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Abstrat
Mobile ad ho networks onsist of mobile wireless devies whih autonomously organize theirinfrastruture. In suh networks, a entral issue, ensured by routing protools, is to �nd aroute from one devie to another. Those protools use ryptographi mehanisms in order toprevent maliious nodes from ompromising the disovered route.We �rst propose a alulus for modeling and reasoning about seurity protools, inludingin partiular seured routing protools. Our alulus extends standard symboli models totake into aount the harateristis of routing protools and to model wireless ommuniationin a more aurate way.We then give deision proedures for analyzing routing protools. We use a symbolimodel and onstraint systems to represent the possible exeutions of a given protool. Werevisit onstraint system solving, providing a omplete symboli representation of the attakerknowledge.We show that it is possible to automatially disover (in NPTIME) whether there existsa network topology that would allow maliious nodes to mount an attak against a seuredrouting protool, for a bounded number of sessions. We also provide a deision proedure fordeteting attaks in ase the network topology is given a priori.We also analyze protools with reursive tests. We provide NPTIME deision proeduresfor two lasses of protools with reursive tests and for a bounded number of sessions.
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Résumé
Les réseaux mobiles ad ho onsistent en un assemblage de mahines mobiles qui organisentelle-mêmes leur infrastruture. Dans es réseaux, déterminer omment les messages doiventiruler pour atteindre leur destination est une fontionnalité primordiale, qui est assuréepar les protooles de routage. Les protooles de routage séurisés utilisent des méanismesryptographiques pour empêher des agents mal intentionnés de ompromettre les routes.Nous proposons un alul de proessus pour modéliser les protooles séurisés, et en par-tiulier les protooles de routage séurisés. Notre alul se base sur des modèles symboliquesonnus que nous enrihissons pour prendre en ompte les aratéristiques des protooles deroutage et de la ommuniation sans �l.Nous fournissons ensuite des proédures de déision qui nous permettent d'analyser desprotooles de routage. Nous mettons en plae un modèle symbolique ave des systèmes deontraintes pour représenter les exéutions possibles d'un protoole. Nous revisitons les sys-tèmes de ontraintes en donnant une représentation symbolique omplète de la onnaissanede l'intrus.Nous montrons qu'on peut déider s'il existe une topologie du réseau permettant uneattaque du protoole pour un nombre borné de sessions. Nous fournissons aussi une proédurede déision pour déteter des attaques dans le as où la topologie du réseau est �xée à l'avane.Nous analysons aussi des protooles faisant des tests réursifs. Nous fournissons des proé-dures de déisions en temps NP pour deux lasses de protooles utilisant des tests réursifs etpour un nombre borné de sessions.
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Chapter 1
Introdution
With the development of digital networks, suh as Internet, ommuniation protools areomnipresent. Digital devies have to interat with eah other in order to perform the numerousand omplex tasks we have ome to expet as ommonplae, suh as using a mobile phone,sending or reeiving eletroni mail, making purhases online and so on.In suh appliations, seurity is important. For instane, in the ase of an online purhase,the right amount of money has to be paid without leaking the buyer personal informationto outside parties. Communiation protools are the rules that govern these interations. Inorder to make sure that they guarantee a ertain level of seurity, it is desirable to analyzethem. Doing so manually or by testing them is not enough, as attaks an be quite subtle.Some protools have been used for years before an attak was disovered.Beause of their inreasing ubiquity in many important appliations, e.g. eletroni om-mere, a very important researh hallenge onsists in developing methods and veri�ationtools to inrease our trust on seurity protools, and so on the appliations that rely onthem. For example, more than 28 billion Euros were spent in Frane using Internet transa-tions [BHS10℄, and the number is growing. Moreover, new types of protools are ontinuouslyappearing in order to fae new tehnologial and soietal hallenges, e.g. eletroni voting,eletroni passport to name a few.
1.1 Ad ho networks1.1.1 Wireless ad-ho networksComputers, and more generally eletroni devies, ommuniate with eah other to performa large number of various tasks, suh as entering into a transation over the Internet, �ndingyour way thanks to the GPS, or simply retrieving money from a ash dispenser to name afew. Suh ommuniation an be ahieved either via a physial medium, often wires, or awireless medium. Mobile phones, portable omputers, wireless sensors are able to send andreeive messages over radio waves, wi-�, bluetooth... Using wireless ommuniation is a oste�ient way of setting up a ommuniation network in a short time when there is no existinginfrastruture, or if the network is only temporary.Wireless networks an be strutured around a entral point. For instane, in managedwireless networks whih are routinely used in home networks, the entral devie is linked to awired network and serves as a gateway to the Internet for the other devies on the network, itis alled the aess point. Sensor networks are also often hierarhised, the sensors all have to1
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2 CHAPTER 1. INTRODUCTION
transmit the information they gather to a entral devie. However, there is not always suh ahierarhy, some wireless networks are deentralized, without any preexisting struture. Suhauto adaptive networks are alled ad ho networks.Ad ho networks are the fous of many reent researh e�orts. In partiular, mobile andself-organizing networks are of high interest. Examples of appliations range from military orresue operations to interation among meeting attendees or students during a leture, andan also inlude self-organizing wireless sensors or vehiular ad ho networks.
1.1.2 Routing protoolsAd ho networks have no �xed infrastruture: the wireless devies making up the networkare arbitrarily loated, and thus the way to ommuniate has to be arefully thought out.Basi ommuniation is ahieved by broadasting messages. Any mahine within a ertainrange (whose value depends on the power of the antenna and the wireless medium hosen) ofthe emitting mahine an reeive the message. Whereas in a managed wireless network, eahmahine only ommuniates with the entral aess point and ignores all other messages, inan ad ho setting they have to listen to every message, at least until some sort of organisationan be established. Eah of the devies an ommuniate diretly only with the devies thatare situated within a ertain range. As a onsequene, when two distant mahines wish toommuniate, the data tra� has to travel through the other devies making up the networkuntil it reahes its destination. In a wired network, bringing the data to its destination is atask performed by spei� devies alled routers. In an ad ho wireless network, eah deviean at as a router, propagating messages on behalf of some other devie.An ad ho network an be thought of as a graph, where the nodes of the graph representthe devies making up the network. Two nodes are linked by an edge in the graph if they arewithin diret ommuniation range of eah other, whih means that when one of the devies ofthat link broadasts a message, his neighbor an hear it. Finding the paths that the messagesmust follow in an a priori unknown and onstantly hanging network topology is a ruialfuntionality of any ad ho network. Spei� protools, alled routing protools, are designedto ensure this funtionality known as route disovery.As an illustrative example, we give a brief desription of the route disovery funtionalityof a basi routing protool, namely the Dynami Soure Routing protool (DSR). DSR is asimple routing protool designed to be used in ad ho networks.This protool is used when a node, that we denote as the soure node S, wishes to ommu-niate with another node that we will denote as the destination node D. The routing methodused to transfer data makes use of a route, a path in the graph that the data must follow toreah its �nal destination. In order to perform the routing operation, S thus needs to disovera path in the network leading to D. The route disovery in DSR is divided in two phases: arequest phase and a reply phase. During the request phase, messages are sent everywhere overthe network, in an e�ort to reah D. First, the soure node broadasts a message signallingthat it is looking for a route towards D. The nodes reeiving this message that do not or-respond to the intended destination are alled intermediate nodes. They forward the messageafter appending their name to the request. When D is reahed, the reply phase begins, wherethe disovered route is onveyed bak to S through the intermediate nodes. D. Jonhson andD. Maltz provide a full desription of the protool in [JMB01℄.
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1.1. AD HOC NETWORKS 3
1.1.3 Classi�ation of routing protools.Routing protools an be lassi�ed into two groups:
• proative (or periodi): those protools try to maintain up-to date routing information.In other words, routes are periodially updated. At any time, eah nodes knows how toroute a paket.
• reative (or on-demand): those protools establish routes only when it is needed. In otherwords, a route disovery is initiated only when a soure node S wishes to ommuniatewith a destination node D whih he does not already know how to reah.In general, proative approahes are thought to have shorter lateny, as routes are instantlyavailable, while on-demand approahes have a lower overhead, sine route disovery onlyours when it is useful. The main drawbak of on-demand routing protools is the fat thatommuniation must be delayed until a route is found. However, information is updated inan on-demand manner, in ontrast with proative protools. As these protools maintain up-to-date routing information for all possible destinations, they will establish some routes thatwill never be used. There are also some hybrid protools that try to ombine the advantagesof both approahes.In wired networks, routing protools usually adopt the proative approah, whih is betteradapted to a network whose on�guration hanges rarely: the updates need not be too fre-quent. For instane, the routing protool used in the Internet, the Border Gateway Protool(BGP) [BGP95℄, is proative. Some routing protools for ad ho networks also use thismethod, suh as SEAD [HJP03℄.Furthermore, routing protools an also be sorted between the soure routing and tablerouting methods.
• soure routing : the soure node needs to know the entire route between itself and thedestination. During the routing phase, the soure node provides the route that themessage he is sending has to follow, and the intermediate nodes forward the messagealong this route. This means that every paket arries the route in its header, as eahnode needs this information in order to forward the data along the way to the destina-tion. Examples of soure routing protools inlude DSR [JMB01℄, AnonDSR [SKY05℄,Ariadne [HPJ05℄ and endairA [BV04℄.
• table routing (or hop-by-hop routing): eah node knows only whih is the following nodeon the route towards a given destination. This information is stored in routing tables.Several methods an be used to ompute this next node, mainly link-state and distane-vetor. In link-state algorithms, the nodes share information about their neighbors,and eah node omputes the shortest path towards every destination. In distane vetoralgorithms, nodes share their estimates of the shortest path for all known nodes, and theneighbors update their routing tables aordingly. Examples of table routing protoolsinlude AODV [PBR99℄ and its seure version SAODV [ZA02℄.Soure routing allows one to easily prevent the presene of loops in a route, but in om-pensation eah paket arries the entire route in its header. It is more ompliated to detetthe formation of loops in the ase where table routing is used. This is a serious drawbak, asloops are serious �aws: when a routing loop forms, it generates exessive tra� in the loop,and may prevent the nodes of the loop to funtion in a normal way.

te
l-0

06
75

50
9,

 v
er

si
on

 1
 - 

1 
M

ar
 2

01
2



4 CHAPTER 1. INTRODUCTION
Most of the time, on-demand routing protools are made of several separate mehanisms:route disovery, route maintenane and data transmission. Route disovery onsists in �ndinga suitable path from a soure node to a given destination, and route maintenane is themehanism used when a link breaks, whih an be quite frequent in a mobile network. However,route maintenane often onsists in advertising the link failure and prompting the soure nodeto initiate a new route disovery if needed, without any attempt at �xing the existing route.Data transmission is the atual ommuniation phase and ours when a route has beenestablished through route disovery.In order to seure data transmission, the route disovery has to be seure too. We fouson the seurity of route disovery, and when desribing a routing protool we onsider onlythe route disovery mehanism. The seurity of route disovery is ruial for the funtioningof ad ho wireless networks. Indeed, an adversary an easily paralyze the entire network byattaking the underlying routing protool. While the routing aspets of mobile ad ho networks(MANETs) are well-understood, the researh ativities about seurity in those networks arestill at their beginning.

1.2 Seure Ad Ho Routing ProtoolsAssuming that the routing protools operate in a friendly environment is unrealisti. Seurerouting protools have been proposed in order to take the adversarial setting into aount andprotet against an attaker.AODV [PBR99℄ and DSR [JMB01℄ are not seure and in partiular do not ensure orretionof the disovered route in the presene of maliious nodes. Some protools aim at �xing thisvulnerability. For instane, SAODV [ZA02℄ is a seured version of AODV, and SRP [PH02℄ isa seurity mehanism designed to be used with soure routing protools suh as DSR.Some protools [SKY05, ZWK+04, BEKXK04℄ moreover want to ensure anonymity of thepartiipants. They make use of similar tehniques as some seure soure routing protools.The omputations performed are however more omplex in general, as the seurity guaranteesdesired are more di�ult to obtain.In order to ensure orretness of the route, nodes exeuting a routing protool may haveto perform some heks, typially heking that some other node laiming to be their neighboratually is. Spei� protools are designed to disover neighbors, and they have to be seurein order to derive seurity of the routing protool above. The importane of this funtionalityis explained in [PPS+08℄, and a method to hek whether suh protools are indeed seure isintrodued by [PPH08℄. We use seure neighborhood disovery as a blak box, in the same wayas ryptography: we onsider that eah node knows the list of its neighbors when exeuting arouting protool.1.2.1 Cryptographi primitivesIn order to build protools that protet information, we make use of ryptography: from theGreek words kryptos = "hidden, seret" and graphein = "writing", it denotes the siene ofhiding information. The need for proteting sensitive data over digital media has prompted ahuge development of this �eld of study. In the symboli model, the workings of ryptographyare aptured by ryptographi primitives, that are used as a blak box hiding the omputa-tional workings of ryptography. The data on whih these methods are applied is alled themessage.
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1.2. SECURE AD HOC ROUTING PROTOCOLS 5
Enryption. Symmetri enryption is the oldest known ryptographi method. Coding amessage in order to keep it hidden is alled enryption. The inverse method, i.e. retrievingthe initial message is alled deryption. Enryption and deryption make use of a key. Theenryption may be symmetri or asymmetri. For symmetri enryption, the same key is usedfor enrypting and derypting a message. Asymmetri enryption involves di�erent keys forthe two operations: a publi key for enryption and a seret key for deryption. Deryptionshould only be possible with the seret key.Hash funtion. A ryptographi hash funtion is a funtion that takes an arbitrary blok ofdata and returns a bitstring of �xed size alled the hash value. A hange in the data, whetheraidental or intentional, will hange the hash value. Computing a hash value is easy, butthe opposite operation, i.e. generating a message that has a given hash, should be infeasible.Furthermore, it should be infeasible to �nd two di�erent messages with the same hash.Message authentiation ode. A message authentiation ode, or MAC, is a short bit-string used to authentiate a message. The funtion produing a MAC from an arbitrary-length message needs a seret key to perform the omputation. Agents possessing the samekey will be able to detet hanges in the message by omputing the MAC and omparingthem. The algorithm is sometimes alled keyed hash funtion. The MAC value protets botha message's data integrity and its authentiity.Digital signatures. A digital signature is a sheme for proving the authentiity of a digitalmessage, as traditional handwritten signatures are proofs of the authentiity of a doument.Digital signatures are ommonly used for example in software distribution, �nanial trans-ations, and in other ases where it is important to detet forgery or tampering. Digitalsignatures employ a type of asymmetri ryptography, two algorithms make up a signaturesheme. The signing algorithm produes a signature, given a message and a private key. Thesignature verifying algorithm onsiders as input a message, a verifying key and a signature,and either aepts or rejets the message's laim to authentiity. It should be infeasible togenerate a valid signature without the private key.1.2.2 Examples of routing protoolsDesigning seure version of routing protools is a di�ult task. Atually, most routing proto-ols proposed for wireless ad ho networks are inseure, attaks have been disovered againstthem. Those who have no known attaks have mostly only been analysed by informal reas-oning. We desribe here two routing protools laimed to be seure that will be used asillustrating examples in this dissertation.Seure Routing Protool (SRP) [PH02℄ is atually not a routing protool in itself. Infat, it is designed to be applied as an extension of an existing on-demand soure routingprotools, suh as DSR. The goal of the protool obtained after extension is to provide orretonnetivity information, even in the presene of (non-olluding) attakers. In order to be ableto use SRP, the soure and destination of the route disovery are required to have a seurityassoiation, for instane sharing a key KSD.A syntati desription of SRP is given in Figure 1.1. To disover a route to the destination,the soure S onstruts a request paket and broadasts it to its neighbors. The request paket
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6 CHAPTER 1. INTRODUCTION
req, rep: identi�ers indiating the phase of the exeution
Id : request identi�er
qn: query sequene number
ℓ, ℓ′: list of nodes
KSD: key shared between S and DMAC : funtion omputing a message authentiation ode
m,m′: message authentiation odes

Request phase:
S broadasts 〈req, S,D, qn, Id , [],MAC(KSD, 〈S,D, qn, Id〉)〉

V reeives 〈req, S,D, qn, Id , ℓ,m〉
V heks that the message was last proessed by a neighbor
V broadasts 〈req, S,D, qn, Id , V :: ℓ,m〉

D reeives 〈req, S,D, qn, Id , ℓ′,MAC(KSD, 〈S,D, qn, Id〉)〉Reply phase:
D sends 〈rep, D, S, ℓ′,MAC(KSD, 〈S,D, qn, Id , ℓ

′〉)〉

V reeives 〈rep, D, S, ℓ′,m′〉
V heks that ℓ′ is plausible from its point of view
V sends 〈rep, D, S, ℓ′,m′〉

S reeives 〈rep, D, S, qn, Id , ℓ′,MAC(KSD, 〈S,D, qn, Id , ℓ
′〉)〉

Figure 1.1: Spei�ation of SRP
ontains its name S, the name of the destination D, an identi�er of the request Id , a requestsequene number qn to prove the freshness of the route request and to prevent replaying ofold requests, a list ontaining the beginning of a route to D, and a MAC omputed overthe ontent of the request with a key KSD shared by S and D. It then waits for an answerontaining a route to D with a MAC mathing this route, and tests whether it is a plausibleroute by heking that the route does not ontain a loop and that his neighbor in the route isindeed a neighbor of his in the network. Eah intermediate node that reeives the message �rstheks that the list representing the route begins with the identi�er of one of his neighbors.Then, he appends his identi�er to the route aumulated so far in the request and broadaststhe modi�ed request message to his immediate neighbors. During the reply phase, they behavein a similar way, they hek that the route is plausible aording to their view of the networkand they forward the reply along the way. Upon reeiving the request paket, the destinationheks that the MAC is orret and initiates the reply phase. He sends a message ontainingthe route disovered with a MAC omputed over it with the key KSD.This protool, although it was analyzed informally and onsidered seure [PH02℄, is subjet
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1.2. SECURE AD HOC ROUTING PROTOCOLS 7
req, rep: identi�ers indiating the exeution phase
Id : request identi�er
ℓ, ℓ′: list of nodes
lsig , l

′
sig : lists of signatures

sigD, sigV : signatures over the reply message
Request phase:

S broadasts 〈req, S,D, Id , []〉
V reeives 〈req, S,D, Id , ℓ〉
V heks that the message was last proessed by a neighbor
V broadasts 〈req, S,D, V :: ℓ〉

D reeives 〈req, S,D, ℓ′〉
D heks that the message was last proessed by a neighborReply phase:

D sends 〈rep, D, S, ℓ′, sigD〉
V reeives 〈rep, D, S, ℓ′, l′sig〉
V heks that (ℓ′, lsig) is a valid pair node list/list of signatures
V sends 〈rep, D, S, ℓ′, sigV :: sig〉

S reeives 〈rep, D, S, ℓ′, l′sig〉
S heks that (ℓ′, l′sig) is a valid pair node list/list of signatures

Figure 1.2: Spei�ation of EndairA
to attaks [Mar03, BV04℄. We desribe one of these attaks in Setion 1.2.3.EndairA is a seured routing protool inspired by another one alled Ariadne. Theauthors, G. Ás, L. Buttyán and I. Vajda, disovered an attak on Ariadne [BV04℄. Theyestablished a formal model to analyze routing protools and proved EndairA to be seure fora slightly modi�ed notion of orretness, alled route validity. The protool is alled endairA(whih is the reverse of Ariadne) beause, instead of signing the request, they propose thatintermediate nodes should sign the route reply. The aim of signing the route reply is to protetthe protool against the attaks found against Ariadne, whih take advantage of the fat thatthe list ould be tampered with during the request phase. There are no known attaks againstthis routing protool.A syntati desription of EndairA is given in Figure 1.2. The initiator of the routedisovery proess, S, generates a route request ontaining the identi�ers of the soure S andthe destination D, and a randomly generated identi�er Id . Eah intermediate node thatreeives the message for the �rst time appends its identi�er to the route aumulated so far
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8 CHAPTER 1. INTRODUCTION
in the request and broadasts the modi�ed request message to its immediate neighbors.When the request reahes the destination D, it generates a route reply 〈rep, D, S, ℓ′, sigD〉where ℓ′ is the aumulated route obtained from the request and sigD = Jrep, D, S, ℓ′KKD

isa digital signature of D on the other �elds of the reply. The reply is sent bak to S on thereverse of the route found in the request.Upon reeiving the reply 〈rep, D, S, ℓ′, lsig〉, the intermediate node V veri�es that the route
ℓ′ ontains its identi�er V and that both the preeding and following identi�ers in the listbelong to neighboring nodes. The node V also heks that the list of signatures lsig is validand orresponds to the list of names ℓ′. If these veri�ations fail, then the message is dropped.Otherwise, V appends its signature to lsig and forwards it to the next node.When S reeives the route reply 〈rep, D, S, ℓ′, l′sig〉, he heks that the signatures in l′sig arevalid and orrespond with the sequene of nodes in list ℓ′. If these veri�ations are suessful,then S aepts the route ℓ′.
1.2.3 Attaks on routing protools
We an onsider two types of attaks [HPJ05℄: routing disruption and resoure onsumption.During routing disruption attaks, the aim of the intruder is to prevent the routing protoolfrom exeuting in a orret way. In resoure onsumption attaks, the intruder sends requestsover the network to make honest nodes onsume their (limited) resoures suh as bandwidthor memory.The �rst kind of attaks an be performed by an intruder trying to route all the tra�through nodes he ontrols, so as to be able to listen to all ommuniations. He ould alsotry to prevent two nodes from ommuniating by advertising a false route. The seond typeof attaks are denial of servie attaks. If a protool satis�es the route orretness property,it is seure against route disruption attaks but not neessarily against resoure onsumptionattaks. We desribe below some generi ways of mounting attaks.Replay attaks. A replay attak onsists in broadasting without modi�ation a messagethat the intruder reeived from an honest agent. A replay attak may for example enablethe intruder to steal the identity of an honest agent. In the ontext of routing protools, thisould shorten the paths going through the intruder, and thus possibly prompt nodes to hoosethese paths to ommuniate. As an illustration, we onsider again SRP.In [BV04℄, an attak is found on SRP for an intruder ontrolling one node in the network.This attak, desribed in Figure 1.3 is similar to a replay attak, but the message transferredis modi�ed slightly, in order to fool the destination into signing a path that appears orret.

First, the soure node S initiates the protool by sending a request message
〈req, S,D, qn, Id , [],MAC(KSD, 〈S,D, qn, Id〉)〉.As the intruder is a neighbor of the soure, he reeives the message. This enables him to sendthe forged message 〈req, S,D, qn, Id , [X,W ],MAC(KSD, 〈S,D, qn, Id〉)〉. When the destination

D reeives this message, he heks that the node at the head of the list is one of his neighbors.In this ase, the test sueeds, as X is really a neighbor of D, even though X has not sent themessage. The destination node then omputes a MAC over the false route [X,W ], and sends
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1.3. FORMAL VERIFICATION 9
I

W

X

S D
(2)(1) (3)(3)

1. 〈req, S,D, qn, Id , [],MAC(KSD, 〈S,D, qn, Id〉)〉2. 〈req, S,D, qn, Id , [X,W ],MAC(KSD, 〈S,D, qn, Id〉)〉3. 〈req, S,D, qn, Id , [X,W ],MAC(KSD, 〈S,D, qn, Id , [X,W ]〉)〉

Figure 1.3: Example of an attak on SRP
a reply message that the intruder forwards to the soure. Notie that this attak is possibleeven if nodes perform seure neighborhood disovery: as X is a neighbor of D, the destinationnode D aepts [X,W ] as a route between him and S.
Tunneling attaks. This attak requires the intruder to ontrol at least two nodes. Atunneling attak (or wormhole attak) is similar to a replay attak: when the �rst nodereeives a request sent by an honest agent, he sends it (over a private hannel) to the othernode, who proesses it as if he had really reeived it. This an lead other agents to believe thata route going through the dishonest node is short, and so to hoose this route to ommuniate.
Rushing attaks. For this attak, the intruder needs to be faster than the honest agents(see a desription and model in [KHG06℄). To prevent �ooding of the network, in most of therouting protools, the agents proess only the �rst request that they reeive. If the intruderis faster, the probability is higher that the routes found by the protool go through him.Intruders in a network an be passive or ative. A passive intruder does not send anymessage, he only overhears the ommuniations. Passive intruders are onsidered a threat forserey or anonymity, but not for the orret exeution of protools. An ative intruder ansend messages over the network. In an ad ho network, the power of the intruder also dependson the number of nodes that he ontrols. In a wireless network, the intruder is onstrainedby his loation in addition to his omputing abilities. An intruder ontrolling only one nodehas therefore less power to disrupt the routing protools than an intruder ontrolling severalnodes aross the network. For example, an intruder ontrolling only one node an not mounttunneling attaks.
1.3 Formal veri�ationIn the previous setion, we have seen an attak against SRP, although the authors analyzedtheir protool with BAN logi and onluded that it was seure. They showed that, after asuessful run of the protool, the soure node S believes that the entire route reply originatesfrom the destination node D. Unfortunately, even though this analysis is sound, it is notsu�ient to ensure route orretness([Mar03℄).This illustrates how di�ult it is to orretly
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10 CHAPTER 1. INTRODUCTION
analyze ryptographi protools. Furthermore, veri�ation has to be performed for eah newprotool, and veri�ation by hand is tedious and error prone. Other methods to test whetherrouting protools are seure proeed by heking whether they withstand known attaks, butthis is not su�ient to prove that they are seure.It has been reognized that designing a seure protool is a di�ult and error-prone task.Indeed, protools are very sensitive to small hanges in their desription and many protoolshave been shown to be �awed several years after their publiation (and deployment).Formal methods inlude tehniques that an be used for the spei�ation, development andveri�ation of protools. Performing appropriate analyses an ontribute to the reliability androbustness of software using the protools. Formal methods make use of a variety of theoretialomputer siene fundamentals, in partiular logi aluli, formal languages, automata theory,and program semantis, but also type systems and algebrai data types.1.3.1 Symboli approahSymboli models are highly astrated models used to reason about protools. In symboli mod-els, the network is represented by a set of agents that an exhange messages. These messagesare represented by symboli terms. Furthermore, in the traditional Dolev-Yao model [DY81℄,the intruder ontrols the network: he an overhear, interept, and forge messages within theonstraints of the ryptography. The symboli models make the hypothesis of perfet rypto-graphy : all the ryptographi primitives behave in an ideal way. For instane, it is impossibleto derypt without the orresponding key, or to sign a message without a private key.A multitude of e�etive frameworks have been proposed to analyze protools in a symboliway. The Paulson indutive model [Pau98℄ is an algebrai model where a protool is modeledindutively as a set of traes. A trae is a sequene of ommuniation operations representingan exeution of the protool. Proofs in this model an be generated with the theorem proverIsabelle/HOL [Pau89℄. The strand spaes model [THG99℄ introdues the notion of strands,whih represent a sequene of events either legitimate or maliious. A strand spae is aolletion of strands with links representing ausal interation. The applied pi-alulus [AF01℄is an extension of the pi alulus with value passing, primitive funtions, and equations amongterms. Constraints systems [RT01℄ represent eah protool exeution as a set of onstraintswhih represent the intruder knowledge and the terms the intruder has to be able to build inorder to perform an attak.Formal modeling and analysis tehniques are well-adapted for heking orretness of seur-ity protools. Formal methods have for example been suessfully used for analyzing authen-tiation or key establishment seurity protools. Symboli methods have been suessfullyapplied to the analysis of seurity protools, yielding the disovery of new attaks like thefamous man-in-the-middle attak in the Needham-Shroeder publi key protool [Low96℄ or,more reently, a �aw in Gmail [ACC+08℄. While serey and authentiation properties areundeidable in the general ase [DLMS99℄, many deision proedures have been proposed.For example, serey and authentiation beome NP-omplete for a bounded number of ses-sions [RT01℄ and B. Blanhet has developed a proedure for seurity protools enoded as Hornlauses [Bla01℄. This yielded various e�ient tools for deteting �aws and proving seurity(e.g. ProVerif [Bla05℄ or Avispa [ABB+05℄).Symboli models are highly abstrated approahes, but there are results that show thatthe seurity guarantees they provide are nonetheless reasonable. For instane, let us onsider
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1.3. FORMAL VERIFICATION 11
a more preise model, the omputational model. In this approah, messages are bitstringsand the intruder is a probabilisti polynomial time Turing mahine. Results of omputationalsoundness show that it is possible to prove seurity in the symboli model and to lift theresult to the omputational model, under ertain onditions. The onept of omputationalsoundness was introdued by M. Abadi and Ph. Rogaway [AR00℄ ( [CKW09℄ is a reent surveyof omputational soundness results). In light of these works, symboli models seem to be areasonable approah for analyzing protools in an e�ient way while having su�ient seurityguarantees.
1.3.2 Charateristis of routing protoolsWhile key-exhange protools in traditional frameworks are well studied, there are very fewattempts to develop formal tehniques allowing an automated analysis of seured routing pro-tools. Up to our knowledge, tools that would allow the seurity analysis of routing protoolsare also missing. Those protools indeed involve several subtleties that annot be re�eted inexisting work, that we will desribe now.Routing protools involve di�erent elements that distinguish them from other rypto-graphi protools. For instane, most ryptographi protools involve two agents who wantto ommuniate while preserving some privay or anonymity or other property. They ouldfor example be exeuted one the routing protool has been run and has established a routebetween two nodes. We give here the main haraterisits of routing protools that have tobe aurately modeled in order to formally verify them.
Number of agents involved. It is impossible to know in advane how many devies willbe involved in the exeution of a route disovery protool. In fat, route disovery an involvean unbounded number of nodes. The �rst phase of route disovery potentially involves all thenodes of the network. Intuitively, when a node S wants to interat with another node D andhe has no idea of how to reah D he will send messages everywhere on the network in order toreah him. Furthermore, the number of nodes in the network is not �xed. By nature, anyonean partiipate in an ad ho network. The only requirement is to emit and reeive messages viathe same wireless medium as the other nodes. The infrastruture is muh more �exible than ina wired setting. Nodes an appear, disappear, move. It is thus impossible to know in advanehow many devies will be involved in the exeution of a route disovery protool, even by �xingthe soure and the destination. Fixing the network is a �rst step towards knowing whih nodeswill be involved. We believe that onsidering a truly unbounded number of partiipants wouldmake any reahability problem, and thus basi seurity properties, undeidable, as it is thease for an unbounded number of sessions in traditional protools. However, it is not learwhether some simple onditions ould irumvent this problem. Unfortunately, we do notdeal with the ase of an unknown number of partiipants, but we deal with an unboundednumber of nodes in the network (with a bounded number of nodes in the network that ativelypartiipate in the protool exeution).
Network topology. The underlying network topology is ruial to de�ne who an reeivethe messages sent by a node. Moreover, the intruder is loalized to some spei� nodes(possibly several). The natural way to model an ad ho network is to use a notion of graphwhere there is an edge between two nodes if they an ommuniate diretly. For a protool
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12 CHAPTER 1. INTRODUCTION
used in a wired or a �xed setting, there also exists an underlying graph, but it does not playa role in the interation. In a traditional maliious setting, the intruder is assumed to ontrolthe network. He an reeive all the messages that are sent between the partiipants, intereptthem, forge and send messages in the name of an honest agent. In a wireless network whereommuniation an only our node to node, it is not realisti to assume that an intruder anreeive all messages. The intruder has to be loated somewhere, and an thus only reeive themessages sent by his immediate neighbors. Similarly, he an only send messages diretly tohis neighbors. The physial aspet of the equipment used by the intruder an play a role. If hehas the use of an antenna that an send messages in a given diretion, it is possible for him tosend messages to a given agent. Otherwise, he has to broadast his messages, as do the honestagents. The broadast nature of transmission means that the intruder an no longer intereptmessages. It is possible to jam the ommuniations in a physial way, but this would blok anymessage during a ertain amount of time without disrimination. We do not onsider denialof servie attaks. We do not give the intruder the ability to jam ommuniations either. Butwe give him the ability to send messages to only one of his neighbors. This only adds to hispower, so we do not miss attaks by doing suh a thing. We also let the intruder ontrolseveral nodes of the network.
Spei� data struture: list. When studying soure routing protool, we have to onsidera data struture not usually treated in veri�ation tools: the list. Indeed, the route disoveredis represented by a list of nodes. Intuitively, during the �rst phase of the disovery proess,also known as request phase, the list is built inrementally, eah node adds its name to theroute �eld in the request message, and when the message reahes the destination, the replyphase begins. During the reply phase, he only has to send a message bak to the soure,ontaining the fully built list, possibly proteted so as not to be modi�ed. The soure needsthis list to route the normal data tra� between him and the destination. So messages ontainlists, whose size are not known in advane. We model lists and we show that not knowingtheir size beforehand does not prevent us from establishing some deidability results.
Seurity Properties. What seems to be a fundamental property is that when a routingprotool disovers a route, this route mathes a real path in the network. This propertyan not be redued to an authentiation or seurity property, due in partiular to the fatthat it is a graph property. In the existing frameworks, this property an therefore not bede�ned. We model this property by using a logi that reasons about lists. Some routingprotools aim to ensure other seurity properties about the route, for instane that the routedisovered by the protool is as short as possible, or that the route does not go through anymaliious node, or yet that the protool always disover a route when a path exists in thegraph . . . All these properties are properties of the route, whih means properties of a list in asoure routing protool. They ould probably also be modeled similarly to route orretness.However, in table based routing protools, the same properties are more omplex to express,as the information is sattered aross various routing tables in the network. Yet other routingprotools aim at providing anonymity, whih is a property that we did not onsider.
Neighbor tests. As we have seen after desribing the DSR protool, a very straightforwardattak on a routing protool designed to be used in a friendly environment is to send a forgedmessage in the name of the destination, whih ould be situated at the other end of the
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1.3. FORMAL VERIFICATION 13
network. To protet against these basi attaks, nodes have to hek, when they reeive amessage supposedly from an agent A, that this agent is within ommuniation range, or inother words in our model, is a neighbor. The neighbor disovery protool must thus also beseured, if we want to make heks that are useful. We onsider that a seure neighborhooddisovery protool has been used, and that eah node an hek whether a node is his neighbor.Another test involving neighbors an be performed on lists. Typially, during a reply phase, alist of nodes is forwarded, and this list is supposed to represent a valid route. Nodes forwardingthis reply message an hek whether the list ontained in the route �eld is loally orret bymaking sure that their name is in the list and appears between the names of two neighbors.Intuitively this test is also essential, as the unproteted route is easily modi�able.Reursivity. In the EndairA example, we an see that to protet the route during the replyphase against maliious tampering, eah node performs an operation on the same �eld. Theyeah sign the list, and build a list out of these signatures. To hek that the list has not beentampered with, the soure then has to hek that the result of this onstrution is valid. Thismeans heking that a reursively built list is valid. So, in order to model protools that usethese reursively built lists to authentiate the route, we have to be able to deal with a formof reursivity.1.3.3 Veri�ation of seure routing protoolsReently, several results have been proposed for studying routing protools. For example,S. Yang and J. Baras [YB03℄ provide a �rst symboli model for routing protools based onstrand spaes, modeling the network topology. They implement a semi-deision proedure tosearh for attaks and �nd an attak on AODV [PBR99℄, a routing protool (built for friendlyenvironments) that does not inlude ryptography. Their approah however does not applyto routing protools using ryptographi primitives for seuring ommuniations.Case studiesSeveral ase studies of important seured routing protools have been performed. J. God-skesen [God06℄ provides an analysis of a simpli�ed version of the ARAN [SDL+02℄ protoolwith ProVerif, for a given on�guration, and aptures a relay attak. J. Marshall [Mar03℄ usesCryptographi Protool Analysis Language Evaluation System (CPAL-ES) to speify the SRPprotool and analyze it. The enoding of SRP is done on a preise �xed topology, withoutbroadast, and a replay attak is retrieved.T. Andel [And07℄ uses model heking in his PhD thesis to analyze the ARAN protoolin the SPIN tool, for a �xed topology. In order to be able to analyze a priori unknowntopologies, the authors propose a redution of the searh spae by establishing equivalenebetween di�erent topologies, and showing that it is enough to test the smallest topology in anequivalene lass to deide seurity.General frameworkWhile these last results fous on partiular routing protools, some frameworks have beenproposed to model wireless ommuniation and/or routing protools in a more generi way.L. Buttyán and I. Vajda [BV04℄ provide a model for routing protools, in a ryptographisetting. Their model enables them to �nd attaks on SRP and Ariadne [HPJ05℄. They provide
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14 CHAPTER 1. INTRODUCTION
a seurity proof (by hand) for a �xed protool they propose, endairA. G. Às, L. Buttyàn and I.Vajda then develop their framework for distane vetor routing protools [ABV05℄, analyzingSAODV [ZA02℄ and ARAN. They also apply their framework to sensor networks [ABV06℄,analyzing TinyOS [PSW+02℄.S. Nanz and C. Hankin [NH06℄ propose a proess alulus to model the network topo-logy and broadast ommuniations, extending the Calulus of Broadasting System. Theyanalyze senarios with speial topologies and attaker on�guration by omputing an over-approximation of reahable states. They develop a stati analysis based on a �ow logi. Theiranalysis is safe in the sense that the disovered attaks orrespond to real ones. They alsopropose a deision proedure but for an intruder that is already spei�ed by the user. Thisallows to hek seurity only against �xed, known in advane senarios.Up to our knowledge, we are the �rst to provide deidability or omplexity result forrouting protools, for arbitrary intruders and network topologies.
1.4 ContributionsAd ho routing protools have several partiularities that distinguish them from traditionalkey-exhange protools. Among them are predominant the network topology, the neighbor-hood tests and seurity properties, as well as reursivity. We propose a model for ad horouting protools that takes into aount the topology of the network and the spei� broad-ast primitive. We then analyze separately protools that perform neighborhood tests andprotools that make use of reursivity. In order to analyze both types of protools, we useonstraint systems [MS01, CLCZ10℄. We extend onstraint systems with the primitives usefulto deal with routing protools and reursivity, suh as lists. Furthermore, we also revisit themto deal with an in�nite number of nodes. Thanks to the representation of protool exeutionusing onstraint systems, we obtain deidability results for soure routing protools with theirspei� seurity properties on the one hand, and for protools with reursive tests on the otherhand.
Modeling routing protoolsWe propose a alulus, inspired from CBS# [NH06℄, whih allows ad ho networks and theirseurity properties to be formally desribed and analyzed. As for standard symboli mod-els for seurity protools, we model ryptography as a blak box (the perfet ryptographyassumption), thus the attaker annot break ryptography, e.g. derypt a message withouthaving the appropriate deryption key. To take the features of ad ho routing protools intoaount, we �rst propose a logi to express the neighbor tests performed by the nodes at eahstep. There are also some impliations for the attaker model. Indeed, in most existing formalapproahes, the intruder model onsists in the Dolev Yao attaker that ontrols the entirenetwork. We have explained why this attaker model is too strong in the ontext of routingprotools: the topology of the network plays a ruial role in the exeution of the protool andthe possible ommuniations. Considering an intruder with a total ontrol over the networkand not loalized in one partiular node would lead to a number of false attaks. Our modelre�ets the fat that a maliious node an interfere diretly only with his neighbors.In order to analyze protools suh as EndairA, we have to be able to deal with reursivity.These protools share a way of authentiating the route during the reply phase of the route
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1.4. CONTRIBUTIONS 15
disovery. Eah of the nodes on the route ompute a signature, and the soure has to hekthat the list of signatures has been properly built.Reursivity quikly yields undeidability, as even a single input/output step in a protoolmay reveal omplex information, as soon as it involves a reursive omputation [KW04℄. Inorder to irumvent this, we onsider protools that perform standard input/output ations(modeled using usual pattern mathing) but that are allowed to perform reursive tests suh asheking the validity of a route or the validity of a hain of erti�ates. Indeed, seure routingprotools use reursivity only for performing sanity heks at some steps of the protool. Itis also the ase of other protools suh as distributed right delegation, and PKI erti�ationpaths.
Analyzing routing protoolsOur formal model represents all possible exeutions against an adversary that ontrols some ofthe nodes and ats maliiously in these nodes by sending any message that he an onstrut.Our model is thus in�nitely branhing. As a �rst step towards automation, we provide analternative symboli semantis, based on onstraint systems and we show its orretness andompleteness w.r.t. the onrete semantis. This result holds for arbitrary proesses (possiblywith repliation) and for any set of primitives.We provide two NP deision proedures for analyzing routing protools for a boundednumber of sessions and for a large set of standard primitives. For a �xed set of roles andsessions, we show that it is possible to disover whether there exists a network topology anda maliious behavior of some nodes that yield an attak. We an also deide whether thereexists an attak, for a network topology hosen by the user. These two proedures hold forany property that an be expressed in our logi, whih inludes lassial properties suh asserey as well as properties more spei� to routing protools suh as route validity.
Analyzing protools with reursive testsFor heking seurity of protools with reursive tests (for a bounded number of sessions), wereuse the setting of onstraint systems and add tests of membership to reursive languages.We propose (NPTIME) deision proedures for two lasses of reursive languages (used fortests): link-based reursive languages and mapping-based languages. A link-based reursivelanguage ontains hains of links where onseutive links have to satisfy a given relation. Atypial example is X.509 publi key erti�ates as de�ned in [HFP98℄ that onsist in a hainof signatures of the form:

[J〈A1, pub(A1)〉Ksk(A2); J〈A2, pub(A2)〉Ksk(A3); · · · ; J〈An, pub(An)〉Ksk(S)].A mapping-based language ontains lists that are based on a list of names (typially namesof agents involved in the protool session) and are uniquely de�ned by it. Typial examplesan be found in the ontext of routing protools, when nodes hek for the validity of the route.For example, in the endairA protool [BV04℄, a route from the soure A0 to the destination Anis represented by a list lroute = [An; . . . ;A1]. This list is aepted by the soure node A0 onlyif the reeived message ontains a list of signatures authentiating it of the form:
[J〈An, A0, lroute, [sig2; . . . ; sign]〉Ksk(A1)
︸ ︷︷ ︸

sig1

; J〈An, A0, lroute, [sig3; . . . ; sign]〉Ksk(A2)
︸ ︷︷ ︸

sig2

; . . .
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16 CHAPTER 1. INTRODUCTION
. . . ; J〈An, A0, lroute, [sign]〉Ksk(An−1)

︸ ︷︷ ︸

sign−1

; J〈An, A0, lroute, []〉Ksk(An)
︸ ︷︷ ︸

sign

].

Note that a link J〈An, A0, lroute, [sig i; . . . ; sign]〉Ksk(Ai) depends on the list lroute , on its i-thelement and on the following links in the list.Some of those results were published in [ACD10℄, with a preliminary version in [ACD09℄. Ajournal version has been submitted to the speial issue of Information and Computation on Se-urity and Rewriting tehniques. The results regarding reursivity were published in [ACD11℄.
1.5 Outline of the DissertationIn order to provide deision proedures for routing protools, we reuse the setting of onstraintsystems. We �rst show in Chapter 2 how to transform the onstraint systems orresponding tothe exeution of those protools into solved onstraint systems. We de�ne onstraint systemsand the simpli�ation rules that are used to obtain solved onstraint systems. Our onstraintsystems give the intruder the power of generating any IP address. To ahieve that, we assumethat he has at his disposal a potentially in�nite number of names. In the ontext of routingprotools, these names represent IP addresses. We also revisit the proedure of [CLCZ10℄ forsolving onstraint systems and obtain a omplete symboli representation of the knowledge ofthe attaker, in the spirit of the haraterization obtained in [AC06℄ in the passive ase (withno ative attaker). We show that all the terms that the intruder an build are obtained byombining terms from a partiular set of terms. We give a haraterization of the solutions tothese solved onstraint systems.In Chapter 3, we propose a way to model and analyze ad ho routing protools. Setion 3.1presents our formal model for routing protools, using a proess alulus with an underlyinggraph. It is illustrated with the modeling of the SRP protool. We explain how to abstratsome parts in the exeution of the protool in order to get a �nite number of representations ofthe possible runs. This allows us to provide two NP deision proedures for analyzing routingprotools for a bounded number of sessions, for a �xed network and an unknown one.In Chapter 4, we show that it is possible to analyze protools with reursive tests andobtain deidability results. We use the results obtained in Chapter 2, and we add testsof membership to reursive languages. We provide two NPTIME deision proedures fortwo lasses of reursive languages that enompass most of reursive tests involved in seuredrouting protools.In Chapter 5, we onlude by disussing possible further works.

te
l-0

06
75

50
9,

 v
er

si
on

 1
 - 

1 
M

ar
 2

01
2



Chapter 2
Constraint systems
Constraint systems are quite ommon in modeling seurity protools in the ase of an ativeintruder. A onstraint system represents the exeution of a protool for a �nite numberof sessions and a �xed interleaving. Symboli onstraint systems are thus well suited toexpress a reahability (e.g., serey) property. J. Millen and V. Shmatikov �rst introduedonstraint systems in [MS01℄ to solve a reahability problem for ryptographi protools.M. Rusinowith and M. Turuani showed that protool inseurity is NP-omplete in the ase of a�nite number of sessions by establishing a small attak property [RT01℄. Both of these two �rstapproahes onsider rather basi ryptographi primitives. The notion of onstraint systemshas sine been used in several works, with deidability results for di�erent primitives, suh asexlusive or operator [CS03℄, modular exponentiation [CKRT03℄, monoidal theories [DLLT08℄.In [CS03℄, and later in [CLCZ10℄, a more generi approah is provided to deide general seurityproperties. It onsists in transforming any onstraint system into simpler onstraint systems.This proedure preserves all the solutions of the initial onstraint system. In this hapter,we follow a similar approah. We onsider a large signature, enompassing symmetri andasymmetri enryption, signature, hashes, and lists. Lists are partiularly useful for modelingrouting protools (see Chapter 3). Moreover, we provide the intruder with an in�nite set ofnames that he an use however he wants. This is also important in the ontext of routingprotools to model an arbitrary number of nodes.We also revisit the proedure of [CLCZ10℄ for solving onstraint systems and obtain aomplete symboli representation of the knowledge of the attaker, in the spirit of the har-aterization obtained in [AC06℄ in the passive ase (with no ative attaker).We work in symboli models, where messages are represented by elements in some termalgebra. In the next hapters, we also make use of this model, that we introdue in Setion 2.1.We de�ne onstraint systems in �2.2.1 and give the simpli�ation rules assoiated in �2.2.2.Those simpli�ation rules are sound, omplete and terminate in polynomial time (proofs anbe found in �2.3.1, �2.3.3 and �2.3.2 respetively). Our proedure furthermore allows us toredue the searh for solutions to a spei� form of solutions (non-onfusing solutions, de�nedpage 23). We show in Setion 2.4 that, when onsidering these solutions, any term of theintruder knowledge may be obtained by omposition only from a learly de�ned set of terms.17
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18 CHAPTER 2. CONSTRAINT SYSTEMS
2.1 Model for seurity protoolsIn this setion, we �rst introdue term algebra, our model for messages, in �2.1.1. We explainhow the power of the intruder is modeled through dedution in �2.1.2. We then illustratein �2.1.3 how protool exeution an be represented using onstraint systems.2.1.1 MessagesIn our model, messages are represented using a term algebra. Cryptographi primitives arerepresented by funtion symbols. For instane, symmetri enryption will be representedby the funtion symbol senc. Hene, a message m enrypted with a symmetri key k will berepresented by senc(m, k). We work under the perfet ryptography assumption: an enryptedmessage senc(m, k) an only derypted by somebody who knows the value of the key k usedto perform the enryption.We onsider a signature (S,F) onsisting in a set of sorts S and a set of funtion symbols F .Eah funtion symbol f is assoiated with an arity ar(f), whih is a mapping from F to S∗×S.We write ar(f) = s1 × . . .× sk → s (with s1, . . . , sk, s ∈ S). Furthermore, we distinguish aset Fpriv of funtions symbols of F that will ontain private funtion symbols, i.e. funtionsthat the intruder an not use. These funtions typially enompass the generation of keys.We onsider an in�nite set of variables X and an in�nite set of names N that typiallyrepresent nones or agent names. We assume that names and variables are given with sorts.The set of terms of sort s is de�ned indutively by:

t ::= term of sort s
| x variable x of sort s
| a name a of sort s
| f(t1, . . . , tk) appliation of symbol f ∈ F suh that

ar(f) = s1 × . . .× sk → s and eah ti is a term of sort siSorts will mostly be left unspei�ed in this hapter, exept in spei� examples.We onsider an in�nite set of names N having Base sort. These names typially representonstants, nones, symmetri keys, or agent names. We write vars(t) for the set of variablesourring in a term t. The term t is said to be a ground term if vars(t) = ∅.We write st(t) for the set of syntati subterms of a term t. This notion is extended asexpeted to sets of terms. If S is a set, we denote by #S the ardinal of S. Let u be a term,
u an be represented in di�erent ways. In general, it is represented by a tree. We write ‖u‖for the size of u, i.e. the size of the tree representing u. We an also represent u as a diretedayli graph where subgraphs are all distint. This is alled the dag representation of u.We denote by ‖u‖dag the size of the dag representation of u, that is the number of distintsubterms of u.Substitutions are written σ = {x1 7→ t1, . . . , xn 7→ tn} with dom(σ) = {x1, . . . , xn}. Theyare assumed to be well-sorted substitutions, that is eah ti is of the same sort as xi. Suh asubstitution σ is ground if all the ti are ground terms. The appliation of a substitution σ toa term u is written uσ or σ(u). A most general uni�er of terms u1 and u2 is a substitution(when it exists) denoted by mgu(u1, u2).Example 2.1.1. In our examples, we will onsider the spei� signature (S,F) de�ned by
S = {Msg,Base, List} and F = {senc, aenc, J_K_, 〈_,_〉, h, hmac, ::, [], pub, priv, vk, sk} withorresponding arities:
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2.1. MODEL FOR SECURITY PROTOCOLS 19
• ar(f) = Msg×Msg→ Msg for f ∈ {senc, aenc, J_K_, 〈_,_〉, hmac},
• ar(h) = Msg→ Msg,
• ar(::) = Msg× List→ List, and ar([]) = List,
• ar(f) = Base→ Msg for f ∈ Fpriv = {pub, priv, vk, sk}.The sort Msg subsumes the two other sorts. The symbol 〈〉 represents the pairing funtion,

:: is the list onstrutor, and [] represents the empty list. For the sake of larity, we write
〈u1, u2, u3〉 for the term 〈u1, 〈u2, u3〉〉, and [u1;u2;u3] for u1 :: (u2 :: (u3 :: [])). The terms
pub(A) and priv(A) represent respetively the publi and private keys assoiated to an agent A,whereas the terms sk(A) and vk(A) represent respetively the signature and veri�ation keysassoiated to an agent A. The funtion symbol senc (resp. aenc) is used to model symmetri(resp. asymmetri) enryption whereas the term JmKsk(A) represents the message m signed bythe agent A.2.1.2 Intruder CapabilitiesWe model the ability of the intruder by a dedution relation ⊢⊆ 2terms × terms. The relation
T ⊢ t represents the fat that the term t is omputable from the set of terms T . It is typiallyde�ned through a dedution system.The dedution system we use to model the ability of the intruder is desribed in Figure 2.1:

u1 . . . un
f ∈FrFpriv

f(u1, . . . , un)

〈u1, u2〉
i∈{1,2}

ui

u1 :: u2
i∈{1,2}

ui

senc(u1, u2) u2

u1

aenc(u1, pub(u2)) priv(u2)

u1Figure 2.1: Dedution systemThe �rst inferene rule desribes the omposition rules. The remaining inferene rulesdesribe the deomposition rules. Intuitively, these dedution rules say that an intruder anompose messages by pairing, building lists, enrypting and signing messages provided he hasthe orresponding keys. Conversely, he an retrieve the omponents of a pair or a list, and hean also deompose messages by derypting provided he has the deryption keys. However, hean not use the funtions inluded in the spei� set Fpriv of private funtions. For instane, hemay not be able to reate seret keys (Fpriv = {pub, priv, vk, sk} in our running example). Theintruder is also able to verify whether a signature JmKsk(a) and a message m math (providedhe has the veri�ation key vk(a)), but this operation does not allow him to learn any newmessage. For this reason, this apability is not represented in the dedution system. We alsoonsider an optional rule
Ju1Ksk(u2)

u1that expresses that an intruder an retrieve the whole message from its signature. Thisproperty may or may not hold depending on the signature sheme, and that is why this ruleis optional. Our results hold in both ases (that is, when the dedution relation ⊢ is de�nedwith or without this rule).
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20 CHAPTER 2. CONSTRAINT SYSTEMS
The dedution system allows us to de�ne formally whih terms the intruder an deduefrom his knowledge. We de�ne proof trees, that are intuitively trees where every intermediatenode is an instane of one of the rules of the dedution system. If the leaves of a proof treeare terms of the knowledge of the intruder, then the root is a term that the intruder is ableto reate.De�nition 2.1.1 (proof tree). A proof tree is a tree whose nodes are labeled by terms andde�ned reursively in the following way: trees with only one node are proof trees and, if

π1, . . . , πn are proof trees whose respetive roots are u1, . . . , un and if
t1 . . . tn

tis an inferene rule suh that for some well-sorted substitution σ, tσ = u, t1σ = u1, . . . , tnσ =
un, then the following tree is a proof tree:

π1 . . . πn

uExample 2.1.2. The following tree π is a proof tree:
〈NB, J〈B, pub(B)〉Ksk(S)〉

J〈B, pub(B)〉Ksk(S)Aording to the de�nition, the tree onsisting of the node 〈NB, J〈B, pub(B)〉Ksk(S)〉 is a prooftree. Furthermore, onsider the inferene rule given by
〈u1, u2〉

u2and the substitution σ = {u1 7→ NB , u2 7→ J〈B, pub(B)〉Ksk(S)} to omplete the proof that π isa proof tree.De�nition 2.1.2 (deduible term). A term u is deduible from a set of terms T , denoted by
T ⊢ u, if there exists a proof tree whose root is labeled with u and whose leaves are labeled byterms in T .Example 2.1.3. The proof tree π as de�ned in Example 2.1.2 has its root labeled by a term
u = J〈B, pub(B)〉Ksk(S). Furthermore, its leaves are labeled by terms in

T2 = T1 ∪ {〈NB, J〈B, pub(B)〉Ksk(S)}〉so we dedue that T2 ⊢ u, i.e. u is deduible from T2.2.1.3 From protools to onstraint systemsConstraint systems were �rst introdued in [MS01℄ in order to model seurity protools. Theyare used to speify trae-based property, e.g. serey preservation of seurity protools undera partiular, �nite senario. The model of onstraint system we use is lose to the modelin [CLCZ10℄, with slight di�erenes in the de�nitions of onstraint systems and the way wesimplify them. But before de�ning onstraint systems, we motivate their use by showing howthey an represent the exeution of a protool in the presene of an ative intruder. We will usean example in order to illustrate this. Note that in Chapter 3, we desribe preisely how theexeution of a protool modeled using our proess alulus may be represented by onstraintsystems.
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2.1. MODEL FOR SECURITY PROTOCOLS 21
Example 2.1.4. We onsider part of the TLS handshake protool [DR08℄, designed to ex-hange enough information between an agent A (the lient) and an agent B (the server) toompute a shared key while authentiating the agent B:

A→ B : NA

B → A : 〈NB, J〈B, pub(B)〉Ksk(S)〉
A→ B : aenc(KA, pub(B))The agent A sends B a fresh none NA. Upon reeiving this message, B generates a freshnone NB and sends it to A together with a erti�ate JB, pub(B)Ksk(S) signed by a trustedthird party S. The agent A heks that the erti�ate is valid. Then, it generates a freshnone KA and uses the publi key pub(B) to enrypt this none before sending it to B. Thefull protool makes use of the nones exhanged between the agents to generate a session key.However, we do not model the full protool, as the part desribed here is enough to illustratehow protools are modeled in the symboli setting, and to explain the use of onstraint systems.A passive intruder eavesdropping on the ommuniations between A and B would thusobtain the following sequene of messages at the end of the session:

NA, 〈NB, J〈B, pub(B)〉Ksk(S)〉, aenc(KA, pub(B)).We want to model an ative intruder. In the Dolev-Yao setting [DY81℄ that we haveadopted, suh an intruder is given full ontrol of the network: not only an he overhearmessages, but he an also interept and modify them. This also gives him the power to hoosethe interleaving of the messages.To model that apaity, we onsider that every agent involved in the protool an onlyommuniate with the intruder. For example, the �rst step of the TLS handshake protoolwould intuitively be represented in the following way:
A

NA→ I
t1→ Bwhere t1 is a term that the intruder I an build. During this step, the intruder overhears theterms NA. Formally, if the initial knowledge of the intruder is represented by a set of terms

T0, t1 is a term that an be dedued from T1 = T0 ∪ {NA} . The deduibility onstraintassoiated is T1

?
⊢ x1 and will be formally de�ned later.Now, take a look at the seond step:

A
t2← I

m2← Bwhere m2 = 〈NB, JB, pub(B)Ksk(S)〉. Notie that the knowledge of the intruder has grown,sine he reeives the message m2. Thus the ondition on t2 is of the form T2 ⊢ t2 where
T2 = T1 ∪ {m2}. Furthermore, the agent A expets a message following the same patternas 〈NB, J〈B, pub(B)〉Ksk(S)〉 where S is a known in advane, trusted third party. Thus, theterm t2 has to be a term of the form 〈x2, J〈y2, z2〉Ksk(S)〉, where pub(y2) is instantiated by thepubli key of B in the normal run of the protool.Finally, the third step

A
m3→ I

t3→ Bwhere m3 = aenc(KA, z2), yields the following deduibility onstraint: T3

?
⊢ aenc(x3, pub(B))where T3 = T2 ∪ {m3}.
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22 CHAPTER 2. CONSTRAINT SYSTEMS
2.2 Constraint systemsIn this setion, we introdue formally onstraint systems. We �rst give in �2.2.1 the formalde�nition of our onstraint systems, and then we desribe in �2.2.2 the simpli�ations rulesthat will allow us to always onsider a simple form of onstraint systems.
2.2.1 De�ning onstraint systemsTo enfore the intruder apabilities, we assume that the intruder has at his disposal an in�niteset of names that he might use at his will to mount attaks. In the general ase, this abilityis not used. However, our modeling of routing protools, as exposed in Chapter 3, may yielddisequality onstraints (see De�nition 3.2.1). In order to be able to satisfy these spei�onstraints, the intruder may need a potentially unbounded number of distint names.De�nition 2.2.1 (onstraint system). A onstraint system is a pair (C, I) suh that I is anon empty (and possibly in�nite) set of names, and C is either ⊥ or a �nite onjuntion

T1

?
⊢ u1 ∧ · · · ∧ Tn

?
⊢ un

of expressions Ti ?
⊢ ui alled onstraints. Eah Ti is a �nite set of terms alled the left-handside of the onstraint. Eah ui is a term, alled the right-hand side of the onstraint. Theonstraints are ordered suh that they satisfy two onditions:

• monotoniity: Ti ⊆ Tk for every i, k suh that 1 ≤ i < k ≤ n;
• origination: if x ∈ vars(Ti) for some i then there exists j < i suh that x ∈ vars(uj).Moreover, st(C) ∩ I = ∅.The monotoniity ondition states that the intruder knowledge is always inreasing. Theorigination ondition in De�nition 2.2.1 states that eah time a new variable is introdued,it �rst ours in some right-hand side. The left-hand side of a onstraint system usuallyrepresents the messages sent on the network, while the right-hand side represents the messageexpeted by the party. The set I represents names that only the intruder knows, so they arenot used in the messages exhanged on the network, as the ondition st(C) ∩ I = ∅ learlystates: the set of syntati subterms of C has no term in ommon with I.De�nition 2.2.2 (right-hand and left-hand sides). Let (C, I) be a onstraint system. Wedenote by rhs(C) (respetively, lhs(C)) the set of right-hand side terms (respetively, left-handside sets of terms) of C. Formally, rhs(C) and lhs(C) are de�ned reursively in the followingway:

rhs(⊥) = ∅ lhs(⊥) = ∅

rhs(C ∧ T
?
⊢ u) = rhs(C) ∪ {u} lhs(C ∧ T

?
⊢ u) = lhs(C) ∪ {T}The origination property ensures that variables are always introdued in the right-handside of a dedution onstraint, whih is always the ase when modeling protools. Formally,if (C, I) is a onstraint system, then var(rhs(C)) = var(C).
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2.2. CONSTRAINT SYSTEMS 23
Example 2.2.1. An exeution of the TLS handshake protool as de�ned previously, in Ex-ample 2.1.4, an be represented by the onstraint system (C, I) where

C =







T1
def
= T0 ∪ {NA}

?
⊢ x1

T2
def
= T1 ∪ {〈NB, J〈B, pub(B)〉Ksk(S)〉}

?
⊢ 〈x2, J〈y2, z2〉Ksk(S)〉

T3
def
= T2 ∪ {aenc(KA, z2)}

?
⊢ aenc(x3, pub(B))where T0 = {pub(B), J〈B, pub(C)〉Ksk(S)} is a set of terms representing the initial knowledge ofthe intruder (here, we assume he is in possession of a false erti�ate), and I = {n1, n2, . . . }is a set of names disjoint from st(C). I represents names that the intruder an generate anduse at his will.

De�nition 2.2.3 ((non-onfusing) solution). Let (C, I) be a onstraint system where C =
n∧

i=1
Ti

?
⊢ ui. A solution of (C, I) is a well-sorted ground substitution θ whose domain is vars(C)suh that Tiθ ∪ I ⊢ uiθ for every i ∈ {1, . . . , n}. The empty onstraint system is alwayssatis�able whereas (⊥, I) denotes an unsatis�able onstraint system. Furthermore, we saythat θ is non-onfusing for (C, I) if t1 = t2 for any t1, t2 ∈ st(Tn) suh that t1θ = t2θ.In other words, non-onfusing solutions do not map two distint subterms of a left-handside of the onstraint system to the same term. We will show that we an restrit ourselvesto onsider this partiular ase of solutions when all possible equalities have already beenguessed.Example 2.2.2. The substitution θ = {x1 7→ NA, x2 7→ NB, y2 7→ B, z2 7→ pub(C), x3 7→ n1}is a solution of (C, I). But it is onfusing sine y2, B ∈ st(T3), y2 6= B and y2θ = Bθ(= B).

Notie that θ is a solution of the onstraint system ((C ∧ T
?
⊢ u ∧ T

?
⊢ u), I) if and only if

θ is a solution of the onstraint system (C ∧ T
?
⊢ u, I). We will thus only onsider onstraintsystems whose onstraints are all distint.

2.2.2 Simplifying onstraint systemsWe will use simpli�ation rules in order to redue solving onstraint systems to solving simpleronstraint systems that we all solved, as is done in [CLCZ10℄. Our result follows this worklosely but our simpli�ation rules are slightly di�erent in order to obtain a nie harateriz-ation of solutions by only onsidering non-onfusing ones.De�nition 2.2.4 (solved form). A onstraint system is solved if it is (⊥, I) or eah of itsonstraints is of the form T
?
⊢ x where x is a variable.Solved onstraints are espeially easy to solve sine variables an be instantiated by anyterm of the same sort.The simpli�ation rules for deduibility onstraints we onsider are de�ned in Figure 2.2.
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24 CHAPTER 2. CONSTRAINT SYSTEMS
Rax : (C ∧ T

?
⊢ u, I)  (C, I) if T ∪ {x | T ′

?
⊢ x ∈ C, T ′ ( T} ⊢ u

Runif : (C ∧ T
?
⊢ u, I)  σ (Cσ ∧ Tσ

?
⊢ uσ, I) if σ = mgu(t1, t2)where t1 ∈ st(T ), t2 ∈ st(T ∪ {u}), and t1 6= t2

Rfail : (C ∧ T
?
⊢ u, I)  (⊥, I) if vars(T ∪ {u}) = ∅ and T 6⊢ u

Rf : (C ∧ T
?
⊢ f(u, v), I)  (C ∧ T

?
⊢ u ∧ T

?
⊢ v, I) for f ∈ F r Fs

Figure 2.2: Simpli�ation rules
The rule Rax removes a redundant onstraint, i.e a onstraint whih is a logial onsequeneof previous onstraints. The rule Rf deomposes a term f(u, v). Intuitively, applying this rulemeans that the intruder has produed the term f(u, v) by applying funtion f to the terms uand v. The rule Runif guesses some equality between two parts of the messages.All the rules are indexed by a substitution. When there is no index the identity substitutionis impliitly assumed. We write (C, I) n

σ (C′, I) if there are C1, . . . , Cn−1 and σ1, . . . , σn suhthat (C, I) σ1
(C1, I) σ2

. . . σn (C′, I) and σ = σn◦· · ·◦σ2◦σ1. We write (C, I) ∗
σ (C′, I)if there exists n suh that (C, I) n

σ (C′, I).Our rules are similar to those in [CLCZ10℄ with a modi�ation for rule Runif . More preisely,we authorize uni�ation with a subterm of the right hand side u of the onstraint and alsowith variables. This will allow us to obtain non-onfusing solutions. We will also onsidera partiular strategy, de�ned in Figure 2.3, in order to ensure termination in polynomialtime. Indeed, applying the simpli�ation rules randomly ould yield derivations of exponentiallength. The strategy S is de�ned in the following way:
• apply Rfail as soon as possible
• apply Runif up to a point arbitrarily deided, then stop applying it at all.
• Then, assuming that all the onstraints are unolored at the beginning:� Consider the unolored onstraint with the largest right-hand side.Either olor it or apply Rf to it. Repeat.� When the system is entirely olored, apply Rax.

Figure 2.3: Strategy
Example 2.2.3. Consider the onstraint system (C, I) de�ned in Example 2.2.1, representingan exeution of the TLS handshake protool. We an simplify (C, I) following strategy S:
• Runif : (C, I) σ (C1, I)with σ = mgu(J〈B, pub(C)〉Ksk(S), J〈y2, z2〉Ksk(S)) = {y2 7→ B, z2 7→ pub(C)} and
C1 = Cσ = T1σ

?
⊢ x1 ∧ T2σ

?
⊢ 〈x2, J〈B, pub(C)〉Ksk(S)〉 ∧ T3σ

?
⊢ aenc(x3, pub(B)).
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2.3. PROPERTIES 25
• Rf : (C1, I) 2 (C2, I) with
C2 = T1σ

?
⊢ x1 ∧ T2σ

?
⊢ x2 ∧ T2σ

?
⊢ J〈B, pub(C)〉Ksk(S) ∧ T3σ

?
⊢ x3 ∧ T3σ

?
⊢ pub(B)

• Rax : (C2, I) 2 (C′, I)
def
= T1σ

?
⊢ x1 ∧ T2σ

?
⊢ x2 ∧ T3σ

?
⊢ x3The onstraint system (C′, I) is in solved form, and we have that θ = θ′ ◦ σ where θ′ =

{x1 7→ NA, x2 7→ NB, x3 7→ n1} is a non-onfusing solution of (C′, I).In the next setion, we will show that there is a solution to a onstraint system (C, I) ifand only if there is a sequene of simpli�ation rules following strategy S leading from (C, I)to (C′, I) suh that (C′, I) is a onstraint system in solved form that has a non-onfusingsolution.
2.3 PropertiesWe show here that the simpli�ation rules allow us to onsider simpler onstraint systemswhile preserving the exat same set of solutions. This is ensured by the following theorem.Theorem 2.3.1. Let (C, I) be a onstraint system. We have that:
• Soundness: If (C, I)  ∗

σ (C′, I) for some onstraint system (C′, I) and some substitu-tion σ and if θ is a solution of (C′, I) then θ ◦ σ is a solution of (C, I).
• Completeness: If θ is a solution of (C, I), then there exist a onstraint system (C′, I) insolved form and substitutions σ, θ′ suh that θ = θ′ ◦ σ, (C, I)  ∗

σ (C′, I) following thestrategy S, and θ′ is a non-onfusing solution of (C′, I).
• Termination: If (C, I)  n

σ (C′, I) following the strategy S, then n is polynomiallybounded in the size of C. Moreover, we have that st(C′) ⊆ st(Cσ) ⊆ st(C)σ.The theorem is a diret onsequene of Propositions 2.3.5, 2.3.11, and 2.3.6, that are provenin the following setions.2.3.1 SoundnessTo show soundness, we give simple lemmas: �rst, we give simple properties of the dedutionsystem, and seondly we show that the monotoniity and origination properties are invari-ant during simpli�ation, i.e. our simpli�ation rules transform a onstraint system into aonstraint system.Lemma 2.3.2. If T ⊢ u then vars(u) ⊆ vars(T ).Proof. The proof follows the proof of Lemma 4.4 in [CLCZ10℄, sine no dedution rulesintrodue new variables. We proeed by indution on the depth of a proof of T ⊢ u. Indeed,for dedution rules of the form
u1 . . . un

uwith n > 0, we have that vars(u) ⊆
⋃

i

vars(ui).
The next lemma shows a ut elimination property for our dedution system.
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26 CHAPTER 2. CONSTRAINT SYSTEMS
Lemma 2.3.3. If T ⊢ u and T ∪ {u} ⊢ v, then T ⊢ v.Proof. Consider a proof π of T ∪ {u} ⊢ v and a proof π′ of T ⊢ u. The tree obtained byreplaing eah leaf u of π by π′ is a proof of T ⊢ v.As a onsequene, if T ∪ {u1, . . . , uk} ⊢ u and for every ui, T ⊢ ui, then T ⊢ u. This willbe useful to show that a onstraint eliminated by the simpli�ation rule Rax did not ontainruial information about possible solutions.We an now show that monotoniity and origination are invariant by simpli�ation.Lemma 2.3.4. Let (C, I) be a onstraint system, and suppose that (C, I)  σ (C′, I). Then
(C′, I) is a onstraint system.Proof. Let (C, I) be a onstraint system suh that (C, I) σ (C′, I).We write C =

n∧

i=1
(Ti

?
⊢ ui) and C′ =

n′

∧

i=1
(T ′
i

?
⊢ u′i). We show that (C′, I) satis�es theproperties de�ning a onstraint system, i.e. :

• monotoniity: T ′
i ⊆ T

′
k for every i, k suh that 1 ≤ i < k ≤ n′;

• origination: if x ∈ vars(T ′
i ) for some i then there exists j < i suh that x ∈ vars(u′j).Sine Ti ⊆ Tk implies Tiσ ⊆ Tkσ, (C′, I) satis�es monotoniity.We show that it also satis�es origination. Consider i ≤ n′ and x ∈ vars(T ′

i ), we have toprove that there exists j < i suh that x ∈ vars(u′j). We distinguish ases, depending onwhih simpli�ation rule is applied in the transition (C, I) σ (C′, I):
• Case Rax. Assume that it eliminates the onstraint T ?

⊢ u. Then C′ = C r {T
?
⊢ u}. Let

j = min{i | x ∈ var(ui)}. As (C, I) is a onstraint system, j exists and j < i. If Tj 6= Tthen we an hoose j′ = j. We show that this was the only possible ase.Suppose by ontradition that Tj = T . As j is minimal, it follows that x /∈ var(Tj) and
x /∈ {y | (Tk

?
⊢ y) ∈ C, k < j}. Furthermore, if Tk ( Tj then k < j sine (C, I) is aonstraint system, and thus {y | (T ′

?
⊢ y) ∈ C, T ′ ( Tj} ⊆ {y | (Tk

?
⊢ y) ∈ C, k < j}.Sine x ∈ var(u), by Lemma 2.3.2, T ∪ {y | (T ′

?
⊢ y) ∈ C, T ′ ( T} 6⊢ u, and so rule Raxan not be applied, whih is in ontradition with our hypothesis. This allows us toonlude.

• Case Runif . Then there exists a substitution σ suh that C′ = Cσ.
(C, I) is a onstraint system, so it satis�es origination: if x is a variable and x ∈ var(Ti)for some (Ti

?
⊢ ui) ∈ C, then there exists j < i suh that x ∈ var(uj).Let x be a variable suh that x ∈ var(Tiσ) for Ti ?

⊢ ui ∈ C. There exists y suh that
x ∈ var(yσ) and y ∈ var(Ti) (we an possibly have x = y). There exists j < i suh that
y ∈ vars(uj). Consequently, x ∈ vars(ujσ).Thus, we have that Cσ is a onstraint system.

• If the rule Rfail is applied then there is nothing to prove
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2.3. PROPERTIES 27
• If some rule Rf is applied, then it is applied to some onstraint Ti ?

⊢ ui. Hene, thereexists f ∈ F r Fs suh that ui = f(u′i, u
′
i+1) and T ′

i = T ′
i+1 = Ti. We have that :� If j < i, (T ′

j

?
⊢ u′j) = (Tj

?
⊢ uj)� If j > i+ 1, (T ′

j

?
⊢ u′j) = (Tj−1

?
⊢ uj−1)As (C, I) is a onstraint system, it satis�es origination, and we easily onlude.Thus, it only remains to show that st(C′)∩I = ∅. We distinguish several ases dependingon the rule involved in the transition (C, I) σ (C′, I).

• If (C′, I) is obtained by applying Rax, Rf , or Rfail, then st(C′) ⊆ st(C), hene st(C′)∩I = ∅.
• If (C′, I) is obtained by applying Runif , it is su�ient to show that st(Cσ)∩I = ∅, where
σ = mgu(t, u), with t, u ∈ st(C). As st(C)∩I = ∅, for every x ∈ dom(σ), st(xσ)∩I = ∅.So st(Cσ) ∩ I = ∅, i.e. st(C′) ∩ I = ∅.This allows us to onlude.Hene, applying a simpli�ation rule gives us a new onstraint system, whose solutionsallow us to build solutions of the �rst onstraint system, as we show now.Proposition 2.3.5 (soundness). Let (C, I) be a onstraint system. If (C, I) ∗

σ (C′, I), then
(C′, I) is a onstraint system and for every solution τ of (C′, I), τ ◦ σ is a solution of (C, I).Proof. We show that, if (C, I)  σ (C′, I), then (C′, I) is a onstraint system and forevery solution τ of (C′, I), τ ◦ σ is a solution of (C, I). The result of the proposition followsimmediately by reursion on the length of the derivation.Thanks to Lemma 2.3.4, we have that (C′, I) is a onstraint system. We reason by asestudy over the simpli�ation rule used in (C, I) σ (C′, I). Let τ be a solution of (C′, I).Case Rax. In suh a ase, we have that C = C′ ∧T

?
⊢ u and T ∪{x | (T ′

?
⊢ x) ∈ C, T ′ ( T} ⊢ u.It follows that:

Tτ ∪ {xτ | (T ′
?
⊢ x) ∈ C, T ′ ( T} ⊢ uτ.Eah onstraint T ′

?
⊢ x in C with T ′ ( T is also a onstraint in C′. Thus, for all suhonstraints, we have that T ′τ ∪ I ⊢ xτ , and hene Tτ ∪ I ⊢ xτ . Then, as Tτ ∪ {xτ | (T ′

?
⊢

x) ∈ C, T ′ ( T} ⊢ uτ , we obtain through Lemma 2.3.3 that Tτ ∪ I ⊢ uτ , and we dedue that
τ is a solution of (C, I).Case Runif . In suh a ase, there exists a substitution σ suh that C′ = Cσ. For every onstraint
T

?
⊢ u of C, Tσ ?

⊢ uσ is a onstraint of C′. As τ is a solution of (C′, I), (Tσ)τ ∪ I ⊢ (uσ)τ ,hene τ ◦ σ is a solution of (C, I).Case Rf . In suh a ase, we have that C = C0 ∧ T
?
⊢ f(u, v), and C′ = C0 ∧ T

?
⊢ u ∧ T

?
⊢ v.We know that τ is a solution of (C′, I), so in partiular Tτ ∪ I ⊢ uτ and Tτ ∪ I ⊢ vτ . Byapplying the orresponding inferene rule, we obtain that Tτ ∪ I ⊢ f(u, v)τ . Moreover, forevery T ?

⊢ v ∈ C0, T τ ∪ I ⊢ vτ . And so, in that ase, τ is a solution of (C, I).Case Rfail. This ase is impossible sine τ is a solution of (C′, I).
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28 CHAPTER 2. CONSTRAINT SYSTEMS
2.3.2 TerminationWe show termination before we show ompleteness as the latter notion depends on termina-tion. Applying the simpli�ation rules terminates, whatever strategy is used, but we want astronger result. There may be derivations of exponential length in the size of the onstraints,but intuitively we an restrit ourselves to derivations of polynomial length by onsidering asuitable strategy. We onsider the strategy de�ned in Figure 2.3.Applying rules Runif �rst allows us to guess all possible equalities and obtain a non-onfusing solution. We show that we obtain non-onfusing solutions and that this strategy isomplete later on, in Setion 2.3.3.We show now that derivations following strategy S are polynomial in the size of C. Intuit-ively, a derivation of exponential length may our if a onstraint T ?

⊢ u is onsidered severaltimes. When a onstraint is onsidered, it is eliminated and an be replaed by other ones (orlead to the empty onstraint system). Notie that Rule Rax does not generate new onstraints.It is mainly when applying Rule Rf that we have to be areful, hene our strategy. As wemay onsider onstraint systems whih have distint right-hand sides, hoosing to onsiderthe onstraint with the largest right-hand side allows us to ensure that we will never onsiderit again for Rule Rf .Proposition 2.3.6 (omplexity). Let (C, I) be a onstraint system. If there is a derivation
(C, I) n

σ (C′, I) following the strategy S for some onstraint system (C′, I) and some substi-tution σ, then n is polynomially bounded in the size of C. Moreover, st(C′) ⊆ st(Cσ) ⊆ st(C)σProof. As a �rst step, we show that n is polynomially bounded in the size of C. First,we prove that we annot get twie the same onstraint in the part of a derivation followingstrategy S using only rule Rf . We denote by rhs(C) the right-hand side terms of C. Considera derivation sequene following the strategy S.
(C0, I)

Rf
 (C1, I)

Rf
 . . .

Rf
 (Cn, I).At eah step i of this derivation, a onstraint T ?

⊢ u is eliminated from Ci, i.e. T ?
⊢ u ∈ CirCi+1(this follows from the fat that the onstraints of Ci are all distint). If T ?
⊢ u ∈ Ci r Ci+1(T ?

⊢ u has been eliminated at this step), then, for any j > i, we show that T ?
⊢ u /∈ Cj .Indeed, as the derivation follows strategy S, it means that T ?

⊢ u is (one of) the unoloredonstraint(s) with the largest right-hand side in Ci. So we have that ‖u‖ = max
t∈rhs(C′

i)
‖t‖ (where

C′i is the set of unolored onstraints of Ci). Suppose by ontradition that for some j > i, theonstraint T ?
⊢ u was in Cj+1 and not in Cj. Aording to the strategy, rule Rf has been appliedto the unolored onstraint with the largest right-hand side, and furthermore it has produedonstraint T ?
⊢ u. Hene, there exists v suh that u ∈ st(v), ‖u‖ < ‖v‖ and ‖v‖ = max

t∈rhs(C′

j)
‖t‖.Thus the maximum of the sizes of the right-hand side terms of the unolored onstraints hasstritly inreased, whih is impossible aording to our strategy.We want to show that derivation (C, I)  n

σ (C′, I) following strategy S is of polynomiallength. Aording to the de�nition of strategy S, there exist C1, C2 suh that
(C, I)

Runif
 σ (C1, I)

Rf
 (C2, I)

Rax
 (C′, I)
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2.3. PROPERTIES 29
We assume a DAG representation of the terms and onstraints, in suh a way that thesize of the onstraints is proportional to the number of the distint subterms ourring in it.Next, observe that

#st(tθ) ≤ #(st(t) ∪
⋃

x∈dom(θ)

st(xθ)).

Moreover, when unifying two subterms of t with mgu θ, #st(tθ) ≤ #st(t) sine, for everyvariable x ∈ dom(θ), xθ ∈ (st(t) r {x})θ, and so for every term u ∈ st(tθ), u ∈ st(t)θ. Itfollows that, for any onstraint system C′ suh that (C, I)  ∗
σ (C′, I) using only rule Runif ,

st(C′) = st(Cσ) ⊆ st(C)σ. Consequently, #st(C′) ≤ #st(C). In partiular, #st(C1) ≤ #st(C).Next, observe that the number of distint left hand sides of the onstraints, denoted by
lhs(C′), is never inreasing: #lhs(C′) ≤ #lhs(C) if (C, I)  ∗ (C′, I). Furthermore, as long aswe only apply the rules Rax and Rf , starting from (C1, I), the left hand sides of the dedutiononstraint system are �xed: there are at most #lhs(C1) of them. Now, sine we annotonsider twie the same onstraints, the number of onseutive appliations of rules Rax and
Rf is bounded by

#lhs(C1)×#st(rhs(C1)) ≤ #lhs(C)×#st(C)Moreover, when applying rules Rax and Rf , it is lear that st(C′) ⊆ st(C1) ⊆ st(C)σ.It follows that the length of a derivation sequene is bounded by #lhs(C) × #st(C) (for
Rax,Rf steps) plus #var(C) (for Runif steps) plus 1 (for a possible Rfail step).
2.3.3 CompletenessWe want to show that the strategy S de�ned in the previous subsetion is omplete, i.e. thereexists a derivation following strategy S leading to a solved onstraint system with a non-onfusing solution, from whih we an reonstrut our initial solution. Moreover, we will seethat the solution of the solved onstraint system is non-onfusing.The strategy S an be divided into two phases:
• First, apply only rules Runif to obtain a onstraint system with a non-onfusing solution.
• Then, use rules Rf and Rax to obtain a solved onstraint system.Consider a onstraint system (C, I) and a substitution θ suh that θ is a solution of (C, I).We want to build a derivation following strategy S: (C, I)  ∗

σ (C′, I) suh that (C′, I) is insolved form, there exists a substitution θ′ verifying θ = θ′◦σ and θ′ is a non-onfusing solutionof (C′, I). In fat, we use a stronger notion than non-onfusing, that we de�ne now.
De�nition 2.3.1 (strongly non-onfusing). Let (C, I) be a onstraint system with C =

n∧

i=1
Ti

?
⊢

ui. A substitution θ is a strongly non-onfusing solution of (C, I) if θ is a solution of (C, I)and, for every 1 ≤ i ≤ n, for every terms t1 ∈ st(Ti) and t2 ∈ st(Ti ∪ {ui}), we have that
t1θ = t2θ implies that t1 = t2.Intuitively, when a solution θ of a onstraint system (C, I) is strongly non-onfusing, rules
Runif annot be applied to (C, I) while keeping this solution. Note that if θ is a stronglynon-onfusing solution of (C, I) then in partiular θ is a non-onfusing solution of (C, I). Notealso that these two notions oinide on onstraint systems in solved form.
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30 CHAPTER 2. CONSTRAINT SYSTEMS
Example 2.3.1. θ′ de�ned in Example 2.2.3 is not strongly non-onfusing, as x1θ

′ = NA,for instane, and NA, x1 ∈ st(T1σ, x1). An example of strongly non-onfusing solution is
τ = {x1 7→ n1, x2 7→ n2, x3 7→ n3}.

If θ′ is a strongly non-onfusing solution of (C1, I), and there is a derivation using onlyrules Rf and Rax leading from (C1, I) to (C2, I), then θ′ is a strongly non-onfusing solution of
(C2, I). So it only remains for us to obtain a solved onstraint system thanks to the seondpart of the strategy.In this part of the strategy, we onsider the largest unolored onstraint T ?

⊢ u and wehave to either olor it or apply some rule Rf to it. We deide between the two possibilities byonsidering a proof of T ?
⊢ u and whether it ends in a omposition or not. We thus wish toonsider proofs with the property that their last rule does not vary along a derivation. Wede�ne suh proofs now.De�nition 2.3.2 (simple proof). Let T1 ⊆ T2 ⊆ · · · ⊆ Tn. We say that a proof π of Ti ⊢ u isleft-minimal with respet to T1, . . . , Tn if, whenever there is a proof of Tj ⊢ u for some j < i,then π is a proof of Tj ⊢ u.We say that a proof is simple if all of its subproofs are left-minimal and there is no repeatedlabel on any branh.Example 2.3.2. Consider the following onstraint system:
T1 = {a}

?
⊢ x1 ∧ T2 = {a, 〈a, b〉}

?
⊢ x2.

〈a, b〉

a
is a proof of T2 ⊢ a, but it is not a simple proof. Indeed, it is not a proof of T1 ⊢ a, eventhough there is a proof of T1 ⊢ a.The de�nition of simple proofs we use is inherited from [CLCZ10℄, as is the next lemma,whih shows that it is always possible to onsider simple proofs. We an prove the lemmaby following stritly the proof given in [CLCZ10℄ (Lemma 4.8), as it does not depend on thesignature.Lemma 2.3.7. Let T1 ⊆ T2 ⊆ · · · ⊆ Tn. If there is a proof of Ti ⊢ u, then there is a simpleproof of it.We show that if part of the onstraint system is already in solved form and the nextonstraint is T ?

⊢ v with ∆ a simple proof of Tθ ∪ I ⊢ u, then there is a term t ∈ T suhthat tθ = u. This result will be useful for proving that we an apply Rax on onstraints whosesimple proofs end with a deomposition.Lemma 2.3.8. Let (C, I) be a onstraint system, θ be a solution of (C, I), Ti ∈ lhs(C) suhthat for any (T
?
⊢ v) ∈ C, if T ( Ti, then v is a variable. Let u be a term suh that u 6∈ I. Ifthere is a simple proof of Tiθ ∪ I ⊢ u, that is redued to a leaf or whose last inferene rule isa deomposition, then there is t ∈ st(Ti) r X suh that tθ = u.
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2.3. PROPERTIES 31
Proof. Consider a simple proof π of Tiθ ∪ I ⊢ u that is redued to a leaf or whose lastinferene rule is a deomposition. We may assume, without loss of generality, that i is minimal.Otherwise, we have that Tjθ∪I ⊢ u is derivable with j < i. In that ase, as π is left-minimal,we still have a proof tree whose last inferene rule is a deomposition. Suh a Tj ⊆ Ti alsosatis�es the hypotheses of the lemma.We reason by indution on the depth of the proof π. We make a ase distintion, dependingon the last rule of π.The last rule is an axiom. Then u ∈ Tiθ ∪ I and there is t ∈ Ti ∪ I suh that tθ = u. Byhypothesis, u /∈ I, so t /∈ I, i.e. t ∈ Ti (and t ∈ st(Ti)). Suppose by ontradition that t is avariable. Then, by de�nition of a onstraint system, there exists Tj ?

⊢ w ∈ C, with t ∈ var(w),suh that Tj ( Ti. Moreover, by hypothesis of the lemma, w must be a variable. Hene t = w.Then Tjθ ∪ I ⊢ u, whih ontradits the minimality of i.The last rule is a symmetri deryption. In suh a ase, we have that:
senc(u,w) w

uLet π1 be the proof of Tiθ ∪ I ⊢ senc(u,w). As π is simple, the last rule of π1 annot bea omposition, or else Tiθ ∪ I ⊢ u would appear twie on the same path. Then, by indutionhypothesis, there is t ∈ st(Ti) r X suh that tθ = senc(u,w). It follows that t = senc(t′, t′′)with t′θ = u. If t′ was a variable, then there would exist Tj ?
⊢ w ∈ C, with Tj ( Ti suh that

Tjθ∪I ⊢ t′θ. (beause t′ ∈ var(w) and w ∈ X ). Hene we would have that Tjθ∪I ⊢ u, whihontradits the minimality of i. Hene t′ is not variable.For the other deomposition rules, the proof is similar to the previous ase.The next two lemmas explain respetively how to apply rule Rf when the onstraint on-sidered has a simple proof ending with a omposition, or how to apply rule Rax when theonstraint onsidered has a simple proof ending with a deomposition.Lemma 2.3.9 (omposition). Let (C, I) be a onstraint system, θ a strongly non-onfusingsolution of (C, I). Let T ?
⊢ u ∈ C with u not a variable and π be a proof of Tθ ∪ I ⊢ uθ thatends with a omposition rule. We an apply the rule Rf on T ?

⊢ u, yielding a onstraint system
(C′, I) suh that θ is a strongly non-onfusing solution of (C′, I).Proof. Sine u is not a variable, we have that u = f(v1, . . . , vp). The last rule of π endswith a omposition, so Tθ∪I ⊢ vjθ for every 1 ≤ j ≤ p. Then we an apply the simpli�ationrule Rf to (C, I), yielding onstraints T ?

⊢ vj in C′ for every 1 ≤ j ≤ p. Clearly, we havethat θ is a solution of the onstraint system (C′, I). It remains to show that θ is a stronglynon-onfusing solution of (C′, I). Assume by ontradition that this is not the ase. Thismeans that there exist t1 ∈ st(T ) and t2 ∈ st(T ∪{vj}) with j ∈ {1, . . . p} suh that t1θ = t2θand t1 6= t2. This would imply that θ is not a strongly non-onfusing solution of (C, I). Heneontradition.Lemma 2.3.10 (deomposition). Let (C, I) be a onstraint system not in solved form and θbe a strongly non-onfusing solution of (C, I). Suppose that for every onstraint T ?
⊢ u ∈ C
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32 CHAPTER 2. CONSTRAINT SYSTEMS
suh that u /∈ X , there exists a simple proof π of Tθ∪I ⊢ uθ whih ends with a deomposition.Then there exists a onstraint system (C′, I) suh that (C, I) (C′, I) using Rax and θ is astrongly non-onfusing solution of (C′, I). Furthermore, for every onstraint T ?

⊢ u ∈ C′ suhthat u /∈ X , there exists a simple proof π of Tθ ∪ I ⊢ uθ whih ends with a deomposition.Proof. Let C =
n∧

i=1
Ti

?
⊢ ui. Consider a onstraint Ti ?

⊢ ui suh that ui /∈ X and for all
j < i, uj ∈ X . We show that for every u ∈ st(Ti) r X , if Tiθ ∪ I ⊢ uθ, then T ′

i ⊢ u, where
T ′
i = Ti ∪ {x | (T

?
⊢ x) ∈ C and T ( Ti}. Consider a simple proof π of Tiθ ∪ I ⊢ uθ. We showthis result by indution on |π| where |π| is the size, i.e. number of nodes, of π.Base ase: |π| = 1. In suh a ase, we have that there is t ∈ Ti∪I suh that tθ = uθ. Atually,sine u 6∈ X , we have that t ∈ Ti and thus, using the fat that θ is strongly non-onfusing, wededue that t = u. Hene u ∈ Ti, so Ti ⊢ u, and as Ti ⊆ T ′

i , we have T ′
i ⊢ u.Indution step: |π| > 1. We distinguish several ases depending on the last rule of π.The last rule is a symmetri deryption rule. In suh a ase, we have that:

senc(uθ, w) w

uθAs π is simple, the last rule of the proof of Tiθ ∪ I ⊢ senc(uθ, w) is a deomposition. Further-more, senc(uθ, w) /∈ I. Consequently, thanks to Lemma 2.3.8, there is t ∈ st(Ti) r X suhthat tθ = senc(uθ, w). Let t = senc(t1, t2) and t1θ = uθ, t2θ = w. By indution hypothesis,we have that T ′
i ⊢ t.As θ is strongly non-onfusing and t1θ = uθ with t1 ∈ st(Ti), we get that t1 = u. If t2 isa variable, then t2 ∈ var(Ti), and by de�nition of a onstraint system there exists j < i suhthat Tj ?

⊢ uj ∈ C and t2 ∈ var(uj). By hypothesis, uj ∈ X , so t2 = uj , so t2 ∈ T ′
i . If t2 isnot a variable, we an apply the indution hypothesis, and we dedue that T ′

i ⊢ t2. So, in anyase, T ′
i ⊢ t2.Now, we have both that T ′

i ⊢ senc(u, t2) and T ′
i ⊢ t2, from whih we onlude that T ′

i ⊢ uby applying the symmetri deryption rule.The last rule is an asymmetri deryption rule. In suh a ase, we have that:
aenc(uθ, pub(v)) priv(v)

uθAs π is simple, the last rule of the proof of Tjθ ∪ I ⊢ aenc(uθ, pub(v)) is a deomposition.Furthermore, aenc(uθ, pub(v)) /∈ I. Consequently, thanks to Lemma 2.3.8, there is t ∈ st(Ti)r
X suh that tθ = aenc(uθ, pub(v)). Let t = aenc(t1, t2) with t1θ = uθ, t2θ = pub(v). Byindution hypothesis, we have that T ′

i ⊢ t.As θ is strongly non-onfusing and t1θ = uθ with t1 ∈ st(Ti), we get that t1 = u. On theother hand, the last rule in the proof of Tjθ ∪ I ⊢ sk(v) is a deomposition (no ompositionrule an yield a term headed with priv()). Then, by Lemma 2.3.8, there is w ∈ st(Ti) r Xsuh that wθ = priv(v). Let w = priv(w′). By indution hypothesis, T ′
i ⊢ priv(w′).

(aenc(t1, t2))θ
‖

aenc(uθ, pub(v))

priv(w′)θ
‖

priv(v)

uθ
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2.3. PROPERTIES 33
Now, t2 ∈ st(t), and t ∈ st(Ti), so t2 ∈ st(Ti). If t2 is a variable, then t2 ∈ var(Ti), andby de�nition of a onstraint system there exists j < i suh that Tj ?

⊢ uj ∈ C and t2 ∈ var(uj).By hypothesis, uj ∈ X , so t2 = uj . Hene, we have a simple proof of Tjθ ∪ I ⊢ t2θ. Notethat this proof is either redued to a leaf or ends with a deomposition rule sine there is noomposition rule yielding to a term headed with pub(). Hene, we apply Lemma 2.3.8, and wededue that there exists t3 ∈ st(Tj)rX suh that t3θ = t2θ. Hene, we have that t3 = pub(t4)with t4θ = v with t4 ∈ st(Ti).Similarly, w′ ∈ st(w), and w ∈ st(Ti), so w′ ∈ st(Ti). Moreover, t4θ = v = w′θ, and θ isnon-onfusing, so t4 = w′. Now, we have both that T ′
i ⊢ aenc(u, pub(w′)) and T ′

i ⊢ priv(w′),from whih we onlude that T ′
i ⊢ u by applying the asymmetri deryption rule.Similarly, we an onlude for the optional rule.The last rule is a projetion rule. By symmetry, we an assume that

f(uθ, v)

uθwith f ∈ {〈, 〉, ::}.As π is simple, the last rule of the proof of Tiθ ∪ I ⊢ f(uθ, v) is a deomposition, and so,thanks to Lemma 2.3.8, there is t ∈ st(Ti) r X suh that tθ = f(uθ, v). Let t = f(t1, t2). Byindution hypothesis, T ′
i ⊢ t.Now, as θ is strongly non-onfusing and t1θ = uθ, we have that t1 = u. From T ′

i ⊢ f(u, t2),we dedue T ′
i ⊢ u by projetion.The last rule is a omposition In suh a ase, we have that:

v1 . . . vn
f(v1, . . . , vn)with uθ = f(v1, . . . , vn). Sine u is not a variable, u = f(w1, . . . , wn), with wkθ = vk forall k. If wk is a variable, then wk ∈ var(Ti), and by de�nition of a onstraint system thereexists j < i suh that Tj ?

⊢ uj ∈ C and wk ∈ var(uj). By hypothesis, uj ∈ X , so wk = uj , so
wk ∈ T

′
i . If wk is not a variable, we an apply the indution hypothesis, and we dedue that

T ′
i ⊢ wk. So, for every k, we get that in all possible ases T ′

i ⊢ wk. Thus T ′
i ⊢ u by applyingthe omposition rule.We have shown that for every u ∈ st(Ti) r X , if Tiθ ∪ I ⊢ uθ, then T ′

i ⊢ u, where
T ′
i = Ti ∪ {x | (T

?
⊢ x) ∈ C, T ( Ti}. Consider the term ui. We know that there is a simpleproof of Tiθ ∪ I ⊢ uiθ whih ends with a deomposition, so by applying Lemma 2.3.8 (sine

ui ∈ C and st(C)∩ I = ∅, ui /∈ I), there is t ∈ st(Ti) rX suh that tθ = uiθ. As θ is stronglynon-onfusing, we dedue that t = ui, and ui ∈ st(Ti) r X suh that Tiθ ∪ I ⊢ uiθ. Hene,
T ′
i ⊢ ui. Consequently, we an apply Rax to the onstraint Ti ?

⊢ ui, and we get a onstraintsystem C′.Furthermore, onsider Tj ?
⊢ u ∈ C′ with u not a variable. We know that Tj ?

⊢ u ∈ C, andthere exists a simple proof π of Tjθ ∪ I ⊢ uθ with respet to the left-hand sides of C whihends with a deomposition. As π is simple w.r.t. lhs(C), and lhs(C′) ⊆ lhs(C), π is simple w.r.t.
lhs(C′).We an now prove formally the ompleteness of our strategy S.
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34 CHAPTER 2. CONSTRAINT SYSTEMS
Proposition 2.3.11 (ompleteness). Let (C, I) be a onstraint system and θ be a solutionof (C, I). There exist a onstraint system (C′, I) in solved form, substitutions σ and θ′ suhthat (C, I) ∗

σ (C′, I) following the strategy S, θ = θ′ ◦ σ and θ′ is a (strongly) non-onfusingsolution of (C′, I).Proof. Let C =
n∧

i=1
Ti

?
⊢ ui.Step 1. First, we show that there exist substitutions θ′, σ and a onstraint system (C1, I)suh that (C, I)  ∗

σ (C1, I) using only rules Runif and θ′ is a strongly non-onfusing solutionof (C1, I) with θ = θ′ ◦ σ. We show this result by indution on #vars(C).Base ase: #vars(C) = 0. In suh a ase, we have that dom(θ) = ∅ and thus θ is a stronglynon-onfusing solution of (C, I). We easily onlude.Indution step: #vars(C) > 0. In suh a ase, either θ is already a non-onfusing solution of
(C, I) and we easily onlude. Otherwise, we have that there exist 1 ≤ i ≤ n, t1 ∈ st(Ti), and
t2 ∈ st(Ti ∪ {ui}) suh that t1θ = t2θ with t1 6= t2. In suh a ase, we apply Runif obtaining aonstraint system on whih we an apply our indution hypothesis. This allows us to onludefor this �rst step.Step 2. Now, θ′ is a strongly non-onfusing solution of (C1, I). We still need to derive C′in solved form from C1. To do that, we follow the strategy S. Intuitively, we onsider eahonstraint and either deompose it or olor it to remember not to onsider it anymore.We derive a olored onstraint system from C1 in the following way: Selet a onstraint
T

?
⊢ u among the unolored onstraints with the largest right-hand sides. Aording to thestrategy S, we must either olor it or deompose it. We desribe how we hoose between thesetwo possibilities.
• If u is a variable, olor the onstraint.
• Else, onsider a simple proof ∆ of Tθ′ ∪ I ⊢ uθ′:� If ∆ ends with a deomposition, we olor the onstraint T ?

⊢ u.� If ∆ ends with a omposition, we apply rule Rf to the onstraint T ?
⊢ u.We show that this proedure terminates and produes a derivation:

(C1, I)
Rf
 (C2, I)

Rf
 (C3, I) . . .

Rf
 (Cℓ, I)where Cℓ is totally olored, and for eah (T

?
⊢ u) ∈ Cℓ, either u ∈ X or there is a simple proofof Tθ′ ∪ I ⊢ uθ′ whose last rule is a deomposition. Indeed, onsider a onstraint T ?

⊢ u,unolored in Ci−1 and olored in Ci. Then, either u is a variable, or there is a simple proof ∆of Tθ′ ∪ I ⊢ uθ′ w.r.t. lhs(Ci−1θ
′) ending with a deomposition. Furthermore, if ∆ is a simpleproof of a olored onstraint and we apply Rf to another onstraint, ∆ is still a simple proofin the onstraint system obtained after simpli�ation.Regarding termination, note that the total size of the right-hand sides of the unolored on-straints stritly dereases, either beause we olor a onstraint or we apply Rf to an unoloredonstraint.Applying Lemma 2.3.9 reursively on the derivation

(C1, I)
Rf
 (C2, I)

Rf
 (C3, I) . . .

Rf
 (Cℓ, I)
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2.4. CHARACTERIZATION OF SOLUTIONS 35
we obtain that for every onstraint T ?

⊢ u ∈ Cℓ with u not a variable, there exists a simpleproof ∆ of Tθ′ ∪ I ⊢ uθ′ whih ends with a deomposition. Furthermore, θ′ is a stronglynon-onfusing solution of (Cℓ, I). Then, by applying Lemma 2.3.10 reursively, we have aderivation
(Cℓ, I)

Rax
 . . .

Rax
 (C′, I)suh that (C′, I) is in solved form and θ′ is a strongly non-onfusing solution of (C′, I).To sum up, there is a derivation (C, I) σ (C′, I) following strategy S suh that θ = θ′ ◦σand θ′ is a solution of both (C′, I).

2.4 Charaterization of solutionsShowing that solving onstraint systems an be redued to solving solved onstraint systemshas been done in [CLCZ10℄. Our result enables us to furthermore redue the searh forsolutions to non-onfusing solutions. This is interesting beause, for any non-onfusing solution(whih represents an exeution trae), any term of the attaker knowledge may be obtainedby omposition only.De�nition 2.4.1. We assoiate to eah set of terms T the set of subterms of T that may bededued from T ∪ vars(T ): Satv(T ) = {u ∈ st(T ) | T ∪ vars(T ) ⊢ u}Notie that in the ase of solved onstraint systems, the variables ourring in T arededuible.Proposition 2.4.1 states that it is possible to ompute from a solved onstraint system, a�basis� Satv(T ) from whih all deduible terms an be obtained applying only ompositionrules. This follows the spirit of [AC06℄ but now in the ative ase.Proposition 2.4.1. Let (C, I) be a onstraint system in solved form, θ be a non-onfusingsolution of (C, I), T be a left-hand side of a onstraint in C and u be a term suh that Tθ∪I ⊢ u.We have that Satv(T )θ ∪ I ⊢ u by using omposition rules only.Proof. Consider a simple proof ∆ of Tiθ ∪ I ⊢ u. We show by indution on (i, |∆|) thatthere exists a proof ∆′ of Satv(Ti)θ ∪ I ⊢ u that uses omposition rules only. We distinguishseveral ases depending on the last rule of ∆:The last rule is an axiom. Then u ∈ Tiθ ∪ I and there is t ∈ Ti ∪ I suh that u = tθ. Theproperty immediately follows.The last rule is a symmetri deryption rule:
senc(u, v) v

uLet ∆1 be the subproof of ∆ whose root is labelled with senc(u, v). By indution hypothesis,there exists a proof ∆′
1 of Satv(Ti)θ ∪ I ⊢ senc(u, v) that uses omposition rules only. Let jbe the minimal index suh that Satv(Tj)θ ∪ I ⊢ senc(u, v) with a proof that uses ompositionrules only. We distinguish two ases.Either ∆′

1 ends with a symmetri enryption rule. Let ∆′ be the diret subproof of ∆′
1whose root is labelled with u. We have that ∆′ is a proof of Satv(Tj)θ ∪ I ⊢ u that usesomposition rules only.
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36 CHAPTER 2. CONSTRAINT SYSTEMS
Otherwise, ∆′

1 is redued to an axiom. In suh a ase, there exists u1 ∈ Satv(Tj)∪ I suhthat u1θ = senc(u, v). If u1 was a variable, there would exist k < j suh that (Tk
?
⊢ u1) ∈ C,and so Tkθ ∪ I ⊢ senc(u, v). Sine ∆1 is a simple proof of Tiθ ∪ I ⊢ senc(u, v), it is alsoa simple proof of Tkθ ∪ I ⊢ senc(u, v). By applying our indution hypothesis, we deduethat there exists a proof of Satv(Tk)θ ∪ I ⊢ senc(u, v) that uses omposition rules only. Thisontradits the minimality of j. Hene, u1 is not a variable. Consequently, there exist t1, t2suh that u1 = senc(t1, t2), with t1θ = u and t2θ = v. We are thus in the ase where

senc(t1, t2) ∈ Satv(Ti) ∪ I.We want to show that t2 ∈ Satv(Ti) ∪ I and we already know that t2 ∈ st(Ti) ∪ I. Thus,it only remains to show that Ti ∪ var(Ti) ∪ I ⊢ t2. By indution hypothesis, we know thatthere exists a proof ∆′
2 of Satv(Ti)θ ∪ I ⊢ v that uses omposition rules only. Furthermore,

v = t2θ and θ is non-onfusing. We show by indution on t2 that, if there exists a proof ∆′
2 of

Satv(Ti)θ∪I ⊢ t2θ that uses omposition rules only, and t2 ∈ st(Ti)∪I, then t2 ∈ Satv(Ti)∪I.
• if t2 = x ∈ X , then x ∈ var(Ti), and by de�nition of Satv(Ti) ∪ I, t2 ∈ Satv(Ti) ∪ I.
• if t2 = f(t′1, . . . , t

′
n) then we make a ase distintion depending on ∆′

2:� ∆′
2 is redued to an axiom. In suh a ase, there exists v1 ∈ Satv(Ti) ∪ I suhthat t2θ = v1θ. Sine t2θ is headed with f, we dedue that v1 ∈ st(Ti). As θ isnon-onfusing, t2θ = v1θ implies that t2 = v1 ∈ Satv(Ti).� ∆′
2 ends with a omposition rule. Let π1, . . . , πn be the diret subproofs of ∆′

2.We know that eah πj is a proof of Satv(Ti) ∪ I ⊢ t′jθ that uses ompositionrules only. By indution hypothesis, we dedue that t′j ∈ Satv(Ti) ∪ I. Hene,
Ti ∪ var(Ti) ∪ I ⊢ t2 by applying the omposition rule assoiated with funtionsymbol f. As t2 ∈ st(Ti) ∪ I, it follows that t2 ∈ Satv(Ti) ∪ I.We have shown that senc(t1, t2) and t2 are in Satv(Ti)∪I. Hene, we easily onlude that

t1 ∈ Satv(Ti) ∪ I. Sine t1θ = u, this allows us to onlude by onsidering a simple proof ∆′redued to an axiom rule.The last rule is an asymmetri deryption rule:
aenc(u, pub(v)) priv(v)

uLet ∆1 be the subproof of ∆ whose root is labelled with aenc(u, pub(v)). By indutionhypothesis, there exists a proof ∆′
1 of Satv(Ti)θ ∪ I ⊢ aenc(u, pub(v)) that uses ompositionrules only. Let j be the minimal indie suh that Satv(Tj)θ∪I ⊢ aenc(u, pub(v)) with a proofthat uses omposition rules only. We distinguish two ases.Either ∆′

1 ends with an asymmetri enryption rule. Let ∆′ be the diret subproof of ∆′
1whose root is labelled with u. We have that ∆′ is a proof of Satv(Tj)θ ∪ I ⊢ u that usesomposition rules only.Otherwise, ∆′

1 is redued to an axiom. In suh a ase, there exists u1 ∈ Satv(Tj)∪ I suhthat u1θ = aenc(u, pub(v). If u1 was a variable, there would exist k < j suh that (Tk
?
⊢ u1) ∈

C, and so Tkθ ∪ I ⊢ aenc(u, pub(v)). Sine ∆1 is a simple proof of Tiθ ∪ I ⊢ aenc(u, pub(v)),it is also a simple proof of Tkθ ∪ I ⊢ aenc(u, pub(v)). By applying our indution hypothesis,
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2.4. CHARACTERIZATION OF SOLUTIONS 37
we dedue that there exists a proof of Satv(Tk)θ ∪ I ⊢ aenc(u, pub(v)) that uses ompositionrules only. This ontradits the minimality of j. Hene u1 is not a variable. Consequently,there exist t1, t2 suh that u1 = aenc(t1, t2) with t1θ = u and t2θ = pub(v). We are thus inthe ase where aenc(t1, t2) ∈ Satv(Ti) ∪ I.Now, we show that t2 is not a variable. By ontradition, assume that t2 is a variable.In suh a ase, there exists k < i suh that (Tk

?
⊢ t2) ∈ C, and so Tkθ ∪ I ⊢ t2θ = pub(v),and there is a simple proof witnessing this fat. This proof is either redued to a leaf or endswith a deomposition. Thus, thanks to Lemma 2.3.8, there exists t′2 ∈ st(Tk) r X suh that

t′2θ = pub(v). Hene, we have that t′2 = pub(t′3). We have also that t′2θ = t2θ. Sine θ isnon-onfusing, we dedue that t2 = t′2.Now, we want to show that priv(t′3) ∈ Satv(Ti)∪I. Let ∆2 be the subproof of ∆ whose rootis labelled with priv(v). By applying our indution hypothesis, we dedue that there exists ∆′
2of Satv(Ti)θ ∪I ⊢ priv(v) that uses omposition rules only. Atually, we neessarily have that

priv(v) ∈ Satv(Ti)θ, i.e. there exists w ∈ Satv(Ti) suh that priv(v) = wθ. Moreover, we knowthat ∆2 is a simple proof that is either redued to a leaf or that ends with a deomposition.Hene, we an apply Lemma 2.3.8. We dedue that there exists t′4 ∈ st(Ti) r X suh that
t′4θ = priv(v). Hene, we have that t′4 = priv(t′5). Moreover, we have that t′3θ = t′5θ. Sine
θ is non-onfusing, we dedue that t′3 = t′5. Lastly, we have that wθ = t′4θ. Sine θ is non-onfusing, we dedue that w = t′4. Hene, we have that w = t′4 = priv(t′5) = priv(t′3), and thus
priv(t′3) ∈ Satv(Ti) ∪ I.Hene, we have that aenc(t1, pub(t′3)) ∈ Satv(Ti)∪I, and priv(t′3) ∈ Satv(Ti)∪I. Hene, weeasily onlude that t1 ∈ Satv(Ti)∪I. Sine t1θ = u, this allows us to onlude by onsideringa simple proof ∆′ redued to an axiom rule.A similar reasoning holds for our optional rule.The last rule is another deomposition rule: We an apply a similar reasoning as in the aseof the deryption rule. By symmetry, onsider a rule of the form

f(u, v)
u with f ∈ {〈〉, ::}Let ∆1 be the subproof of ∆ whose root is labelled with f(u, v). By indution hypothesis,there exists a proof ∆′

1 of Satv(Ti)θ ∪ I ⊢ f(u, v) that uses omposition rules only. Let j bethe minimal indie suh that Satv(Tj)θ ∪ I ⊢ f(u, v) with a proof that uses omposition rulesonly. We distinguish two ases:Either ∆′
1 ends with a omposition rule. Let ∆′ be the diret subproof of ∆′

1 whose root islabelled with u. We have that ∆′ is a proof of Satv(Tj)θ ∪ I ⊢ u that uses omposition rulesonly.Otherwise, ∆′
1 is redued to an axiom. In suh a ase, there exists u1 ∈ Satv(Tj)∪ I suhthat u1θ = f(u, v). If u1 was a variable, there would exist k < j suh that (Tk

?
⊢ u1) ∈ C,and so Tkθ ∪ I ⊢ f(u, v). Sine ∆1 is a simple proof of Tiθ ∪ I ⊢ f(u, v). By applying ourindution hypothesis, we dedue that there exists a proof of Satv(Tk)θ ∪ I ⊢ f(u, v) that usesomposition rules only. This ontradits the minimality of j. Hene, u1 is not a variable.Consequently, there exist t1, t2 suh that u1 = f(t1, t2), with t1θ = u and t2θ = v. We are thusin the ase where f(t1, t2) ∈ Satv(Ti) ∪ I. Hene, we easily onlude that t1 ∈ Satv(Ti) ∪ I.
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38 CHAPTER 2. CONSTRAINT SYSTEMS
The last rule is a omposition rule:

v1 . . . vn
f(v1, . . . , vn)By indution hypothesis, we know that for 1 ≤ k ≤ n, there exist ∆′

k a proof of Satv(Ti)θ∪I ⊢
vk that uses omposition rules only. Let ∆′ be the proof onsisting of applying the ompositionrule assoiated to the symbol f on ∆′

1, . . . ,∆
′
k. It immediately follows that ∆′ is a proof of

Satv(Ti)θ ∪ I ⊢ f(v1, . . . , vn) that uses omposition rules only. Hene the result.
2.5 Conlusion and future prospetsWe use a symboli model with a large signature, enompassing symmetri and asymmetrienryption, signature, hashes, and lists. Moreover, we provide the intruder with an in�niteset of names that he an use however he wants. We have de�ned in this setting the notionof onstraint systems to model the exeution of the protool. Using simpli�ation rules, wehave obtained a omplete symboli representation of the knowledge of the attaker: whenonsidering non-onfusing solutions, any term of the intruder knowledge may be obtained byomposition only from a learly de�ned set of terms.In order to model more protools, we ould extend this haraterization result to a widersignature. For instane, for loal inferene systems, an algorithm in [BDC09℄ gives a repres-entation of solutions. Trying to pinpoint the properties of the dedution system representingthe intruder apabilities that are needed in order to keep our haraterization result would al-low to add new primitives to the signature automatially, without having to prove everythingfrom srath eah time a new primitive is needed. We would like to disover onditions on thesignature or on the dedution system that allow to generalize the result so that it holds fora family of signatures. Intuitively, these onditions would be linked to the dedution system,and the relations between omposition and deomposition rules.
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Chapter 3
Modeling and analyzing routingprotools
A standard method to model protools is to use a proess alulus [AG97℄. Proess aluliare partiularly well adapted to model interations between independent agents. But ad honetworks have partiularities that an not be modeled in the standard way, most notably theommuniation medium. Indeed, in suh a network, nodes an only send messages to nodesthat are situated within a ertain distane of them. So, in order to properly model ad horouting protool with a proess alulus, the ommuniation model has to be adapted.Furthermore, the standard intruder model used in protool veri�ation, the so-alled Dolev-Yao intruder [DY81℄, is not well suited for the study of suh protools. The intruder in theDolev Yao model ontrols the network: he an overhear every ommuniation, modify or deleteany message. This is far too strong an assumption in a wireless setting. A more reasonableassumption regarding his ability is to limit the sope of his ations: for instane, he an onlyoverhear messages sent by nodes that are situated near enough, and he an not prevent thereeption of a spei� message.As our goal is to model ad ho routing protools, we have to take the partiularities ofthese protools into aount. Few other formal approahes have been proposed to ahieve thisgoal. Nanz and Hankin [NH06℄ propose a proess alulus to model the network topologyand broadast ommuniations. They also provide a deision proedure for an intruder thatis already spei�ed by the user. This allows to hek seurity against �xed, known in advanesenarios. The model we propose here is inspired from their work. We add a logi forspeifying the tests performed at eah step by the nodes on the urrent route and to speifythe seurity properties.In this hapter, we will �rst propose in Setion 3.1 a way to model protools in ad honetworks. It is a proess alulus with an underlying graph that represents the links in thenetwork. Then we will explain in Setion 3.2 how to abstrat some parts in the exeution ofthe protool in order to get a �nite number of representations of the possible runs. Finally,we will show in Setion 3.3 how to bound the lists appearing in messages, in order to boundin turn the size of messages exhanged. This allows us to provide two NP deision proeduresin Setion 3.4 for analyzing routing protools for a bounded number of sessions.39
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40 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
3.1 ModelingReall that we onsider an in�nite set of names N . We state here some of the names we willuse in the ourse of the hapter: N = {rep, req, N,K,Ka, A, S,D, . . .}. Furthermore, we willonsider a speial set of names Nloc, whih represents the nodes of the network. The lists weuse in this hapter are lists of names in Nloc, they typially represent a route in the network.We assume that the intruder has aess to Nloc.
3.1.1 Proess alulusSeurity protools are typially de�ned by the roles of the agents partiipating in the pro-tool. A role is a sequene of ations that the agent must aomplish to exeute the protool.Proess algebras are well suited to model seurity protools spei�ed by roles, with eah rolerepresented by a distint proess.Several aluli already exist to model seurity protools (e.g. [AG97, AF01℄). However,for our purpose, a node, i.e. a proess, has to perform some spei� ations that an not beeasily modeled in suh aluli. For instane, a node stores some information, e.g. the ontentof its routing table. We also need to take into aount the network topology and to modelbroadast ommuniation. Suh features an not be easily modeled in these aluli.Atually, our alulus is inspired from CBS#, a proess alulus introdued in [NH06℄,whih allows mobile wireless networks and their seurity properties to be formally desribedand analyzed. However, we extend this alulus to allow nodes to perform some sanity hekson the routes they reeive, suh as heking neighborhood properties.The intended behavior of eah node of the network an be modeled by a proess de�nedby the grammar given in Figure 3.1. Our alulus is parametrized by a set L of formulas.
P,Q ::= Proesses

0 null proess
out(u).P emission
in u[Φ].P reeption, Φ ∈ L
store(u).P storage
read u then P else Q reading
if Φ then P else Q onditional, Φ ∈ L
P | Q parallel omposition
!P repliation
new m.P fresh name generation

Figure 3.1: Proess grammar.First, we desribe the onstrutions spei� to our alulus. The proess out(u).P emits uand then behaves like P . The proess in u[Φ].P expets a message m mathing the pattern uand suh that Φ is true. It then behaves like Pσ where σ = mgu(m,u). If Φ is the trueformula, we simply write in u.P . The proess store(u).P stores u in the storage list of thenode exeuting the proess and then behaves like P . The proess read u then P else Q looksfor a message mathing the pattern u in the storage list of the node exeuting the proess.Then, if suh an element m is found, it behaves like Pσ where σ = mgu(m,u). If no element
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3.1. MODELING 41
of the form u is found, it behaves like Q. For the sake of larity, we will omit the else partwhen Q = 0.The other entries in the grammar are the usual ones. The proess if Φ then P else Q testswhether Φ is true. If Φ is true, it then behaves like P . Else, it behaves like Q. For the sake oflarity, we will again omit the else part when Q = 0. The proess P | Q allows omputation inproess P and Q to happen independently. The proess !P allows to use proess P as manytimes as we want. (Note that in the general ase, allowing repliation leads to undeidability)The proess new m.P reates a fresh none m and then behaves like P .Sometimes, for the sake of larity, we will omit the null proess.We write fv(P ) (respetively, bv(P )) for the set of free (respetively, bound) variables of P .A proess P is ground when fv(P ) = ∅.The store and read primitives are partiularly important when modeling routing protools,in order to avoid multiple answers to a single request or to allow nodes to store and retrievealready known routes. These primitives an also be used to represent other lasses of protools,where a global state is assumed for eah agent, in order to store some information (blak list,already used keys. et.) throughout the sessions.Seured routing protools require the agents partiipating in the protool to perform someheks on the part of the messages they reeive that is supposed to represent a route or partof a route. For instane, they may hek that the list they reeive begins with the name of theneighbor who sent them the message, to test whether the message was proessed orretly.These veri�ations rely partly on neighborhood disovery, whih is a protool run by the nodesbefore exeuting the routing protool. The aim of a node running suh a protool is to disoverwhih nodes are within his reah, and are thus neighbors in the underlying graph representingthe network. In order to get a seure routing protool, the neighborhood disovery protoolneeds to be orret [PPS+08, PPH08℄. We assume that a seure neighborhood disoveryprotool has been used, onsequently, eah node an hek whether a given node is one of hisneighbors. We express these heks thanks to a logi. Next is an example of suh a logi.Example 3.1.1. We will typially onsider the logi Lroute de�ned by the following grammar:
Φ ::= Formula

check(a, b) neighborhood of two nodes
checkl(c, l) loal neighborhood of a node in a list
route(l) validity of a route
loop(l) existene of a loop in a list
Φ1 ∧ Φ2 onjuntion
Φ1 ∨ Φ2 disjuntion
¬Φ negationGiven an undireted graph G = (V,E) with V ⊆ Nloc, the semantis [[Φ]]G of a formula

Φ ∈ Lroute is reursively de�ned by:
• [[check(a, b)]]G = 1 i� (a, b) ∈ E,
• [[checkl(c, l)]]G = 1 i� l is of sort lists, c appears exatly one in l, and for any sub-list l′of l,� if l′ = a :: c :: l1, then (a, c) ∈ E.� if l′ = c :: b :: l1, then (b, c) ∈ E.
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42 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
• [[route(l)]]G = 1 i� l is of sort lists, l = a1 :: . . . :: an, for every 1 ≤ i < n, (ai, ai+1) ∈ E,and for every 1 ≤ i, j ≤ n, i 6= j implies that ai 6= aj.
• [[loop(l)]]G = 1 i� l is of sort lists and there exists an element appearing at least twiein l,
• [[Φ1 ∧ Φ2]]G = [[Φ1]]G ∧ [[Φ2]]G, [[¬Φ]]G = ¬[[Φ]]G, and [[Φ1 ∨ Φ2]]G = [[Φ1]]G ∨ [[Φ2]]G.Intuitively, check(a, b) is true if the agents a and b are neighbors in the network. checkl(c, l)is true if from the point of view of c, the list l ould be a valid route that goes through c, i.e. ifthe list l ontains one ourrene of c between two neighbours of c. route(l) is true if the list

l represents a valid path in the graph that does not go through the same node twie. loop(l) istrue if the list l ontains twie the same element. (We usually want to test for loop-free lists).The other entries are the usual ones: Φ1 ∧ Φ2 is true if Φ1 and Φ2 are true, Φ1 ∨ Φ2 is trueif Φ1 or Φ2 is true, and ¬Φ is true if Φ is false.
3.1.2 Example: modeling the SRP protoolWe onsider SRP introdued in [PH02℄, assuming that eah node already knows his neighbors(running e.g. some neighbor disovery protool). We model here its appliation to the DSRprotool [JMB01℄.Consider the signature given in Example 2.1.1 and let S,D, req, rep, Id ,KSD be names(S,D ∈ Nloc) and xL be a variable of sort lists. The proess exeuted by a node S initiatingthe searh for a route towards a node D is:

Pinit(S,D) = new Id .out(u1).in u2[ΦS ].0where:
u1 = 〈req, S,D, Id , S :: ⊥, hmac(〈req, S,D, id〉,KSD)〉
u2 = 〈rep, D, S, Id , xL, hmac(〈rep, D, S, id, xL〉,KSD)〉
ΦS = checkl(S, xL) ∧ ¬loop(xL).The names of the intermediate nodes are aumulated in the route request paket. In-termediate nodes relay the request over the network, exept if they have already seen it. Anintermediate node also heks that the reeived request is loally orret by verifying whetherthe head of the list in the request is one of its neighbors. Below, V ∈ Nloc, xS , xD and xa arevariables of sort loc whereas xr is a variable of sort lists and xId , xm are variables of sort terms.The proess exeuted by an intermediate node V when forwarding a request is as follows:
Preq(V ) = in w1[ΦV ].read t then 0 else (store(t).out(w2))

where 





w1 = 〈req, xS , xD, xId , xa :: xr, xm〉
ΦV = check(V, xa)
t = 〈xS , xD, xId〉
w2 = 〈req, xS , xD, xId , V :: (xa :: xr), xm〉When the request reahes the destination D, it heks that the request has a orret hmaand that the �rst node in the route is one of his neighbors. Then, the destination D onstrutsa route reply, in partiular it omputes a new hma over the route aumulated in the requestpaket with KSD, and sends the answer bak over the network.
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3.1. MODELING 43
The proess exeuted by the destination node D is the following:

Pdest(D,S) = in v1[ΦD].out(v2).0

where: 





v1 = 〈req, S,D, xId , xa :: xl, hmac(〈req, S,D, xId〉,KSD)〉
ΦD = check(D,xa)
v2 = 〈rep, D, S, xId , xa :: xl, hmac(〈rep, D, S, xId , xa :: xl〉,KSD)〉Then, the reply travels along the route bak to S. The intermediate nodes hek thatthe route in the reply paket is loally orret, whih means that their name appears one inthe list and that the names appearing just before and just after in the list are the names ofsome of their neighbors. If this test is passed suessfully, they forward the reply. The proessexeuted by an intermediary node V when forwarding a reply is the following:

Prep(V ) = in w′[Φ′
V ].out(w′)

where {
w′ = 〈rep, xD, xS , xId , xr, xm〉
Φ′
V = checkl(V, xr)3.1.3 Exeution modelEah proess is loated at a spei�ed node of the network. Unlike lassial Dolev-Yao model,the intruder does not ontrol the entire network but an only interat with its neighbors.More spei�ally, we assume that the topology of the network is represented by giving anundireted graph G = (V,E) with V ⊆ Nloc, where an edge in the graph models the fat thattwo nodes are neighbors. We also assume that we have a set of nodesM that are ontrolledby the attaker. These nodes are then alled maliious. Our model is not restrited to a singlemaliious node. Our results allow us to onsider the ase of several ompromised nodes thatollaborate by sharing their knowledge. However, it is well-known that the presene of severalolluding maliious nodes often yields straightforward attaks [HPJ06, LPM+05℄.De�nition 3.1.1 (on�guration). A (ground) onrete on�guration of the network is atriplet (P;S; I) where:

• P is a multiset of expressions of the form ⌊P ⌋n, whih represents the (ground) proess Ploated at node n ∈ V .
• S is a set of expressions of the form ⌊t⌋n with n ∈ V and t a ground term. ⌊t⌋n representsthe fat that the node n has stored the term t.
• I is a set of ground terms representing the messages seen by the intruder.In the expressions of the form ⌊P ⌋n, we onsider for the sake of larity that null proesses,i.e. expressions of the form ⌊0⌋n, are removed. Moreover, we will write ⌊P ⌋n ∪ P instead of

{⌊P ⌋n} ∪ P.Example 3.1.2. Continuing our modeling of SRP, a typial initial on�guration for the SRPprotool is
K0 = (⌊Pinit(S,D)⌋S | ⌊Pdest(D,S)⌋D; ∅; I0)where both the soure node S and the destination node D wish to ommuniate. We assumethat eah node has an empty storage list and that the initial knowledge of the intruder is given
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44 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
by an in�nite set of terms I0. A possible network on�guration is modeled by the graph G0 inFigure 3.2. We assume that there is a single maliious node, i.e. M0 = {nI}. The nodes Wand X are two extra (honest) nodes. We do not assume that the intermediary nodes nI , W ,and X exeute the routing protool. Atually, this is not needed to show that the protool is�awed, and we want to keep this example as simple as possible.

W

X

nIS D

Figure 3.2: Example of network topology (where nI is the maliious node).
Eah honest node broadasts its messages to all his neighbors. To apture more maliiousbehaviors, we allow the nodes ontrolled by the intruder to send messages only to some spei�neighbor. The ommuniation system is formally de�ned by the rules of Figure 3.3. They areparametrized by the underlying graph G and the set of maliious nodesM.The relation→∗

G,M is the re�exive and transitive losure of→G,M. We may write→,→G,
→M instead of →G,M when the underlying network topology G or the underlying set M islear from the ontext.Note that in the ase where we assume that there is a single maliious node with eahhonest node onneted to it, we retrieve the model where the attaker is assumed to ontrolall the ommuniations.Example 3.1.3. Continuing the example developed in Setion 3.1.2, the following sequeneof transitions is enabled from the initial on�guration K0:

K0→
∗
G0,M0

(⌊in u2[ΦS ].0⌋S ∪ ⌊Pdest(D,S)⌋D; ∅; I0 ∪ {u1})where:
u1 = 〈req, S,D, Id , S :: ⊥, hmac(〈req, S,D, Id〉,KSD)〉
u2 = 〈rep, D, S, Id , xL, hmac(〈rep, D, S, Id , xL〉,KSD)〉
ΦS = checkl(S, xL) ∧ ¬loop(xL)During this transition, S broadasts to its neighbors a request to �nd a route to D. Theintruder nI is a neighbor of S in G0, so he learns the request message. Assuming that theintruder knows the names of its neighbors, i.e. W,X ∈ I0, he an then build the followingfake message request:
m = 〈req, S,D, Id , [X;W ;S], hmac(〈req, S,D, Id〉,KSD)〉and broadasts it. Sine (X,D) ∈ E, D aepts this message and the resulting on�gurationof the transition is

(⌊in u2[ΦS ].0⌋S ∪ ⌊out(v2σ).0⌋D; ∅; I0 ∪ {u1})where {
v2 = 〈rep, D, S, xId , xa :: xl, hmac(〈D,S, xId , xa ::〉,KSD)〉
σ = {xId 7→ Id , xa 7→ X, 7→ [W ;S]}
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3.1. MODELING 45

Comm ({⌊in uj [Φj ].Pj⌋nj
| mgu(t, uj) 6= ⊥, [[Φjσj ]]G = 1, (n, nj) ∈ E}

∪ ⌊out(t).P ⌋n ∪ P;S; I)
→G,M ({⌊Pjσj⌋nj

} ∪ ⌊P ⌋n ∪ P;S; I ′)where σj = mgu(t, uj), I ′ = I ∪ {t} if (n, nI) ∈ E for some nI ∈ M and I ′ = Iotherwise. Moreover, ⌊P ′⌋n′ ∈ P implies that:
• (n, n′) 6∈ E, or
• P ′ is not of the form in u′[Φ′].Q′, or
• P ′ = in u′[Φ′].Q′ and (mgu(t, u′) = ⊥ or [[Φ′mgu(t, u′)]]G = 0).

In (⌊in u[Φ].P ⌋n ∪ P;S; I) →G,M (⌊Pσ⌋n ∪ P;S; I)if (nI , n) ∈ E for some nI ∈M, I ⊢ t, σ = mgu(t, u) and [[Φσ]]G = 1Store (⌊store(t).P ⌋n ∪ P;S; I) →G,M (⌊P ⌋n ∪ P; ⌊t⌋n ∪ S; I)Read-Then (⌊read u then P else Q⌋n ∪ P; ⌊t⌋n ∪ S; I)
→G,M (⌊Pσ⌋n ∪ P; ⌊t⌋n ∪ S; I)where σ = mgu(t, u)Read-Else (⌊read u then P else Q⌋n ∪ P;S; I)
→G,M (⌊Q⌋n ∪ P;S; I)if for all t suh that ⌊t⌋n ∈ S, mgu(t, u) = ⊥If-Then (⌊if Φ then P else Q⌋n ∪ P;S; I)
→G,M (⌊P ⌋n ∪ P;S; I) if [[Φ]]G = 1If-Else (⌊if Φ then P else Q⌋n ∪ P;S; I)
→G,M (⌊Q⌋n ∪ P;S; I) if [[Φ]]G = 0Par (⌊P1 | P2⌋n ∪ P;S; I) →G,M (⌊P1⌋n ∪ ⌊P2⌋n ∪ P;S; I)Repl (⌊!P ⌋n ∪ P;S; I) →G,M (⌊Pα⌋n ∪ ⌊!P ⌋n ∪ P;S; I)where α is a renaming of the bound variables of PNew (⌊new m.P ⌋n ∪ P;S; I) →G,M (⌊P{m 7→ m′}⌋n ∪ P;S; I)where m′ is a fresh name

Figure 3.3: Conrete transition system.
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46 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
As usual, an attak is de�ned as a reahability property.De�nition 3.1.2. Let G be a graph and M be a set of nodes. There is an M-attak on aon�guration with a hole (P[_];S; I) for the network topology G and the formula Φ if thereexist n,P ′,S ′, I ′ suh that:

(P[if Φ then out(error)];S; I) →∗
G,M (⌊out(error)⌋n ∪ P

′,S ′, I ′)where error is a speial symbol not ourring in the on�guration (P[_];S; I).The usual serey property an be typially enoded by adding a witness proess in parallel.For example, the proess W = in s._ an only evolve if it reeives the seret s. Thus theserey preservation of s on a on�guration (P;S; I) for a graph G = (V,E) an be de�ned bythe (non) existene of an {nI}-attak on the on�guration (P ∪ ⌊W ⌋n;S; I) and the formula
true for the graph G′ = (V ∪ {n}, E ∪ {(n, nI)}).Example 3.1.4. For the SRP protool, the property we want to hek is that the list of nodesobtained by the soure through the protool represents a path in the graph. We an easily enodethis property by replaing the null proess in Pinit(S,D) by a hole, and heking whether theformula ¬route(xL) holds. Let P ′

init(S,D) be the resulting proess.
P ′

init(S,D) = new Id .out(u1).in u2[ΦS ].Pwhere P = if ¬route(xL) then out(error). Then, we reover the attak mentioned in [BV04℄ withthe topology G0 given in Example 3.1.2, and from the initial on�guration:
K ′

0 = (⌊P ′
init(S,D)⌋S | ⌊Pdest(D,S)⌋D; ∅; I0).Indeed, we have that:

K0 →∗ (⌊in u2[ΦS ].P ⌋S ∪ ⌊out(m′).0⌋D; ∅; I)
→ (⌊in u2[ΦS ].P ⌋S ∪ ⌊0⌋D; ∅; I ′)
→ (⌊if¬route([X;W ;S]) then out(error)⌋S ; ∅; I ′)
→ (⌊out(error).0⌋S; ∅; I ′)

where 





m′ = 〈rep, D, S, Id , [X;W ;S], hmac(〈D,S, Id , [X;W ;S]〉,KSD)〉
I = I0 ∪ {u1}, and
I ′ = I0 ∪ {u1} ∪ {m′}.

3.2 Symboli modelIt is di�ult to diretly reason with the transition system de�ned in Figure 3.3 sine it isin�nitely branhing. Indeed, a potentially in�nite number of distint messages an be sent ateah step by the intruder node. In fat, the messages that the intruder an send enompassany message that he is able to forge from his knowledge.That is why it is often interesting to introdue a symboli transition system where eahintruder step is aptured by a single rule (as in e.g. [ALV02℄). This transition system will haveto maintain some sort of ontrol over the messages through the use of the onstraint systemsde�ned in Chapter 2. Furthermore, we will also have to onsider formulas and disequality
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3.2. SYMBOLIC MODEL 47
onstraints to aount for some of the requirements inherited from the onrete transitionsystem.As in [MS01, CLCZ10, RT01℄, groups of exeutions an be represented using onstraintsystems. However, ompared to previous work, we have to add onstraints in order to opewith the formulas that are heked upon the reeption of a message and also in order to opewith generalized disequality tests for re�eting ases where agents rejet messages of the wrongform. Indeed, sine messages an be broadasted to all neighbors, we need to determine foreah message whih agents will aept the message and whih agents will not aept it.De�nition 3.2.1 (Disequality onstraint). A disequality onstraint is an expression of theform ∀X. v 6= u where v, u are terms and X is a set of variables.Our disequality onstraints are rather general: they do not simply allow to hek that twoterms are di�erent (u 6= v), but they also allow to ensure that no uni�ation was possible ata ertain point of the exeution. It is neessary to hek this due to our broadast primitive:the disequality onstraint represents the fat that a message was not treated beause it didnot math the expeted pattern.To model the exeution of a protool in a symboli way, we will use the onstraint systemsde�ned in Chapter 2. Moreover, we will also maintain a set of other onstraints Ψ onsistingin disequality onstraints and a formula Φ of L.De�nition 3.2.2. Let (C, I) be a onstraint system and Ψ = Φ1∧Φ2 where Φ1 ∈ L and Φ2 isa onjuntion of disequality onstraints, suh that fv(Ψ) ⊆ rvar(C) and names(Ψ)∩I = ∅. Asolution to (C, I) and Ψ for a graph G is a ground substitution θ suh that dom(θ) = rvar(C)and:
• Iθ ∪ Tθ ⊢ uθ for all T ?

⊢ u ∈ C;
• for all (∀X. v 6= u) ∈ Φ2, the terms vθ and uθ are not uni�able (even renaming thevariables of X with fresh variables); and
• [[Φ1θ]]G = 1.

Example 3.2.1. Consider the onjuntion of onstraints C = I0∪{u1}
?
⊢ v1 ∧ I0∪{u1, v2}

?
⊢

u2 and the formula Φ = ΦD ∧ ΦS ∧ ¬route(xL).with:
u1 = 〈req, S,D, Id , S :: ⊥, hmac(〈req, S,D, id〉,KSD)〉
u2 = 〈rep, D, S, Id , xL, hmac(〈rep, D, S, id, xL〉,KSD)〉
ΦD = check(D,xa)
ΦS = checkl(S, xL) ∧ ¬loop(xL)
v1 = 〈req, S,D, xId , xa :: xl, hmac(〈req, S,D, xid〉,KSD)〉
v2 = 〈rep, D, S, xId , xa :: xl, hmac(〈rep, D, S, xId , xa :: xl〉,KSD)〉Let I0 be a set of names suh that names(C, φ)∩I0 = ∅. We have that (C, I0) is a onstraintsystem, and the substitution

θ = {xId 7→ Id , xa 7→ X,xl 7→ [W ;S], xL 7→ [X;W ;S]}is a solution of the onstraint system (C, I0) and of the formula Φ for the graph G0 de�ned inExample 3.1.2.
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48 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
3.2.1 Transition systemConrete exeutions an be �nitely represented by exeuting the transitions symbolially. Asymboli on�guration is a quintuplet (P;S; I; C; Ψ) where
• P is a multiset of expressions of the form ⌊P ⌋n where null proesses are removed. ⌊P ⌋nrepresents the proess P loated at node n ∈ Nloc.
• S is a set of expressions of the form ⌊t⌋n with n ∈ Nloc and t a term (not neessarilyground).
• I = Inames ⊎ Iterms where Iterms is a set of terms (not neessarily ground) representingthe messages seen by the intruder, and Inames is a set of names that the intruder has athis disposal .
• (C, Inames) is a onstraint system suh that T ⊆ Iterms for every onstraint T ?

⊢ u ∈ C.
• Ψ = Φ1 ∧ Φ2 where Φ1 ∈ L and Φ2 is a onjuntion of disequality onstraints.Suh a on�guration is ground when:

fv(P) ∪ vars(S) ∪ vars(I) ∪ fv(Ψ) ⊆ rvar(C)Compared to onrete on�gurations, terms exhanged by proesses in symboli on�gur-ations are not neessarily ground anymore but have to satisfy some (dedution or disequality)onstraints. We de�ne the assoiated symboli transitions in Figure 3.4. They mimi onreteones. In partiular, for the ommuniation rule, the set I of proesses ready to input a mes-sage is split into three sets J , K and L. The message being transmitted is a term t, and theproesses ready to input are of the form in ui[Φi]. J is the set of proesses that aept themessage t, K is the set of proesses that rejet the message t beause t does not unify withthe expeted pattern uk, and L is the set of proesses that rejet the message t beause theondition Φl is not ful�lled.Whenever (P;S; I; C; Ψ)→s
G,M (P ′;S ′; I ′; C′; Ψ′) where (P;S; I; C; Ψ) is a (ground) sym-boli on�guration then (P ′;S ′; I ′; C′; Ψ′) is still a (ground) symboli on�guration.More preisely, we show in Lemma 3.2.1 that the result of a transition from a ground sym-boli on�guration is also a ground symboli on�guration, in partiular the set of onstraintsobtained is a onstraint system. This lemma will be useful later, to show that our transitionsystem is omplete (Proposition 3.2.2) and sound (Proposition 3.2.3) when onsidering groundon�gurations.Lemma 3.2.1. Let G = (Nloc, E) be a graph,M⊆ Nloc, and Ks = (P;S; I; C; Ψ) be a groundsymboli on�guration. If K ′

s is a quintuplet suh that Ks →s
G,M K ′

s, then K ′
s is a groundsymboli on�guration.Proof. Sine Ks is a symboli on�guration, there exist Inames , Iterms suh that I =

Iterms ⊎ Inames , (C, Inames) is a onstraint system and T ⊆ Iterms for every T ?
⊢ u ∈ C. Wealso have that Ψ = Φ1 ∧ Φ2 with Φ1 ∈ L and Φ2 is a onjuntion of disequality onstraints.Moreover, sine Ks is ground, we have that var(I) ∪ fv(P) ∪ var(S) ∪ fv(Ψ) ⊆ rvar(C). Letus write K ′

s = (P ′;S ′; I ′; C′; Ψ′) and G = (V,E). To prove the result, we do a ase analysis on
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3.2. SYMBOLIC MODEL 49
Comms (⌊out(t).P ⌋n ∪ {⌊in ui[Φi].P

′
i⌋ni
| i ∈ I} ∪ P;S; I; C; Ψ)
→s
G,M

{⌊P ′
jσ⌋nj

| j ∈ J} ∪ Pσ;Sσ; I ′; C′; Ψ′)where:
• ⌊P ′⌋n′ ∈ P implies that (n, n′) 6∈ E or P ′ is not of the form in u′[Φ′].Q′,
• I = J ⊎K ⊎ L and (ni, n) ∈ E for every i ∈ I,
• for every l ∈ L,αl is a renaming of vars(ul) r rvar(C) by fresh variables
• σ = mgu({uj = t | j ∈ J} ∪ {ulαl = t | l ∈ L})

• ΨJ = {Φj | j ∈ J}, ΨK = {∀Yk . t 6= uk | k ∈ K} and ΨL = {¬Φlαl | l ∈ L}where Yk = (vars(uk) r rvar(C))

• I ′ = (I ∪ {t})σ when (n, nI) ∈ E for some nI ∈M, and I ′ = Iσ otherwise.
• C′ = Cσ and Ψ′ = (Ψ ∪ΨJ ∪ΨK ∪ΨL)σ

Ins (⌊in u[Φ].P ⌋n ∪ P;S; I; C; Ψ) →s
G,M (⌊P ⌋n ∪ P;S; I; C ∧ I

?
⊢ u; Ψ ∧ Φ)if (nI , n) ∈ E for some nI ∈MStores (⌊store(t).P ⌋n ∪ P;S; I; C; Ψ) →s

G,M (⌊P ⌋n ∪ P; ⌊t⌋n ∪ S; I; C; Ψ)Read-Thens (⌊read u then P else Q⌋n ∪ P;S; I; C; Ψ)
→s
G,M (⌊Pσ⌋n ∪ Pσ;Sσ; Iσ; Cσ; Ψσ)where ⌊t⌋n ∈ S and σ = mgu(t, u)Read-Elses (⌊read u then P else Q⌋n ∪ P;S; I; C; Ψ)

→s
G,M (⌊Q⌋n ∪ P;S; I; C; Ψ ∧ {∀X . t 6= u | ⌊t⌋n ∈ S})where X = vars(u) r rvar(C)If-Thens (⌊if Φ then P else Q⌋n ∪ P;S; I; C; Ψ)→s

G,M (⌊P ⌋n ∪ P;S; I; C; Ψ ∧ Φ)If-Elses (⌊if Φ then P else Q⌋n ∪ P;S; I; C; Ψ)→s
G,M (⌊Q⌋n ∪ P;S; I; C; Ψ ∧ ¬Φ)Pars (⌊P1 | P2⌋n ∪ P;S; I; C; Ψ) →s

G,M (⌊P1⌋n ∪ ⌊P2⌋n ∪ P;S; I; C; Ψ)Repls (⌊!P ⌋n ∪ P;S; I; C; Ψ) →s
G,M (⌊Pα⌋n ∪ ⌊!P ⌋n ∪ P;S; I; C; Ψ)where α is a renaming of the bound variables of P that are not in rvar(C).News (⌊new m.P ⌋n ∪ P;S; I; C; Ψ) →s
G,M (⌊P{m 7→ m′}⌋n ∪ P;S; I; C; Ψ)where m′ is a fresh name

Figure 3.4: Symboli transition system.
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50 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
the transition rule involved in Ks →s

G,M K ′
s. Note that the result is straightforward for therules Stores, Pars, Repls, and News. Indeed, in these ases, we have that C′ = C, Ψ′ = Ψ,

I ′ = I, and fv(P)∪ var(S) = fv(P ′)∪ var(S ′). Now, we onsider the remaining rules in turn.
• Rule Read-Thens. We have that:

(⌊read u then P else Q⌋n ∪ Q;S; I; C; Ψ)→s
G,M (⌊Pσ⌋n ∪Qσ;Sσ; Iσ; Cσ; Ψσ)where ⌊t⌋n ∈ S and σ = mgu(u, t).First, we have that (C′, Inames) is a onstraint system. Indeed, monotoniity is straight-forwardly satis�ed by C′. Moreover, appliation of a substitution preserves origination.Sine I ′ = Iσ = Itermsσ ⊎ Inames and C′ = Cσ, we also have that T ′ ⊆ Itermsσ for every

T ′
?
⊢ u′ ∈ C′. Lastly, sine Ks is ground, we have that:

fv(P ) ∪ fv(Q) ∪ vars(S) ∪ vars(I) ∪ fv(Ψ) ⊆ rvar(C)Thus, we dedue that
fv(Pσ) ∪ fv(Qσ) ∪ vars(Sσ) ∪ vars(Iσ) ∪ fv(Ψσ) ⊆ rvar(Cσ)We onlude that the resulting symboli on�guration K ′

s is ground.
• Rule Read-Elses. We have that:

(⌊read u then P else Q⌋n ∪ Q;S; I; C; Ψ)→s
G,M (⌊Q⌋n ∪ Q;S; I; C; Ψ ∧ Eq)where Eq = {∀var(u) r rvar(C) . t 6= u | ⌊t⌋n ∈ S}.First, we know that I = Iterms ⊎Inames , (C′, Inames) is a onstraint system, and we havethat T ⊆ Iterms for every T ?

⊢ u ∈ C. Furthermore, sine Ks is ground, we already havethat fv(Q)∪ fv(Q)∪ var(S)∪ var(I) ⊆ rvar(C). Sine fv(Eq) ⊆ rvar(C), we obtain that
fv(Ψ′) ⊆ rvar(C). In onlusion, the resulting on�guration K ′

s is ground.
• Rule If-Thens. We have that:

(⌊if Φ then P else Q⌋n ∪ Q;S; I; C; Ψ)→s
G,M (⌊P ⌋n ∪ Q;S; I; C; Ψ ∧ Φ)We still have that I = Iterms⊎Inames , (C′, Inames) is a onstraint system, and T ⊆ Itermsfor every T ?

⊢ u ∈ C. Sine Ks is ground, we have that
fv(P ) ∪ fv(Φ) ∪ fv(Q) ∪ var(S) ∪ var(I) ∪ fv(Ψ) ⊆ rvar(C)Thus, the on�guration K ′

s is ground.
• Rule If-Elses. Similar to the previous ase.
• Rule Ins. We have that:

(⌊in u[Φ].P ⌋n ∪Q;S; I; C; Ψ)→s
G,M (⌊P ⌋n ∪Q;S; I; C ∧ I

?
⊢ u; Ψ ∧ Φ)where (nI , n) ∈ E for some nI ∈M.We have that I = Iterms ⊎Inames , (C′, Inames) is a onstraint system, and T ⊆ Iterms forevery T ?

⊢ u ∈ C. Consequently, we dedue that (C′, Inames) satis�es the monotoniity
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3.2. SYMBOLIC MODEL 51
property. Sine var(I) ⊆ rvar(C) (beause Ks is ground), (C′, Inames) furthermoresatis�es the origination property. Clearly, we have that T ⊆ Iterms for any T ?

⊢ u ∈ C′.Lastly, sine Ks is ground and fv(in u[Φ]P ) = (fv(P ) ∪ fv(Φ)) r var(u), we have that:
fv(P ) ∪ fv(Φ) ∪ fv(Q) ∪ var(S) ∪ var(I) ∪ fv(Ψ) ⊆ rvar(C) ∪ var(u).Sine rvar(C′) = rvar(C)∪ var(u), we easily dedue that the symboli on�guration K ′

sis ground.
• Rule Comms . We have that:

(⌊out(t).P ⌋n ∪ PI ∪ Q;S; I; C; Ψ) →s
G,M

(⌊Pσ⌋n ∪ PJσ ∪ PK,Lσ ∪Qσ;Sσ; I ′σ; Cσ; Ψ′)where:� PI = {⌊in ui[Φi].Pi⌋ni
| i ∈ I},� PJ = {⌊Pj⌋nj

| j ∈ J}� PK,L = {⌊in uk[Φk].Pk⌋nk
| k ∈ K ∪ L}� ΨJ = {Φj | j ∈ J} and ΨL = {¬Φlαl | l ∈ L}� ΨK = {∀var(uk) r rvar(C) . t 6= uk | k ∈ K},� σ = mgu({uj = t | j ∈ J} ∪ {ulαl = t | l ∈ L})� Ψ′ = (Ψ ∧ΨJ ∧ΨK ∧ΨL)σ

⌊P ′⌋n′ ∈ Q implies that (n, n′) /∈ E or P ′ is not of the form in u′[Φ′].Q′, I = J
⊎
K

⊎
L,

(ni, n) ∈ E for any i ∈ I, αl is a renaming of var(ul) r rvar(C) by fresh variables, andif (n, nI) ∈ E for some nI ∈M then I ′ = I ∪ {t}) else I ′ = I.Clearly, Tσ ⊆ Itermsσ for any T
?
⊢ u ∈ C. Moreover, (C′, Inames) straightforwardlysatis�es the monotoniity property. As substitution preserves origination, (C′, Inames)satis�es the origination property. Consequently, K ′

s is a symboli on�guration. Lastly,we have to show that K ′
s is ground. Sine Ks is ground, we have that:
fv(t, P,PI ,Q,Ψ) ∪ var(S, I) ⊆ rvar(C)We immediately dedue that

fv(Pσ,PJσ,PK,Lσ,Qσ,Ψσ) ∪ var(Sσ, Iσ, tσ) ⊆ rvar(Cσ)It remains to show that fv(ΨJ ∧ ΨK ∧ ΨL)σ ⊆ rvar(Cσ). Now, fv(ΨJ) ⊆ rvar(C) as
Ks is ground. Furthermore, fv(ΨK) ⊆ rvar(C) by de�nition of ΨK . So we only have toprove that fv(ΨLσ) ⊆ rvar(Cσ). Let l ∈ L, and Xl = var(ul) r rvar(C). Neessarily,
var(Φl) ⊆ var(ul)∪ rvar(C) = Xl ⊎ rvar(C). Consequently, var(Φlαl) ⊆ Xlαl ⊎ rvar(C),as αl is a renaming of Xl by fresh variables. Moreover, (ulαl)σ = tσ, so var((ulαl)σ) =
var(tσ) ⊆ rvar(Cσ). Consequently, var((Φlαl)σ) ⊆ rvar(Cσ). We easily dedue that
fv(ΨLσ) ⊆ rvar(Cσ).We onlude that K ′

s is a ground symboli on�guration.
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52 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
Example 3.2.2. Exeuting the same transitions as in Example 3.1.4 symbolially, we reahthe following on�guration:

Ks = (⌊out(error).0⌋S; ∅; I0 ∪ {u1, v2}; C; Φ)where C,Φ, u1, v2 are de�ned as in Example 3.2.1.
3.2.2 Soundness and ompletenessWe show that our symboli transition system re�ets exatly the onrete transition system,i.e. eah onrete exeution of a proess is aptured by one of the symboli exeutions. Morepreisely, a onrete on�guration is represented by a symboli on�guration if it is one of itsinstanes, alled onretization.De�nition 3.2.3 (θ-onretization). Let Ks = (Ps;Ss; Is; C; Ψ) be a symboli on�gurationsuh that I = Inames ⊎ Iterms, (C, Inames) is a onstraint system. A onretization of Ks is aonrete on�guration Kc = (P;S; I) suh that there exists θ a solution of (C, Inames) and Ψand, furthermore, Psθ = P, Ssθ = S, Isθ = I. We say that Kc is a θ-onretization of Ks.Note that the θ-onretization of a ground symboli on�guration is a ground onreteon�guration. Now, we show that eah onrete transition an be mathed by a symboli one.The proof is performed by studying eah rule of the onrete transition system, showing thatthe orresponding symboli rule overs all possible ases. In partiular, disequality onstraintsallow to faithfully model ases where nodes rejet a message beause the message does notmath the expeted pattern.Proposition 3.2.2 (ompleteness). Let G = (Nloc, E) be a graph and M⊆ Nloc. Let Ks =
(Ps;Ss; Is; C; Ψ) be a ground symboli on�guration with I = Inames⊎Iterms and θ be a solutionof the onstraint system (C, Inames) and Ψ. Let Kc be the θ-onretization of Ks. Let K ′

cbe a onrete on�guration suh that Kc →G,M K ′
c. Then there exists a ground symbolion�guration K ′

s and a substitution θ′ suh that:
• K ′

c is the θ′-onretization of K ′
s, and

• Ks →s
G,M K ′

s.Proof. Let Kc = (P;S; I). We distinguish ases depending on whih transition is appliedto Kc. We write K ′
c = (P ′;S ′; I ′). We show that there exists a symboli on�guration K ′

ssuh that K ′
c is the θ′-onretization of K ′

s and Ks →s
G,M K ′

s. Thanks to Lemma 3.2.1, weeasily dedue that K ′
s is ground.

• Rule Par. We have that:
(⌊P1|P2⌋n ∪ Q;S; I)→G,M (⌊P1⌋n ∪ ⌊P2⌋n ∪ Q;S; I)By hypothesis, Ks is a symboli on�guration whose θ-onretization is Kc. Con-sequently, we have that Ks = (⌊P s1 |P

s
2 ⌋n ∪ Qs;Ss; Is; C; Ψ) with Qsθ = Q, Ssθ = S,

Isθ = I, P s1 θ = P1, and P s2 θ = P2. Let K ′
s = (⌊P s1 ⌋n ∪ ⌊P

s
2 ⌋n ∪ Qs;Ss; Is; C; Ψ). Wehave that Ks →s

G,M K ′
s (with the Pars rule), θ is a solution of (C, Inames) and Ψand K ′

c is the θ-onretization of K ′
s.
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3.2. SYMBOLIC MODEL 53
• Rule Repl. We have that:

(⌊!P ⌋n ∪ Q;S; I)→G,M (⌊Pα⌋n ∪ ⌊!P ⌋n ∪Q;S; I)where α is a fresh renaming of the bound variables in P . Sine Ks is a symbolion�guration whose θ-onretization is Kc, we have that Ks = (⌊!Ps⌋n∪Qs;Ss; Is; C; Ψ)with Qsθ = Q, Ssθ = S, Isθ = I and Psθ = P . Note that α is also a renaming ofthe variables in bv(Ps) r rvar(C). Let K ′
s = (⌊Psα⌋n ∪ ⌊!Ps⌋n ∪ Qs;Ss; Is; C; Φ). Wehave that Ks →s

G,M K ′
s (with the Repls rule) and θ is a solution of (C, Inames). Itremains to show that K ′
c is the θ-onretization of K ′

s. Sine the variables introduedby α are fresh, we have that img(α) ∩ dom(θ) = ∅, and sine Psθ = P , we have that
dom(α) ∩ dom(θ) = ∅. Hene we have that (Psα)θ = (Psθ)α = Pα. This allows us toonlude.

• Rule New. We have that:
(⌊new m.P ⌋n ∪ Q;S; I)→G,M (⌊P{m 7→ m′}⌋n ∪ Q;S; I)where m′ is a fresh name.We know that Ks is a symboli on�guration whose θ-onretization is Kc. Thus, wehave that Ks = (⌊new m.Ps⌋n ∪ Qs;Ss; Is; C; Ψ) with Qsθ = Q, Ssθ = S, Isθ = I, and

Psθ = P . Let K ′
s = (⌊Ps{m 7→ m′}⌋n ∪ Qs;Ss; Is; C; Ψ). We have that Ks →s

G,M K ′
s(with the News rule), θ is a solution of (C, Inames) and K ′

c is the θ-onretization of K ′
s.

• Rule Store. We have that:
(⌊store(t).P ⌋n ∪Q;S; I)→G,M (⌊P ⌋n ∪ Q; ⌊t⌋n ∪ S; I)We know that Ks is a symboli on�guration whose θ-onretization is Kc. Thus, wehave that Ks = (⌊store(ts).Ps⌋n ∪ Qs;Ss; Is; C; Ψ) with Qsθ = Q, Ssθ = S, Isθ = I,

Psθ = P and tsθ = t. Let K ′
s = (⌊Ps⌋n ∪ Qs; ⌊ts⌋n ∪ Ss; Is; C; Ψ). We have that

Ks →s
G,M K ′

s (with the Stores rule), θ is a solution of (C, Inames) and K ′
c is the

θ-onretization of K ′
s.

• Rule Read-Then . We have that:
(⌊read u then P else Q⌋n ∪ Q; ⌊t⌋n ∪ S; I)→G,M (⌊Pσ⌋n ∪Q; ⌊t⌋n ∪ S; I)where σ = mgu(t, u).We know that Ks is a symboli on�guration whose θ-onretization is Kc. Thus, wehave that Ks = (⌊read us then Ps else Qs⌋n ∪ Qs; ⌊ts⌋n ∪ Ss; Is; C; Ψ) with Qsθ = Q,

usθ = u, tsθ = t, Psθ = P , Qsθ = Q, Ssθ = S and Isθ = I. By hypothesis, we have that
(usθ)σ = uσ = tσ = (tsθ)σ, so σ′ = mgu(us, ts) exists and there exists θ′ a substitutionsuh that σ◦θ = θ′◦σ′. Let us de�neK ′

s = (⌊Psσ′⌋n∪Qsσ′; ⌊tsσ′⌋n∪Ssσ′; Isσ′; Cσ′; Ψσ′).We have that Ks →s
G,M K ′

s (with the Read-Thens rule).It remains to prove that θ′ is a solution for (Cσ′, Inames) and Ψσ′. As θ is a solution of
(C, Inames), for every T ?

⊢ u ∈ C, Tθ ∪ Inames ⊢ uθ, and so (Tσ′)θ′ ∪ Inames ⊢ (uσ′)θ′.With a similar reasoning, we an show that θ′ is also a solution for Ψσ′. Furthermore,we have that Qsσ′θ′ = Qsθσ = Qσ, Psσ′θ′ = Psθσ = Pσ, Ssσ′θ′ = Ssθσ = Sσ and
Isσ′θ′ = Isθσ = Iσ. As σ = mgu(u, t) where t is ground and the variables of u arebound in (read u then P else Q), we dedue that dom(σ) ∩ vars(Q,S, I) = ∅, and so
Qσ = Q, Sσ = S and Iσ = I. Hene, we have that K ′

c is the θ′-onretization of K ′
s.
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54 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
• Rule Read-Else. We have that:

(⌊read u then P else Q⌋n ∪ Q;S; I)→G,M (⌊Q⌋n ∪ Q;S; I)and for all ⌊t⌋n ∈ S we have that mgu(t, u) = ⊥.We know that Ks is a symboli on�guration whose θ-onretization is Kc. Thus, wehave that Ks = (⌊read us then Ps else Qs⌋n ∪ Qs;Ss; Is; C; Ψ) with usθ = u, Psθ = P ,
Qsθ = Q, Qsθ = Q, Ssθ = S, and Isθ = I.Let K ′

s = (⌊Qs⌋n ∪ Qs;Ss; Is; C; Ψ′) where Ψ′ = Ψ ∧ {∀Y.ts 6= us | ⌊ts⌋n ∈ S} and
Y = var(us) r rvar(C). We have that Ks →s

G,M K ′
s (with the Read-Elses rule).Now, let us show that θ is a solution of Ψ′. Let ∀Y.ts 6= us be a disequation in Ψ′ r Ψ.We have that usθ = u, tsθ = t for some term t suh that ⌊t⌋n ∈ S, and mgu(t, u) = ⊥.Thus, θ is also a solution of this onstraint, and more generally θ is a solution of Ψ′.Now, it is easy to see that K ′

c is the θ-onretization of K ′
s.

• Rule If-Then. We have that:
(⌊if Φ then P else Q⌋n ∪ Q;S; I)→G,M (⌊P ⌋n ∪ Q;S; I) and [[Φ]]G = 1.We know that Ks is a symboli on�guration whose θ-onretization is Kc. Thus, wehave that Ks = (⌊if Φs then Ps else Qs⌋n ∪ Qs;Ss; Is; C; Ψ) with Φsθ = Φ, Psθ = P ,

Qsθ = Q, Qsθ = Q, Ssθ = S, and Isθ = I.Let K ′
s = (⌊Ps⌋n∪Qs;Ss; Is; C; Ψ∧Φs). We have that Ks →s

G,M K ′
s (with the If-Thensrule). By hypothesis, we have that θ is a solution of Ψ, and as [[Φsθ]]G = [[Φ]]G is true,we easily dedue that θ is a solution of Ψ′ = Ψ ∧ Φs. Lastly, it is easy to see that K ′

c isthe θ-onretization of K ′
s.

• Rule If-Else. Similar to the previous ase.
• Rule In. We have that:

(⌊in u[Φ].P ⌋n ∪Q;S; I)→G,M (⌊Pσ⌋n ∪Q;S; I)with (nI , n) ∈ E for some nI ∈M, σ = mgu(t, u), I ⊢ t and [[Φσ]]G = 1.We know that Ks is a symboli on�guration whose θ-onretization is Kc. Thus, wehave that Ks = (⌊in us[Φs].Ps⌋n ∪ Qs;Ss; Is; C; Ψ) with usθ = u, Φsθ = Φ, Psθ = P ,
Qsθ = Q, Ssθ = S, and Isθ = I.Let K ′

s = (⌊Ps⌋n ∪ Qs;Ss; Is; C′; Ψ′) where C′ = C ∧ Is
?
⊢ us and Ψ′ = Ψ ∧ Φs. We havethat Ks →s

G,M K ′
s (with the Ins rule). Let θ′ = θ ◦ σ . By hypothesis, we have that θis a solution of (C, Inames) and Ψ. To show that θ′ is a solution of (C′, Inames) and Ψ′,it remains to establish that:� (Itermsθ)σ∪Inames ⊢ (usθ)σ: We have that (Itermsθ)σ∪Inames = I sine var(I) = ∅,and (usθ)σ = uσ = t. Sine by hypothesis, we have that I ⊢ t, we easily onlude.� [[(Φsθ)σ]]G = 1. Atually, we have that (Φsθ)σ = Φσ. Sine, by hypothesis, wehave that [[Φσ]]G = 1, we easily onlude.Hene, we have that θ′ is a solution of C′. It is easy to see that K ′

c is the θ′-onretizationof K ′
s.
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3.2. SYMBOLIC MODEL 55
• Rule Comm. We have that

Kc = (⌊out(t).P ⌋n ∪ {⌊in uj [Φj].Pj⌋nj
| j ∈ J} ∪ Q;S; I)

→G,M (⌊P ⌋n ∪ ⌊Pjσj⌋nj
} ∪ Q;S; I ′) = K ′

cwhere:� σj = mgu(t, uj), (n, nj) ∈ E, and [[Φjσj ]]G = 1 for any j ∈ J ,� if (n, nI) ∈ E for some nI ∈M then I ′ = I ∪ {t} else I ′ = I.Moreover, we know that ⌊P ′⌋n′ ∈ Q implies that:� (n, n′) 6∈ E, or� P ′ is not of the form in u′[Φ′].Q′, or� P ′ = in u′[Φ′].Q′ and (mgu(t, u′) = ⊥ or [[Φ′mgu(t, u′)]]G = 0).We know that Ks is a symboli on�guration whose θ-onretization is Kc. Thus, wehave that Ks = (⌊out(ts).Ps⌋n∪{⌊in usj [Φ
s
j ].P

s
j ⌋nj
|j ∈ J}∪Qs;Ss; Is; C; Ψ) with tsθ = t,

Psθ = P , Isθ = I, Ssθ = S, Qsθ = Q and for any j ∈ J , we have that usjθ = uj ,
Φs
jθ = Φj , and P sj θ = Pj . Let us de�ne� PsK,L = {⌊in usk[Φ

s
k].P

s
k ⌋nk

∈ Qs | (nk, n) ∈ E},� Q′
s be suh that Qs = PsK,L ⊎ Q

′
s,� K = {k | ⌊in usk[Φ

s
k].P

s
k⌋nk

∈ PsK,L and mgu(tsθ, u
s
kθ) = ⊥},� L = {l | ⌊in usl [Φ

s
l ].P

s
l ⌋nl

∈ PsK,L, σl = mgu(tsθ, u
s
l θ) and ¬[[(Φs

l θ)σ
′
l]]G = 1}.We have that PsK,L = {⌊in usk[Φ

s
k].P

s
k ⌋nk

∈ PsK,L | k ∈ K ⊎ L}.Let α be a renaming of {var(ul) | l ∈ L} r rvar(C). Let σ =
⋃

j∈J σj ∪
⋃

l∈L σl. Weshow that there exists a substitution σ′ = mgu({usj = ts | j ∈ J} ∪ {uslα = ts | l ∈ L}).To ahieve this result, we show that σ ◦α−1 ◦ θ is a uni�er of {usj = ts | j ∈ J}∪ {uslα =
ts | l ∈ L}:� ∀j ∈ J, σj = mgu(uj , t). We have that usjθ = uj and tsθ = t. As dom(α−1) inludesonly fresh variables, ujα−1 = uj and tα−1 = t. Consequently, ((usjθ)α

−1)σ =

((tsθ)α
−1)σ� ∀l ∈ L, σl = mgu(tsθ, u

s
l θ) exists. We have that dom(θ) = rvar(C) and img(θ) ∩

X = ∅. Moreover, dom(α) = {var(ul) | l ∈ L} r rvar(C) and img(α) is a set offresh variables. Hene, θ ◦ α = α ◦ θ. We dedue that (((uslα)θ)α−1)σ = (usl θ)σ =
(tsθ)σ = (((tsα)θ)α−1)σWe have proven that σ ◦ α−1 ◦ θ is a uni�er of {usj = ts | j ∈ J} ∪ {uslα = ts | l ∈ L}.Consequently, there exists σ′, θ′ suh that σ′ = mgu({usj = ts | j ∈ J} ∪ {uslα = ts | l ∈

L}) and θ′ ◦ σ′ = σ ◦ α−1 ◦ θ.Let K ′
s = (⌊Psσ′⌋n ∪ PsJσ

′ ∪ PsK,Lσ
′ ∪Q′

sσ
′;Ssσ′; I ′sσ

′; Cσ′; Ψ′σ′) where:� PsJ = {⌊P sj ⌋nj
| j ∈ J} and ΨJ = {Φs

j | j ∈ J},� ΨK = {∀Yk . ts 6= usk | k ∈ K} with Yk = var(uk) r rvar(C),
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56 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
� ΨL = {¬Φs

lα | l ∈ L}� I ′s = Is ∪ {t} if (n, nI) ∈ E and I ′s = Is otherwise.� Ψ′ = (Ψ ∧ΨJ ∧ΨK ∧ΨL) ,Clearly, we have that Ks →s
G,M K ′

s. To onlude, it remains to show that K ′
c is the

θ′-onretization of K ′
s.First, as θ is a solution of C and θ′ ◦ σ′ = σ ◦ α−1 ◦ θ, it is straightforward to see that θ′is a solution of C′ = Cσ′. Similarly, θ′ is a solution of Ψσ′.It remains to establish that:� θ′ is a solution of ΨJσ

′. For every j ∈ J , [[Φjσj ]]G = 1, and Φj = Φs
jθ = (Φs

jθ)α
−1,so [[(Φjσ

′)θ′]]G = 1.� θ′ is a solution of ΨKσ
′, i.e. θ′ satis�es ∀var(uk) r rvar(C) . tsσ′ 6= uskσ

′ for any
k ∈ K. This is true sine θ′ ◦σ′ = σ ◦α−1 ◦θ and mgu(tsθ, u

s
kθ) = ⊥ for any k ∈ K.� θ′ is a solution of ΨLσ

′, i.e. [[((Φs
lα)σ′)θ′]]G = 0 for any l ∈ L. By de�nition of

L, [[(Φs
l θ)σ]]G = 0. We have that ((Φs

lα)σ′)θ′ = (((Φs
lα)θ)α−1)σ = (Φs

l θ)σ. Hene,we have that [[((Φs
lα)σ′)θ′]]G = 0 for any l ∈ L.Lastly, it remains to verify that K ′

c is the θ′-onretization of K ′
s. Indeed, we have that:� (Psσ

′)θ′ = ((Psθ)α
−1)σ = Psθ = P ,� (P sj σ

′)θ′ = ((P sj θ)α
−1)σ = (P sj θ)σj = Pjσj for any j ∈ J ,� ((PsK,L ∪ Q

′
s)σ

′)θ′ = (Qsσ′)θ′ = ((Qsθ)α−1)σ = Qsθ = Q,� (Ssσ′)θ′ = ((Ssθ)α−1)σ = Ssθ = S,� (I ′sσ
′)θ′ = ((I ′sθ)α

−1)σ = I ′sθ = I ′.This allows us to onlude.
Conversely, we have that eah symboli transition an be instantiated in a onrete one.The proof is again obtained by inspetion of the rules. We dedue from these two propositionsthat heking for a onrete attak an be redued to heking for a symboli one.Proposition 3.2.3 (soundness). Let G = (Nloc, E) be a graph and M ⊆ Nloc. Let Ks =

(Ps;Ss; Is; C; Ψ) and K ′
s = (P ′

s;S
′
s; I

′
s; C

′; Ψ′) be two ground symboli on�gurations, suh that
Ks →s

G,M K ′
s. Let θ′ be a substitution and let K ′

c be the θ′-onretization of K ′
s. There existsa substitution θ and a ground on�guration Kc suh that

• Kc is the θ-onretization of Ks.
• Kc →G,M K ′

c, andProof. There exists Inames , Iterms suh that Is = Iterms ⊎ Inames and (C, Inames) is aonstraint system. As K ′
c is the θ′-onretization of K ′

s, θ′ is a solution of (C′, Inames) and Ψ′.To prove the proposition, we de�ne �rst a substitution θ, solution of (C, Inames) and Ψ, andwe onsider Kc the θ-onretization of Ks. We distinguish several ases, depending on therule involved in the transition Ks →s
G,M K ′

s.
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3.2. SYMBOLIC MODEL 57
• Rule Pars. We have that:

(⌊P s1 |P
s
2 ⌋n ∪ Qs;Ss; Is; C; Ψ)→s

G,M (⌊P s1 ⌋n ∪ ⌊P
s
2 ⌋n ∪ Qs;Ss; Is; C; Ψ)Sine K ′

c is the θ′-onretization of K ′
s, we have that:

K ′
c = (⌊P s1 θ

′⌋n ∪ ⌊P s2 θ
′⌋n ∪ Qsθ′;Ssθ′; Isθ′)Sine C′ = C and Ψ′ = Ψ, we an hoose θ = θ′ solution of (C, Inames) and Ψ. Let Kcbe the θ-onretization of Ks.

Kc = (⌊P s1 θ
′|P s2 θ

′⌋n ∪ Qsθ′;Ssθ′; Isθ′)We have Kc →G,M K ′
c (by the Par rule).

• Rule Repls. We have that:
(⌊!Ps⌋n ∪Qs;Ss; Is; C; Ψ)→s

G,M (⌊Psαs⌋n ∪ ⌊!Ps⌋n ∪Qs;Ss; Is; C; Ψ)where αs is a renaming of the bound variables of Ps that are not in rvar(C).Sine K ′
c is the θ′-onretization of K ′

s, we have that:
K ′
c = (⌊(Psαs)θ′⌋n ∪ ⌊!Psθ′⌋n ∪ Qsθ′;Ssθ′; Isθ′)Sine C′ = C and Ψ′ = Ψ, we an hoose θ = θ′ solution of (C, Inames) and Ψ. Let Kcbe the θ-onretization of Ks.

Kc = (⌊!Psθ⌋n ∪ Qsθ;Ssθ; Isθ).To show that Kc →G,M K ′
c (by the Repl rule), it remains to prove that:� (Psθ)αs = (Psαs)θ. This equality omes from the fat dom(θ) ∩ dom(αs) = ∅.� αs is a renaming of bv(Psθ). This is due to the fat that αs is renaming of thebound variables of Ps that are not in rvar(C) and dom(θ) = rvar(C).

• Rule News. We have that:
(⌊new m.Ps⌋n ∪ Qs;Ss; Is; C; Ψ)→s

G,M (⌊Ps{m 7→ m′}⌋n ∪Qs;Ss; Is; C; Ψ)where m′ is a fresh name.As in the previous ases, we have that K ′
c is the θ′-onretization of K ′

s. Moreover, sine
C′ = C and Ψ′ = Ψ, we an hoose θ = θ′. Let Kc be the θ-onretization of Ks. Hene,we have that:� K ′

c = (⌊((Ps{m 7→ m′})θ)⌋n ∪Qsθ;Ssθ; Isθ),� Kc = (⌊new m.Psθ⌋n ∪ Qsθ;Ssθ; Isθ).As in the previous ase, sine m′ is a fresh name and (Psθ){m 7→ m′} = (Ps{m 7→ m′})θ,we have that Kc →G,M K ′
c (by the New rule).

• Rule Stores. We have that:
(⌊store(ts).Ps⌋n ∪Qs;Ss; Is; C; Ψ)→s

G,M (⌊Ps⌋n ∪Qs; ⌊ts⌋n ∪ Ss; Is; C; Ψ)As in the previous ases, we have that K ′
c is the θ′-onretization of K ′

s. Moreover, sine
C′ = C and Ψ′ = Ψ, we an hoose θ = θ′. Let Kc be the θ-onretization of Ks. Hene,we have that:� Kc = (⌊store(tsθ).(Psθ)⌋n ∪ Qsθ;Ssθ; Isθ),� K ′

c = (⌊Psθ′⌋n ∪Qsθ′; ⌊tsθ′⌋n ∪ Ssθ′; Isθ′).We have that Kc →G,M K ′
c (by the Store rule).
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58 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
• Rule Read-Thens. We have that:

(⌊read us then Ps else Qs⌋n ∪Qs; ⌊ts⌋n ∪ Ss; Is; C; Ψ)
→s
G,M (⌊Psσ′⌋n ∪Qsσ′; ⌊tsσ′⌋n ∪ Ssσ′; Isσ′; Cσ′; Ψσ′)where σ′ = mgu(us, ts)Sine K ′

c is the θ′-onretization of K ′
s, we have that:

K ′
c = (⌊(Psσ′)θ′⌋n ∪ (Qsσ′)θ′; ⌊(tsσ′)θ′⌋n ∪ (Ssσ′)θ′; (Isσ′)θ′)Let θ = θ′ ◦ σ′. θ is a solution of (C, Inames) and Ψ. Let Kc be the θ-onretization of

Ks.
Kc = (⌊read usθ then Psθ else Qsθ⌋n ∪Qsθ; ⌊tsθ⌋n ∪ Ssθ; Isθ).We have that usθ = tsθ. Hene, we have that:

Kc →G,M (⌊(Psθ)σ⌋n ∪Qsθ; ⌊tsθ⌋n ∪ Ssθ; Isθ)by the Read-Then rule with σ = Id . Sine Ks is a ground symboli on�guration,we know that var(Is)∪ fv(Qs)∪ var(⌊ts⌋n ∪ Ss) ⊆ dom(θ), and thus, Kc →G,M K ′
c (bythe Read-Then rule).

• Rule Read-Elses. We have that:
Ks = (⌊read us then Ps else Qs⌋n ∪Qs;Ss; Is; C; Ψ)

→s
G,M (⌊Qs⌋n ∪ Qs;Ss; Is; C; Ψ ∧ Eq) = K ′

swhere Eq = {∀var(us) r rvar(C) . ts 6= us | ⌊ts⌋n ∈ Ss}.We an hoose θ = θ′. θ is a solution of (C′, Inames) and Ψ′. In partiular, θ is a solutionof (C, Inames) and Ψ.As in the previous ases, we have that K ′
c is the θ′-onretization of K ′

s. Let Kc be the
θ-onretization of Ks. Hene, we have that:� Kc = (⌊read usθ then Psθ else Qsθ⌋n ∪Qsθ;Ssθ; Isθ),� K ′

c = (⌊Qsθ′⌋n ∪Qsθ′;Ssθ′; Isθ′).Furthermore, we have that usθ is not uni�able with tsθ for any ⌊ts⌋n ∈ Ss. In otherwords, mgu(usθ, t) = ⊥ for any t suh that ⌊t⌋n ∈ Ssθ. Hene, we have that Kc →G,M

K ′
c by the Read-Else rule.

• Rule If-Thens. We have that:
Ks = (⌊if Φs then Ps else Qs⌋n ∪ Qs;Ss; Is; C; Ψ)

→s
G,M (⌊Ps⌋n ∪ Qs;Ss; Is; C; Ψ ∧ Φs) = K ′

sWe an hoose θ = θ′. θ is a solution of (C′, Inames) and Ψ′. In partiular, θ is a solutionof (C, Inames) and Ψ. As in the previous ases, we have that K ′
c is the θ′-onretizationof K ′

s. Let Kc be the θ-onretization of Ks. Hene, we have that:� Kc = (⌊if Φsθ then Psθ else Qsθ⌋n ∪ Qsθ;Ssθ; Isθ),� K ′
c = (⌊Psθ⌋n ∪ Qsθ;Ssθ; Isθ).Moreover, sine θ is a solution of Φs, we have that [[Φsθ]] = 1. Hene, we have that

Kc →G,M K ′
c by the If-Then rule.
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3.2. SYMBOLIC MODEL 59
• Rule If-Elses. This ase is similar to the previous one.
• Rule Ins. We have that:

(⌊in us[Φs].Ps⌋n ∪Qs;Ss; Is; C; Ψ)→s
G,M (⌊Ps⌋n ∪Qs;Ss; Is; C′; Ψ′)

where C′ = C ∧ Is
?
⊢ us and Ψ′ = Ψ ∧ Φs and (nI , n) ∈ E for some nI ∈M. We hoose

θ = θ′, solution of (C, Inames) and Ψ.As in the previous ases, we have that K ′
c is the θ′-onretization of K ′

s. Let Kc be the
θ-onretization of Ks. Hene, we have that:� Kc = (⌊in usθ[Φsθ].Psθ⌋n ∪Qsθ;Ssθ; Isθ),� K ′

c = (⌊Psθ′⌋n ∪Qsθ′;Ssθ′; Isθ′).Sine θ′ is a solution of (C′, Inames), we have that Isθ′ ⊢ usθ′ and [[Φsθ
′]]G = 1. Thus,

Isθ ⊢ usθ = t and [[Φsθ]]G = 1. Hene, we have that Kc →G,M K ′
c by the In rule.

• Rule Comms. We have that:
(PsI ∪ ⌊out(ts).Ps⌋n ∪Qs;Ss; Is; C; Ψ)→s

G,M (PsJ ∪P
s
K,L ∪ ⌊Psσ⌋n ∪Qsσ;Ssσ; I ′s; C

′; Ψ′)where:� PsI = {⌊in usi [Φ
s
i ].P

s
i ⌋ni
| (ni, n) ∈ E, i ∈ I},� I = J ⊎K ⊎ L,� σ = mgu({uj = t | j ∈ J} ∪ {ulα | l ∈ L})� PsJ = {⌊P sj ⌋nj

σ| j ∈ J},� PsK,L = {⌊(in uk[Φ
s
k].P

s
k ⌋nk

)σ| k ∈ K ⊎ L},� C′ = Cσ and Ψ′ = (Ψ ∧ ΨJ ∧ ΨK ∧ ΨL)σ,� ΨJ = {Φs
j | j ∈ J}, ΨK = {∀var(usk) r rvar(C) . ts 6= usk | k ∈ K}, and ΨL =

{Φs
lαl | l ∈ L} where αl is a renaming of var(usl ) r rvar(C) by fresh variables.� I ′s = (Is ∪ {ts})σ if (n, nI) ∈ E for some nI ∈M and I ′s = Isσ otherwise.Moreover, ⌊Qs⌋n′ ∈ Qs implies that (n, n′) /∈ E or Qs is not of the form in u′s[Φ

′
s].Q

′
s.We have also that (ni, n) ∈ E for every i ∈ I.Let θ = θ′ ◦ σ. Sine θ′ is a solution of (Cσ, Inames) and Ψ′ ⊇ Ψσ, it is lear that θ is asolution of (C, Inames) and Ψ.As in the previous ases, we have that K ′

c is the θ′-onretization of K ′
s. Let Kc be the

θ-onretization of Ks. Hene, we have that:� Kc = (PsI θ ∪ ⌊out(tsθ).Psθ⌋n ∪Qsθ;Ssθ; Isθ),� K ′
c = (PsJθ

′ ∪ PsK,Lθ
′ ∪ ⌊Psσθ′⌋n ∪ Qsσθ′;Ssσθ′; I ′sθ

′).To onlude, it remains to show that Kc →G,M K ′
c. First, we have that:� Ssσθ′ = Ssθ,� if (n, nI) ∈ E for some nI ∈M then I ′sθ′ = (Is∪{ts})σθ′ = Isθ∪{tsθ}. Otherwise,we have that I ′sθ′ = Isσθ′ = Isθ.
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60 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
� Psσθ

′ = Psθ, Qsσθ′ = Qsθ, and PsK,Lθ′ = PsK,Lθ (thanks to the renaming αl).Note also that the proesses in Qsθ are not of the right form to evolve by reeiving amessage from the node n. Thus, to show that Kc →G K ′
c, it remains to prove that

J = J ′ where
J ′ = {i | ⌊in usi [Φ

s
i ].P

s
i ⌋ni

∈ PsI , σi = mgu(tθ, usi θ) exists , [[(Φs
iθ)σi]]G = 1} .We prove the two inlusions separately.First, we show that J ⊆ J ′. Let i ∈ J . We know that ⌊in usi [Φ
s
i ].P

s
i ⌋ni

∈ PsI . Byde�nition of σ, usiσ = tσ. Consequently, usiθ = usiσθ
′ = tσθ′ = tθ. So σi = mgu(tθ, usiθ)exists and σi = Id . Sine θ′ is a solution of Ψ′, we have that [[Φs

iσθ
′]]G = 1. We deduethat [[Φs

iθ]]G = 1. This allows us to onlude that i ∈ J ′.Now, we show that J ′ ⊆ J . Let i ∈ J ′. We have that ⌊in usi [Φs
i ].P

s
i ⌋ni

∈ PsI , Hene, wehave that i ∈ I. In order to onlude that i ∈ J , it is su�ient to show that i 6∈ K and
i 6∈ L.1. i 6∈ K. By ontradition, assume that i ∈ K. Sine θ′ is a solution of ΨKσ, we havethat θ′ satis�es the onstraint ∀var(usi )r rvar(C) . tsσ 6= usiσ. This implies that tsθand usiθ are not uni�able This is impossible sine we know that σi = mgu(tθ, usiθ)exists. Contradition. Hene, we dedue that i 6∈ K.2. i 6∈ L. By ontradition, assume that i ∈ L. Sine θ′ is a solution of ΨLσ, we havethat tσθ′ = (usiαi)σθ

′ and [[(Φs
iαi)σθ

′]]G = 0. Atually, we have that:
(usiαi)θ = (usiθ)αi = (tθ)αi.Hene, we have that σi = αi. We have also that:

(Φs
iαi)θ = ((Φs

iθ)αi).We dedue that [[(Φs
iθ)σi]]G = 0. Contradition. Hene, we have that i 6∈ L.This allows us to onlude that Kc →G,M K ′

c.These lemmas allow us to show that to a onrete derivation orresponds a symboli one.Thus, heking for attaks an be done in the symboli model, as shown in Theorem 3.2.4.Theorem 3.2.4. Let G = (Nloc, E) be a graph and M ⊆ Nloc. Let K = (P[_];S; I) be aground onrete on�guration with a hole, and Φ be a formula. There is an M-attak on Kand Φ for graph G if, and only if,
(P[if Φ then out(error)];S; I; ∅; ∅) →s∗

G,M (⌊out(u)⌋n ∪ Ps;Ss; Is; C; Ψ)with Is = Inames ⊎ Iterms and σ = mgu(u, error) exists and the onstraint system (Cσ, Inames)with Ψσ has a solution for graph G.Proof. We show the two diretions separately.(⇒) First, let us suppose that there is an attak on K and Φ for graph G. By de�nition ofan attak, there exists a onrete on�guration K ′ suh that:
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3.3. BOUNDING THE SIZE OF MINIMAL SOLUTIONS FOR SOLVED FORMS 61
• K ′ is of the form (⌊out(error)⌋n ∪ P ′;S ′; I ′), and
• K →∗

G K
′.By applying Proposition 3.2.2 reursively, we dedue that there exist a ground symbolion�guration K ′
s and a substitution θ′ suh that:

• (P[if Φ then out(error) else 0];S; I; ∅; ∅)→s∗
G K ′

s, and
• K ′ is the θ′-onretization of K ′

s.Consequently, K ′
s is of the form (⌊out(u)⌋n ∪ P ′

s;S
′
s; I

′
s; C

′; Ψ′), θ′ is a solution of C′ and Ψ′for G, and uθ′ = error. Hene, σ = mgu(u, error) exists and there exists a substitution θ′ suhthat θ = θ′ ◦ σ. We onlude that θ′ is a solution of (Cσ, Inames) and Ψσ for graph G.(⇐) Conversely, assume that
Ks = (P[if Φ then out(error) else 0];S; I; ∅; ∅) →s∗

G (⌊out(u)⌋n ∪ Ps;Ss; Is; C; Ψ) = K ′
sand θ′ is a solution of (Cσ, Inames) and Ψσ where σ = mgu(u, error).First, we have that Ks is a ground symboli on�guration whose onretization is K =

(P[if Φ then out(error) else 0];S; I). Thanks to Lemma 3.2.1, we know that the symbolion�gurations involved in this derivation are ground. Furthermore, θ′′ = θ′ ◦ σ is a solutionof (C, Inames) and Ψ. Let K ′ be the θ′′-onretization of K ′
s, as uθ′′ = (uσ)θ′ = error, we havethat:

K ′ = (⌊out(error)⌋n ∪ Psθ
′′;Ssθ

′′; Isθ
′′)Hene, by applying reursively Proposition 3.2.3, we know that there exists a substitution θand a ground onrete on�guration K suh that:

• K is the θ-onretization of Ks,
• K →∗

G K
′.Hene, there is an attak on K and Φ for graph G.Note that our result holds for any signature, for any hoie of prediates, and for proessespossibly with repliation. Of ourse, it then remains to deide the existene of a onstraintsystem that has a solution.Example 3.2.3. Consider our former example of an attak on SRP, with initial on�guration

K0. We an reah the on�guration Ks, and the onstraint system C has a solution σ forgraph G0 (f. Example 3.2.1), so there is an {nI}-attak on K0 for G0.
3.3 Bounding the size of minimal solutions for solved formsApplying the tehnique desribed in Setion 3.2, we are left to deide the existene of a solutionfor a onstraint system (C, Inames) together with disequality onstraints and formulas of Lroute.In Chapter 2, we have developed a tehnique that allows us to onsider only onstraintsystems in solved form.
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62 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
In this setion, we show how to bound the size of a minimal solution for solved onstraintsystems. First, we have in Subsetion 3.3.1 preliminary results about substitutions, showingthat applying substitutions does not inrease the number of subterms. Then we have twopropositions, orresponding to our two deidability results, in order to take into aount a�xed topology as well as (a priori unbounded) unknown topology.3.3.1 Preliminary results regarding substitutionsAll throughout our proedures, we apply substitutions, and more preisely mgus of terms, tothe systems we onsider. We have to ontrol the size of the terms with respet to the size ofthe inputs. Thus we need the following results to know how we an bound the size of termsin a system where we just applied a substitution.In order to obtain these results, we use the following rules for omputing an mgu, alledDAG syntati uni�ation [JK91℄.Delete P ∪ {s = s} =⇒ PDe. P ∪ {f(s1, . . . , sn) = f(t1, . . . , tn)} =⇒ P ∪ {s1 = t1, . . . , sn = tn}Conf. P ∪ {f(s1, . . . , sn) = g(t1, . . . , tk)} =⇒ ⊥ if f 6= gCoal. P ∪ {x = y} =⇒ P{x 7→ y} ∪ {x = y} if x, y ∈ var(P ) and x 6= yChek P ∪ {x1 = s1[x2], . . . , xn = sn[x1]} =⇒ ⊥if si /∈ X for some i ∈ [1 . . . n]Merge P ∪ {x = s, x = t} =⇒ P ∪ {x = s, s = t}if 0 < |s| ≤ |t|Figure 3.5: Rules for DAG syntati uni�ation

Lemma 3.3.1. Let T be a set of terms and P be a set of equations between terms in st(T )with σ = mgu(P ). We have that st(Tσ) ⊆ st(T )σ.Proof. We use the rules for DAG syntati uni�ation given in Figure 3.5. Applyingthese rules on P results in a set of equations P ′ = {x1 = t1, . . . , xn = tn} in DAG solved form(see [JK91℄). By de�nition of a DAG solved form, we have that:
• xi 6= xj for all 1 ≤ i < j ≤ n,
• xi /∈ var(tj) for all 1 ≤ i < j ≤ n.Let σ = {x1 7→ t1, . . . , xn 7→ tn}. By inspetion of the rules in Figure 3.5, we an showby indution on the length of the derivation from P to P ′ that st(P ′)σ ⊆ st(P )σ. Sine

st(P ) ⊆ st(T ), we easily dedue that st(ti)σ ⊆ st(T )σ for every 1 ≤ i ≤ n.Let u ∈ st(Tσ), we show that there exists t ∈ st(T ) suh that u = tσ. Either there exists
v a subterm of T suh that u = vσ, and we onlude, or there exists xi ∈ dom(σ) suh that
u is a subterm of xiσ. In that ase, let i0 = max{i | u ∈ St(xiσ)}.
• Either u ∈ st(ti0)σ ⊆ st(T )σ, and we onlude.
• Or u ∈ st(xσ) for some x ∈ var(ti0) ∩ dom(σ). By de�nition of a DAG solved form,we have that var(ti0) ∩ dom(σ) ⊆ {xi0+1, . . . , xn}. Hene, we have that u ∈ st(xjσ) forsome j > i0. This yields to a ontradition.
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3.3. BOUNDING THE SIZE OF MINIMAL SOLUTIONS FOR SOLVED FORMS 63
Let S be a set, we denote by #S the ardinal of S. Let u be a term. We denote by

|u|d the maximal depth of a variable in u. The lemma below is useful to bound the depth ofvariables after appliation of a substitution. Intuitively, the depth of variables is boundedpolynomially in the size of the domain of the substitution, as well as the size of the set ofterms.
Lemma 3.3.2. Let T be a set of terms, P be a set of equations between terms in T and
σ = mgu(P ). For every variable x ∈ st(T ), we have that:

|xσ|d ≤ #dom(σ) ·max{|t|d | t ∈ T}.Proof. We use the rules for DAG syntati uni�ation given in Figure 3.5. Applyingthese rules on P results in a set of equations representing a most general uni�er of P in DAGsolved form (see [JK91℄): σ = {x1 = t1, . . . , xn = tn}. By de�nition of a DAG solved form,we have that:
• xi 6= xj for all 1 ≤ i < j ≤ n,
• xi /∈ var(tj) for all 1 ≤ i < j ≤ n.Hene, we have that |xσ|d < |t1|d + . . . + |tn|d. Furthermore, by inspetion of the rules, wean see that eah ti is a subterm (modulo a non-bijetive renaming of the variables) of T . Forevery 1 ≤ i ≤ n, we have that |ti|d ≤ max{|t|d | t ∈ T}. Sine n = #dom(σ), we dedue that

|xσ|d < #dom(σ) ·max{|t|d | t ∈ T}.
3.3.2 Bounding variables whih are not of sort loc or listsIn this setion, we prove that given any solution of C, the variables whih are not of sort locor lists an be instantiated by any fresh name, still preserving the solution.Lemma 3.3.3. Let (C, I) be a onstraint system in solved form, Φ1 be a formula of Lroute,
Φ2 be a set of disequality onstraints, and G = (Nloc, E) be a graph. Consider σ a solution of
(C, I)∧Φ1 ∧Φ2 for graph G. There is a solution σ′ of (C, I)∧Φ1 ∧Φ2 for graph G suh that:
• xσ′ = xσ for every variable x of sort loc or lists;
• xσ′ ∈ I otherwise.Proof. Sine (C, I) is a onstraint system in solved form, we have that

C = T1

?
⊢ x1 ∧ . . . ∧ Tn

?
⊢ xnwhere:

• x1, . . . , xn are distint variables, and
• var((C, I) ∧ Φ1 ∧ Φ2) = {x1, . . . , xn} = rvar(C).
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64 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
We show the result by indution on:

µ(σ) = #{x ∈ rvar(C) | x is neither of sort loc nor of sort lists and xσ /∈ I}.Base ase: µ(σ) = 0. In suh a ase, sine rvar(C) ontains all the variables that our in theonstraint system, we easily onlude. The substitution σ is already of the right form.Indution step: µ(σ) > 0. Let i0 be the maximal index 1 ≤ i0 ≤ n suh that xi0σ 6∈ I and
xi0 is not of sort loc or lists. Let a be a name in I that does not our elsewhere. Let
σ′ = τ ∪ {xi0 7→ a} where τ = σ|X with X = dom(σ) r {xi0}. Clearly, we have that
µ(σ′) < µ(σ). In order to onlude, it remains to show that σ′ is a solution of (C, I)∧Φ1∧Φ2.

1. We show that σ′ is a solution of (C, I). For every i < i0, sine σ is a solution of (C, I),we have that Tiσ ∪ I ⊢ xiσ. Sine xi0 does not our in this onstraint, we also havethat Tiσ′ ∪ I ⊢ xiσ′. Sine a ∈ I, we have that Ti0σ′ ∪ I ⊢ xi0σ′.For every i > i0, aording to the de�nition of i0, either xi is of sort loc or lists, or
xiσ ∈ I. In the �rst ase, as for every term t of sort loc or lists, Nloc ⊢ t, we havethat Nloc ⊢ xiσ. In the seond ase, I ⊢ xiσ. Hene, in both ases, we have that
Tiσ

′ ∪ I ⊢ xiσ′.2. We show that σ′ is a solution of Φ1. All the variables appearing in Φ1 are of type loc or
lists. Hene, we have that Φ1σ = Φ1σ

′. This allows us to onlude.3. Lastly, we show that σ′ is a solution of Φ2. Let ∀Y.u 6= v be a disequality onstraint in
Φ2. Assume w.l.o.g. that dom(σ) ∩ Y = ∅. Sine σ is a solution of ∀Y.u 6= v, we knowthat uσ and vσ are not uni�able.Assume by ontradition that there exists a substitution θ′ suh that uσ′θ′ = vσ′θ′ (i.e.
σ′ does not satisfy ∀Y.u 6= v). We an assume w.l.o.g. that uσ′θ′ and vσ′θ′ are groundterms, and xi0 6∈ dom(θ′). In suh a ase, we have that:

(uσ′)θ′ = ((uτ){xi0 7→ a})θ′ = ((uτ)θ′){xi0 7→ a}
(vσ′)θ′ = ((vτ){xi0 7→ a})θ′ = ((vτ)θ′){xi0 7→ a}

Sine a is fresh, we dedue that (uτ)θ′ = (vτ)θ′. Hene, we have also that:
((uτ)θ′){xi0 7→ xi0σ} = ((vτ)θ′){xi0 7→ xi0σ}i.e. uσθ′ = vσθ′. This ontradits the fat that uσ and vσ are not uni�able.Hene, σ′ is a solution of (C, I) ∧ Φ1 ∧ Φ2.It remains to show that it is possible to �nd a solution in whih lists are polynomiallybounded. We need to prove two separate propositions, aording to whether the networktopology is �xed or not. The proofs of these propositions use the fats that, on the one hand,disequality onstraints an be satis�ed using fresh node names (hene the use of the set Inames)and, on the other hand, the prediates of the logi Lroute involve only a �nite number of nodes.
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3.3. BOUNDING THE SIZE OF MINIMAL SOLUTIONS FOR SOLVED FORMS 65
3.3.3 Case of a �xed topologyIn ase the network topology is �xed, we show that we an bound the size of an attak, wherethe bound depends on the size of the graph and the size of the onstraints.In partiular, we show that, if there is a solution of (C, I) ∧ Φ1 ∧ Φ2 for graph G, thenthere exists a substitution σ suh that σ is a solution of (C, I) ∧Φ1 ∧Φ2 for G, and variablesof sort lists are instantiated by lists of length at most M where M is a bound that dependson Φ2, Φ1, and E.To prove this result, we onsider a smallest solution σ of (C, I) ∧ Φ1 ∧ Φ2 for G, and weassume that there exists a variable xℓ of sort lists suh that xℓσ is a list of length greaterthan M . We built a solution σ′ (smaller that σ) by hanging only the value of xℓσ in orderto redue its length, preserving the satis�ability of our onstraints. We build xℓσ

′ by �rstmarking the names we want to keep in xℓσ getting a marked list, i.e. a list in whih someelements are marked.For instane, in order to ensure that a loop prediate will still be satis�ed, two namesare atually su�ient, whereas for a checkl prediate, three names are needed. Note that, tosatisfy a positive ourrene of a route prediate, we know that the list ontains at most #Enames (sine names in the list have to be distint), thus we know that the variable xℓ is notinvolved in a positive ourrene of a route prediate. We also have to keep some names totake the disequality onstraints into aount.De�nition 3.3.1 (extrated list). An extrated list from a list l = [a1; . . . ; an] is a list
[ai1 ; . . . ; aik ] suh that 1 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ n with 0 ≤ k ≤ n.Then, we onsider the list extrated from xℓσ by keeping the marked names plus anadditional one, and we onsider variations of this extrated list. Note that the length of thisextrated list is bounded by the size of the graph and the size of the onstraints.De�nition 3.3.2 (variation). Let l′ be a marked list in whih at least one of its element isnot marked. A variation of l′ = [a′1; . . . ; a

′
n] is a list l = [a1; . . . ; an] suh that:

• there exists 1 ≤ j0 ≤ n suh that a′j0 is not marked and aj0 is a fresh name,
• for all 1 ≤ i ≤ n suh that i 6= j0, we have that ai = a′i.Intuitively, a variation of a list l whih ontains only one unmarked name is a list l′ thatoinides with l on all marked names, and that replaes the unmarked one by a fresh name.Atually, instantiating xℓ by any variation of this extrated list allows us to ensure thatour onstraints are still satis�ed.We prove that we an �nd a solution in whih lists are polynomially bounded. In thease where the network topology is �xed, the bound depends on the size of the graph, i.e. itsnumber of edges. Let l be a list, we denote by |l|ℓ the length of l.Proposition 3.3.4. Let (C, I) be a speial onstraint system in solved form, Φ1 be a onjun-tion of atomi formulas of Lroute, Φ2 be a set of disequality onstraints, and G = (Nloc, E)be a graph. If there is a solution of (C, I) ∧ Φ1 ∧ Φ2 for G, then there exists a solution σ of

(C, I) ∧ Φ1 ∧ Φ2 for G that is polynomially bounded in the size of Φ1,Φ2 and E.
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66 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
Proof. We write Φ2 =

∧

n

∀Yn.un 6= vn, and
Φ1 =

∧

i

±i check(ai, bi) ∧
∧

j

pj∧

k

±jk checkl(cjk , lj) ∧
∧

l

±l route(rl) ∧
∧

h

±h loop(ph)

with ± ∈ {+,−}, ai, bi, cjk are of sort loc, lj , rl, ph are terms of sort lists, un, vn are terms and
Yn are sets of variables.In the following, we denote:
• N the maximal depth of a variable in the disequality onstraints,
• k the maximal number of variables in a disequality onstraint,
• C the number of onstraints ±checkl in Φ1,
• L the number of onstraints loop in Φ1,
• R the number of onstraints ¬route in Φ1, and
• M = max(kN + 3C + L+R+ 3,#E).We show that, if there is a solution of (C, I) ∧ Φ1 ∧ Φ2 for graph G, then there exists asubstitution σ suh that σ is a solution of (C, I) ∧ Φ1 ∧ Φ2 for G, and
• for all variables x of sort lists, |xσ|ℓ ≤M , and
• xσ ∈ I ∪ Nloc otherwise.First, we have that xσ ∈ Nloc when x is a variable of sort loc. Moreover, thanks toLemma 3.3.3, we an assume that xσ ∈ I when x is a variable that is neither of sort loc norof type lists. Now, among these solutions, onsider a smallest solution σ of (C, I) ∧ Φ1 ∧ Φ2for G, where the size of a solution σ is given by |σ| = |x1σ|ℓ + . . . + |xnσ|ℓ where x1, . . . , xnare the variables of sort lists that our in (C, I) ∧ Φ1 ∧ Φ2.If |xσ|ℓ ≤ M for all variables x of sort lists, then we easily onlude. Otherwise, thereexists a variable xℓ of sort lists suh that the length of xℓσ is greater than M . We are goingto show that we an build σ′ from σ, solution of (C, I)∧Φ1 ∧Φ2 for G, smaller than σ. Morespei�ally, we build σ′ suh that for all x 6= xℓ, xσ

′ = xσ, and |xℓσ′|ℓ ≤M < |xℓσ|ℓ.We build xℓσ′ by marking the names we want to keep in the list in the following manner:
xℓσ= a1 a2 . . . akN . . . aPWe mark the �rst kN names in the list:

a1 a2 . . . akN . . .We then mark the other names we want to keep in the list in the following way:Case of a checkl that ours positively.If there exists cjk suh that checkl(cjk , lj) is a onstraint that ours positively in Φ1, i.e.
±jk = +, and xℓ ∈ var(lj). Assume that lj = d1 :: . . . :: dp :: xℓ. As σ is a solution for Φ1, inpartiular we know that c = cjkσ appears exatly one in ljσ, and for any l′ sublist of ljσ,
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3.3. BOUNDING THE SIZE OF MINIMAL SOLUTIONS FOR SOLVED FORMS 67
• if l′ = a :: c :: l1, then (a, c) ∈ E.
• if l′ = c :: b :: l1, then (b, c) ∈ E.Sine c appears exatly one in ljσ, either there exists n suh that c = dnσ, or there exists msuh that c = am. In the �rst ase and if n = p, we mark a1. In the seond ase, we mark am,

am−1(if m > 1) and am+1(if m < P ). Any variation of a list extrated from xℓσ ontainingat least the marked names plus another one satis�es the checkl ondition for graph G.
a1 . . . am−1 am am+1 . . . aP

Case of a checkl that ours negatively.If there exists cjk suh that checkl(cjk , lj) is a onstraint that ours negatively in Φ1, i.e.
±jk = −, and xℓ ∈ var(lj). Assume that lj = b1 :: . . . :: bp :: xℓ. As σ is a solution for Φ1, wean have three di�erent ases depending on c = cjkσ:
• c does not appear in ljσ: for every n,m, bnσ 6= c and am 6= c. In that ase, we marknothing.
• c appears at least twie in ljσ. In that ase, we hoose two ourrenes of c and we markthem when they appear in xℓσ.

a1 . . . c . . . c . . . aP

• c appears one in ljσ, but one of his neighbors in the list is not a neighbor of it in thegraph. For example, c = ai and (ai, ai+1) /∈ E. We mark c and this false neighbor whenthey appear in xℓσ.
a1 . . . ai ai+1 . . . aM

Any variation of a list extrated from xℓσ ontaining at least the marked names plusanother one satis�es the ¬checkl ondition for graph G.Case of a loop that ours positively.If there exists h suh that loop(ph) is a onstraint that ours positively in Φ1, i.e. ±h = +,and xℓ ∈ var(ph). Assume ph = b1 :: . . . :: bp :: xℓ. Then there exists a name c repeated in
phσ. We mark two ourrenes of suh a c, when they appear in xℓσ.

a1 . . . c . . . c . . . aPAny variation of a list extrated from xℓσ ontaining at least the marked names plusanother one satis�es the loop ondition for graph G. Indeed, the ondition does not dependon the graph.Case of a loop that ours negatively.If there exists h suh that loop(ph) ours negatively in Φ1, i.e. ±h = −, and xℓ ∈ var(ph).Assume that ph = b1 :: . . . :: bp :: xℓ. Removing nodes from the list preserves this ondition,
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68 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
so any extrated list of xℓσ satis�es the ¬loop ondition. Moreover, as a variation of a list isbuilt with a fresh onstant, any variation of a list extrated from xℓσ satis�es the ondition.Case of a route that ours negatively.If there exists rl suh that route(rl) ours negatively in Φ1, i.e. ±l = −, and xℓ ∈ var(rl).Assume that rl = b1 :: . . . :: bp :: xℓ. As σ is a solution for Φ1, we an have two di�erent ases:
• There exists a name c repeated in rlσ. Then we mark two ourrenes of suh a c, whenthey appear in xℓσ.
• There exists a sublist l of rlσ suh that l = c :: d :: l1 and (c, d) /∈ E. We mark c and dif they appear in xℓσ.

a1 . . . c d . . . aP

Any variation of a list extrated from xℓσ ontaining at least the marked names plus anotherone satis�es the ¬route ondition for G.Case of a route that ours positively.If there exists rl suh that route(rl) ours positively in Φ1, i.e. ±l = +, and xℓ ∈ var(rl).Assume that rl = b1 :: . . . :: bp :: xℓ. Write rlσ = c1 :: . . . :: cn. As σ is a solution for
Φ1 in G, for every 0 < i < n, (ci, ci+1) ∈ E and for every i 6= j, ci 6= cj . Consequently,
|rlσ|ℓ ≤ #E, and as |xℓσ|ℓ ≤ |rlσ|ℓ, we have that |xℓσ|ℓ ≤ #E. But our hypothesis tells usthat |xℓσ|ℓ > M ≥ #E. So there is no positive route ondition on xℓ.We ount the number of marked names. We have marked the �rst kN names in the list.For eah onstraint ±checkl, we mark at most 3 names in the list. Suppose there are severalonstraints ¬route(l) with xℓ sublist of l. Either ¬route(xℓσ) holds, and we an mark twonames in xℓσ whih will make all the ¬route onstraints true; or the onstraint is satis�ed bymarking one name for eah onstraint. Thus, we need only mark max(R, 2) names when R ≥ 1and 0 otherwise. Thus, in any ase, it is su�ient to mark R + 1 names in xℓσ. Similarly, itis su�ient to mark L+ 1 names in xℓσ to satisfy the loop onstraints. The number of namesmarked in the list is at most

kN + 3C + (R+ 1) + (L+ 1) ≤M.Consider l1 extrated from xℓσ by keeping only the marked names in xℓσ and the �rstunmarked name. Suh an unmarked name exists, beause |xℓσ|ℓ ≥M . Let l2 be the variationof l1 replaing the �rst unmarked name with a fresh onstant aℓ. For eah ondition onsideredabove, l2 satis�es it, as it is a variation of a list extrated from xℓσ ontaining the markednames.Let σ0 be the substitution suh that xσ0 = xσ for every x ∈ dom(σ) r {xℓ}, and xσ = xotherwise. Let σ′ = σ0 ∪ {xℓ 7→ l2}. By hypothesis, σ is a solution of Φ1 for G, so byonstrution, σ′ is a solution of Φ1 for G. Now, it remains for us to show that σ′ is a solutionof (C, I) and Φ2.Dedution onstraints. Consider a dedution onstraint Ti ⊢ xi in C. Either xi is of sort
loc or lists, whih means that Nloc ⊢ xiσ

′, thus Tiσ′ ∪ I ⊆ T0 ∪ I ⊢ xiσ′. Or xi is not of
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3.3. BOUNDING THE SIZE OF MINIMAL SOLUTIONS FOR SOLVED FORMS 69
sort loc or lists, so in partiular xi ∈ dom(σ) r xℓ, and xiσ

′ = xiσ ∈ I ∪ Nloc, so again
Tiσ

′ ∪ I ⊆ T0 ∪ I ⊢ xiσ′. Hene, in both ases, we have that Tiσ′ ∪ I ⊢ xiσ′. Consequently,
σ′ is a solution of (C, I).Disequality onstraints. Consider a disequality onstraint ∀Y.u 6= v ∈ Φ2. We assumew.l.o.g. that dom(σ) ∩ Y = ∅. We have to show that uσ′ and vσ′ are not uni�able. Wedistinguish two ases. Either uσ0 and vσ0 are not uni�able, but in suh a ase, we easilydedue that uσ′ and vσ′ are not uni�able too. This allows us to onlude. Otherwise, let
µ = mgu(uσ0, vσ0).If dom(µ) ⊆ Y , let τ = {xℓ 7→ xℓσ} ◦ µ. We have that:

(uσ)τ = ((uσ){xℓ 7→ xℓσ})τ = (uσµ){xℓ 7→ xℓσ}
(vσ)τ = ((vσ){xℓ 7→ xℓσ})τ = (vσµ){xℓ 7→ xℓσ}.Hene, we dedue that uσ and vσ are uni�able, and we obtain a ontradition sine σ satis�esthe onstraint ∀Y.u 6= v. Hene, this ase is impossible.Otherwise, there exists a term t suh that µ(xℓ) = t, and var(t) ⊆ Y . We apply Lemma 3.3.2to the set T = {uσ0, vσ0}, and the set of equations P = {uσ0 = vσ0}. We have that

µ = mgu(P ). Sine σ is ground, we get that:
|t|d ≤ #dom(µ).max(|uσ|d, |vσ|d)

≤ #dom(µ).max(|u|d, |v|d)
≤ kNWe reason by ase over t:

• If t is not of sort lists, as σ′ is well-sorted, uσ′ and vσ′ are not uni�able.
• Suppose t = [a1; . . . ; an], with a1, . . . , an terms of sort loc. We write t = t1@t2 with
t2 ground term of maximal size, where @ denotes the onatenation of lists. We haveshown that |t1|d = |t|d ≤ kN .We know that xℓσ′ = [b1; . . . ; bp] and there exists k′ > kN suh that bk′ = aℓ and aℓis a name of I whih does not appear anywhere else in the onstraints. Consequently,
ak′ 6= aℓ, and so xℓσ′ 6= tθ for any substitution θ.Now, assume by ontradition that uσ′ and vσ′ are uni�able. This means that thereexists τ suh that (uσ′)τ = (vσ′)τ . Hene, we have that τ ◦ {xℓ 7→ xℓσ

′} is an uni�er of
uσ0 and vσ0. By hypothesis, we have that µ = mgu(uσ0, vσ0). Hene, we dedue thatthere exists θ′ suh that τ ◦ {xℓ 7→ xℓσ

′} = θ′ ◦ µ. We have that:� τ ◦ {xℓ 7→ xℓσ
′}(xℓ) = xℓσ

′, and� θ′ ◦ µ(xℓ) = tθ′.This leads to a ontradition.
• Suppose t = a1 :: . . . :: an :: yℓ, with yℓ ∈ Y variable of sort lists. We know that
|t|d ≤ kN , thus we must have n < kN . We reason by ontradition. Assume that thereexists θ′ suh that (uσ′)θ′ = (vσ′)θ′. In the remaining of the proof, we show that uσand vσ are uni�able.
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70 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
By hypothesis, we have that θ′ ◦ {xℓ 7→ xℓσ

′} is an uni�er of uσ0 and vσ0. Sine
µ = mgu(uσ0, vσ0), we dedue that there exists ρ′ suh that:

ρ′ ◦ µ = θ′ ◦ {xℓ 7→ xℓσ
′}.We have that xℓσ′ = (xℓµ)ρ′ = tρ′. By hypothesis, we know that the size of xℓσ isgreater than M ≥ kN > n. Let lt be the list obtaining from xℓσ by removing its n �rstelements. Let ρ0 be a substitution suh that xρ0 = xρ′ for every x ∈ dom(ρ) r {yℓ},and yρ0 = y otherwise. Let ρ = ρ0 ◦ {yℓ 7→ lt}. In order to onlude, it remains to showthat ρ ◦ µ is an uni�er of uσ and vσ.We have that xℓσ′ = (xℓµ)ρ′ = tρ′ = aiρ

′ :: . . . anρ
′ :: yℓρ

′. Moreover, we know that xℓσand xℓσ′ have the same �rst kN elements by onstrution, and n < kN . Relying on thisfat to establish the last equality, we have that:
(xℓµ)ρ = tρ

= (a1 :: . . . :: an :: yℓ)ρ
= a1ρ :: . . . :: anρ :: lt
= a1ρ

′ :: . . . :: anρ
′ :: lt

= xℓσ.Hene, we have that ((uσ)µ)ρ = ((uσ0)µ)ρ, and ((vσ)µ)ρ = ((vσ0)µ)ρ. We easilyonlude that uσ and vσ are uni�able sine we know that (uσ0)µ = (vσ0)µ.In all possible ases, σ′ satis�es the disequality onstraint.As a onlusion, σ′ is a solution of (C, I) ∧ Φ1 ∧ Φ2, smaller than σ, whih leads to a ontra-dition.3.3.4 Case of an a priori unknown topologyIn the ase where the network topology is not �xed, we show that we an bound the size ofan attak.The method for bounding the lists follows the same lines as the proof of Proposition 3.3.4.However, we an not onsider the size of the graph to bound the size of the lists. This wasused in the proof of Proposition 3.3.4 to deal with the ase of route that our positively inthe formula. Here, we rely on the fat that we an hange the graph to solve this problem,and we onsider ubiquitous graphs. More preisely, we introdue the notion of ubiquitousnodes, that is, nodes onneted to every other nodes in the graph. We assoiate to a graph Ga ubiquitous graph where all the nodes that are not already part of an edge in G beomeubiquitous.De�nition 3.3.3 (ubiquitous graph). Let G = (Nloc, E) be a �nite graph (i.e. suh that E is�nite). Consider the sets of nodes V = {n | ∃n′ suh that (n, n′) ∈ E}, and Vubi ⊆ Nloc r V .The graph (Nloc, E∪Eubi) where Eubi = {(a, b) | a ∈ V ∪Vubi, b ∈ Vubi} is alled the ubiquitousgraph assoiated to G and Vubi.Moreover, we onsider ubiquitous variations instead of variations. Ubiquitous variationsreplae the unmarked names in a list by names of ubiquitous nodes. This is one againneeded to satisfy a formula route that ours positively.
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3.3. BOUNDING THE SIZE OF MINIMAL SOLUTIONS FOR SOLVED FORMS 71
De�nition 3.3.4 (ubiquitous variation). Let l′ be a marked list and n be the number ofunmarked elements in l′. Let Vubi be a set of nodes suh that #Vubi > n and names in
Vubi do not our in l′. A ubiquitous variation aording to Vubi of l′ = [a′1; . . . ; a

′
n] is a list

l = [a1; . . . ; an] suh that:
• for all 1 ≤ i ≤ n suh that a′i is not marked, ai ∈ Vubi,
• for all 1 ≤ i ≤ n suh that a′i is marked, ai = a′i.Moreover we require that the ubiquitous nodes of l are all distint.First, we show that hanging the graph does not hange the solution, provided we do nothange the links between the nodes taking part in the protool.Lemma 3.3.6. Let G = (Nloc, E) be a graph, (C, I) be a speial onstraint system, Φ1 be aformula of Lroute, and Φ2 be a set of disequality onstraints. Let σ be a solution of (C, I)∧Φ1∧

Φ2 for G and N ′
loc = Nloc ∩ names(C,Φ1,Φ2, σ). Let G′ = (Nloc, E

′) be a graph that oinideswith G on N ′
loc, i.e. suh that E = {(n1, n2) | (n1, n2) ∈ E′ and n1, n2 ∈ N ′

loc}. Then σ is asolution of (C, I) ∧ Φ1 ∧ Φ2 for G′.Proof. We show that σ satis�es eah onstraint in (C, I) ∧ Φ1 ∧ Φ2 when the underlyinggraph is G′. First, not that σ trivially satis�es the dedution onstraints, the disequalityonstraints and the loop onstraints.In order to onlude, we have to hek that this result also holds for the remaining on-straints in Φ1.
• [[check(aσ, bσ)]]G = 1 if, and only if, (aσ, bσ) ∈ E. We have that [[check(aσ, bσ)]]G = 1 if,and only if, [[check(aσ, bσ)]]G′ = 1.
• [[checkl(cσ, lσ)]]G = 1 if, and only if, lσ is of sort lists, cσ appears exatly one in lσ, andfor any l′ sub-list of lσ,� if l′ = a :: cσ :: l1, then (a, cσ) ∈ E.� if l′ = cσ :: b :: l1, then (b, cσ) ∈ E.As in the previous ase, we easily onlude that [[checkl(cσ, lσ)]]G = 1 if, and only if,

[[checkl(cσ, lσ)]]G′ = 1.
• [[route(lσ)]]G = 1 if, and only if, lσ is of sort lists, lσ = [a1; . . . ; an], for every 1 ≤ i < n,

(ai, ai+1) ∈ E, and for every 1 ≤ i, j ≤ n, i 6= j implies that ai 6= aj . As in the previousase, (ai, ai+1) ∈ E if, and only if, (ai, ai+1) ∈ E′. Hene, [[route(lσ)]]G = 1 if, and onlyif, [[route(lσ)]]G′ = 1.Hene, σ is a solution of (C, I) ∧ Φ1 ∧ Φ2 for G′.We prove that we an �nd a solution in whih lists are polynomially bounded. In the asewhere the network topology is unknown, the bound depends on the size of the formulas.Proposition 3.3.5. Let (C, I) be a speial onstraint system in solved form, Φ1 be a onjun-tion of atomi formulas of Lroute, Φ2 be a set of disequality onstraints. If there is a solutionof (C, I) ∧ Φ1 ∧ Φ2 for the graph G = (Nloc, E), then there exists a graph G′ = (Nloc, E
′)and a substitution σ suh that σ is a solution of (C, I) ∧ Φ1 ∧ Φ2 for G′, and σ is polyno-mially bounded in the size of Φ1 and Φ2. Moreover, we have that G′ oinides with G on

V = {n | ∃n′ suh that (n, n′) ∈ E}, i.e. E = {(n1, n2) ∈ E′ | n1, n2 ∈ V }.
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72 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
Proof. We adapt the proof of Proposition 3.3.4 by showing that there exists a solution σsuh that for every variable x of sort lists, we have that |xσ|ℓ ≤M = 2×(kN+3C+L+R+2)where k,N,C, L, and R are de�ned as in Proposition 3.3.4.Let σ be a solution of (C, I)∧Φ1∧Φ2 for graph G and assume that there exists a variable xℓof sort lists suh that |xℓσ|ℓ > M . Let Vubi be a set of M/2 fresh nodes, i.e. names in Nlocthat do not our in C, Φ1, Φ2, . Consider G′ the ubiquitous graph assoiated to G and Vubi.We show that we an build σ′, a solution of (C, I)∧Φ1∧Φ2 for graph G′, suh that for x 6= xℓ,

xσ′ = xσ, and |xℓσ′|ℓ ≤M .We build σ′ in a similar way as in the previous proof. We mark xℓσ as in the previousproof. The number of names marked in the list is at most:
kN + 3C + (R+ 1) + (L+ 1) ≤M/2.Consider l1 extrated from xℓσ by leaving exatly one unmarked name between sequenesof marked names. Note that, we have no more than M/2 unmarked names in l1. Let l2 be theubiquitous variation of l1 aording to Vubi. The fat that we onsider a ubiquitous variationallows one to satisfy the onstraint route that ours positively. Note that, we have no morethan M/2 ubiquitous names in l2, so |l2|ℓ ≤M .Let σ0 be the substitution suh that xσ0 = xσ for every x ∈ dom(σ) r {xℓ}, and xσ = xotherwise. Let σ′ = σ0∪{xℓ 7→ l2}. By onstrution, we have that the substitution σ′ satis�es

Φ1. We show that σ′ is a solution of (C, I) and Φ2 for G′ as in Proposition 3.3.4.
3.4 Deidability resultWe are now ready to state our two main deidability results.Simple properties like serey are undeidable when onsidering an unbounded number ofrole exeutions, even for lassial protools [DLMS99℄. Sine our lass of proesses enompasseslassial protools, the existene of an attak is also undeidable. In what follows, we thusonsider a �nite number of sessions, i.e. proesses without repliation.In most existing frameworks, the intruder is given as initial knowledge a �nite number ofmessages (e.g. some of the seret keys or messages learned in previous exeutions). However,in the ontext of routing protools, it is important to give an a priori unbounded number ofnode names to the attaker that he an use as its will, in partiular for possibly passing somedisequality onstraints and for reating false routes.De�nition 3.4.1. We say that a proess is �nite if it does not ontain the repliation operator.A onrete on�guration K = (P[_];S; I) is said initial if K is ground, P is �nite, S is a�nite set of terms and I = Inames ∪ Iterms where Iterms is a �nite set of terms and Inames isan in�nite set of names. Moreover, Nloc ⊆ Inames ∪ Iterms (the intruder is given all the nodenames in addition to its usual initial knowledge) .The intruder is thus given an in�nity of node names in addition to its usual initial know-ledge. In pratie, this enables him to generate any IP address that he hooses.We show that aessibility properties are deidable for �nite proesses of our proessalgebra, whih models seured routing protools, for a bounded number of sessions. Weatually provide two deision proedures, aording to whether the network is a priori given
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3.4. DECIDABILITY RESULT 73
or not. In the ase where the network topology is not �xed in advane, our proedure enablesus to automatially disover whether there exists a (worst-ase) topology that would yield anattak.Note that Theorem 3.4.1(unknown topology) does not imply Theorem 3.4.2(�xed topology)and reiproally. Indeed, in Theorem 3.4.2, the whole topology is �xed, inluding in partiularthe loation of the intruder nodes. Theorems 3.4.1 and 3.4.2 ensure in partiular that we andeide whether a routing protool like SRP an guarantee that any route aepted by thesoure is indeed a route (a path) in the network (whih an be �xed by the user or disoveredby the proedure). The NP-hardness of the existene of an attak omes from the NP-hardnessof the existene of a solution for dedution onstraint systems [RT01℄.
3.4.1 Case of an unknown topologyWe show that in the ase of an a priori unknown topology, deiding whether there is an attakis deidable, providing an NPTIME omplexity bound.Theorem 3.4.1. Let K = (P[_];S; I) be an initial onrete on�guration with a hole,M⊆
Nloc be a �nite set of nodes, and Φ ∈ Lroute be a formula. Deiding whether there existsa graph G = (Nloc, E) suh that there is an M-attak on K and Φ for the topology G isNP-omplete.We provide �rst a very general sketh of the proof:
• We �rst use the symboli semantis (Setion 3.2) based on onstraint systems, moreamenable to automation. We have already shown its orretness and ompleteness w.r.t.the onrete semantis.
• We transform the onstraint systems obtained through the exeution of a routing pro-tool into solved onstraint systems (as demonstrated in Chapter 2) .
• We show how to bound the size of a minimal attak on a solved onstraint system(Setion 3.3).Let us now detail the deision proedure.Let Ks = (P[if Φ then out(error) else 0];S; I; ∅; ∅). Ks is a ground symboli on�gurationwhose onretization is (P[if Φ then out(error) else 0];S; I). Let VK be the set of names ofsort loc that our in P andM. Our deision proedure works as follows:Step 1 We partially guess the graph G = (Nloc, E). Atually, we guess whether (n1, n2) ∈ Efor every n1, n2 ∈ VK .Let GK = (Nloc, EK) where EK = {(n1, n2) | (n1, n2) ∈ E and n1, n2 ∈ VK}.Step 2 We guess a path of exeution of the symboli transition rules w.r.t. the graph GK .

Ks →
s∗
GK ,M

(⌊out(u)⌋n ∪ P
′;S ′; I ′; C; Ψ).Step 3 Let I ′ = Inames ⊎ Iterms suh that (C, Inames) is a onstraint system. Let σ =

mgu(u, error) and Cσ = D and Ψσ = Φ′
1 where D is a �nite set of dedution onstraints and

Φ′
1 ontains disequality onstraints and formulas of Lroute.
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74 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
Step 4 We guess a sequene of transformation rules from (D, Inames) to (D′, Inames) where
(D′, Inames) is a onstraint system in solved form. We have that:

(D, Inames) 
∗
σ′ (D′, Inames) with (D′, Inames) in solved form.Step 5 We ompute the onjuntive normal form of the formula Φ′

1. Hene, Φ′
1 is equivalentto ∧

k

φk1 ∨ · · · ∨ φ
k
ik
.

We hoose non-deterministially φkαk
for every k. Let Φ2 =

∧

k

φkαk
.

Step 6 Let S be the DAG size of P, S, Φ, M, and If . Let I0 be a �nite subset of Inamesof size 2S2 × (S4 + 5S2 + 2). Guess the values of variables whih are not of sort lists in I0 ∪
names(P,S,Φ,M, If ). Guess the values of variables of sort lists among lists of nodes in I0 ∪
names(P,S,Φ,M, If ) of length at most 2× (S4 +5S2 +2). This gives us a substitution σ andwe guess a graph G = (Nloc, E) suh that E ⊆ {(n1, n2) | n1, n2 ∈ I0∪names(P,S,Φ,M, If )}and that oinides with GK on VK , i.e:

EK = {(n1, n2) ∈ E | n1, n2 ∈ VK}.Lastly, we hek whether σ is a solution of (D′, Inames) ∧ Φ2 for the graph G.Proof. We now explain eah step of our algorithm.Step 1. We have that #VK < #names(P,M). Hene, we an guess GK whose size ispolynomially bounded.Step 2. For every graph G′ = (Nloc, E
′) with EK = {(n1, n2) ∈ E′ | n1, n2 ∈ VK}, we havethat:

(P;S; I; C; Ψ)→s∗
GK ,M

(P ′;S ′; I ′; C′; Ψ′) i� (P;S; I; C; Ψ)→s∗
G′,M(P ′;S ′; I ′; C′; Ψ′).So we an guess the transitions knowing only EK . Now, thanks to Theorem 3.2.4 wededue that there is anM-attak on K and Φ for graph G if, and only if, there is a derivation

(P[if Φ then out(error) else 0];S; I; ∅; ∅) →s∗
GK ,M

(⌊out(u)⌋n ∪ Ps;Ss; Is; C; Ψ)with σ = mgu(u, error) and the onstraint system (Cσ, Inames) together with Ψσ has a solutionfor graph G.Atually, we an guess suh a path. Indeed, the number of derivations starting fromon�guration Ks is bounded. Atually, the length of possible paths is bounded by the sizeof the protool: as there is no repliation in the initial on�guration, eah transition leadsto a smaller proess. Moreover, the number of on�gurations reahable with one symbolitransition is bounded as well: we an �rst guess whih proess is going to evolve and whihis the orresponding transition. There is only one possible resulting on�guration one this ishosen, exept for the ommuniation transition, where we also have to guess whih neighborswill reeive the message, and for the read transition, where we have to hoose whih term toread.
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3.4. DECIDABILITY RESULT 75
When a transition Ks →s

GK ,M K ′
s ours and Ks is �nite, in partiular it does not ontainthe repliation operator, we have to ontrol the size of K ′

s. If the rule onsidered is not theComms rule, then the number of subterms in K ′
s is smaller or equal to the number of subtermsin Ks. Indeed, it is straightforward to see when onsidering rules Ins, Stores, Read-Elses,If-Thens, If-Elses, Pars and News. When applying rule Read-Thens, a substitution isapplied to all the terms in K ′

s, but as the substitution is a most general uni�er of terms in Ks,the number of subterms does not inrease. But when onsidering a Comms rule, new terms anbe produed by renaming some variables. However, the number of Comms steps is boundedby the number of terms of the form out(t) in the protool, and eah step an produe in theworst ase a number of terms polynomial in the size of the on�guration, as they are termsthat appear in formulas. Consequently, at the end of the derivation, the number of subtermsonsidered is polynomial in the number of subterms at the beginning of the derivation.Step 3. Straightforward.Step 4. We apply Theorem 2.3.1. Thus, there exists a solution θ of (D, Inames) and Φ1 forgraph G if, and only if, there exists a onstraint system (D′, Inames) in solved form and somesubstitutions σ′, and θ′ suh that θ = θ′ ◦ σ′, (D, Inames) 
∗
σ′ (D′, Inames) and θ′ is a solutionfor (D′, Inames) and Φ1σ

′ for graph G.Step 5. This step is straightforward. The formula Φ1σ
′ ontains disequality onstraints andformulas of Lroute. Consequently, Φ2 =

∧

k

φkαk
, obtained from Φ1σ

′, an be written:
Φ2 =

∧

i

∀Yi.ui 6= vi ∧
∧

j

±j check(aj , bj) ∧
∧

k

∧

i

±ik checkl(cik , lk) ∧
∧

h

±h loop(ph) ∧
∧

l

±l route(rl)Finally, we are left to deide whether there exists a solution to a solved speial onstraintsystem (D′, Inames) and a formula Φ2 as desribed above.Step 6. First, we show that for any term t ∈ st(D′,Φ2), there exists t′ in st(D,Φ′
1) suh that

t = (t′σ)σ′. Thanks to Theorem 2.3.1, we have that
st(D′) ⊆ st(Dσ′) ⊆ st(D)σ′.Moreover, we have that

st(Φ2) ⊆ st(Φ′
1σ

′) ⊆ st(Φ′
1)σ

′ ∪
⋃

x∈var(D)

st(xσ′) ⊆ st(Φ′
1)σ

′ ∪ st(D)σ′.

The last inlusion is a diret onsequene of the inlusion st(Dσ′) ⊆ st(D)σ′. Hene, we havethat: st(D′,Φ2) ⊆ st(Φ1)σ
′ ∪ st(D)σ′ ⊆ st(Cσ)σ′. By relying on Lemma 3.3.1, we obtain that

st(Cσ) ⊆ st(C)σ. Sine names(D′,Φ2) ∩ I0 = ∅, we dedue that
st(D′,Φ2) ⊆ st(C)σσ′ r I0

⊆ (st(C)σσ′ rNloc) ∪ names(P,S,Φ,M, If )Let S be the DAG size of P, S, Φ, M, and If . By inspetion of the symboli transitionrules, we see that at eah step, the onstraint system an grow at most of size S (beause ofthe ommuniation rule). Hene, we have that #st(D′,Φ2) ≤ S2.
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76 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
Let N be the maximal depth of variables in the terms of all disequality onstraints in

Φ2, and k the maximal total number of variables in a disequality onstraint. We have that
kN ≤ D2 where D is the DAG size of the largest disequality onstraint that ours in D′.Sine D ≤ #st(D′,Φ2), we dedue that kN ≤ D2 ≤ S4.Let L be the number of ourrenes of a loop prediate in Φ2, R be the number of our-renes of a route prediate in Φ2, and C be the number of ourrenes of a checkl prediate in
Φ2. We have that:

L ≤ S2, R ≤ S2, and C ≤ S2.Now, we have to show that if there exists a graph G = (Nloc, E) suh that EK = {(n1, n2) ∈
E | n1, n2 ∈ VK} and on whih there is an attak, then there exists a graph as desribed inStep 6 for whih there is an attak and the substitution witnessing the fat that there existsan attak is also as desribed in Step 6 of our algorithm.
• Thanks to Lemma 3.3.3, we know that there is a solution where the variables whih arenot of sort loc or lists are substituted by names in I0 (independently of the underlyinggraph).
• Thanks to Proposition 3.3.5, we know that if there is a graph G = (Nloc, E) leadingto a solution, there exists a substitution σ where the size of the instantiated variablesof sort lists is bounded by M = 2 × (kN + 3C + R + L + 2) and there exists a graph
G′ = (Nloc, E

′) that oinides with G on V = {n | ∃n′ suh that (n, n′) ∈ E}.We have that: M ≤ 2×(S4+5S2+2). Hene, the number of distint names of sort loc in
σ is bounded by #var(D′,Φ2)×M ≤ 2S2×(S4+5S2+2). We onsider a set I ′0 having thissize. So, there is a solution σ for G′ suh that names(σ) ⊆ I ′0 ∪ names(P,S,Φ,M, If ).

• Thanks to Lemma 3.3.6, we know that if σ is a solution for graph G′ = (Nloc, E
′),then σ is also a solution for any graph G′′ = (Nloc, E

′′) that oinides with G′ on
N ′

loc where N ′
loc represents the names in Nloc that our in D′, Φ2, and σ. Note that

N ′
loc ⊆ I

′
0 ∪ names(P,S,Φ,M, If )Let G′′ = (Nloc, E

′′) be the graph suh that
E′′ = {(n1, n2) ∈ E

′ | n1, n2 ∈ I
′
0 ∪ names(P,S,Φ,M, If )}.We have that σ is a solution for the graph G′′ and the graph G′′ is as desribed in Step 6.

3.4.2 Case of a �xed topologyWe will now explain how to deide the existene of an attak given a �xed graph G. Theproedure is similar to the proedure in the ase of an unknown topology, but we no longerhave to guess part of the topology at the beginning of the deision proedure.Theorem 3.4.2. Let K = (P[_];S; I) be an initial onrete on�guration with a hole, G =
(Nloc, E) be a �nite graph, M ⊆ Nloc be a �nite set of nodes, and Φ ∈ Lroute be a formula.Deiding whether there exists anM-attak on K and Φ for the topology G is NP-omplete.
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3.4. DECIDABILITY RESULT 77
LetKs = (P[if Φ then out(error) else 0];S; I; ∅; ∅). First,Ks is a ground symboli on�gurationwhose onretization is (P[if Φ then out(error) else 0];S; I). We write G = (Nloc, E). Let
V = {n | ∃n′ suh that (n, n′) ∈ E}. Our deision proedure works as follows:Step 1 We guess a path of exeution of the symboli transition rules w.r.t. graph G.

Ks →
s∗
G,M (⌊out(u)⌋n ∪ P

′;S ′; I ′; C; Ψ).Step 2 Let I ′ = Inames ⊎ Iterms suh that (C, Inames) is a onstraint system. Let σ =
mgu(u, error) and Cσ = C′0 and Ψσ = Φ′

1.Step 3 We guess a sequene of transformation rules from (D, Inames) to (D′, Inames) where
(D′, Inames) is a onstraint system in solved form. We have that:

(D, Inames) 
∗
σ′ (D′, Inames) with (D′, Inames) in solved form.Step 4 We ompute the onjuntive normal form of formula Φ′

1σ. Hene, Φ′
1σ is equivalentto ∧

k

φk1 ∨ · · · ∨ φ
k
ik
.

We hoose non-deterministially φkαk
for every k. Let Φ2 =

∧

k

φkαk
.

Step 5 Let S be the DAG size of P, S, Φ,M, and If . Let I ′0 be a �nite subset of I0 of size
S2 ×max(S4 + 5S2 + 3,#E). Guess the values of variables of sort lists among lists of nodes in
I ′0 ∪ names(P,S,Φ,M, If ) ∪ V of length at most max(S4 + 5S2 + 3,#E). Guess the valuesof the other variables, i.e. those that are not of sort lists, in I ′0 ∪ names(P,S,Φ,M, If ) ∪ V .This gives us a substitution σ. Lastly, we hek whether σ is a solution of (D ′, I0) ∧ Φ2 forgraph G.Proof. The �rst four steps are the same as Steps 2 to 5 in Theorem 3.4.1. Thus, itremains to justify Step 5 of the proedure desribed above. As shown in the proof of Step 6in Theorem 3.4.1, we have that:
• N ≤ S2 where N is the maximal depth of variables in the terms of all disequalityonstraints in Φ2;
• k ≤ S2 where k is the maximal total number of variables in a disequality onstraint in

Φ2;
• L ≤ S2 where L is the number of ourrenes of a loop prediate in Φ2;
• C ≤ S2 where C is the number of ourrenes of a checkl prediate in Φ2;
• R ≤ S2 where R is the number of ourrenes of a route prediate in Φ2.
Now, we want to show that if there exists an attak for graph G, then there is an attakaptured by a substitution as desribed in Step 5 of our algorithm.
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78 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
• Thanks to Lemma 3.3.3, we know that there is a solution where the variables whih arenot of sort lists are substituted by names in I0.
• Thanks to Proposition 3.3.4, we know that if there is a solution, then there exists inpartiular a solution, say σ, suh that |xσ| ≤M for any x of type lists where:

M = max(kN + 3C + L+R+ 3,#E).Atually, we have that M ≤ max(S4 + 5S2 + 3,#E|).Hene, the number of distint names of sort loc in σ is bounded by
#var(D′,Φ2)×M ≤ S2 ×max(S4 + 5S2 + 3,#E).We onsider a set I ′0 having this size. This allows us to onlude.

3.5 AppliationsWe present now a few appliations and we disuss some limitations of our results.3.5.1 Routing protool SRP applied to DSROur deision proedure allows us to retrieve the attak on the protool SRP applied to DSR,mentioned in Example 3.1.4. Indeed, onsider the formal model of SRP applied to DSR(de�ned in Setion 3.1.2) and of its desired property (de�ned in Example 3.1.4). We would �rstguess the graph G0 de�ned in Example 3.1.2. Exeuting symbolially (non deterministially)the proess modeling SRP applied to DSR, we would obtain the symboli on�guration ofExample 3.2.2. Applying our transformation rules, we would then (non deterministially)obtain a solved onstraint system. We an �nally guess the (bounded) solution θ′ = {xa 7→
X,xl 7→ [W ;S]}.3.5.2 Routing protool SDMSRThe seured routing protool SDMSR introdued in [BYLM06℄ is a multipath routing protoolthat an be modeled in our framework. The goal of a multipath routing protool is to �ndseveral paths leading from a soure node S to a destination node D. In order to ahieve suha result, the intermediate nodes may proeed the same request several times. This protoolis based on two authentiation mehanisms: RSA signatures and signatures based on hashhains. The purpose of the latter sheme is to derease omputation time. For the sake ofsimpliity, we desribe the protool without this mehanism. The desription in [BYLM06℄does not really state whether neighbor veri�ation is performed in the protool. To avoidstraightforward attaks, we assume that it is the ase: eah node heks whether the reeivedinformation are onsistent with its knowledge of the network.To disover a route to the destination, the soure onstruts a request paket and broad-asts it to its neighbors. The request paket ontains its name S, the name of the destina-tion D, an identi�er of the request Id , a list ontaining the beginning of a route to D, and asignature over the ontent of the request, omputed with the private key priv(S). The sourethen waits for a reply ontaining a route to D signed by one of his neighbors, and heks thatthis route is plausible.
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3.5. APPLICATIONS 79
The proess exeuted by a soure node S initiating the searh of a route towards a destin-ation node D is

Pinit(S,D) = new Id .out(u1).in u2[ΦS ].0

where 





u1 = 〈req, S,D, Id , S :: [], J〈req, S,D, Id〉Kpriv(S)〉
u2 = 〈rep, D, S, Id , xA, xL, J〈rep, D, S, Id , xL〉Kpriv(xA)〉
ΦS = check(S, xA) ∧ checkl(S, xL)The names of the intermediate nodes are aumulated in the route request paket. Inter-mediate nodes relay the request over the network, exept if they have already seen a shorterone. In order to simplify the presentation, we onsider that they relay all requests as long asthey ontain di�erent routes. An intermediate node also heks that the reeived request isorretly authentiated by heking the attahed signature. Below, V ∈ Nloc, xS , xa and xDare variables of sort loc whereas xr is a variable of sort lists and xId is a variable of sort terms.The proess exeuted by an intermediate node V when forwarding a request is as follows:

Preq(V ) = in w1[ΦV ].read t then 0 else (store(t).out(w2))

where 





w1 = 〈req, xS , xD, xId , xa :: xr, J〈req, xS , xD, xId〉Kpriv(xS)〉
ΦV = check(V, xa)
t = 〈xS , xD, xId , xa :: xr〉
w2 = 〈req, xS , xD, xId , V :: xa :: xr, J〈req, xS , xD, xId〉Kpriv(xS)〉When the request reahes the destination D, he heks that the request omes from oneof its neighbors, has a orret signature, and that the list of aumulated nodes does notontain a loop. Then, the destination D onstruts a route reply, in partiular it omputesa signature over the route aumulated in the request paket with its private key priv(D). Itthen sends the reply bak over the network. The proess exeuted by the destination node Dis Pdest(D) = in v1[ΦD].out(v2).0 where:
v1 = 〈req, xS , D, xId , xb :: xl, J〈req, xS , D, xId〉Kpriv(xS)〉
ΦD = check(D,xb) ∧ ¬loop(xb :: xl)
v2 = 〈rep, D, xS , xId , D,D :: xb :: xl, J〈rep, D, xS , xId , D :: xb :: xl〉Kpriv(D)〉

Then, the reply travels along the route bak to S. The intermediate nodes hek thatthe signature in the reply paket is orret, and that the route is plausible, before forwardingit. Eah node replaes the signature in the reply paket by its own signature. The proessexeuted by an intermediate node V when forwarding a reply is the following one:
Prep(V ) = in w′[Φ′

V ].out(w′′).0

where 





w′ = 〈rep, xD, xS , xId , xa, xr, J〈rep, xD, xS , xId , xr〉Kpriv(xa)〉
Φ′
V = checkl(V, xr) ∧ check(V, xa)

w′′ = 〈rep, xD, xS , xId , V, xr, J〈rep, xD, xS , xId , xr〉Kpriv(V )〉We have found that SDMSR is subjet to the same kind of attak than SRP applied toDSR. Consider the same graph G0 as for the attak we desribed on SRP. Let
K0 = (⌊Pinit(S,D)⌋S | ⌊Pdest(D)⌋D; ∅; I0)
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80 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
The attak senario is the following one. The soure S sends a route request towards D.The request reahes the node nI . Thus, the attaker reeives the following message:

〈req, S,D, Id , S :: [], J〈req, S,D, Id〉Kpriv(S)〉.The attaker then broadasts the following message in the name of X:
〈req, S,D, id, [X;W ; I;S], J〈req, S,D, Id〉Kpriv(S)〉.SineD is a neighbor of nI , it will hear the transmission. In addition, the list of nodes [X;W ; I;S]ends with X, whih is also a neighbor of D, and does not ontain any loop, and signature

J〈req, S,D, Id〉Kpriv(S) is valid. Consequently, the destination D will proess this request andwill send the following route reply bak to S:
〈rep, D, S, Id , D, [D;X;W ; I;S], J〈rep, D, S, Id , [D;X;W ; I;S]〉Kpriv(D)〉.The attaker will put its own signature J〈rep, D, S, Id , [D;X;W ; I;S]〉Kpriv(nI) instead of thesignature of D, and it will send the resulting message to S.To model seurity in our model, we replae in Pinit the proess 0 by a hole and we hekwhether the formula ¬route(xL) holds. Applying our proedure to the initial on�guration K0,we an reah the on�guration

Ks = (⌊out(error).0⌋S; ∅; I0 ∪ {u1, v2}; C; Ψ)where
C = {I0 ∪ {u1}  v1 ∧ I0 ∪ {u1, v2} and Ψ = ΦD ∧ ΦS ∧ ¬route(xL)}with:
u1 = 〈req, S,D, Id , S :: [], J〈req, S,D, Id〉Kpriv(S)〉
u2 = 〈rep, D, S, Id , xA, xL, J〈rep, D, S, Id , xL〉Kpriv(xA)〉
ΦD = check(D,xb) ∧ ¬loop(xb :: xl)
ΦS = check(S, xA) ∧ checkl(S, xL)
v1 = 〈req, xS , D, xId , xb :: xl, J〈req, xS , D, xId〉Kpriv(xS)〉
v2 = 〈rep, D, xS , xId , D,D :: xb :: xl, J〈rep, D, xS , xId , D :: xb :: xl〉Kpriv(D)〉and the onstraint system (C, Inames) together with Ψ has a solution

θ = {xid 7→ id, xS 7→ S, xA 7→ nI , xb 7→ X,xl 7→ [W ;nI ;S], xL 7→ [D;X;W ;nI ;S]}for graph G0, so there is an {nI}-attak on K0 for G0. We therefore retrieve the attakmentioned above, that we have disovered while analysing the protool.3.5.3 Other routing protoolsTable routingThe model of proesses we propose inludes the possibility for nodes to store information insome memory. We an therefore model routing protools based on routing tables, suh asSAODV [ZA02℄, SEAD [HJP03℄ and ARAN [SDL+02℄. However, in suh protools, the atual
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3.5. APPLICATIONS 81
found route is not sent to the soure node but depends on the internal states of the nodes.Seurity properties suh as route validity an thus not be expressed using our route prediate.Due to the way properties are modeled, it is not yet possible to straightforwardly analyzerouting orretness of table-based routing protools in our framework. Indeed, we an onlymodel reahability properties at the moment. In the ase of table based routing protools, itis also ruial to detet the existene of loops, as they ould interfere with the good funtionof the network. Both orretness of the route and loop-freeness depend on the routing tablesstored in the internal states. Moreover, in order to model aurately table based routingprotools, our model would have to be modi�ed in the way it deals with stores to add thepossibility of updating a routing table. At the moment, we an only add elements to the storeand they are never deleted. Analyzing table-based routing protools would be appliable towireless ad ho networks but also to wired networks.
Protools using di�erent testsSome protools aim at ensuring other seurity property than route orretness, for examplethat the intruder does not appear on the route obtained through the protool. This property,and others, are sometimes desired, and we have not modeled them. One restrition of ourdeidability result is that it holds for a partiular logi Lroute. We would like to have amore general result, with general onditions on the logi to retain deidability. If we want toadd prediates, our result does not hold any more. In this preise ase, the addition seemsstraightforward, we ould add a prediate in the logi enoding a property stipulating that theroute found is free of maliious nodes, and we are on�dent that we would still get deidability,but this would require writing a new proof. Intuitively, our proof is built in the following way:we mark some names and then we remove the unmarked names from the lists, possibly addingspeial nodes in between the uts. So it seems probable that loal prediates, onstrainingonly a small number of names, as do prediates hek or loop, ould be added very easily.Properties about the entire route would require more attention: if they are preserved by anyut, it is easy to add them, else we have to adapt the speial nodes used to onnet ut portionsof the list (in our model, the ubiquitous nodes to preserve the route property). De�ning suhabstrat onditions would be useful as there are many seurity properties that ould be testedthis way.ReursivityWe have modeled route validity in Example 3.1.4 for the protool SRP applied to DSR. Thesame modeling an be applied to most soure routing protools suh as Ariadne [HPJ05℄,endairA [BV04℄, SRDP [KT09℄, BISS [CH03℄. However, soure routing protools may alsoperform reursive tests: it is the ase for Ariadne and endairA for instane. Suh tests aretypially performed either by the soure or the destination and aim at seuring respetivelythe request or reply phase. These tests an not yet be inluded in our deision proedures.We wish to add the possibility of testing reursivity to our model. A �rst step towards thisend is presented in Chapter 4.
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82 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
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Chapter 4
Protools with Reursive Tests
In the previous hapter, we have proposed a formal model to analyze ad ho routing protools.However, this model does not allow to analyze all existing routing protools. In partiular,suh protools as make use of reursivity are out of his sope. Suh routing protools [BV04,HPJ05, FGML09℄ require the nodes (typially the node originating the request) to hek thatthe list they reeive ould be a valid route. This is usually performed by heking that eahnode has properly signed (or MACed) some part of the route, the whole inoming messageforming a hain where eah omponent is a ontribution from a node in the path. Moreover,reursivity is also a omponent of other protools. For example, in group protools, the serveror the leader typially has to proess a request that ontains the ontributions of eah di�erentagent in the group and these ontributions are used to ompute a ommon shared key (seee.g. the Asokan-Ginzboorg group protool [AG00℄). Other examples of protools performingreursive operations involve erti�ation paths for publi keys (see e.g. X.509 erti�ationpaths [HFP98℄) or right delegation in distributed systems [Aur99℄.Reursive operations may yield omplex omputations. Therefore it is di�ult to hekthe seurity of protools with reursive primitives and very few deision proedures have beenproposed for reursive protools. One of the �rst deidability results [KW04℄ holds when thereursive operation an be modeled using tree transduers, whih forbids any equality test andalso forbids omposed keys and hained lists. In [Tru05℄ reursive omputation is modeledusing Horn lauses and an NEXPTIME proedure is proposed. This is extended in [KT07℄ toinlude the Exlusive Or operator. This approah does however not allow omposed keys norlist mapping (where the same operation, e.g. signing, is applied to eah element of the list).To irumvent these restritions, another proedure has been proposed [CTR09℄ to handle listmapping provided that eah element of the list is properly tagged. No omplexity bound isprovided. All these results hold for rather limited lasses of reursive operations (on lists ofterms). This is due to the fat that even a single input/output step of a protool may revealomplex information, as soon as it involves a reursive omputation. Consequently, reursiveprimitives very quikly yield undeidability.In order to obtain deidability for a lass of protools inluding routing protools, we lim-ited ourselves to onsidering protools that perform standard input/output ations (modeledusing usual pattern mathing) but that are allowed to perform reursive tests suh as hek-ing the validity of a route or the validity of a hain of erti�ates. Indeed, several families ofprotools use reursivity only for performing sanity heks at some steps of the protool. Thisis in partiular the ase of seured routing protools, distributed right delegation, and PKI83
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84 CHAPTER 4. PROTOCOLS WITH RECURSIVE TESTS
erti�ation paths.For heking seurity of protools with reursive tests (for a bounded number of sessions),we use the setting of onstraint systems de�ned in Chapter 2 and add tests of membership toreursive languages.In this hapter, we propose (NPTIME) deision proedures for two lasses of reursivelanguages (used for tests): link-based reursive languages and mapping-based languages. Alink-based reursive language ontains hains of links where onseutive links have to satisfya given relation. A typial example is X.509 publi key erti�ates as de�ned in [HFP98℄ thatonsist in a hain of signatures of the form:

[J〈A1, pub(A1)〉Ksk(A2); J〈A2, pub(A2)〉Ksk(A3); · · · ; J〈An, pub(An)〉Ksk(S)].A mapping-based language ontains lists that are based on a list of names (typially namesof agents involved in the protool session) and are uniquely de�ned by it. Typial examplesan be found in the ontext of routing protools, when nodes hek for the validity of theroute. For example, in the SMNDP protool [FGML09℄, a route from the soure A0 to thedestination An is represented by a list lroute = [An; . . . ;A1]. This list is aepted by the sourenode A0 only if the reeived message is of the form:
[J〈An, A0, lroute〉Ksk(A1); J〈An, A0, lroute〉Ksk(A2); . . . ; J〈An, A0, lroute〉Ksk(An)].Note that a link J〈An, A0, lroute〉Ksk(Ai) both depends on the list lroute and on its i-th element.For eah of these two languages, we show that it is possible to bound the size of a minimalattak (bounding in partiular the size of the lists used in membership tests), relying on theharaterization we have obtained in Chapter 2 for solutions of onstraint systems. As aonsequene, we obtain two new NP deision proedures for two lasses of languages thatenompass most of reursive tests involved in seured routing protools and hain erti�ates.We apture the reursivity tests that have to be performed with language onstraints,that are formally de�ned in Setion 4.1. Furthermore, we also onsider a partiular lass ofsolutions, where the deduible terms are obtained by omposition, and we apply this notionto lists. This enables us in the following setions to prove our deidability results. We de�nelink-based reursive languages, whih enompass in partiular erti�ate hains, in Setion 4.2,and we prove that deiding whether a onstraint system with onstraints in suh a languagehas a solution is deidable in NP. In Setion 4.3, we de�ne mapping based languages and weprove a similar result of deidability regarding this lass of languages.

4.1 De�nitionsWe give a global de�nition of language onstraints in order to de�ne the type of problems thatwe want to onsider.De�nition 4.1.1 (language onstraint). Let L be a language (i.e. a set of terms). An L-language onstraint assoiated to some onstraint system (C, I) is a formula of the form
(u1 ∈ L)? ∧ . . . ∧ (uk ∈ L)? where eah ui is a term suh that vars(ui) ⊆ vars(C) and
st(ui) ∩ I = ∅.A solution of a onstraint system (C, I) and of an L-language onstraint φ = (u1 ∈
L)?∧ . . .∧ (uk ∈ L)? is a ground substitution θ suh that θ is a solution of (C, I) and uiθ ∈ Lfor any 1 ≤ i ≤ k. We denote by st(φ) the set {st(ui) | 1 ≤ i ≤ k}.
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4.1. DEFINITIONS 85
We will use also the notion of onstrutive solution on onstraint systems in solved form,whih is weaker than the notion of non-onfusing solution.De�nition 4.1.2 (onstrutive solution). Let (C, I) be a onstraint system in solved form.A substitution θ is a onstrutive solution of (C, I) if for every deduibility onstraint T ?

⊢ xin C, we have that Satv(T )θ ∪ I ⊢ xθ using omposition rules only.A non-onfusing solution of a solved system is a onstrutive solution, while the onversedoes not always hold. This notion will be used in proofs in the following setions as we willtransform solutions, preserving the onstrutive property but not neessarily the non-onfusingproperty.In this hapter, we have to pay extra attention to lists, as they are fundamental onstrutorsin our di�erent languages. In partiular, we are going to build smaller lists and we will have topreserve deduibility. In order to ahieve that, we show in Lemma 4.1.1 that if we an deduea list using omposition rules only, then we an dedue eah of its elements, still using onlyomposition rules.Lemma 4.1.1. Let (C, I) be a onstraint system in solved form, θ be a onstrutive solutionof (C, I), and T ∈ lhs(C). Let u = [m1; . . . ;mn] be a list suh that Satv(T )θ ∪ I ⊢ u usingomposition rules only. Then for every k ≤ n, there is a proof of Satv(T )θ ∪ I ⊢ mk usingomposition rules only.
Proof. First, we an write C = T1

?
⊢ x1∧· · ·∧Tp

?
⊢ xp. For 1 ≤ i ≤ p, let Si = Satv(Ti)∪I.Consider ∆ a proof of Siθ ⊢ u using only omposition rules. We show by indution on (i, |∆|)that for every element mk of u, there exists a proof ∆k of Siθ ⊢ mk that uses ompositionrules only. We distinguish ases depending on the last rule of ∆.The last rule is an axiom. Then u ∈ Siθ and there is t ∈ Si suh that u = tθ. As u is alist, there are terms e1, . . . , em, t′ ∈ Si suh that t = e1 :: . . . :: em :: t′ and t ∈ {[]} ∪ X . For

1 ≤ k ≤ m, ekθ = mk, so for 1 ≤ k ≤ m, there is a proof of Siθ ⊢ mk whih is an axiom.Now, either t′ = [] or t′ = xj ∈ X , with j < i. In the �rst ase, we easily onlude. In theseond ase, as θ is a onstrutive solution of (C, I), there is a proof ∆′ of Siθ ⊢ xjθ with
j < i, and we apply the indution hypothesis.The last rule is a omposition rule.

Siθ ⊢ m1 Siθ ⊢ [m2; . . . ;mn] (List Constr.)
Siθ ⊢ u = [m1; . . . ;mn]

∆ uses omposition rules only, so there is a proof of Siθ ⊢ m1 using omposition rules only,and a proof ∆′ using only omposition rules of Siθ ⊢ [m2; . . . ;mn], smaller than ∆. Byindution hypothesis, for every element mk of l, there exists a proof ∆k of Siθ ⊢ mk that usesomposition rules only, and we onlude.Then, we show that we an restrit our attention to solutions θ of (C, I)∧φ suh that θ(x)is either a onstant, a name, or a subterm of φθ. This result will also be useful for provingour deidability results.
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86 CHAPTER 4. PROTOCOLS WITH RECURSIVE TESTS
Lemma 4.1.2. Let L be a language, i.e. a set of terms. Let (C, I) be a onstraint system insolved form and φ be an L-language onstraint assoiated to (C, I). Let θ be a onstrutivesolution of (C, I) and φ. Let N0 be a name of Base sort in I, and θ′ be a substitution suhthat: 





xθ′ = xθ if xθ ∈ st(φθ)
xθ′ = [] if x ∈ XList and xθ /∈ st(φθ)
xθ′ = N0 if x 6∈ XList and xθ /∈ st(φθ)The substitution θ′ is a onstrutive solution of (C, I) and φ.Proof. Write C = T1

?
⊢ x1 ∧ · · · ∧ Tn

?
⊢ xn. As θ is onstrutive, for every i ≤ n, there isa proof of Satv(Ti)θ ∪ I ⊢ xiθ using omposition rules only. We show that, for every i ≤ n,there is a proof of Satv(Ti)θ

′ ∪ I ⊢ xiθ′ using omposition rules only. We distinguish betweenases:
• If xiθ ∈ st(φθ), then xiθ

′ = xiθ and there exist terms ti1, . . . , tiki
∈ Satv(Ti) and aproof tree ∆i suh that ∆i is a proof of {ti1, . . . , tiki

}θ ⊢ xiθ using only ompositionrules. Consequently, for every j ≤ ki, we have that tijθ ∈ st(xiθ). So, for every variable
y ∈ var(tij), we have that yθ ∈ st(xiθ), and so tijθ = tijθ

′. As a onlusion, ∆i is a proofof {ti1, . . . , tiki
}θ′ ⊢ xiθ′ using only omposition rules. We dedue that there is a proof of

Satv(Ti)θ
′ ∪ I ⊢ xiθ′ using omposition rules only.

• If xiθ /∈ st(xiθ) and xi ∈ XList, xiθ′ = []. Thus there is a proof of Satv(Ti)θ
′ ∪ I ⊢ xiθ′using omposition rules only.

• If xiθ /∈ st(xiθ) and xi /∈ XList, then xiθ′ = N0 ∈ I. We immediately dedue that thereis a proof of Satv(Ti)θ
′ ∪ I ⊢ xiθ′ using omposition rules only.Furthermore, for every x ∈ var(φ), we have that xθ = xθ′. Consequently, we have that

φθ′ = φθ. Thus, we have that θ′ is a solution of φ.The following de�nitions will be useful in the proofs of deidability.De�nition 4.1.3 (Tail of a list). The tail tail(l) of a list l is de�ned reursively as follows:






tail([]) = []
tail(x) = x x ∈ XList

tail(u :: t) = tail(t)De�nition 4.1.4 (Size of lists). Let l be a list of terms, we de�ne its size ‖l‖l as the numberof elements it ontains. More preisely, it is de�ned reursively as






‖[]‖l = 0
‖x‖l = 1 x ∈ XList

‖u :: l‖l = ‖l‖l + 1A swapping replaes part of a term by another one. We will use this operation to obtainsmall solutions to language onstraints.
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4.2. LINK-BASED RECURSIVE LANGUAGES 87
De�nition 4.1.5 (Swapping). Let u1, . . . , un, v1, . . . , vn be ground terms suh that for every
i 6= j, ui 6= uj. The swapping δ = {u1 7→ v1, . . . , un 7→ vn} is de�ned indutively over a term
t in a top-down manner:
• if there exists i suh that t = ui, then tδ = vi

• if for every i, t 6= ui and t = f(t1, . . . , tk), then tδ = f(t1δ, . . . , tkδ).We denote by id the empty swapping.
4.2 Link-based reursive languagesWe de�ne a lass of languages that enompasses for example erti�ate hains, and we showthat when onsidering onstraint systems together with onstraints in this lass of languages,deiding the existene of a solution is in NP.
4.2.1 De�nition and ExamplesA hain of erti�ates is typially formed by a list of links suh that onseutive links followa ertain relation. For example, the hain of publi key erti�ates

[J〈A1, pub(A1)〉Ksk(A2); J〈A2, pub(A2)〉Ksk(A3); J〈A3, pub(A3)〉Ksk(S)]is based on the link J〈x, pub(y)〉Ksk(z). We provide a generi de�nition that aptures suhlink-based reursive language.De�nition 4.2.1 (link-based reursive language). Let m be a term built over variables ofsort Base. A link-based reursive language L is de�ned by three terms w0, w1, w2 suh that
wi = mθ1

i :: . . . :: mθki

i :: xm
i for i = 0, 1, 2, and w2 is a strit subterm of w1.One w0, w1, w2 are given, the language is reursively de�ned as follows. A ground term tbelongs to the language L if either t = w0σ for some σ suh that xm

0 σ = [], or there exists σsuh that t = w1σ, and w2σ ∈ L.Intuitively, w0 is the basi valid hain while w1 enodes the desired dependene betweenthe links and w2 allows for a reursive all.Example 4.2.1. As de�ned in [HFP98℄, X.509 publi key erti�ates onsist in hains ofsignatures of the form:
[J〈A1, pub(A1)〉Ksk(A2); J〈A2, pub(A2)〉Ksk(A3); · · · ; J〈An, pub(An)〉Ksk(S)]where S is some trusted server and eah agent Ai+1 erti�es the publi key pub(Ai) of agent

Ai. These hained lists are all built from the term m = J〈x, pub(y)〉Ksk(z) with x, y, z ∈ XBase.The set of valid hains of signatures an be formally expressed as the m-link-based reursivelanguage Lcert de�ned by:






w0 = J〈x, pub(x)〉Ksk(S) :: xm
0 ,

w1 = J〈x, pub(x)〉Ksk(y) :: J〈y, pub(y)〉Ksk(z) :: xm
1 ,

w2 = J〈y, pub(y)〉Ksk(z) :: xm
1 .

te
l-0

06
75

50
9,

 v
er

si
on

 1
 - 

1 
M

ar
 2

01
2



88 CHAPTER 4. PROTOCOLS WITH RECURSIVE TESTS
Similarly, link-based reursive languages an also desribe delegation rights erti�ates inthe ontext of distributed aess-rights management. In [Aur99℄ for example, the erti�atehains delegating authorization for operation O are of the form:

[J〈A1, pub(A1), O〉Ksk(A2); J〈A2, pub(A2), O〉Ksk(A3); . . . ; J〈An, pub(An), O〉Ksk(S)]where S has authority over operation O and eah agent Ai+1 delegates the rights for opera-tion O to agent Ai. These hained lists are all built from the term m = J〈x, pub(y), O〉Ksk(z)with x, y, z ∈ XBase.Example 4.2.2. In the reursive authentiation protool [Pau97℄, a erti�ate list onsists ina hain of enryptions of the form:
[senc(〈Kab, B,Na〉,Ka); senc(〈Kab, A,Nb〉,Kb);

senc(〈Kbc, C,Nb〉,Kb); senc(〈Kbc, B,Nc〉,Kc); . . . ; senc(〈Kds, S,Nd〉,Kd)]where S is a trusted server distributing session keys Kab, Kbc, . . . , Kds to eah pair of suess-ive agents via these erti�ates. These hained lists are all built from the term m = senc(〈y1, y2, y3〉, z)with y1, y2, y3, z ∈ XBase. The set of valid hains of enryptions in this protool an be formallyexpressed as the m-link-based reursive language LRA de�ned by:






w0 = senc(〈z, S, x〉, xk) :: xm
0

w1 = senc(〈z, xa, x〉, xkb
) :: senc(〈z, xb, y〉, xka

) :: senc(〈z′, xc, y〉, xka
) :: xm

1

w2 = senc(〈z′, xc, y〉, xka
) :: xm

1 .4.2.2 A proedure onsidering link-based reursive testsWe propose a proedure for heking for serey preservation for a protool with link-basedreursive tests in NP, for a bounded number of sessions.The goal of this setion is to prove that heking for serey preservation for a protoolwith link-based reursive tests is NP, for a bounded number of sessions (Theorem 4.2.1). Toahieve this goal, we will show that we an bound in advane the length of the reursive lists.We write names(u) for the set of names ourring in u. This notation is extended asexpeted to sets of terms, onstraint systems, . . . Let S be a set, we denote by #S the ardinalof S.Let l be a list (not neessarily ground), we denote by ‖ l‖l its length. By onvention,
‖x‖l = 1 when x is a variable.Theorem 4.2.1. Let L be a link-based reursive language. Let (C, I) be a onstraint systemand φ be an L-language onstraint assoiated to (C, I). Deiding whether (C, I) and φ has asolution is in NP.The proof of Theorem 4.2.1 involves three main steps. First, thanks to Theorem 2.3.1, itis su�ient to deide in polynomial (DAG) size whether (C, I) with language onstraint φ hasa non-onfusing solution when (C, I) is a solved onstraint system. Then, we show that wean (polynomially) bound the size of the lists in φ. This relies partly on Proposition 2.4.1, asit shows that a non-onfusing solution is a onstrutive solution.A m-link is a ground instane of m. A m-sublink is a subterm of suh an instane. Whenthe term m is lear from the ontext, we may simply say link and sublink instead of m-linkand m-sublink.
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4.2. LINK-BASED RECURSIVE LANGUAGES 89
We �rst show that we an replae a list with another list built with some of its elementswhile preserving the deduibility of sublinks.Lemma 4.2.2. Let C be a dedution onstraint system in solved form, θ a substitution suhthat θ is a onstrutive solution of (C, I). Suppose that there exist xl ∈ XList and m-links

m1, . . . ,mp suh that xlθ = [m1; . . . ;mp]. De�ne a substitution θ′ suh that if x 6= xl, xθ′ = xθ.Let T ∈ lhs(C). A sublink deduible from Sat(T )θ∪I by omposition rules only is still deduiblefrom Sat(T )θ′ ∪ I by omposition rules only.Proof. Let T ∈ lhs(C), u be a sublink suh that u is deduible from Sat(T )θ ∪ I by usingomposition rules only. Hene, there exist a prooftree ∆ and terms t1, . . . , tq ∈ Satv(T ) ∪ Isuh that ∆ is a proof of {t1, . . . , tq}θ ⊢ u using omposition rules only. As u is a sublink,for every 1 ≤ i ≤ q, we have that tiθ is a sublink. We show that for every 1 ≤ i ≤ q, we havethat tiθ = tiθ
′. As tiθ is an m-sublink, we know that xl /∈ var(ti). Indeed, xl ∈ XList, andby de�nition of m, we have that vars(m) ⊆ XBase. Consequently, for eah 1 ≤ i ≤ q, we havethat tiθ′ = tiθ, and so ∆ is a proof of {t1, . . . , tq}θ′ ⊢ u using omposition rules only. Hene,we have that u is deduible from Sat(T )θ′ ∪ I by using omposition rules only.We prove in Proposition 4.2.4 that we an onsider only small solutions. Indeed, we �rstshow that there is a onstrutive solution that uses a bounded number of distint names. Thusthere is a �nite number of instanes of m used in reursive alls, allowing us to ut the listswhile preserving the membership to the reursive language.Proposition 4.2.4. Let L be a m-link-based reursive language de�ned by w0, w1, and w2.Let (C, I) be a onstraint system in solved form and φ = l1

?
∈ L∧ . . .∧ ln

?
∈ L be a L-languageonstraint assoiated to (C, I). Let θ be a onstrutive solution of (C, I) and φ. Then thereexists a onstrutive solution θ′ of (C, I) and φ suh that, for every 1 ≤ i ≤ n, we have that

‖tail(li)θ′‖l ≤M = k0 + (k1 − k2)×Nk1 where N = (#names(C, φ, w0, w1, w2) + 1)#vars(m).Proof. First, note that if θ is a solution of (C, I) and φ, and δ is a renaming of allnames in I that do not our in w0, w1, w2 by the same name N0 of Base sort, then θδ isa solution of (C, I) and φ. We an thus onsider (onstrutive) solutions ontaining at most
names({w0, w1, w2}) + 1 names of I.Thanks to Lemma 4.1.2, we an furthermore assume that for every x, either xθ ∈ st(φθ),or xθ ∈ {N0, []} (more preisely, xθ = [] if x ∈ XList and xθ = N0 otherwise).Write φ = l1 ∈ L∧ . . .∧ ln ∈ L. Consider a smallest onstrutive solution θ, where the size of
θ is given by

|θ| =
∑

1≤j≤n

‖tail(lj)θ‖l.Either for every j ≤ n, we have that ‖tail(lj)θ‖l ≤M and we onlude diretly, or there exists
j0 ≤ n suh that ‖tail(lj0)θ‖l > M . In the seond ase, we de�ne xj0 = tail(lj0), and we showthat we an build θ′ a onstrutive solution of (C, I) and φ smaller than θ, whih leads to aontradition and allows us to onlude. More preisely, we build θ′ suh that xθ′ = xθ for
x 6= xj0 and ‖xj0θ′‖l < ‖xj0θ‖l.We build θ′ smaller than θ. Intuitively, Nk1 is the number of possible instantiations of thepattern-mathing pre�x of w1 (i.e. mθ1

1, . . . ,mθ
k1
1 ). Remember that k0, k1 and k2 are respet-ively the number of links in w0, w1 and w2 in the de�nition of the language L.We onsider the suessive reursive alls made in order to prove that ljθ ∈ L. By de�nitionof L, a term t belongs to the language L if
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90 CHAPTER 4. PROTOCOLS WITH RECURSIVE TESTS
• either there exists a substitution σ with xm

0 σ = [] suh that t = w0σ,
• or there exists a substitution σ suh that t = w1σ, and w2σ ∈ L.Consequently, lj0θ ∈ L if and only if there is a sequene of terms t0, . . . , tp and substitutions

σ0, . . . , σp suh that
• lj0θ = t0,
• for every 0 ≤ i < p, ti = w1σi and ti+1 = w2σi,
• xm

0 σp = [] and tp = w0σp.For every 0 ≤ i < p, de�ne substitution σi suh that dom(σi) = dom(σi) r {xm
1 }, and forevery x ∈ dom(σi), xσi = xσi. We want to �nd i1 < i2 suh that σi1 = σi2 in order to ut thelist while still having a sequene of orret reursive alls. This is possible if the sequene ofreursive alls is long enough, as there are only a �nite number of possible instantiations of σi.Indeed, note that dom(σi) = vars(mθ1

1, . . . ,mθ
1
k1

) ⊆ XBase and #dom(σi) ≤ #vars(m) × k1.The number of possible values for σi is Nk1 .For every 0 ≤ i < p, ‖ti‖l = ‖w1σi‖l = k1 +‖xm
1 σi‖l and ‖ti+1‖l = ‖w2σi‖l = k2 +‖xm

2 σi‖l.By de�nition of a link-based reursive language, w2 is a subterm of w1 and so xm
1 = xm

2 .We dedue that ‖ti+1‖l = ‖xm
1 σi‖l + k2 = ‖ti‖l + k2 − k1. Moreover, ‖tp‖l = k0. Hene,

‖t0‖l = k0 + (k1 − k2) × p. As ‖xj0θ‖l > k0 + (k1 − k2) × Nk1 , we get that p > Nk1 , andneessarily there are i1 < i2 suh that σi1 = σi2 , and ‖xm
1 σi1‖l < ‖xj0θ‖l. As i1 < i2, we havethat ‖xm

1 σi2‖l < ‖x
m
1 σi1‖l.We are going to replae xm

1 σi1 with xm
1 σi2 in xj0θ.We de�ne the swapping δ = {xm

1 σi1 7→ xm
1 σi2}. We show that (lj0θ)δ ∈ L.For 0 ≤ i ≤ i1, let σ′i = σiδ and t′i = tiδ. De�ne also, for 1 ≤ k ≤ p − i2, σ′i1+k = σi2+kand t′i1+k = ti2+k. First, σi2 = σ′i1 . Indeed, σi1 = σi1 ⊎ {x

m
1 7→ xm

1 σi1}. Hene, σ′i1 = σi1δ =
σi1 ⊎ {x

m
1 7→ xm

1 σi1}δ = σi2 ⊎ {x
m
1 7→ xm

1 σi2} = σi2 (thanks to the hoie of i1, i2 and δ).
• t′0 = t0δ = (lj0θ)δ.
• for 0 ≤ i < i1, t′i = tiδ = (w1σi)δ = w1(σiδ) = w1σ

′
i and t′i+1 = ti+1δ = (w2σi)δ =

w2(σiδ) = w2σ
′
i,

• t′i1 = ti1δ = (w1σi1)δ = w1(σi1δ) = w1σ
′
i1
and t′i1+1 = ti2+1 = w2σi2 = w2σ

′
i1
,

• for 1 ≤ k < p − i2, t′i1+k = ti2+k = w1σi2+k = w1σ
′
i1+k

and t′i1+k+1 = ti2+k+1 =
w2σi2+k = w2σ

′
i1+k

,
• xm

0 σ
′
p−i2+i1

= xm
0 σp = [] and t′p−i2+i1 = tp = w0σp = w0σ

′
p−i2+i1

.We onlude that (lj0θ)δ ∈ L and ‖(lj0θ)δ‖l < ‖lj0θ‖l. Intuitively, we an replae xm
1 σi1 by

xm
1 σi2 in lj0θ and still get a orret sequene of reursive alls.Let θ′ be a substitution suh that xθ′ = xθ when x 6= xj0 and xj0θ′ = (xj0θ)δ.We show that θ′ is a solution of φ. We have φ = l1 ∈ L ∧ · · · ∧ ln ∈ L. For every j, we write
lj = mj

1 :: . . . :: mj
pj :: tail(lj), with mj

k of sort Msg and tail(lj) ∈ XList ∪ {[]} of sort List. If
tail(lj) 6= xj0 , ljθ′ = ljθ, and so ljθ′ ∈ L. If tail(lj) = xj0 , as θ is a solution of φ, ljθ ∈ L. Sothere is a sequene of terms u0, . . . , um and substitutions τ0, . . . , τm suh that
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4.2. LINK-BASED RECURSIVE LANGUAGES 91
• ljθ = u0,
• for every 0 ≤ i < m, ui = w1τi and ui+1 = w2τi,
• xm

0 τm = [] and um = w0τm.As tail(lj) = xj0 , we have that σi = τm−p+i for i ≥ i1. Consequently, we an show that
ljθ

′ = lj(θδ) ∈ L in the following way: let j1 = m−p+ i1 and j2 = m−p+ i2. For 0 ≤ i ≤ j1,let τ ′i = τiδ and u′i = uiδ. De�ne also, for 1 ≤ k ≤ m− j2, τ ′j1+k = τj2+k and u′j1+k = uj2+k.First, τj2 = σi2 = σi1δ = τj1δ = τ ′j1 .
• u′0 = u0δ = (ljθ)δ.
• for 0 ≤ i < j1, u′i = uiδ = (w1τi)δ = w1(τiδ) = w1τ

′
i and t′i+1 = ti+1δ = (w2τi)δ =

w2(τiδ) = w2τ
′
i ,

• u′j1 = uj1δ = (w1τj1)δ = w1(τj1δ) = w1τ
′
j1

u′j1+1 = uj2+1 = w2τj2 = w2τ
′
j1
,

• for every 1 ≤ k ≤ m − j2 + 1, u′j1+k = uj2+k = w1τj2+k = w1τ
′
j1+k and u′j1+k+1 =

uj2+k+1 = w2τj2+k = w2τ
′
j1+k,

• x0τ
′
p−j2+j1

= x0τp = [] and u′p−j2+j1 = up = w0τp = w0τ
′
p−j2+j1

.Terms u′0, . . . , u′p−j2+j1 and substitutions τ ′0, . . . , τ ′p−j2+j1 haraterize a series of reursive allsthat allows to prove that ljθ′ ∈ L.We get that for every 1 ≤ j ≤ n, ljθ′ ∈ L, so θ′ is a solution of φ.
We show that θ′ is a onstrutive solution of (C, I). Consider T ?

⊢ x a onstraint in C.
• If xθ /∈ st(φθ), then we have assumed that xθ ∈ {N0, []}. As xθ /∈ st(φθ), then x 6= xj0 ,and xθ′ = xθ. We dedue that Tθ ∪ I ⊢ xθ′ using omposition rules only.
• If xθ ∈ st(φθ), and x ∈ XMsg, then xθ is a sublink and xθ′ = xθ. We know that θ is aonstrutive solution of (C, I). Then thanks to Lemma 4.2.2, we have that Sat(T )θ′∪I ⊢
xθ = xθ′ using omposition rules only.

• If xθ ∈ st(φθ) and x ∈ XList, then xθ is a list of links, i.e there exists links m1, . . . ,mpsuh that xθ = [m1; . . . ;mp]. As θ is onstrutive, there exist a ontext prooftree ∆
t1, . . . , tq ∈ Sat(T ) ∪ I suh that ∆ is a proof of {t1θ, . . . , tqθ} ⊢ xθ using ompositionrules only. We an assume that for every 1 ≤ j ≤ q, we have that tj /∈ X . Consequently,for every 1 ≤ i ≤ p, we have that Sat(T )θ ∪ I ⊢ mi by using omposition rules only. Byapplying Lemma 4.2.2, Sat(T )θ′ ∪ I ⊢ mi using omposition rules only. So, if xθ′ = xθ,
Sat(T )θ′ ∪ I ⊢ xθ′ using omposition rules only. Otherwise, xj0θ′ is built with links of
xj0θ, and we still get that Sat(T )θ′ ∪ I ⊢ xj0θ

′ using omposition rules only.Consequently, we have that Sat(T )θ′∪I ⊢ xθ′ using omposition rules only for every T ?
⊢ x ∈ C,so θ′ is a onstrutive solution of (C, I).In onlusion, θ′ is a onstrutive solution of (C, I) and φ, smaller than θ. We onludeby ontradition.
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92 CHAPTER 4. PROTOCOLS WITH RECURSIVE TESTS
The third step of the proof of Theorem 4.2.1 onsists in showing that we an restritour attention to solutions θ suh that xθ is either a onstant or a subterm of φθ, by usingLemma 4.1.2. This lemma is a generi lemma that shows how any solution an be transformedby projeting some variables on onstants. It will be reused in the next setion.Theorem 4.2.1. Let L be a link-based reursive language. Let (C, I) be a onstraint systemand φ be an L-language onstraint assoiated to (C, I). Deiding whether (C, I) and φ has asolution is in NP.We want to deide whether (C, I) with onstraint language φ has a solution. Our deisionproedure works as follows:Step 1. We guess a sequene of transformation rules in S from (C, I) to (C′, I) where (C′, I)is a onstraint system in solved form. We have that:

(C, I) ∗
σ (C′, I) ∈ S with (C′, I) in solved form.Step 2. Assume that L is de�ned by w0, w1, and w2. Let N0 be a name of Base sort in I,

S = names(C, φ, w0, w1, w2) and let N = (#S + 1)#var(m).
• Guess the values of variables of sort Base in {N0} ∪ S.
• Guess the values of variables of sort Msg in the sublinks built over {N0} ∪ S.
• Guess the values of variables of sort List among lists of sublinks in {N0} ∪ S oflength at most k0 + (k1 − k2)×Nk1 .This gives us a substitution θ′, we hek whether θ′ is a solution of (C′, I) and φσ.Proof. Thanks to Theorem 2.3.1, there exists a solution θ of (C, I) and φ if, and onlyif, there exist a onstraint system (C′, I) in solved form and substitutions σ, θ′ suh that

(C, I)  ∗
σ (C′, I) by a derivation in S and θ′ is a non-onfusing solution of (C′, I) and φσ.Furthermore, the length of this derivation is polynomially bounded in the size of C. We anguess suh a derivation, and are now left to deide the existene of a non onfusing solutionto a onstraint system in solved form. First, thanks to Proposition 2.4.1, we an atuallyonsider onstrutive solutions only.Thanks to Proposition 4.2.4, we an assume that if θ′ is a onstrutive solution of (C′, I)and l1 ?
∈ L∧ . . .∧ln

?
∈ L, then ‖tail(li)θ′‖l ≤ k0+(k1−k2)×Nk1 for every i ∈ {1, . . . , n}. Then,thanks to Lemma 4.2.2, if (C′, I) is a onstraint system in solved form and θ′ is a onstrutivesolution of (C, I) ∧ φσ, then θ′′ is a solution of (C′, I) and φσ where

• xθ′′ = xθ′ if xθ′ ∈ st(φθ′),
• xθ′′ = [] if xθ′ /∈ st(φθ′) and x ∈ XList,
• xθ′′ = N0 if xθ′ /∈ st(φθ′) and x /∈ XListFor x /∈ XList, either xθ′′ ∈ st(φθ′′), whih means that xθ′′ is a sublink, or xθ′′ = N0. So wean guess whih variables of XMsg∪XBase are instantiated by sublinks, and guess the sublinks.Instantiate the other variables in XMsg ∪ XBase with N0. If x ∈ XList then either xθ′′ = [] or

xθ′′ ∈ st(φθ′′), and so it is a list of links of length at most k0 + (k1 − k2)×Nk1 .
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4.3. ROUTING PROTOCOLS 93
4.3 Routing protoolsRouting protools typially perform reursive heks to ensure the validity of a given route.However, link-based reursive languages do not su�e to express these heks. Indeed, inrouting protools, nodes aim at establishing and ertifying a suessful route (i.e. a list ofnames of nodes) between two given nodes that wish to ommuniate. Eah node on the routetypially ontributes to the routing protool by ertifying that the proposed route is orret,to the best of its knowledge. Thus eah ontribution ontains a list of names (the route).Then the �nal node reeives a list of ontributions and needs to hek that eah ontributionontains the same list of names, whih has also to be onsistent with the whole reeivedmessage. For example, in the ase of the SMNDP protool [FGML09℄, the soure node has tohek that the reeived message is of the form:

[J〈D,S, lroute〉Ksk(An); . . . ; J〈D,S, lroute〉Ksk(A1); J〈D,S, lroute〉Ksk(D)]where lroute = [D;A1; . . . ;An].
4.3.1 Example: the SMNDP protoolThe aim of the SMNDP protool [FGML09℄ is to �nd a path from a soure node S towardsa destination node D. In the �rst phase of the protool, nodes broadast the route requestto their neighbors, adding their name to the urrent path. When the request reahes thedestination, D signs the route and sends the reply bak over the network.More formally, if D reeives a request message 〈req, S,D, Id , l〉, it omputes signature s0 =
JD,S,D :: lKsk(D) and sends bak the reply 〈rep, D, S,D :: l, [s0]〉. All nodes along the routehave then to ertify the route by adding their own signature. More preisely, during the replyphase, an intermediate node Ai reeiving a message 〈rep, D, S, lroute, [si−1, . . . , s0]〉 would om-pute the signature si = JD,S, lrouteKsk(Ai) and send the message 〈rep, D, S, lroute, [si, . . . , s0]〉.The list of signatures expeted by S built over the list lroute = [D,A1, . . . , An] is the list
lsign = [sn, . . . , s0] where s0 = JD,S, lrouteKsk(D) and si = JD,S, lrouteKsk(Ai) for 1 ≤ i ≤ n. Wewill denote by LSMNDP the set of messages of the form 〈〈S,D〉, 〈lroute, lsign〉〉.Consider the following network on�guration, where S is the soure node, D is the destin-ation node, X is an intermediate (honest) node, W is a node who has been ompromised (i.e.the intruder knows the seret key sk(W )), and I is the maliious node.

S

W

X

I D

An exeution of the protool where D is ready to answer a request and the soure is readyto input the �nal message an be represented by the following onstraint system:
C =

{
T0 ∪ {u0, u1}  v1

T0 ∪ {u0, u1, u2}  v2

te
l-0

06
75

50
9,

 v
er

si
on

 1
 - 

1 
M

ar
 2

01
2



94 CHAPTER 4. PROTOCOLS WITH RECURSIVE TESTSwith T0 = {S,D,X, I,W, sk(I), sk(W )} the initial knowledge of the intruder
u0 = 〈req, S,D, Id , []〉,
u1 = 〈req, S,D, Id , [X,W ]〉,
u2 = 〈rep, D, S,D :: xl, [J〈D,S,D :: xl〉Ksk(D)]〉,
v1 = 〈req, S,D, xid , xl〉,
v2 = 〈rep, D, S,D :: xroute, xsign〉Let I be a non-empty set of names suh that st(C)∩I = ∅. We have that (C, I) is a onstraintsystem. A solution to (C, I) ∧ 〈〈S,D〉, 〈D :: xroute, xsign〉〉

?
∈ LSMNDP is e.g. the substitution

θ = {xid 7→ Id , xl 7→ [I;W ], xroute 7→ [I;W ], xsign 7→ lsign} where:
• lroute = [D, I,W ], and
• lsign = [J〈D,S, lroute〉Ksk(W ); J〈D,S, lroute〉Ksk(I); J〈D,S, lroute〉Ksk(D)].This solution re�ets an attak (disovered in [AY07℄) where the attaker sends to thedestination node D the message 〈req, S,D, Id , l〉 with a false list l = [I,W ]. Then D answersaordingly by 〈rep, D, S, lroute, [J〈D,S, lroute〉Ksk(D)]〉. The intruder onludes the attak bysending to S the message 〈rep, D, S, lroute, lsign〉. This yields S aepting W, I,D as a route to

D, while it is not a valid route.4.3.2 De�nition of Mapping-based languagesAn interesting property in the ase of routing protools is that (valid) messages are uniquelydetermined by the list of nodes [A1; . . . ;An] in addition to some parameters (e.g. the soureand destination nodes in the ase of SMNDP). We propose a generi de�nition that apturesany suh language based on a list of names.De�nition 4.3.1 (mapping-based language). Let b be a term that ontains no name and no
:: symbol, and suh that:

{w1, w
p
1, . . . , w

p
m} ⊆ vars(b) ⊆ {w1, w2, w3, w

p
1, . . . , w

p
m}.The variables wp1, . . . , wpm are the parameters of the language, whereas w1, w2, and w3 arespeial variables. Let P = 〈P1, . . . , Pm〉 be a tuple of names and σP = {wp1 7→ P1, . . . , w

p
m 7→

Pm}. Let l = [A1; . . . ;An] be a list of names, the links are de�ned over l reursively in thefollowing manner :
mP(i, l) = (bσP){w1 7→ l, w2 7→ Ai, w3 7→ [mP(i− 1, l); . . . ; mP(1, l)]}The mapping-based language (de�ned by b) is the following one:

L = {〈P, 〈l, l′〉〉 | P = 〈P1, . . . , Pm〉 is a tuple of names,
l = [A1; . . . ;An] a list of names, n ∈ N, and l′ = [mP(n, l); . . . ; mP(1, l)]}.A mapping-based language is de�ned by a base shape b. The speial variables w2 and w3are optional and may not our in b. Eah element of the language is a triple 〈P, 〈l, l′〉〉 where

l′ is a list of links entirely determined by the tuple P = 〈P1, . . . , Pm〉 and the list l of arbitrarylength n. In the list l′, eah link ontains the same parameters P1, . . . , Pm (e.g. the soureand destination nodes), the list l of n names [A1; . . . ;An] and possibly the urrent name Aiand the list of previous links, following the base shape b.We illustrate this de�nition with two examples of routing protools.
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4.3. ROUTING PROTOCOLS 95
Example 4.3.1 (SMNDP protool [FGML09℄). Reall that in SMNDP, the list of signa-tures expeted by the soure node S built over the list l = [A1, . . . , An] is the list [sn, . . . , s1],where si = J〈D,S, l〉Ksk(Ai). This language has two parameters, the name of the soure wp1and the name of the destination wp2. The language an be formally desribed with b =
J〈wp2, w

p
1, w1〉Ksk(w2).Example 4.3.2 (endairA protool [BV04℄). The di�erene between SMNDP and endairA liesin the fat that during the reply phase, the intermediate nodes ompute a signature over thepartial signature list that they reeive. In the endairA protool, the list of signatures expetedby the soure node S built over the list of nodes l = [A1, . . . , An] is the list l′s = [sn, . . . , s1],where si = J〈D,S, l, [si−1; . . . ; s1]〉Ksk(Ai).This language has two parameters, the name of the soure wp1 and the name of the destin-ation wp2. The language an be formally desribed with b = J〈wp2, w

p
1, w1, w3〉Ksk(w2).4.3.3 Deision proedureWe propose a proedure for heking for serey preservation for a protool with mapping-based tests in NP, for a bounded number of sessions.The goal of this setion is to prove that heking for serey preservation for a protoolwith mapping-based reursive tests is NP, for a bounded number of sessions (Theorem 4.3.4).To ahieve this goal, we will show that we an bound in advane the length of the reursivelists.Let u be a term. We denote by ‖u‖dag the size of u in DAG representation (i.e. number ofdistint subterms in u).Let t be a term suh that vars(t) = {w1, w2, w3}, the variables of t are the speial variablesin the de�nition of b, and let v1, v2, v3 be ground terms. For the sake of larity, we will write

t⌊v1, v2, v3⌋ for t{w1 7→ v1, w2 7→ v2, w3 7→ v3}.In a mapping-based language, the links ontain enough information to de�ne preisely thelanguage to whih they belong.Lemma 4.3.1. Let θ be a solution of φ = u1
?
∈ L ∧ · · · ∧ up

?
∈ L where uj = 〈Pj , 〈lj , lj〉〉,non-onfusing with respet to st(φ), i.e. suh that t1θ = t2θ implies t1 = t2 for any term

t1, t2 ∈ st(φ). Let 1 ≤ i, j ≤ n. If l′iθ and l′jθ share a link, i.e. mPiθ(i
′, liθ) = mPjθ(j

′, ljθ) forsome i′, j′, then ui = uj.Proof. Indeed, suppose that there exist i′, j′ suh that mPiθ(i
′, liθ) = mPjθ(j

′, ljθ). Write
liθ = [a1; . . . ; ap] and ljθ = [c1; . . . ; cq]. Write Piθ = 〈pi1, . . . , p

i
m〉 and Pjθ = 〈pj1, . . . , p

j
m〉.Reall that

mPiθ(i
′, liθ) = bi⌊liθ, ai′ , [mPiθ(i

′ − 1, liθ); . . . ; mPiθ(1, liθ)]⌋
mPjθ(j

′, ljθ) = bj⌊ljθ, cj′ , [mPjθ(j
′ − 1, ljθ); . . . ; mPjθ(1, ljθ)⌋where bi = b{wp1 7→ pi1, . . . , w

p
m 7→ pim}, bj = b{wp1 7→ pj1, . . . , w

p
m 7→ pjm}, and ai′ , bj′ ,

[mPi
(i′− 1, liθ); . . . ; mPi

(1, liθ)], [mPj
(j′− 1, ljθ); . . . ; mPj

(1, ljθ)] are optional parameters. As
mPiθ(i

′, liθ) = mPjθ(j
′, ljθ), we have that

bi⌊liθ, ai′ , [mPiθ(i
′ − 1, liθ); . . . ; mPiθ(1, liθ)]⌋

=
bj⌊ljθ, bj′ , [mPjθ(j

′ − 1, ljθ); . . . ; mPjθ(1, ljθ)]⌋
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96 CHAPTER 4. PROTOCOLS WITH RECURSIVE TESTS
We dedue that liθ = ljθ, and also pik = pjk for all 1 ≤ k ≤ m (these parameters areompulsory), i.e. Piθ = Pjθ. It follows that l′iθ = l′jθ, hene uiθ = ujθ. As θ is non-onfusingw.r.t. st(φ), it follows that ui = uj .We prove in Proposition 4.3.3 that we an onsider only small onstrutive solutions.Intuitively, a onstraint is of the form 〈〈pj1, . . . , pjm〉, 〈ℓj, ℓ′j〉〉 ∈ L, where the beginning of ℓjonstrains the end of ℓ′j and reiproally, so we an ut somewhere in the middle the largesolutions.Proposition 4.3.3. Let L be a mapping-based language. Let (C, I) be a dedution onstraintsystem in solved form, ψ be an L-language onstraint assoiated to (C, I), and τ be a onstrut-ive solution of (C, I) and ψ. We further assume that ψ is of the form u1

?
∈ L ∧ . . . ∧ up

?
∈ Lwhere uj = 〈〈pj1, . . . , p

j
m〉, 〈ℓj, ℓ′j〉〉.Let M = #st(C, ψ)+ max

1≤j≤p
‖ℓ′j‖l+2×#var (C)× max

t∈st(C,ψ)
‖t‖dag. There exists a onstrutivesolution τ ′ of (C, I) and ψ suh that, for every j, we have that ‖tail(ℓj)τ ′‖l ≤M .Proof. Consider a smallest onstrutive solution τ of (C, I) and ψ, where the size of asolution is given by:

|τ | =
∑

1≤j≤p

‖tail(ℓj)τ ‖lEither ‖ tail(ℓj)τ ‖l ≤ M for all j and we onlude. Otherwise, there exists j0 suh that
‖tail(ℓj0)τ ‖l > M . In that ase, we show that we an build τ ′ smaller than τ , a onstrutivesolution of (C, I) and ψ, whih is in ontradition with τ smallest solution, and we onlude.We wish to write τ = θ ◦ σ with θ non-onfusing w.r.t. st(C, ψ), i.e. suh that t1θ = t2θimplies t1 = t2 for any t1, t2 ∈ st(C, ψ). We de�ne

σ = mgu{t1 = t2 | t1τ = t2τ, t1 6= t2, t1, t2 ∈ st(C, ψ)}.We have that st(Cσ, ψσ) ⊆ st(C, ψ)σ, thanks to Lemma ??, as σ is an mgu of terms in st(C, ψ).Furthermore, by De�nition, st(ψ) ∩ I = ∅ and st(C) ∩ I = ∅, so we dedue that (Cσ, I) is aonstraint system and ψσ is an L-language onstraint assoiated with (Cσ, I). Lastly, sine σis more general than τ , there is a substitution θ suh that τ = θ ◦ σ and θ is a solution of
(Cσ, I) and ψσ.We now show that θ is non-onfusing w.r.t. st(Cσ, ψσ). Let t1, t2 ∈ st(Cσ, ψσ) be two termssuh that t1θ = t2θ. We apply Lemma ??: there are two terms u1, u2 ∈ st(C, ψ) suhthat t1 = u1σ and t2 = u2σ. As t1θ = t2θ, we dedue that u1τ = u2τ . It follows that
u1, u2 ∈ st(C, ψ) with u1τ = u2τ . Either u1 6= u2, and thus by De�nition of σ, we have that
u1σ = u2σ, or u1 = u2. In both ases, we dedue that t1 = t2, so θ is non-onfusing w.r.t.
st(Cσ, ψσ).For every j, lj = ℓjσ, l′j = ℓ′jσ, u′j = ujσ and φ = ψσ, i.e.

φ = u′1
?
∈ L ∧ · · · ∧ u′p

?
∈ L with u′j = 〈〈pj1σ, . . . , p

j
mσ〉, 〈lj, l

′
j〉〉.We an assume that the elements of φ are distint, i.e. for every i, j, if u′i = u′j then i = j.Furthermore, let Pj = 〈pj1τ, . . . , p

j
mτ〉. Lemma 4.3.1 then allows us to express the followingstatement:
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4.3. ROUTING PROTOCOLS 97
if mPj

(i, ljθ) = mPj′
(i′, lj′θ) for some i, i′, then uj = uj′ , and thus j = j′.We show that ‖tail(lj0)θ‖l > M ′ where M ′ = #st(Cσ, φ) + max

1≤j≤p
‖l′j‖l.We have hosen j0 suh that ‖tail(ℓj0)τ ‖l > M . Let M1 = #var(C)× max

t∈st(C,ψ)
‖t‖dag. Thanksto Lemma ??, for every x ∈ var(C), ‖xσ‖dag ≤M1.We �rst show that M > M ′ + M1. We have that l′j = ℓ′jσ, so ‖l′j ‖l = ‖ℓ′j ‖l + ‖tail(ℓ

′
j)σ‖l.Furthermore, it is lear that ‖u :: l‖dag ≥ ‖ l‖dag + 1, and thus for every l, ‖ l‖dag ≥ ‖ l‖l.Consequently, for every j, we have that:

max
1≤j≤p

‖ℓ′j‖l ≥ ‖ℓ′j‖l

≥ ‖l′j‖l − ‖tail(ℓ
′
j)σ‖l

≥ ‖l′j‖l − ‖tail(ℓ
′
j)σ‖dag

≥ ‖l′j‖l −M1As this inequality is true for every j, it follows that
max
1≤j≤p

‖ℓ′j‖l ≥ max
1≤j≤p

‖l′j‖l −M1Furthermore, we have #st(Cσ, φ) = #st(C, ψ). We dedue that M = max
1≤j≤p

‖ℓ′j‖l+#st(C, ψ)+

2M1 = max
1≤j≤p

‖ℓ′j‖l+#st(Cσ, φ)+2M1, and so M ≥ max
1≤j≤p

‖l′j‖l+#st(Cσ, φ)+M1 = M ′ +M1.We now onlude by showing that ‖tail(lj0)θ‖l > M ′. We have that lj0 = ℓj0σ, so ‖tail(ℓj0)τ‖l =
‖tail(lj0)θ‖l + ‖tail(ℓj0)σ‖l. Consequently, we have that:

‖tail(lj0)θ‖l = ‖tail(ℓj0)τ ‖l − ‖tail(ℓj0)σ‖l
> M − ‖tail(ℓj0)σ‖dag
≥ M −M1 ≥M ′.We build θ′ smaller than θ and we de�ne τ ′ = θ′ ◦ σLet j1 be suh that ‖tail(lj1)θ‖l ≥ ‖tail(lj)θ‖l for every j ≤ p. Neessarily, tail(lj1) = x1 forsome x1 ∈ XList and ‖x1θ‖l > M ′. By reordering the onstraints, we an assume that thereexists 1 ≤ q ≤ p suh that

• for every 1 ≤ j ≤ q, we have that tail(lj) = x1, and
• for q < j ≤ p, we have that tail(lj) 6= x1 (and thus, ‖tail(lj)θ‖l ≤ ‖x1θ‖l).We want to hange the value of x1θ, while preserving language memberships.For eah onstraint 〈〈pj1σ, . . . , pjmσ〉, 〈lj, l′j〉〉 ?

∈ L, lj provides onstraints on the last elementsof the list l′jθ, while l′j provides onstraints on the last elements of the list ljθ. For 1 ≤ j ≤ q, ljthus onstrains the last elements of x1θ. We have to keep those elements to preserve languagemembership.For j ≤ q, we write:
lj = cj :: . . . :: cjkj

:: x1

ljθ = cj1θ :: . . . :: cjkj
θ :: x1θ = [aj1; . . . ; a

j
nj ] (x1θ = [ajkj+1; . . . ; a

j
nj ])

l′j = vj1 :: . . . :: vj
k′j

:: yj

l′jθ = vj1θ :: . . . :: vj
k′j
θ :: yjθ = [mj

nj ; . . . ;m
j
1] (yjθ = [mj

nj−k′j
; . . . ;mj

1])
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98 CHAPTER 4. PROTOCOLS WITH RECURSIVE TESTS
Let ks = max

1≤j≤q
k′j . The ks last elements of x1θ are determined, and thus the ks �rst elementsof eah l′j are also determined.For every j ≤ m, let tj = [mj

nj−ks
; . . . ;mj

1]. tj represents the part of ljθ whih is not on-strained by the ks last elements of x1θ and that an be modi�ed while preserving languagemembership onstraints. For every 1 ≤ j ≤ q, we have that ‖tj ‖l + ks = ‖l′jθ‖l = ‖ljθ‖l =
‖x1θ‖l + kj .As mj

i = mPj
(i, ljθ), we obtain thanks to statement (∗) that if mj

i = mj′

i′ , then j = j′. Hene,the sublists of t1, . . . , tm are distint. We know that ‖x1θ‖l > M ′, and thus
‖tj‖l − kj = ‖x1θ‖l − ks > #st(Cσ, φ).As a onsequene, there exists kv suh that ks ≤ kv ≤ #st(Cσ, φ) + ks and for all 1 ≤ j ≤ q,

[mj
nj−kv

; . . . ;mj
1] /∈ (st(Cσ, φ))θ.We de�ne w0 = [a1

n1−kv+1, . . . , a
1
n1

] as the last kv elements of x1θ. Let δ0 = {x1θ 7→ w0} bethe assoiated swapping.De�ne, for 1 ≤ j ≤ q,
{

wj = [mj
nj−kv

; . . . ;mj
1]

w′
j = [mj

kj
; . . . ;mj

1]δ0Note that wj /∈ (st(Cσ, φ))θ sine we hose kv to ensure this. Intuitively, w′
j representsthe part of l′jθ that is onstrained by lj and thus has to be kept in our new solution. Let

δj = {wj 7→ w′
j , x1θ 7→ w0} for 1 ≤ j ≤ q. For j > q, we de�ne δj = id .Let δ = {x1θ 7→ w0, w1 7→ w′

1, . . . , wq 7→ w′
q}. We hoose θ′ = θδ, and τ ′ = θ′ ◦ σ.Note that ‖x1θ

′ ‖l = kv ≤ M ′ < ‖x1θ ‖l. By de�nition, x1 = tail(ℓj1σ), so we have that
‖tail(ℓj1)τ

′‖l < ‖tail(ℓj1)τ‖l. Furthermore, for every x, ‖xτ ′‖l ≤ ‖xτ‖l, sine for every term u,
‖uδ‖l ≤ ‖u‖l. We dedue that |τ ′| < |τ |.We have thus built a substitution τ ′ = θ′ ◦ σ smaller than τ . It remains to show that τ ′ is aonstrutive solution of (C, I) and ψ. We will �rst show that θ′ is a solution of φ and thenthat τ ′ is a onstrutive solution of (C, I). We �rst have two laims that will help us with theproof.Claim A: (tθ)δ = t(θδ) for t ∈ st(Cσ, φ).We show by indution on t that for every term t ∈ st(Cσ, φ), (tθ)δ = t(θδ).
• if t ∈ X , then the result is straightforward, sine for every x ∈ X , (xθ)δ = x(θδ)

• if t = f(t1, . . . , tk), we reason by ase distintion over the value of f(t1, . . . , tk)θ:� If f(t1, . . . , tk)θ = x1θ, as θ is non-onfusing with respet to st(Cσ, φ), then x1 =
f(t1, . . . , tk), and this is in ontradition with x ∈ X .� If there exists i suh that f(t1, . . . , tk)θ = wi, then wi ∈ st(Cσ, φ)θ, whih yields aontradition.� We are thus in a ase where f(t1θ, . . . , tkθ)δ = f((t1θ)δ, . . . , (tkθ)δ). By indutionhypothesis, (tiθ)δ = ti(θδ), and so

(tθ)δ = (f(t1, . . . , tk)θ)δ
= f((t1θ)δ, . . . , (tkθ)δ)
= f(t1(θδ), . . . , tk(θδ))
= f(t1, . . . , tk)(θδ)
= t(θδ)
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4.3. ROUTING PROTOCOLS 99
Claim B: for 1 ≤ j ≤ p and 1 ≤ i ≤ nj, mPj

(i, ljθ)δ = mPj
(i, ljθ)δj and [mPj

(i, ljθ); . . . ; mPj
(1, ljθ)]δ =

[mPj
(i, ljθ); . . . ; mPj

(1, ljθ)]δjFirst, we show that for every 1 ≤ j ≤ p, (ljθ)δ = (ljθ)δ0 = (ljθ)δj . We have that ljθ =

[aj1; . . . ; a
j
nj ] with ajk ∈ N . For every j′, k′, ajk 6= mj′

k′ , so (ljθ)δ = (ljθ)δ0.For 1 ≤ j ≤ q, by a similar reasoning we also get that (ljθ)δj = (ljθ)δ0.For q < j ≤ p, lj = cj1 :: . . . :: cjkj
:: tail(lj) with ‖ tail(lj)θ‖l ≤ ‖x1θ‖l. By applying thede�nition of a swapping, and as θ is non-onfusing,

(ljθ)δ0 = (cj1θ)δ0 :: . . . :: (cjkj
θ)δ0 :: (tail(lj)θ)δ0.Furthermore, (tail(lj)θ)δ0 = tail(lj)θ as ‖tail(lj)θ‖l ≤ ‖x1θ‖l (and tail(lj)θ 6= x1θ as tail(lj) 6= x1and θ is non-onfusing). We also have that for every 1 ≤ k ≤ kj , (cjkθ)δ0 = cjkθ sine cjkθ is aname. Consequently, (ljθ)δ0 = (ljθ) = (ljθ)δj sine δj = id for q < j ≤ p.To sum up, for every 1 ≤ j ≤ p, we have that (ljθ)δ = (ljθ)δ0 = (ljθ)δj .Let bj = b{wp1 7→ pj1τ, . . . , w

p
m 7→ pjmτ}. We show by indution on i that

• mPj
(i, ljθ)δ = mPj

(i, ljθ)δj , and
• [mPj

(i, ljθ); . . . ; mPj
(1, ljθ)]δ = [mPj

(i, ljθ); . . . ; mPj
(1, ljθ)]δj.

• If i = 1, we have that mPj
(1, ljθ) = bj⌊ljθ, a

j
1, []⌋.We apply the swapping δ (resp. δj) on mPj
(1, ljθ). As bj is a term whih does notontain the list onstrutor and δ is a swapping of non-empty lists, we have that:

mPj
(1, ljθ)δ = bj⌊(ljθ)δ, a

j
1δ, []⌋

mPj
(1, ljθ)δj = bj⌊(ljθ)δj , a

j
1δj , []⌋.

We have shown previously that (ljθ)δ = (ljθ)δj . Furthermore, sine aji is a name, wehave that aj1δ = aj1 = aj1δj, and so we dedue that:
mPj

(1, ljθ)δ = mPj
(1, ljθ)δj .We an have mPj

(1, ljθ) = mPj′
(i, lj′θ) only if j = j′ (f. statement (∗)), so for any

j 6= j′, wj′ /∈ st([mPj
(1, ljθ)]), and [mPj

(1, ljθ)]δ = [mPj
(1, ljθ)]δj.

• If i > 1, we have that
mPj

(i, ljθ) = bj⌊ljθ, a
j
i , [mPj

(i− 1, ljθ); . . . ; mPj
(1, ljθ)]⌋.We apply the swapping δ (resp. δj) on mPj

(1, ljθ). As bj is a term whih does notontain the list onstrutor and δ is a swapping of non-empty lists, we have that:
mPj

(i, ljθ)δ = bj⌊(ljθ)δ, a
j
iδ, [mPj

(i− 1, ljθ); . . . ; mPj
(1, ljθ)]δ⌋

mPj
(i, ljθ)δj = bj⌊(ljθ)δj , a

j
i δj, [mPj

(i− 1, ljθ); . . . ; mPj
(1, ljθ)]δj⌋.
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100 CHAPTER 4. PROTOCOLS WITH RECURSIVE TESTS
We have shown previously that (ljθ)δ = (ljθ)δj . Furthermore, sine aji is a name, wehave that aj1δ = aj1 = aj1δj. Lastly, thanks to our indution hypothesis, we have that

[mPjθ(i− 1, ljθ); . . . ; mPjθ(1, ljθ)]δ = [mPjθ(i− 1, ljθ); . . . ; mPjθ(1, ljθ)]δj.This allows us to onlude that mPj
(i, ljθ)δ = mPj

(i, ljθ)δj .We an have mPj
(i, ljθ) = mPj′

(i′, lj′θ) only if j = j′ by (∗). Consequently, for any j 6= j′,we dedue that vj′ /∈ st([mPj
(i, ljθ); . . . ; mPj

(1, ljθ)]), and so [mPj
(i, ljθ); . . . ; mPj

(1, ljθ)]δ =
[mPj

(i, ljθ); . . . ; mPj
(1, ljθ)]δj .

Show that θ′ is a solution of φ. First, as 〈pj1σ, . . . , pjmσ〉θ is a tuple of names, we have that
〈pj1σ, . . . , p

j
mσ〉θ = 〈pj1σ, . . . , p

j
mσ〉θ′. We will write

Pj = 〈pj1τ, . . . , p
j
mτ〉 = 〈p

j
1τ

′, . . . , pjmτ
′〉.We show that for every 1 ≤ j ≤ p, 〈Pj , 〈ljθ′, l′jθ

′〉〉 ∈ L by distinguishing between ases:
• First, show that if 1 ≤ j ≤ q (tail(lj) = x1), 〈Pj , 〈ljθ′, l′jθ′〉〉 ∈ L.

ljθ
′ = c1θ

′ :: . . . :: ckj
θ′ :: v0 = [b1; . . . ; bk] (v0 = [bkj+1; . . . ; bk])

l′jθ
′ = v1θ

′ :: . . . :: vk′jθ
′ :: yjθ

′ = [rk; . . . ; r1] (yjθ
′ = [rk−k′j ; . . . ; r1])where k = kj + kv. (for more larity, as we only onsider the j-th onstraint, we willwrite ci = cji , vi = vji ,mi = mj

i , ai = aji and n = nj).For i ≤ kj, it is lear that bi = ai, and for i > kj, bi = an−k+i.We have that l′jθ = [mn; . . . ;m1]. By Claim A, l′jθ′ = (l′jθ)δ, and by Claim B, (l′jθ)δ =
(l′jθ)δj. We ompute l′jθ′:

l′jθ
′ = [mn; . . . ;m1]δj

= (mn :: . . . :: mn−kv+1 ::)δj
= [mnδj; . . . ;mn−kv+1δj ;mkj

δj ; . . . ;m1δj ]As l′jθ′ = [rk; . . . ; r1], we dedue the values of ri depending on i:
{ For i ≤ kj , ri = miδjFor i > kj , ri = mn−k+iδjBy de�nition of L, 〈Pj , 〈ljθ′, l′〉〉 ∈ L i� l′ = [mPj

(k, ljθ
′); . . . ; mPj

(1, ljθ
′)] where mPj

(i, ljθ
′) =

bj⌊ljθ′, bi, [mPj
(i− 1, ljθ

′); . . . ; mPj
(1, ljθ

′)]⌋ and bj = b{wp1 7→ pj1τ
′, . . . , wpm 7→ pjmτ ′}.We show by indution over i that ri = mPj

(i, ljθ
′):� if i ≤ kj , ri = miδj .As 〈Pj , 〈ljθ, l′jθ〉〉 ∈ L, mi = bj⌊ljθ, ciθ, [mi−1; . . . ;m1]⌋. As bj does not ontainthe list onstrutor :: and δj is a swapping of (non empty) lists, by de�nition of aswapping, we have that

bj⌊ljθ, ciθ, [mi−1; . . . ;m1]⌋δj = bj⌊(ljθ)δj , (ciθ)δj, [mi−1; . . . ;m1]δj⌋
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4.3. ROUTING PROTOCOLS 101
We have that (ciθ)δ = ciθ = aibi and (ljθ)δj = (ljθ)δ = ljθ

′, thanks to Claims (A) and (B).Furthermore, [mi−1; . . . ;m1] is a strit subterm of wj , so
[mi−1; . . . ;m1]δj = [mi−1δj ; . . . ;m1δj].Reall that mhδj = rh for h ≤ i − 1 ≤ kj . By indution hypothesis, we have thatfor every h < i, rh = mhδj = mPj

(h, ljθ
′). So,

ri = miδj
= bj⌊ljθ′, bi, [mPj

(i− 1, ljθ
′); . . . ; mPj

(1, ljθ
′)]⌋

= mPj
(i, ljθ

′).� if i > kj , we have that ri = mn−k+iδj and bi = an−k+i. Let i′ = n− k + i.As 〈Pj , 〈ljθ, l′jθ〉〉 ∈ L, mi′ = bj⌊ljθ, ai′ , [mi′−1; . . . ;m1]⌋. As bj does not ontainthe list onstrutor and δj is a swapping of (non empty) lists, by de�nition of aswapping, we have that
bj⌊ljθ, ai′ , [mi′−1; . . . ;m1]⌋δj = bj⌊(ljθ)δj , ai′δj , [mi′−1; . . . ;m1]δj⌋We have that ai′δj = ai′ = bi and (ljθ)δj = (ljθ)δ = ljθ

′ thanks to Claims (A) and (B).We have [mn−k+i−1; . . . ;m1] = mn−k+i−1 :: . . . :: mn+1−kv
:: wj , and by applyingthe swapping:

[mn−k+i−1; . . . ;m1]δj = mn−k+i−1δj :: . . . :: mn+1−kv
δj :: wjδj

= [mn−k+i−1δj ; . . . ;mn+1−kv
δj ;mkj

δj ; . . . ;m1δj ]For h ≤ kj , we know that rh = mhδj . For kj < h < i, rh = mn−k+hδj . By applyingthe indution hypothesis, for all h < i, rh = mPj
(h, ljθ

′). As k = kv+kj , we deduethat
[mn−k+i−1; . . . ;m1]δj = [ri−1; . . . ; rk−kv+1; rkj

; . . . ; r1]
= [ri−1; . . . ; r1]
= [mPj

(i− 1, l1θ
′); . . . ; mPj

(1, l1θ
′)]So ri = bj⌊ljθ′, bi, [mPj

(i− 1, ljθ
′); . . . ; mPj

(1, ljθ
′)]⌋ = mPj

(i, ljθ
′).We have thus shown that 〈Pj , 〈ljθ′, l′jθ′〉〉 ∈ L.

• Seond, show that for j > q, 〈Pj , 〈ljθ′, l′jθ′〉〉 ∈ L.Thanks to Claim A, ljθ′ = (ljθ)δ, and by applying Claim B, (ljθ)δ = (ljθ)δj , andsimilarly l′jθ
′ = (l′jθ)δj . As δj = id , it follows that (ljθ

′, l′jθ
′) = (ljθ, l

′
jθ). Hene,

〈Pj , 〈ljθ′, l′jθ
′〉〉 = 〈Pj , 〈ljθ, l′jθ〉〉 ∈ L.We have thus shown that θ′ is a solution of φ = ψσ. As a onsequene, τ ′ = θ′ ◦σ is a solutionof ψ.Show that τ ′ is a onstrutive solution of (C, I). Write C = T1  z1 ∧ · · · ∧ Tn  zn. We willshow by indution on i that SatTiτ

′ ∪ I ⊢ ziτ ′ using omposition rules only.Claim C will help us with the proof, but �rst we need to show that when x1θ is deduibleusing omposition rules only, then x1θ
′ = w0 is also deduible using omposition rules only.
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102 CHAPTER 4. PROTOCOLS WITH RECURSIVE TESTS
Let i0 be minimal suh that SatTi0τ ∪ I ⊢ x1θ using omposition rules only. Otherwise, let
i0 = n+ 1. We show that, if i0 ≤ n, SatTi0τ

′ ∪ I ⊢ w0 using omposition rules only.Reall that x1θ = [a1
k1+1; . . . ; a

1
n1

] and w0 = [a1
n1−kv+1; . . . ; a

1
n1

] with a1
k of sort Base. Let

n1 − kv + 1 ≤ k ≤ n1. As τ is a onstrutive solution of (C, I) in solved form and x1θ isa list suh that SatTi0τ ∪ I ⊢ x1θ using omposition rules only, we an apply Lemma 4.1.1:we have that SatTi0τ ∪ I ⊢ a
1
k using omposition rules only. As a1

k is of sort Base, it followsthat a1
k ∈ SatTi0τ ∪ I, and so a1

k = a1
kδ ∈ SatTi0τ

′ ∪ I. Consequently, there is a proof of
SatTi0τ ∪ I ⊢ w0 using omposition rules only.Consider j ≤ q (i.e. tail(lj) = x1). If there exists i suh that SatTiτ ∪ I ⊢ wj using onlyomposition rules, let ij be minimal suh that SatTijτ ∪ I ⊢ wj using omposition rules only.Otherwise, let ij = n+1. We show that, for ij ≤ n, SatTijτ

′∪I ⊢ w′
j using omposition rulesonly.Claim C: Sat(Tij )τ

′ ∪ I ⊢ w′
j using omposition rules only.Reall that wj = [mn−kv

; . . . ;m1] and w′
j = [mkj

δ0; . . . ;m1δ0] (with n − kv > kj). We showthat for every 1 ≤ k ≤ kj , SatTijτ
′ ∪ I ⊢ mkδ0 using omposition rules only.

• If the ase where ij ≥ i0. Let 1 ≤ k ≤ kj . As τ is a onstrutive solution of (C, I) insolved form and wj is a list suh that Sat(Tij )τ ∪I ⊢ wj using omposition rules only, wean apply Lemma 4.1.1: we have that Sat(Tij )τ ∪ I ⊢ mk using omposition rules only.As a onsequene, there is a ontextDk minimal in size and terms t1, . . . , tq ∈ Sat(Tij )∪Isuh that Dk⌊t1τ, . . . , tqτ, x1θ⌋ = mk.We want to show that Dk⌊t1τ
′, . . . , tqτ

′, x1θ
′⌋ = mkδ0.First, thanks to Claim B, mkδ = mkδj . Furthermore, mk is a strit subterm of wj , so

mkδj = mkδ0. Thus, for every subterm u of mk, uδ = uδ0. We dedue that
Dk⌊t1τ, . . . , tqτ, x1θ⌋δ = Dk⌊t1τ, . . . , tqτ, x1θ⌋δ0.As Dk is a minimal ontext,

(Dk⌊t1τ, . . . , tqτ, x1θ⌋)δ0 = Dk⌊(t1τ)δ0, . . . , (tqτ)δ0, (x1θ)δ0⌋.Indeed, suppose by ontradition that there exists a non empty subontext E of Dksuh that E⌊t1τ, . . . , tqτ, x1θ⌋ = x1θ: then Dk is not minimal. Furthermore, (tiτ)δ =
((tiσ)θ)δ = tiσ(θδ) = tiτ

′ thanks to Claim A.We have that (tiτ)δ0 = (tiτ)δ, as ti ∈ st(mk) and mkδ = mkδ0. We dedue that
(tiτ)δ0 = tiτ

′. We also have that Dk⌊(t1τ)δ0, . . . , (tqτ)δ0, (x1θ)δ0⌋ = mkδ0. We deduethat Dk⌊t1τ
′, . . . , tqτ

′, x1θ
′⌋ = mkδ. Furthermore, sine ij ≥ i0 and Sat(Ti0)τ ∪ I ⊢

w0 = x1θ
′ using omposition rules only, we onlude that there is a onstrutive proofof Sat(Tij )τ ∪ I ⊢ mkδ0.

• In the ase where ij < i0, then similarly there is a ontext Dk minimal in size and terms
t1, . . . , tq ∈ Sat(Tij ) ∪ I suh that Dk⌊t1τ, . . . , tqτ⌋ = mk. By a similar reasoning, wehave that

Dk⌊t1τ, . . . , tqτ⌋δ = Dk⌊t1τ, . . . , tqτ⌋δ0
= Dk⌊(t1τ)δ0, . . . , (tqτ)δ0⌋Indeed, suppose by ontradition that there exists a non empty subontext E of Dk suhthat E⌊t1τ, . . . , tqτ⌋ = x1θ: then i0 is not minimal. We onlude in a similar mannerthat there is a onstrutive proof of Sat(Tij )τ ∪ I ⊢ mkδ0.
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4.3. ROUTING PROTOCOLS 103
For every 1 ≤ k ≤ kj , there is a onstrutive proof of Sat(Tij )τ

′∪I ⊢ mkδ0, so there is a proofof Sat(Tij )τ
′ ∪ I ⊢ w′

j using omposition rules only.Now, we show that for every i, Sat(Ti)τ
′ ∪ I ⊢ ziτ ′ using omposition rules only.Let Si =

{
{wj |ij ≤ i} ∪ {x1θ} if i ≤ i0
{wj |ij ≤ i}Note that if wk /∈ Si, then there is no onstrutive proof of Sat(Ti)τ ∪ I ⊢ wk. If wk ∈ Si,thanks to Claim C there is a onstrutive proof of Sat(Tik)τ ∪ I ⊢ w′

k with ik ≤ i, so there isa onstrutive proof of Sat(Ti)τ ∪ I ⊢ w′
k. The same holds for x0θ and w0.As τ is a onstrutive solution, there is a minimal ontext Ci and terms t1, . . . , tp ∈

Sat(Ti)∪I suh that Ci⌊t1τ, . . . , tpτ, Si⌋ = ziτ . We apply the swapping δ: Ci⌊t1τ, . . . , tpτ, Si⌋δ =
(ziτ)δ. Thanks to Claim A, we have that (ziτ)δ = (ziσθ)δ = (ziσ)(θδ), and (ziσ)(θδ) =
(ziσ)θ′ = ziτ

′. Furthermore, Ci⌊t1τ, . . . , tpτ, Si⌋δ = Ci⌊(t1τ)δ, . . . , (tpτ)δ, Siδ⌋, as Ci is min-imal and for all k suh that wk /∈ Si, then there is no onstrutive proof of Sat(Ti)τ ∪I ⊢ wk.Now, for every k, (tkτ)δ = ((tkσ)θ)δ = tkσ(θδ) = tkτ
′ thanks to Claim A. Consequently,

Ci⌊t1τ ′, . . . , tpτ ′, Siδ⌋ = ziτ
′. For every wk ∈ Si, there is a onstrutive proof of Sat(Ti)τ ∪I ⊢

w′
k = wkδ. Furthermore, if x1θ ∈ Si, then i ≥ i0 and onsequently there is a onstrutive proofof Sat(Ti)τ ∪ I ⊢ w0. We dedue that there is a onstrutive proof of Sat(Ti)τ

′ ∪ I ⊢ ziτ ′.As a onlusion, τ ′ is a onstrutive solution of (C, I) and ψ smaller than τ .Theorem 4.3.4. Let L be a mapping-based language. Let (C, I) be a onstraint system and
φ be an L-language onstraint assoiated to (C, I).Deiding whether (C, I) ∧ φ has a solution is in NP.The proof of Theorem 4.3.4 involves three main steps. First, thanks to Theorem 2.3.1, itis su�ient to deide in polynomial (DAG) size whether (C, I) with language onstraint φ hasa non-onfusing solution when (C, I) is a solved onstraint system. Due to Proposition 2.4.1,we dedue that it is su�ient to show that deiding whether (C, I) ∧ φ has a onstrutivesolution is in NP, where (C, I) is a solved onstraint system.The seond and key step of the proof onsists in bounding the size of a onstrutivesolution. Note that the requirement on the form of φ is not a restrition sine any substitutionsatisfying φ will neessarily have this shape.For eah onstraint 〈〈pj1, . . . , pjm〉, 〈lj , l′j〉〉 ?

∈ L, the list lj provides onstraints on the lastelements of the list l′j , while l′j provides onstraints on the last elements of the list lj . Themain idea of the proof of Proposition 4.3.3 is to show that it is possible to ut the middleof the list lj , modifying the list l′j aordingly. This is however not straightforward as wehave to show that the new substitution is still a solution of the onstraint system (C, I). Inpartiular, utting part of the list might destroy some interesting equalities, used to dedueterms. Suh ases are atually avoided by onsidering onstrutive solutions and by uttingat some position in the lists suh that none of the elements are subterms of the onstraint,whih an be ensured by ombinatorial arguments.Proposition 4.3.3 allows us to bound the size of ljθ for a minimal solution θ, whih inturn bounds the size of l′jθ. The last step of the proof of Theorem 4.3.4 onsists in showingthat any xθ is bounded by the size of the lists or an be replaed by a onstant, by applyingLemma 4.1.2.We want to deide whether (C, I) ∧ φ has a solution.
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104 CHAPTER 4. PROTOCOLS WITH RECURSIVE TESTS
Write C = T1  u1 ∧ · · · ∧ Tn  un and φ = v1

?
∈ L ∧ · · · ∧ vp

?
∈ L. Our deision proedureworks as follows:Step 1. First, we may assume without loss of generality that for eah j ≤ p, the term vj isof the following form: vj = 〈〈pi1, . . . , p

i
m〉, 〈ℓj, ℓ

′
j〉〉.Step 2. We guess a sequene of transformation rules in strategy S from (C, I) to (C′, I) where

(C′, I) is a onstraint system in solved form. We have that:
(C, I) ∗

σ (C′, I) ∈ S with (C′, I) in solved form.
Let φ′ = 〈〈p1

1σ, . . . , p
1
mσ〉, 〈l1, l

′
1〉〉

?
∈ L∧ · · · ∧ 〈〈pp1σ, . . . , p

p
mσ〉, 〈lp, l′p〉〉

?
∈ L where lj = ℓjσand l′j = ℓ′jσ.Step 3. Let L = max

1≤j≤p
‖lj‖dag.Let M = #st(C′, φ′) + max

1≤j≤p
‖l′j‖l + 2×#var(C′)× max

t∈st(C′,φ′)
‖t‖dag.Let I0 ⊆ I of size p × 2(M + L)× (‖b‖dag +m+ 2 + 2M + 2L) + 1. Guess the valuesof variables in terms built over names(C, φ) ∪ I0 of size at most 2(M + L)× (‖b‖dag +

m+ 2 + 2M + 2L) + 2m+ 1. This gives us a substitution θ′, and we hek whether θ′is a solution of (C′, I) and φ′.Proof.We show that these steps allow us to guess a solution of (C, I) and φ in polynomial time.Step 1. We an write vj = 〈〈pj1, . . . , p
j
m〉, 〈ℓj, ℓ′j〉〉. Indeed, if θ is a solution of the onstraint

vj
?
∈ L, then by de�nition of L, there is a tuple of names 〈p1, . . . , pm〉 and ground lists l, l′ suhthat vjθ = 〈〈p1, . . . , pm〉, 〈l, l′〉〉. We an thus ompute σj = mgu{vj = 〈〈x1, . . . , xm〉, 〈y1, y2〉〉}where x1, . . . , xm, y1, y2 are fresh variables, with x1, . . . , xm of Base sort and y1, y2 of List sort.Then, we an apply substitution σj to C. The DAG size of C grows at most by 2× (2 +m)for eah transformation.Step 2. We an apply Theorem 2.3.1: there exists a solution θ of (C, I) if, and only if,there exist a dedution onstraint system (C′, I) in solved form and substitutions σ, θ′ suhthat (C, I)  ∗

σ (C′, I) by a derivation in strategy S, θ = θ′ ◦ σ, and θ′ is a non-onfusingsolution of (C′, I). Moreover, we have that θ′ is a solution of φσ. The length of this derivationis polynomially bounded in the DAG size of C and the DAG size of C′ is also polynomiallybounded by the DAG size of C. We an guess suh a derivation, and are now left to deidethe existene of a non-onfusing solution θ′ to (C′, I) and φσ.Thanks to Proposition 2.4.1, a non-onfusing solution of (C′, I) is in partiular a onstrut-ive solution.Step 3. We want to deide whether there exists a onstrutive solution θ′ to the onstraintsystem (C′, I) and φ′ = φσ where φ′ = v′1
?
∈ L ∧ · · · ∧ v′p

?
∈ L, with

• v′j = 〈〈pj1, . . . , p
j
m〉, 〈lj, l′j〉〉, and

• (C′, I) is in solved form.
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4.4. CONCLUSION AND FUTURE PROSPECTS 105
Thanks to Lemma 4.3.3, if suh a solution θ′ exists, we an assume that

‖tail(lj)θ
′‖l ≤M = #st(C′, φ′) + max

1≤j≤p
‖l′j‖l + 2×#var(C′)× max

t∈st(C′,φ′)
‖t‖dag.for every 1 ≤ j ≤ p.As ljθ′ is a list of names, we dedue that ‖ljθ′‖dag≤ 2×‖ljθ′‖l ≤ 2× (M + L).We now bound the size of l′jθ′ (in DAG representation), using the language onstraint

〈〈pj1, . . . , p
j
m〉, 〈lj , l′j〉〉

?
∈ L. Indeed, by de�nition of the language L, if ljθ′ = [a1; . . . ; an], then

l′jθ
′ = [mn; . . . ;m1] with mi = bj⌊ljθ′, ai, [mi−1; . . . ;m1]⌋ where bj = b{wp1 7→ pj1θ

′, . . . , wpm 7→

pjmθ′}. For every i ≤ n, we an bound the size of [mi+1, . . . ,m1] with respet to the size of
[mi, . . . ,m1]:

‖[mi+1, . . . ,m1]‖dag ≤ 1 + ‖[mi, . . . ,m1]‖dag + ‖b‖dag +m+ ‖ljθ
′‖dag + 1.Consequently,

‖l′jθ
′‖dag ≤ n× (‖b‖dag +m+ 2 + ‖ljθ′‖dag)

≤ ‖ljθ′‖dag × (‖b‖dag +m+ 2 + ‖ljθ′‖dag)
≤ 2(M + L)× (‖b‖dag +m+ 2 + 2M + 2L).Then, thanks to Lemma 4.1.2, we an assume that for every variable x, either xθ′ ∈ st(φ′θ′),or xθ′ ∈ {N0, []} with N0 ∈ I. Thus, we an guess the values of xθ′ by onsidering only a�nite subset of names of I of size

p× 2(M + L)× (‖b‖dag +m+ 2 + 2M + 2L) + 1Moreover, for every variable x ∈ dom(θ′), we have that:
‖xθ′‖dag ≤ max{‖v′jθ

′‖dag | 1 ≤ j ≤ p}

≤ max{‖l′jθ
′‖dag | 1 ≤ j ≤ p}+ 2m+ 1

≤ 2(M + L)× (‖b‖dag +m+ 2 + 2M + 2L) + 2m+ 1We an hek whether a given substitution is a solution of (C′, I) ∧ φ in polynomial time.In order to onlude, It only remains to show that M and L are polynomial in the size of C, φ.We have that
• M = #st(C′, φ′) + max

1≤j≤p
‖ℓ′jσ‖l + 2×#var(C′)× max

t∈st(C′,φ′)
‖t‖dag, and

• L = max
1≤j≤p

‖ℓjσ‖dag.First, we have that #st(C′, φ′) = #st(C, φ). Then, for every term u ∈ st(C, φ), we get that
‖uσ‖dag ≤ ‖u‖dag + #var(C)× max

t∈st(C,φ)
‖t‖dag. This allows us to onlude.

4.4 Conlusion and future prospetsWe have provided two new NP deision proedures for (automatially) analysing on�denti-ality of seurity protools with reursive tests, for a bounded number of sessions. The lassesof reursive languages we an onsider both enompass hained-based lists of erti�ates andmost of the reursive tests performed in the ontext of routing protools.
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106 CHAPTER 4. PROTOCOLS WITH RECURSIVE TESTS
Analyzing more reursivity tests. The way we have modeled both SMNDP and endairAis not totally aurate. During the exeution of both these protools, the intermediate nodesperform reursive heks too, on the partially built list of signatures. If the test fails, theydrop the message. We do not lose attaks with our modeling but we may disover false attaksas some messages that should have been dropped are transferred without any hindrane. Wewould have to add a language for partially-built signature lists. De�ning suh a language iseasy, but not so to see whether the deidability result still holds. Our proof makes use of thefat that if two signature lists share a link, then they are equal, whih would no longer be thease. To irumvent that, we ould de�ne a notion of family, whih would intuitively regroupall the signature lists orresponding to a ertain path.Furthermore, in order to model Ariadne, where the reursivity test is di�erent, we need toagain de�ne another new lass of reursive languages. In this protool, the list of signaturesproviding authentiation is built during the request phase, and so both the list representingthe path and the list authentiating the path grow along the way. It is possible that thosetwo lasses of languages ould be linked, they both involve partial lists of signatures. Thedi�erene lies in the fat that in Ariadne, the list of nodes grows along the way, in ontrastwith endairA or SMNDP, where the list of nodes is �xed.Analyzing routing protools with reursive tests. The attak on SRP given in theprevious hapter shows that the intermediate links intuitively must atively partiipate byauthentiating the list in route disovery if we hope to prove orretness. Reursively builtauthentiation is one way to ahieve this partiipation.Combining reursivity tests and route property modelisation, i.e. the results obtained inthis hapter and in the previous one, is both logial and desirable in order to wrap up thingsneatly. Notie that adding neighborhood onstraints and other loal properties of lists toreursivity tests seems easily feasible. The ruial omponent to add is the property of routeorretness, and as this property onerns the entire route it interferes with the reursivitytest, whih also onerns the entire route. In both hapters, we show deidability by showinga small attak property: if there is an attak, there is one where we an bound the size of listsinvolved in the attak. But the bounding relies on totally di�erent tehniques in the proofs.For reursivity, we ut lists in the middle. In the other ase, we have to keep some nodes inthe list and we disard more or less the other ones, modulo some onstraints. Combining thetwo approahes seems possible, but it is not straightforward.te
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Chapter 5
Conlusion and Future Prospets
In this dissertation, we interested ourselves in ad ho routing protools. We proposed a modelthat takes into aount the partiularities of these networks, suh as the network topology,the broadast nature of ommuniation and the partiular tests performed in these protools.We have obtained deidability results for soure routing protools without reursivity tests,and for protools using only reursivity tests. A natural further diretion for researh wouldbe to study soure routing protools with reursive tests. This possibility has already beendisussed in Chapter 4 (see Setion 4.4). Another natural diretion is to study table routingprotools, that we are able to model up to a ertain point. This possibility was disussed inChapter 3 (see Setion 3.5).In this onluding hapter, we disuss other researh diretions. We believe it is possible toprodue a tool that would automatially analyze routing protools and either detet attaksor prove them seure. It would also be interesting to onsider other seurity properties, andin partiular anonymity, as there is a spei� family of ad ho routing protools designed toguarantee anonymity. Finally, an important aspet of ad ho networks we have not modeledis mobility, and we would like to takle this issue.
5.1 Towards automationFor onstraint systems with small attaks properties, tools have been developed that an�nd attaks without having to searh all the spae of possible solutions. For trae basedproperties in partiular, there are e�ient tools that an detet attaks or guarantee seurity.We want to build suh a tool tailored for analyzing routing protools. It is not possible to useexisting tools, at least without any modi�ation: we have to take into aount the topologyof the network, the broadast primitive, an intruder loalized at a preise node and partiularseurity properties using the underlying graph. Suh partiularities are not aounted for inthe existing tools.A �rst possibility would be to implement our proedure. Of ourse, this would requireto adapt it: at the moment it is un�t for automation, with too many guesses. However, thebounds we give are not tight, and some guesses ould be more aurate. Instead of guessinga list and then heking that it satis�es all the onstraints, we ould build a list taking intoaount from the beginning some of the onstraints and only hek it against the remainingonstraints. In partiular, all the loal heks ould give a basis for the possible solutions.Another approah would be to use existing tools and to �nd a way to model the partiular-107
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108 CHAPTER 5. CONCLUSION AND FUTURE PROSPECTS
ities of routing protools. The ruial point is to be able to take into aount the underlyinggraph, and the modi�ed model for the intruder.It is possible to enode routing protools for a �xed topology. [PPB10℄ uses AVISPA toanalyze ARAN, but without taking the topology into aount, letting the intruder ontrol thenetwork. However, this study shows that table routing protools an be modeled in AVISPAand analyzed. Benetti, Merro and Viganò [vig10℄ use the AVISPA tool to automatiallyanalyse some exeution senarios of the ARAN and endairA protools, and �nd some attakson ARAN. They onsider two di�erent network topologies for ARAN and disover attaksusing AVISPA. [ABY11℄ uses a model heking approah using the tool SPIN in order toanalyze ARAN in �xed topologies.Cheking partiular senarios of di�erent routing protools has already been done usingexisting tools. The proess however is done for small networks, as the graph needs to be hardoded into the analysis tool. In order to analyze larger networks or networks with unknowntopology, a promising approah onsists in reduing the size of the graph for whih there anbe an attak, instead of fousing on the size of the solution.In order to analyze all possible ases of topologies, [ABY11℄ uses a tehnique that onsistsin reduing the searh spae by building topology equivalene lasses and testing the smallesttopology in eah lass.J. Degriek [Deg11℄ has already shown that looking for an attak an be redued to lookingfor an attak on small graphs. Any attak an be transformed in an attak on a smaller graph,by distinguishing nodes that invalidate the routing property and regrouping the other ones.This approah has some limitations in the design of the protool, and partiularly makes useof only a fration of the logi. Attaks on SRP and SMNDP were retrieved by implementingthis method in Proverif. This approah allows to onsider only a �nite number of small graphs.
5.2 AnonymitySome routing protools, in addition to other seurity properties, wish to maintain anonymity ofthe partiipants to the protool. These protools are usually fairly omplex, they make a ratherheavy use of reursivity. The messages are like onions, with multiple layers of enryptions to betaken o� in order to reah the destination. These protools may involve reursive input/outputsteps, and our results in Chapter 4 an not be applied in this ase. We proved deidability forlasses of languages apturing reursivity tests only. It would be interesting to see if we ouldreuse some of the results as part of a work that would deal with reursive input/output stepswith ertain onditions to preserve deidability.The di�ulty with anonymous routing protools does not lie only with modeling the pro-tool but also with modeling the seurity property. The anonymity property is deliate toexpress even informally, more so in a formal way. Some works reently takled this issue fordi�erent appliations: RFID tags [BCd10℄, voting protools [DKR09℄ for instane. In orderto apture the notion of anonymity, they use indistinguishability of two exeutions where twoagents have exhanged their seret. Consequently, the notion of indistinguishability is not atrae-based property but an equivalene-based one. In order to prove this property, we have toonsider two di�erent sets of traes and ompare them. There already exist some algorithmsfor deiding trae equivalene for deduibility onstraints, and Proverif [Bla05℄ makes use ofsome of them, but they probably need to be adapted in order to be used in the ontext ofanonymous routing protools.
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5.3. CHALLENGES OF MOBILITY 109
5.3 Challenges of mobilityIt should be noted that we do not take mobility into aount in the sense that the topologyof the network does not hange during our analysis. There are two main reasons for thislimitation. First, many �aws an already be deteted without any hange in the networktopology. Seond, properties like the validity of a route are of ourse (temporarily) invalidatedduring a network topology modi�ation. Therefore, suh properties have to be analyzed onethe network is stabilized, previous routing protool exeutions being possibly inluded in theinitial knowledge of the attaker.An extension would be to model mobility during the exeution of the protool. Thiswould allow us to onsider hanges in the network topology and to analyze the seurity ofroute updates.In [Mer07℄, M. Merro proposes a proess alulus to study the observational theory ofmobile ad ho networks, alled CMN (Calulus for Mobile Networks). He establishes a bisim-ilarity relation that enables him to prove some strutural properties of mobile networks, e.g.a node that does not send any message an not be observed.J. Godskesen proposes in [God07℄ a Calulus for Mobile Ad Ho Networks, CMAN. In thismodel, nodes may autonomously hange their neighbor relationship and thereby hange thenetwork topology. He shows behavioural equivalenes between proesses and analyze ARAN.He proves that ARAN is not robust as adding an intruder leads to a proess that is notequivalent to the proess with whih they began.J. Godskesen and S. Nanz then worked together [GN09℄ to establish a realisti mobilitymodel. They desribe the movements of the nodes with a mobility funtion. A proessalulus taking the time into aount is set, and the mobility funtions an be omparedthrough bisimulation.Models for mobile networks exist, but they do not inlude ryptography. Furthermore,adding mobility to the network requires to model an appropriate seurity property. Ourdeidability result holds only for the logi Lroute, though the onrete and symboli modelhold for any logi.
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