages 434–445, Warsaw, Poland, July 1997. IEEE Computer Society Press.
4. Dale Miller. Abstract syntax for variable binders: An overview. In John Lloyd

and et. al., editors, Computational Logic - CL 2000, number 1861 in LNAI, pages
239–253. Springer, 2000.

5. Dale Miller and Alwen Tiu. A proof theory for generic judgments. ACM Trans.

on Computational Logic, 6(4):749–783, October 2005.
6. Gopalan Nadathur and Natalie Linnell. Practical higher-order pattern unifica-

tion with on-the-fly raising. In ICLP 2005: 21st International Logic Programming

Conference, volume 3668 of LNCS, pages 371–386, October 2005. Springer.
7. Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceedings

of the ACM-SIGPLAN Conference on Programming Language Design and Imple-

mentation, pages 199–208. ACM Press, June 1988.
8. Peter Schroeder-Heister. Definitional reflection and the completion. In R. Dyck-

hoff, editor, Proceedings of the 4th International Workshop on Extensions of Logic

Programming, pages 333–347. Springer-Verlag LNAI 798, 1993.
9. Alwen Tiu. A Logical Framework for Reasoning about Logical Specifications. PhD

thesis, Pennsylvania State University, May 2004.
10. Alwen Tiu. Model checking for π-calculus using proof search. In Mart́ın Abadi and

Luca de Alfaro, editors, CONCUR, volume 3653 of LNCS, pages 36–50. Springer,
2005.

11. Alwen Tiu, Gopalan Nadathur, and Dale Miller. Mixing finite success and finite
failure in an automated prover. In Proceedings of ESHOL’05: Empirically Suc-

cessful Automated Reasoning in Higher-Order Logics, pages 79 – 98, December
2005.

