
IMITATOR: a Tool for Synthesizing Constraints
on Timing Bounds of Timed Automata?

Étienne André

LSV – ENS de Cachan & CNRS, France

Abstract. We present here Imitator, a tool for synthesizing constraints
on timing bounds (seen as parameters) in the framework of timed au-
tomata. Unlike classical synthesis methods, we take advantage of a given
reference valuation of the parameters for which the system is known to
behave properly. Our aim is to generate a constraint such that, under
any valuation satisfying this constraint, the system is guaranteed to be-
have, in terms of alternating sequences of locations and actions, as under
the reference valuation. This is useful for safely relaxing some values of
the reference valuation, and optimizing timing bounds of the system. We
have successfully applied our tool to various examples of asynchronous
circuits and protocols.

1 Context

Timed automata [1] are finite control automata equipped with clocks, which are
real-valued variables which increase uniformly. This model is useful for reasoning
about real-time systems, because one can specify quantitatively the interval of
time during which the transitions can occur, using timing bounds. However,
the behavior of a system is very sensitive to the values of these bounds, and
it is rather difficult to find their correct values. It is therefore interesting to
reason parametrically, by considering that these bounds are unknown constants,
or parameters, and try to synthesize a constraint (i.e., a conjunction of linear
inequalities) on these parameters which will guarantee a correct behavior of the
system. Such automata are called parametric timed automata (PTA) [2, 11].

The synthesis of constraints for PTA has been mainly done by supposing
given a set of “bad states” (see, e.g., [8, 9]). The goal is to find a set of parameters
for which the considered timed automaton does not reach any of these bad states.
We call such a method a bad-state oriented method. By contrast, we present in
this paper a tool based on a good-state oriented method.

2 Principle of Imitator

The tool Imitator (Inverse Method for Inferring Time AbstracT behaviOR)
implements the algorithm InverseMethod , described in [4]. We assume given a
? This work is partially supported by the Agence Nationale de la Recherche, grant

ANR-06-ARFU-005, and by Institut Farman (ENS Cachan).

system modeled by a PTA A. Whereas bad-state oriented methods consider a set
of bad states, Imitator considers an initial tuple π0 of values for the parame-
ters, under which the system is known to behave properly. When the parameters
are instantiated with π0, the system is denoted by A[π0]. Under certain condi-
tions, the algorithm InverseMethod generalizes this good behavior by computing
a constraint K0 which guarantees that, under any parameter valuation π satis-
fying K0, the system behaves in the same manner : the behaviors of the timed
automata A[π] and A[π0] are (time-abstract) equivalent, i.e., the traces of ex-
ecution viewed as alternating sequences of locations (or “control states”) and
actions are identical. This is written A[π] ≡TA A[π0]. More formally, the algo-
rithm InverseMethod solves the following inverse problem [4] for acyclic systems
(i.e., with only finite traces) by computing a constraint K0 such that :

1. π0 |= K0,
2. A[π] ≡TA A[π0], for any π |= K0.

A practical application is to optimize (either decrease or increase) the value
of some element of π0, as long as it still satisfies K0. This is of particular interest
in the framework of digital circuits, in order to safely minimize some stabilization
timings (typically “setup” or “hold”).

The tool Imitator is available on its Web page1.

3 General Structure

Imitator

PTA A
(HyTech file)

Reference
valuation π0

Constraint K0 on
the parameters

As depicted above, Imitator takes as inputs a PTA described in HyTech
syntax, and a reference valuation π0. The aim of the program is to output a
constraint K0 on the parameters solving the inverse problem.

The algorithm InverseMethod on which Imitator relies can be summarized
as follows. Starting with K := True, we iteratively compute a growing set of
reachable symbolic states. A symbolic state of the system is a couple (q, C),
where q is a location of the PTA, and C a constraint on the parameters2. When
a π0-incompatible state (q, C) is encountered (i.e., when π0 6|= C), K is refined
as follows : a π0-incompatible inequality J (i.e., such that π0 6|= J) is selected
within C, and ¬J is added to K. The procedure is then started again with this
new K, and so on, until the whole set of reachable states (Post∗) is computed.

A simplified version of algorithm InverseMethod is given below, where the
clock variables have been disregarded for the sake of simplicity. We denote by
1 http://www.lsv.ens-cachan.fr/∼andre/IMITATOR
2 Strictly speaking, C is a constraint on the clock variables and the parameters, but

the clock variables are omitted here for the sake of simplicity. See [4] for more details.

Post i
A(K)(S) the set of symbolic states reachable from S in exactly i steps of

A(K), and ∃X : C denotes the elimination of clock variables in constraint C.

ALGORITHM InverseMethod(A, π0)
Inputs A : PTA of initial state s0

π0 : Reference valuation of the parameters
Output K0 : Constraint on the parameters
Variables i : Current iteration

K : Current constraint on the parameters
S : Current set of symbolic states (S =

⋃i
j=0 Postj

A(K)({s0}))
i := 0 ; K := True ; S := {s0}
DO

DO UNTIL there are no π0-incompatible states in S
Select a π0-incompatible state (q, C) of S (i.e., s.t. π0 6|= C)
Select a π0-incompatible J in C (i.e., s.t. π0 6|= J)
K := K ∧ ¬J ; S :=

⋃i
j=0 Postj

A(K)({(s0)})
OD

IF PostA(K)(S) = ∅ THEN RETURN K0 :=
⋂

(q,C)∈S(∃X : C)
FI

i := i+ 1 ; S := S ∪ PostA(K)(S)
OD

This algorithm terminates and solves the inverse problem for acyclic systems.
The acyclic class is interesting for hardware verification, e.g., when analyzing
synchronous circuits over a fixed number (typically, 1 or 2) of clock cycles.

Imitator is a program written in Python, that drives HyTech [10] for
the computation of the Post operation. The Python program contains about
1500 lines of code, and it took about 4 man-months of work.

Remark. In order to handle cyclic examples, one modifies the algorithm by
replacing, in the IF condition, PostA(K)(S) = ∅ by PostA(K)(S) ⊆ S. In that
case, we ensure termination more often (see [4]). However, we do not guarantee
any longer the identity of traces, but only the identity of reachable locations.
This is interesting when A[π0] is known to avoid a given bad location because,
in this case, A[π] is also guaranteed to avoid this bad location, for any π |= K0.

4 An Illustrating Example

We consider an asynchronous “D flip-flop” circuit described in [7] and depicted
on Fig. 1. It is composed of 4 gates (G1, G2, G3 and G4) interconnected in a
cyclic way, and an environment involving two input signals D and CK . The
global output signal is Q. Each gate Gi has a delay in the parametric interval
[δ−i , δ

+
i], with δ−i ≤ δ+i . There are 4 other parameters (viz., THI , TLO , Tsetup ,

and Thold) used to model the environment. Each gate is modeled by a PTA,

Fig. 1. Flip-flop circuit

as well as the environment. We consider an inertial model for gates, where any
change of the input may lead to a change of the output (after some delay). The
PTA A modeling the system results from the composition3 of those 5 PTAs.
The output signal of a gate Gi is named gi (note that Q = g4). The rising (resp.
falling) edge of signal D is denoted by D↑ (resp. D↓) and similarly for signals
CK , Q, g1, . . . , g4. We consider the following instantiation π0 of the parameters :

THI = 24 TLO = 15 Tsetup = 10 Thold = 17 δ−1 = 7 δ+1 = 7
δ−2 = 5 δ+2 = 6 δ−3 = 8 δ+3 = 10 δ−4 = 3 δ+4 = 7

We consider an environment starting from D = CK = Q = 0 and g1 =
g2 = g3 = 1, with the following ordered sequence of actions for inputs D and
CK : D↑, CK ↑, D↓, CK ↓, as depicted on Fig. 1 right. Therefore, we have the
implicit constraint Tsetup ≤ TLO ∧ Thold ≤ THI . For this environment and the
instantiation π0, the set of traces (alternating sequences of locations and actions)
of the system is depicted below under the form of an oriented graph, where qi,
1 ≤ i ≤ 9, are locations of A.

q1 q2 q3 q4 q5

q6

q7

q8 q9
D↑ g↓1 CK ↑ g↓3

Q↑

D↓

D↓

Q↑

CK ↓

Applying Imitator to A and π0, we get the following constraint K0
4 :

Tsetup < TLO ∧ δ+3 + δ+4 < THI ∧ δ+1 < Tsetup ∧ δ−1 > 0
∧ Thold ≤ δ+3 + δ+4 ∧ δ−3 + δ−4 ≤ Thold ∧ δ+3 < Thold

For any valuation π satisfying K0 and for the same environment, the set of
traces of the system A[π] coincides with the one depicted above, i.e., A[π] ≡TA

A[π0]. For a comparison of K0 with the constraint found in [7], see [5].

3 The standard parallel composition of several PTAs is a PTA.
4 It can be surprising that neither δ−2 nor δ+2 appear in K0. This constraint K0 actually

prevents G2 from any change, as g1 and CK are never both set to 1 ; therefore, g2
always remains set to 1, and the delay of G2 does not have any influence on the
system for the considered environment.

5 Experiments

We applied the tool Imitator to various case studies from the literature, includ-
ing a flip-flop circuit (described in Sect. 4), two protocols (root contention and
CSMA/CD), as well as two real case studies : a portion of the memory circuit
SPSMALL designed by ST-Microelectronics, and a distributed control system
(SIMOP). All those experiments are detailed in [5]. The HyTech source code
of all the examples is available on Imitator webpage.

Example # of loc. per # of # of # of |Post∗| |K0| CPU
PTAs PTA clocks param. iter. time

Flip-flop [7] 5 [4, 16] 5 12 8 11 7 2 s
RCP [13] 5 [6, 11] 6 5 18 154 2 70 s

CSMA/CD [12, 14] 3 [6, 7] 4 3 21 294 3 108 s
SPSMALL [6] 10 [3, 8] 10 22 31 31 23 78 mn

SIMOP [3] 5 [6, 16] 9 16 51 848 7 419 mn

The above table gives from left to right the name of the example, the number
of PTAs composing the system A, the lower and upper bounds on the number of
locations per PTA, the numbers of clocks and parameters of A, of iterations of
the algorithm, of reached symbolic states, of inequalities in K0 (after reduction),
and the computation time on an Intel Quad Core 3 GHz with 3.2 Gb.

All these examples are acyclic5, and thus guarantee the equality of traces,
except SIMOP. In this latter case, we are only interested in avoiding a given bad
location, and the equality of reachable locations is sufficient.

In the flip-flop and RCP examples, we took as π0 an instance satisfying a
constraint issued from a classical synthesis method of the literature. In this case,
the constraint generated by our method may be the same as the constraint from
the literature, but not necessarily : for example, in the case of the flip-flop circuit,
K0 is uncomparable with the original constraint of [7] (see [5] for details).

In the CSMA/CD, SIMOP, VALMEM examples, the instantiation π0 corre-
sponds to typical data associated to the case study. In this case, the constraintK0

allows us to optimize some values of the typical data π0. This is useful, for ex-
ample in order to safely relax some requirements on the environment of asyn-
chronous circuits (see, e.g., [6]). In the SPSMALL case study, this allows us to
safely optimize some nominal setup timing by 8 % (see [5]).

Running HyTech in a brute manner (fully parametric forward analysis)
quickly leads to a saturation of the memory for most examples. One reason
for which Imitator behaves well in practice is that the procedure drastically
reduces the number of reachable states by quickly restraining K0.

6 Final Remarks

Given a reference valuation π0, Imitator solves the inverse problem for systems
modeled by PTA with acyclic traces : it returns a constraint K0 on the parame-
5 We considered an acyclic model for CSMA/CD and RCP by bounding the maximal

number of collisions of messages.

ters guaranteeing that the sets of traces of A[π0] and A[π] are identical, for any
valuation π such that π |= K0.

K0 prevents all the bad behaviors (e.g. deadlocks), since it imitates the ref-
erence behavior of π0, while constraints generated by classical methods may not
prevent bad behaviors other than those specified by the bad states.

Imitator can be used in an incremental way as a complementary tool to en-
large constraints given by classical methods. For example, in the flip-flop case (see
Sect. 4), the constraint, say Z, found in [7] is uncomparable with our constraint
K0. We can run Imitator once more with a reference valuation π1 ∈ Z \K0.
This gives a new constraint K1, s.t. K0 ∪K1 is strictly larger than Z (see [5]).

Acknowledgments. I thank anonymous referees for their helpful comments.

References

1. R. Alur and D. L. Dill. A theory of timed automata. TCS, 126(2):183–235, 1994.
2. R. Alur, T. A. Henzinger, and M. Y. Vardi. Parametric real-time reasoning. In

STOC ’93, pages 592–601, New York, USA, 1993. ACM.
3. S. Amari, É. André, T. Chatain, O. De Smet, B. Denis, E. Encrenaz, L. Fribourg,

and S. Ruel. Timed analysis of distributed control systems combining simulation
and parametric model checking. Research report, LSV, ENS Cachan, France, 2009.

4. É. André, T. Chatain, E. Encrenaz, and L. Fribourg. An inverse method for
parametric timed automata. International Journal of Foundations of Computer
Science (IJFCS). To appear.

5. É. André, E. Encrenaz, and L. Fribourg. Synthesizing parametric constraints on
various case studies using Imitator. Research report, Laboratoire Spécification et
Vérification, ENS Cachan, France, June 2009.

6. R. Chevallier, E. Encrenaz-Tiphène, L. Fribourg, and W. Xu. Verification of the
generic architecture of a memory circuit using parametric timed automata. In
FORMATS ’06, volume 4202 of LNCS, Paris, France, 2006. Springer.

7. R. Clarisó and J. Cortadella. The octahedron abstract domain. In SAS ’04, 2004.
8. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided

abstraction refinement. In CAV ’00, pages 154–169. Springer-Verlag, 2000.
9. G. Frehse, S.K. Jha, and B.H. Krogh. A counterexample-guided approach to pa-

rameter synthesis for linear hybrid automata. In HSCC ’08, volume 4981 of LNCS,
pages 187–200. Springer, 2008.

10. T. A. Henzinger, P. Ho, and H. Wong-Toi. A user guide to HyTech. In TACAS,
pages 41–71, 1995.

11. T. Hune, J. Romijn, M. Stoelinga, and F. W. Vaandrager. Linear parametric model
checking of timed automata. In TACAS ’01, pages 189–203. Springer-Verlag, 2001.

12. X. Nicollin, J. Sifakis, and S. Yovine. Compiling real-time specifications into ex-
tended automata. IEEE Trans. on Software Engineering, 18:794–804, 1992.

13. D. Simons and M. Stoelinga. Mechanical verification of the IEEE 1394a Root
Contention Protocol using Uppaal2k. International Journal on Software Tools for
Technology Transfer, 3(4):469–485, 2001.

14. Farn Wang. Symbolic parametric safety analysis of linear hybrid systems with
BDD-like data-structures. IEEE Trans. Softw. Eng., 31(1):38–51, 2005.

