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Abstract

Our goal is to use formal methods to reason about systems where time and
concurrency play a significant role. We are interested in checking if the behaviours
exhibited by an implementation conform to those stipulated by the specification
in a timed and distributed system.

To describe the behaviours of distributed systems which operate on a global
time, we introduce two notions of timed partial orders. The first, timed message
sequence charts (TMSCs) are concrete models used to describe system executions.
The second, time constrained message sequence charts (TCMSCs) are more ab-
stract and represent families of TMSCs. For appropriate formalisms of implemen-
tation (timed message passing automata) and specification (monadic second order
logic) over TMSCs, we obtain an expressive equivalence.

Infinite collections of TCMSCs can also be specified using time constrained
message sequence graphs (TCMSGs). We address two problems that arise in this
setting, consistency and coverage. Consistency asks if every run of the implemen-
tation is compatible with some TCMSC generated by the TCMSG. Coverage asks
if every TCMSC generated by the TCMSG is witnessed by the implementation.

In the second part of the talk, we consider an alternate system model where
clocks in different components of a distributed system evolve at different rates.
We look at two natural semantics. The universal semantics captures behaviours
that hold under any choice of clock rates, while the existential semantics captures
those the system may exhibit under some choice of clock rates. We show that
the existential semantics always exhibits a regular set of behaviours. However, for
universal semantics, checking emptiness turns out to be undecidable. As an alter-
native, we propose a reactive semantics that lets us check positive specifications
and yet describes a regular set of behaviours.
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1
Introduction

1.1 Background and motivation

In today’s world, we encounter computational devices all around us. These devices
do not act in isolation but interact in increasingly complex ways. For example,
Automatic Teller Machines (ATMs), online banking systems, car braking systems
are all composed of several components that need to communicate with each other
over an extended period of time. Even a simple system of a railway gate controller
requires us to manage the interaction between the gate and the signal. Designing
these systems and analyzing how they function (and evolve) is an important focus
of computer science.

Two crucial aspects in this study are concurrency and timing. Concurrency
plays an important role since systems usually consist of independent components
that interact periodically to coordinate their behaviour. Timing considerations
play an important role in describing how these interactions proceed.

Of course, there are many ways to model concurrency as well as time in systems.
Concurrency is typically modelled by considering distributed system components
that synchronize. This synchronization can be achieved by using common actions
or by exchanging messages, for instance through fifo channels or through shared
variables. To describe how the behaviour of the system depends on time, we use
devices such as clocks and time-outs. Combining concurrency and time gives rise
to a new set of questions. Does there exist a global clock that synchronizes all the
distributed components? Do different distributed components need to refer to the
same clocks or even the same time?

1.2 The starting point

Our goal is to use formal methods to reason about systems where time and concur-
rency play a significant role. The first challenge is to choose a suitable formalism
that admits automated analysis. For instance, if a system exhibits regular, finite-
state behaviour, we can use model checking to efficiently explore the state space
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and determine various behavioural properties.
Model checking is the paradigm where systems are abstracted into models that

are then automatically checked for correctness against formal specifications. This
approach has been quite successful in handling industrial-sized verification prob-
lems. Finite-state automata provide an intuitively appealing machine model for
generating regular behaviours. These regular behaviours can be represented as a
set of words over an alphabet. Monadic second order logic is an elegant language
to describe abstract properties of sets of words. The Büchi-Elgot Theorem [20,37]
links the two formalisms: a behaviour can be described by a finite-state automaton
if and only if it can be expressed in monadic second order logic. This correspon-
dence is effective and forms the basis for model checking behavioural properties
of finite-state systems. We would like to lift this approach to the timed and dis-
tributed setting.

However, while trying to describe the behaviours of a timed and distributed
system, we find that words are not good enough abstractions. First of all, when we
describe the behaviour of a distributed system as a word, we implictly sequentialize
events that occur on different processes. Thus, when events occur independently
(on different processes), the behaviour is represented by the set of all interleavings
of the events. If we have n events, to know that they are independent, we will
have to check n! interleavings in this representation. This is sometimes referred to
as the combinatorial or state explosion problem. Also, by using the interleaving
semantics, we end up “flattening” the model into a large global system where
concurrency is replaced by nondeterminism. Thus, we are motivated to look at
partial orders which make precise the dependence between the actions and allow for
independence of certain actions. There are many popular notions which formalize
this including traces, event structures and message sequence charts.

Further, in a timed system, there is an infinite set of time points when an
event might happen. This can be modelled by attaching to each event a real-
valued variable denoting the time at which it occurred. Such an extension in
the sequential setting is called a timed word. It is natural to extend this to the
distributed setting by defining partial orders with time stamps.

1.3 Models in the timed and distributed setting

As motivated above, we are interested in checking if the behaviours exhibited by an
implementation conform to the behaviours stipulated by a specification in a timed
and distributed system. Potentially, this allows us to specify and verify properties
of the system in an automated framework.

The crux of this approach lies in extending the notion of behaviours to timed
partial orders. Once this is accomplished, we can introduce appropriate abstract
formalisms for implementation and specification and perform such an analysis.
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Figure 1.1: A message sequence chart with timing information

1.3.1 Models for behaviours

We use message sequence charts as our basic models of partially ordered executions.
A message sequence chart (MSC) is a visual representation of the interactions
between various components or processes in a distributed system. The processes
are drawn as vertical lines and interpreted as time axes on which send or receive
events take place. The components interact through messages which are depicted
as arrows from send to receive events on the process lines.

MSCs are widely used in industry and have been standardized in [44,45]. They
serve as documentation of design requirements that are referred throughout the
design process including final system integration and acceptance testing.

Formally, MSCs can be described as partially ordered sets of events in which
each event is labelled as a send or a receive action. We introduce two notions of
MSCs with timing information. We first consider timed MSCs which are just MSCs
with time-stamps at events (as in timed words). These are ideal to describe real-
time system executions, while keeping the causal relation between events explicit.
Next, we consider MSCs with timing constraints or time-constrained MSCs, where
we associate time-intervals to some pairs of events (instead of attaching time-
stamps to individual events). The endpoints of the interval give us the upper and
lower bounds on the time allowed to elapse between the events. This formalism
is more suitable for specification and also useful for describing a possibly infinite
family of timed MSCs in a finite way.

Example 1. Consider the scenario presented in Figure 1.1 which depicts part of
an interaction between two users and a railway ticket-booking server. The vertical
line orders the events on a single process while the arrows represent messages
between the processes. Thus, in the scenario shown, two users User1 and User2
send booking requests to the Server. The Server grants User1 ’s request since
it is received first. Then, User1 confirms her booking which leads to the server
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denying the booking to User2. Meanwhile, User2 repeats his request which reaches
the Server.

If we ignore the time stamps and intervals mentioned we have an MSC. Now,
if we include the time stamps mentioned at each event, we obtain a timed MSC
which tells us exactly when each event took place. For instance, we can see that the
message confirm was sent by User1 at time instant 6 and received instantaneously
by the Server. If we consider only the time intervals mentioned between events,
we obtain a time-constrained MSC. In the above scenario, for instance, we require
that the time difference between two consecutive requests by User2 to Server is
atmost 6 time units and at least 3. We will revisit this example in Sections 3.1
and 3.3 in more detail.

1.3.2 Models for implementation

Next, we consider automaton models that implement the behaviours described
above. As an implementation for MSCs, we consider message passing automata
(MPA) or communicating finite-state machines introduced in [19], which are a
fundamental model for concurrent systems and communicating protocols. An MPA
consists of a set of finite-state automata that communicate with each other over
FIFO channels.

We would now like to extend the MPA formalism to define automata which
implement the timed partial order behaviours that we described. As a step towards
this, we first look at finite-state automata with timing information which run over
timed words. Timed automata, introduced in [5], are well-established models for
real-time systems, in which normal finite-state automata are augumented with
real-valued variables called clocks. A clock can be reset at any time and records
the time elapsed since the last time it was reset. We are also interested in a
subclass of timed automata, namely the event clock automata, which combine
high expressivity with a tractable theory. An event clock automaton uses implicit
“event clocks” that record or predict time lapses only with respect to the last or
the next occurence of an event.

We introduce two models of message passing automata with timing. The first
model we introduce is that of a timed message passing automaton. A timed MPA
is an MPA equipped with clocks, as in a timed automaton. We can describe the
global semantics of a timed MPA in terms of timed linearizations, which we then
lift to obtain its semantics in terms of timed MSCs.

As a second and more robust model, we introduce event clock message passing
automata, which combine the MPA formalism with that of the event clock automa-
ton. We describe the semantics of event clock MPA directly over time-constrained
MSCs and timed MSCs in a natural manner.
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1.3.3 Specification formalisms

The language of mathematical logic is a classical formalism that allows us to spec-
ify properties of structures such as words and trees in a concise and precise man-
ner. Here, we consider monadic second-order logic (MSO) as a specification lan-
guage for MSCs. We then introduce additional timing predicates to obtain timed
monadic second-order logic, allowing us to describe properties about timing in
time-constrained MSCs and timed MSCs.

Another way to describe infinite collections of MSC behaviours is to use mes-
sage sequence graphs (MSGs). These are finite-state automata whose nodes are
labelled by MSCs. Each run of the MSG generates an MSC by concatenating
the MSCs which are seen along the nodes encountered during the run. Instead,
if we now consider an automaton in which nodes are labelled by time-constrained
MSCs rather than MSCs, we obtain a time-constrained message sequence graph,
which describes a possibly infinite collection of time-constained MSCs. The time-
constrained MSG is thus an alternate global specification model for collections of
time-constrained MSCs.

1.4 Other approaches and models for time and

concurrency

Providing a timed partial order semantics as we have done above allows us to apply
partial order reduction techniques [40] to address the model-checking problem.
However, this is not the only way to handle time and concurrency issues in systems.
Indeed, there are several other models that also handle time and concurrency in a
comparable way.

Petri nets [55] are a widely used formalism to model concurrency in systems.
In Petri nets, tokens are positioned in places and a transition fires by consuming
tokens and creates new ones, in general in other places. Thus, transitions that
consume different tokens, can fire independently. Many timed extensions of Petri
nets have been considered, for instance, time Petri nets [14], timed Petri nets [54].
Unfoldings of Petri nets provide a way to model the partial order behaviour of
these systems and by lifting these unfoldings to the timed extensions, they provide
a timed partial order semantics [26]. For more discussion on this refer to [25].
However, these unfoldings are seldom graphically representable in a compact man-
ner unlike MSCs (and their timed extensions). Further, unfoldings in Petri nets
correspond to “branching time” whereas MSCs express “linear time” behaviour.

Other models dealing with time and concurrency include networks of timed
automata [5] and products of timed automata [33]. Again in [18], unfolding tech-
niques were applied to study such networks of timed automata. However, none of
these models allow communication via explicit message passing, which is one of
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the main features of the timed and event clock MPA that we have introduced.
The formal semantics and analysis of timing in MSCs has been addressed earlier

in [7,10,24,46]. In [7] and [10], only single timed MSCs or high-level timed MSCs
were considered, while in [46] one of the first models of timed MPAs was intro-
duced. However, the latter do not consider MSCs as a semantics of their automata
but rather look at restricted channel architectures (e.g., one-channel systems) to
transfer decidability of reachability problems from the untimed to the timed set-
ting. The automaton model in [24] links the two approaches by considering a
similar automaton model with semantics in terms of timed MSCs. They propose
a practical solution to a very specific matching problem using the tool Uppaal.

1.5 Results on message sequence charts with tim-

ing

Our first goal is to lift the Büchi-Elgot Theorem [20,37] to the timed and distributed
setting. For the logical framework, we use the timed version of monadic second-
order logic. We interpret both event clock MPAs and timed MSO formulae over
timed MSCs and prove a constructive equivalence between them, with and without
bounds on channels. This is done by lifting the corresponding results from the
untimed case [17, 39, 42]. An important intermediary step in this translation is
the reinterpretation of the timed MSO and event clock MPA in terms of time-
constrained MSCs rather than timed MSCs. The time-constrained MSCs provide
a dual link: they can be seen as MSCs whose labelings are extended by timing
information and they can also be seen as a representation of infinite sets of timed
MSCs. Once this translation is done, we can essentially follow the technique of [34]
where such an equivalence is shown for timed words (without partial orders).

Next, we prove that, over existentially bounded channels, the problem of check-
ing emptiness for our automaton model and thus, the satisfiability problem for our
logic are decidable. Our approach consists of constructing a global finite timed au-
tomaton that can simulate the runs of an event clock MPA (which is a distributed
machine) and so, reduce the problem to checking emptiness for a timed automaton.
The hard part of the construction lies in “cleverly” maintaining the partial-order
information (of the timed MSC) along the sequential runs of the global timed
automaton, while using only finitely many clocks.

By adding time to MSCs, we encounter new questions and features which were
absent in the untimed setting. For instance, time-constrained MSCs can be seen as
specification models while timed MSCs are timed executions. Thus, we can think of
each time-constrained MSC as being realized by the collection of timed MSCs which
satisfy the timing constraints. This difference immediately suggests the following
questions: If we are given a collection of time-constrained MSCs as a specification
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and a timed MPA machine model with timed MSCs as its executions, does every
time-constrained MSC in this collection have a witness timed MSC that realizes
it? Similarly, is every timed MSC exhibited by the timed MPA witnessed by some
time-constrained MSC in the specification? The problem becomes interesting when
we consider infinite collections of time-constrained MSCs which can be represented
by a time-constrained MSG. We first address the question of when such a time-
constrained MSG describes a regular set of timed behaviours. Then, we are able
to use this to provide solutions to the above mentioned problems.

1.6 An alternative model of time evolution in a

distributed system

In the timed and distributed systems we have talked about so far, we have assumed
that time evolves globally and all machines have access to the same clocks and same
time. However, this is clearly not a general phenomenon. The internal computer
clock of a laptop in a hot and dusty internet cafe in Chennai is likely to tick faster
than the clock of a CVS server in an air-conditioned room in Paris. But we still
need a way to describe how the laptop synchronizes with the CVS server in such
a situation. In the last part of the thesis, we provide a framework for distributed
systems with independently evolving local clocks. Each component of the system
is modeled by a timed automaton. All clocks belonging to this timed automaton
evolve at the same rate. However clocks belonging to different components are
allowed to evolve at rates that are independent of each other. We allow clocks
belonging to one component to be read/checked by another component but we
require that a clock can only be reset by the component it belongs to.

Since we have unrelated time values on different components, we are interested
in the underlying untimed behaviors of these distributed timed automata rather
than their timed behaviors. Thus, the clocks (and time itself) are synchronization
tools rather than being a part of the observation. This is a crucial point where our
work departs from other existing works.

In [29, 53], for instance, classical timed automata are equipped with an ad-
ditional parameter ∆, which allows a clock to diverge over a period t from its
actual value by ∆t. Also, in the model of [11], clocks are not shared and clocks on
different processes drift only as long as the processes do not communicate. The
model in [31] is even syntactically the same as ours since they allow clocks to be
read across processes. However, in all these cases, the semantics are in terms of
timed words rather than untimed languages, which is what we consider. This also
explains why our automata differ from hybrid automata [43].

Another fundamental difference between all these approaches and our work is
that we do not restrict to system configurations that can be reached under some
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choice of local time rates. We will also tackle the problem of checking positive
specifications by providing semantics that can check if a system exhibits some
behavior under all relative clock speeds.

Indeed, it is natural to look at different semantics depending on the specifi-
cations that we want our system to satisfy. When we want to guarantee that
our system exhibits a positive specification, we look at the universal semantics.
This semantics describes the behaviors exhibited by the system no matter how
time evolves in the individual components. However, if we want to check that
our system avoids a negative specification, then we prefer to look at the existen-
tial semantics. This is the set of behaviors that the system might exhibit under
some (bad) choice of local time rates in the components. We define a finite equiva-
lence relation over the set of configurations of a distributed timed automaton using
which we are able to show that the existential semantics always yields a regular
set of untimed behaviors. Thus the model checking problem of distributed timed
automata against regular negative specifications is decidable as well.

On the other hand, we show that checking both emptiness and universality is
undecidable for the universal semantics. This is done by a reduction from Post’s
correspondence problem. This result is further strengthened to a bounded case,
where we have restrictions on the relative time rates. Finally, to be able to syn-
thesize and verify positive specifications, we introduce a more intuitive reactive
semantics. In reactive semantics, we control the behaviour of the system, in a
step-by-step manner, depending on how time progresses on each local component.
Thus, we ensure that the resulting behaviours always satisfy a positive specifica-
tion. By defining an equivalent alternating automaton, we are able to show that
the reactive semantics always yields a regular set of behaviours.

1.7 Structure of the thesis

We start with some preliminary definitions and results in Chapter 2. In Sec-
tion 2.1.2 we recall the notion of monadic second order logic over general struc-
tures. The rest of the chapter is split into two broad sections, the first dealing
with the distributed setting and the second with timed setting. In Sections 2.2.1
and 2.2.2 we define MSCs and related notions regarding distributed behaviours.
Next in Section 2.2.3 and 2.2.4 we define the automata and MSO model over MSCs
respectively. This is followed by equivalence results over MSCs in Section 2.2.5.
Finally in Section 2.2.6, we define message sequence graphs as a different approach
to specify collections of MSCs. The second section of this chapter deals with timed
behaviours in Section 2.3.1 followed by the timed automata in Section 2.3.2 and
event clock automata in Section 2.3.3. We end the chapter by stating a logical
characterization for event clock automata in Section 2.3.4.

The rest of the thesis is divided into two parts. The first deals with specifi-
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cation and verification questions in the context of recording behaviours as timed
partial orders. The second part of the thesis is devoted to the alternative model
of distributed timed systems in which each component has a local notion of time.

In Chapter 3, we introduce the timed partial orders, namely timed MSCs
and time-constrained MSCs and consider the systems that exhibit such behaviour
namely, timed MPAs and event clock MPAs. Finally, we introduce the time-
constrained MSG model to specify infinite collections of time-constrained MSCs.

In Chapter 4 we start by introducing the timed MSO logic and then prove
the Büchi-Elgot Theorem in this timed partial order setting. This is followed by
Chapter 5, where we show that the emptiness problem for event clock MPA model
with existentially bounded channels is decidable. Finally Chapter 6 deals with
time-constrained MSGs. We show how the global behaviour of a time-constrained
MSG can be described as a timed automaton. In addition, we also relate time-
constrained MSGs as a specification model to timed MPAs as an implementation
model.

In the next part of the thesis, in Chapter 7, we introduce our distributed
automaton model with independently evolving clocks, and define its existential
and universal semantics. Section 7.2 extends the region construction for timed
automata to our distributed setting, allowing us to compute a finite automaton
recognizing the existential semantics. Section 7.3 shows that checking emptiness
and universality of the universal semantics is undecidable. This result is sharpened
towards bounded clock drifts in Section 7.4.1. Section 7.5 deals with the reactive
semantics.

Finally, we conclude with some remarks and directions for future work in Chap-
ter 8.
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2
Preliminaries

2.1 Basic definitions

For a set Σ, we let Σ∗ and Σω denote the set of finite and, respectively, infinite
words over Σ. The empty word is denoted by ε. We set Σ∞ = Σ∗ ∪ Σω and
Σ+ = Σ∗ \ {ε}. The concatenation of words u ∈ Σ∗ and v ∈ Σ∞ is denoted by
u · v. For a word w ∈ Σ∗, prf(w) denotes the set of prefixes of w and |w| denotes
the length of w, i.e, the number of symbols occuring in it with |ε| = 0. By a word
language over Σ we mean a subset of Σ∗. An alphabet is a non-empty finite set.
Given an alphabet Σ, we denote by Σε the set Σ ·∪ {ε}.

The set of real numbers, rational numbers and integers are respectively denoted
by R, Q and N. Further R≥0 and R>0 denote respectively non-negative and positive
reals with corresponding notations for rationals and integers as well. For t ∈ R≥0,
⌊t⌋ and fract(t) refer, respectively, to the integral and fractional parts of t, hence,
t = ⌊t⌋ + fract(t).

Let I denote the set of all rationally bounded intervals over the real line. An
interval is a non-empty, convex subset of non-negative reals. Thus, the intervals
in I are of the form: open (ℓ, r) = {m ∈ R | ℓ < m < r} for ℓ, r ∈ Q≥0 ∪ {∞},
closed [ℓ, r] = {m ∈ R | ℓ ≤ m ≤ r} for ℓ, r ∈ Q≥0, half-open or half-closed
(ℓ, r] = {m ∈ R | ℓ < m ≤ r} for ℓ ∈ Q≥0, r ∈ Q>0, [ℓ, r) = {m ∈ R | ℓ ≤ m < r}
for ℓ ∈ Q≥0, r ∈ Q≥0 ∪ {∞}. An interval set is a subset of I.

A (binary) relation R on set S is a set of pairs of elements of S, i.e, a subset
of S × S. We write “a R b” to denote that (a, b) is a pair in R. The relation R
is said to be a partial order if R is reflexive (a R a for all a ∈ S), antisymmetric
(a R b, b R a implies a = b for all a, b ∈ S) and transitive (a R b, b R c implies
a R c for all a, b, c ∈ S). It is called a total order if in addition for any pair of
elements a, b ∈ S either the pair (a, b) or (b, a) belongs to R. A linear extension of
a partial order R is a total order R′ which contains all the pairs of R. Note that
if S = {s1, ..., sn} is a finite set and R is a total order then we can represent S as
a sequence (si1 , ..., sin) such that si1 R si2 ... sin−1 R sin . In this case, si1 and sin
are respectively called the minimal and maximal element of S with respect to R.
The cardinality or the number of elements in a finite set S is denoted |S|.
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2.1.1 Finite-state automata over words

In this section, we recall the notion of finite-state automata, which are the standard
implementation model for describing sequential behaviours, i.e word languages.

Definition 2.1. Let Σ be an alphabet. A finite-state automaton (FA) over Σ is a
tuple C = (Q, δ, s0, F0), where

• Q is a non-empty finite set of states

• δ ⊆ Q× Σ×Q is the transition relation

• s0 ∈ Q is an initial state

• F ⊆ Q is a set of final states

The finite-state automaton is said to be deterministic (DFA) if, for all s, s1, s2 ∈ Q,
a ∈ Σ, {(s, a, s1), (s, a, s2)} ⊆ δ implies s1 = s2.

A run r of a (deterministic) finite-state automaton C on a word w = (a1, . . . , an) ∈
Σ∗ is defined to be the sequence:

s0
a1−→ s1

a2−→ . . .
an−→ sn

where, for all i ∈ {1, . . . , n}, si ∈ Q and (si−1, a, si) ∈ δ. The run is said to be
accepting if sn ∈ F . Note that, if C is deterministic then it has at most one run
over a word from Σ∗. The language of C, denoted L(C), is the set {w ∈ Σ∗ | there
exists an accepting run of C on w}.

We sometimes view the run defined above to be the map r : {0, 1, . . . , n} → Q
such that for each i ∈ {0, . . . , n}, r(i) = si (in other words, r(0) = s0 and for all
i ∈ {1, . . . , n}, (r(i− 1), a, r(i)) ∈ δ). This alternative presentation will be useful
when we move from the sequential to the distributed setting, as we will see soon.

2.1.2 Monadic second-order logic over labeled relational
structures

We recall the notion of monadic second-order logic (MSO) over extremely gen-
eral structures, so that we can carry it over to words, MSCs and so on in the
following sections and chapters. The structures that we define are over finite sets
of elements that we refer to as events .

Now let us fix a finite set of symbols R called the relational symbols. Each
symbol R ∈ R is interpreted as a relation on the set of events of a given structure.

11



Definition 2.2. Given an alphabet Σ, a labeled relational structure over Σ is a
tuple A = (E,RA, λ) where E is a finite set of events, RA = {RA ⊆ E×E | R ∈ R}
is a set of binary relations on E and λ : E → Σ is the labeling function.

Example 2. For instance, a word w ∈ Σ∗ is such a structure A = (E,RA, λ), where
the set of events E is the set of positions {1, . . . , |w|} of the word w and the set
RA has a single relation <A (thus, R = {<}) which refers to the obvious ordering
between the positions (as elements of N>0). Then, the labeling function assigns to
each position the letter of Σ at that position, thus defining the word.

Definition 2.3. Let Σ be an alphabet and Σ′ be a non-empty set. Then an Σ′-
extended labeled relational structure over Σ is a tuple (E,RA, λ, ρ) where (E,RA, λ)
is a labeled relational structure over Σ and ρ : E → Σ′ is an extended labeling
function.

Example 3. A motivating example for this definition comes from timed words
which will be studied in detail later. A (finite) timed word over Σ is a word
σ ∈ (Σ×R≥0)

∗, such that if σ = (a1, t1) . . . (an, tn) for some n ∈ N>0 then ti−1 ≤ ti
for all i ∈ {2, . . . , n}. Then, such a timed word can be seen as a R≥0-extended
labeled relational structure over Σ where, as for words, the events are the positions
{1, . . . , n} with the natural ordering between them and we have λ(i) = ai, ρ(i) = ti.

Now, we define the monadic second-order logic and its interpretation over the
structures defined above.

Definition 2.4. Let Σ be an alphabet. We denote individual variables by x, y, ...
and set variables by X, Y, .... These variables will range over elements or sets
of elements of E, respectively. We also use the predicates Pa(x), where x is a
variable, a ∈ Σ. Also, for a finite set of relational symbols R, we use binary
predicates R(x, y) where x, y are variables and R ∈ R. Then, the set MSO(Σ,R)
of all monadic second-order logic formulae over Σ with the set of relational symbols
R is generated inductively using the following grammar:

ϕ ::= Pa(x) | x ∈ X | x = y | R(x, y) | ¬ϕ | ϕ ∨ ϕ | ∃xϕ | ∃Xϕ

We will use the usual abbreviations, for instance, for a variable x, we write ∀x to
mean ¬∃x¬. Also ϕ1 → ϕ2 stands for ¬ϕ1 ∨ ϕ2 and so on.

Semantics in terms of labeled relational structures

A formula ϕ from the above logic is interpreted on a labeled relational structure
A = (E,RA, λ) over the alphabet Σ (or indeed, on a Σ′-extended labeled relational
structure A = (E,RA, λ, ρ) over Σ for some non-empty set Σ′).
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For this, we have an interpretation I which is a map assigning individual vari-
ables to elements of E and set variables to sets of elements of E. We define the
satisfaction relation A, I |= ϕ inductively as follows:

A, I |= Pa(x) if λ(I(x)) = a for a ∈ Σ (2.1)

A, I |= x ∈ X if I(x) ∈ I(X) (2.2)

A, I |= x = y if I(x) = I(y) (2.3)

A, I |= R(x, y) if I(x) RA I(y) (2.4)

A, I |= ¬ϕ if A, I 6|= ϕ (2.5)

A, I |= ϕ1 ∨ ϕ2 if A, I |= ϕ1 or A, I |= ϕ2 (2.6)

A, I |= ∃xϕ if ∃e ∈ E such that A, I[x 7→ e] |= ϕ (2.7)

A, I |= ∃Xϕ if ∃E ′ ⊆ E such that A, I[X 7→ E ′] |= ϕ. (2.8)

For sentences ϕ in this logic (i.e, those that have no free variables), we write
A |= ϕ instead of A, I |= ϕ. Note that here and henceforth I[x → e] for e ∈ E
denotes the interpretation I′ such that I′(x) = e and for all variables y 6= x and
set variables X , I′(y) = I(y), I′(X) = I(X). Similarly I[X → E ′] for E ′ ⊆ E is the
interpretation which maps X to E ′ but coincides with I otherwise.

The existential fragment of MSO(Σ,R), denoted EMSO(Σ,R), comprises of
all formulae ∃X1 . . .∃Xnϕ such that ϕ does not contain any set quantifier.

Example 4. It is now immediate to see that we can obtain the monadic second-
order logic over words. This is done by just interpreting events as positions in the
word as in Example 2.

For instance, the MSO formula ∀X∀x(x ∈ X) → Pa(x) asserts that in every
subset of positions, every position in the subset has the letter a. Thus, a word
satisfies this formula if and only every position of the word is the letter a.

Thus, we get words over Σ as labeled relational structures and thus we have
the definition of the logic MSO(Σ, {<}) with semantics as words over Σ . We will
just write MSO(Σ) to denote this logic.

For the sake of convenience and readability, we make the following important
notational simplifications:

• When there is no scope for confusion about the structure A = (E,RA, λ), we
identify each relational symbol R ∈ R with the relation RA on E and thus
write A = (E,R, λ) instead.

• If a labeled relational structure contains only one relation, i.e, it is of the form
A = (E, {RA}, λ) for some RA ⊆ E ×E, we write A = (E,R, λ) instead.

• When they are clear from the context, we omit the parameters (Σ,R) and
talk of MSO and EMSO.
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The above mentioned abuses of notation also apply in the case of Σ′-extended
labeled relational structures.

2.2 Distributed setting

Labeled partial orders For an alphabet Σ, a Σ-labeled poset is a labeled rela-
tional structure (E,≤, λ) over Σ, where ≤ is a partial order on the set of events E
called its ordering relation.

A linearization of a Σ-labeled poset (E,≤, λ) is any Σ-labeled poset (E,≤′, λ)
such that ≤′ is a linear extension of ≤. Then, the set of events E = {e1, . . . , en}
can be rewritten as a sequence ei1 ≤

′ ei2 . . . ≤
′ ein such that, λ(ei1) . . . λ(ein) ∈ Σ∗.

Thus, any linearization of (E,≤, λ) can be identified with a unique word over Σ.

2.2.1 Message sequence charts

Let Proc = {p, q, r, . . .} be a non-empty finite set of processes (agents) that commu-
nicate through messages via reliable FIFO channels using an alphabet of message
types M. For p ∈ Proc, let Actp = {p!q(m), p?q(m) | q ∈ Proc, q 6= p,m ∈ M}
be the set of communication actions of process p . The action p!q(m) is read as p
sends the message m to q and the action p?q(m) is read as p receives the message
m from q. We set Act =

⋃
p∈Proc Actp. We also denote the set of channels by

Ch = {(p, q) ∈ Proc × Proc | p 6= q}.
Let M = (E,≤, λ) be an Act -labeled partial order. For e ∈ E, let ↓e = {e′ ∈

E | e′ ≤ e}. For X ⊆ E, ↓X =
⋃

e∈X ↓e. We call X ⊆ E a prefix of M if X = ↓X .
For p ∈ Proc and a ∈ Act , we set Ep = {e ∈ E | λ(e) ∈ Actp} to be the set of all
p-events and Ea = {e ∈ E | λ(e) = a} to be the set of a-events.

For each (p, q) ∈ Ch, we define a relation <pq as follows, to capture the fact
that channels are FIFO with respect to each message—if e <pq e

′, the message m
read by q at e′ is the one sent by p at e.

e <pq e
′ △
= λ(e) = p!q(m), λ(e′) = q?p(m) and |↓e ∩ Ep!q(m)| = |↓e′ ∩ Eq?p(m)|

Finally, for each p ∈ Proc, we define the relation ≤pp= (Ep×Ep)∩≤, with <pp

standing for the largest irreflexive subset of ≤pp. Also, <·pp denotes the immediate
successor relation on process p: for e, e′ ∈ Ep, e <·pp e

′ if e <pp e
′ and for all

e′′ ∈ Ep, we have e <pp e
′′ ≤pp e

′ implies e′′ = e′.

Definition 2.5. A message sequence chart (MSC) over Act is a finite Act-labelled
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poset M = (E,≤, λ) that satisfies the following conditions,

1. Each relation ≤pp is a total order on Ep. (2.9)

2. If p 6= q then for each m ∈ M, |Ep!q(m)| = |Eq?p(m)| (2.10)

3. If e <pq e
′, then |↓e ∩

( ⋃

m∈M

Ep!q(m)

)
| = |↓e′ ∩

( ⋃

m∈M

Eq?p(m)

)
| (2.11)

4. The partial order ≤ is the reflexive, transitive closure of
⋃

p,q∈Proc

<pq (2.12)

p q r

e1

e′1

e2

e′2 e3

e′3

m1

m2

m3

Figure 2.1: An
MSC

The second condition ensures that every message sent
along a channel is received. The third condition says that
every channel is FIFO across all messages. For an MSC
M = (E,≤, λ) over Act , we let lin(M) denote its set of lin-
earizations seen as words over the set of actions Act .

In diagrams, the events of an MSC are presented in visual
order. The events of each process are arranged in a vertical
line and messages are displayed as horizontal or downward-
sloping directed edges.

Example 5. The Figure 2.1 shows an example of an MSC with
three processes {p, q, r} and six events {e1, e

′
1, e2, e

′
2, e3, e

′
3} corresponding to three

messages—m1 from p to q, m2 from q to r and m3 from p to r. Then, for instance,
p!q(m1) q?p(m1) q!r(m2) p!r(m3) r?q(m2) r?p(m3) is one linearization or execution
of this MSC seen as a word over Act .

Note that under the FIFO assumption an MSC can be reconstructed from any
one of its linearizations. The relation <pp is determined by the order of p-events
in the linearization, while <pq is determined by matching the ith p!q-event in the
linearization with the ith q?p-event.

MSC languages An MSC language over Act is a set of MSCs over Act . We can
also regard an MSC language L over Act , as a word language over Act consisting
of all linearizations of the MSCs in L. For an MSC language L, we set lin(L) =⋃
{lin(M) |M ∈ L}.

Definition 2.6. An MSC language L is said to be a regular MSC language if the
word language lin(L) is a regular language over Act.

2.2.2 Boundedness in MSCs

An important subclass of MSCs is the set of bounded MSCs that correspond to
systems whose channel capacity is restricted. These systems turn out to enjoy nice
algorithmic properties and have liberal logical correspondances too.
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p q

MSC M

p q

MSC M ′

Figure 2.2: A ∀-2-bounded and a ∃-1-bounded MSC

Let B ∈ N>0 be a positive integer. Then, a word w ∈ Act∗ is said to be B-
bounded if for any prefix u of w and any p, q ∈ Proc, the number of occurrences
of p!q exceeds the number of occurrences of q?p by at most B. Thus,

Definition 2.7. For an MSC M , B ∈ N>0, w ∈ lin(M) is B-bounded if for every
prefix v of w and every (p, q) ∈ Ch,

∑
m∈M |π{p!q(m)}(v)| −

∑
m∈M |π{q?p(m)}(v)| ≤

B, where πΓ(v) denotes the projection of v on Γ ⊆ Act.

This means that along the sequential execution ofM described by w, no channel
ever contains more than B-messages.

Definition 2.8. An MSC M is called universally B-bounded (or ∀-B-bounded)
if every w ∈ lin(M) is B-bounded. It is said to be existentially B-bounded (or
∃-B-bounded) if there exists w ∈ lin(M) such that w is B-bounded.

Example 6. In the MSCs shown in Figure 2.2, we have abstracted away the message
content and event-labeling for the sake of clarity. We see that the MSC M in
Figure 2.2 is ∀-2-bounded, since along any execution, there are at most 2 messages
in each channel. Further, the MSC M ′ is not ∀-1-bounded since during execution
the process p could send two messages before q receives even one, i.e, there exists a
linearization say (p!q, p!q, p!q, p!q, q?p, q?p, q?p, q?p) for which the channel contains
during execution more than one message. However there exists a linearization,
namely (p!q, q?p, p!q, q?p, p?q, q?p, p!q, q?p) which is 1 bounded, hence M ′ is ∃-1-
bounded.

A set of MSCs is said to be ∃-B-bounded (respectively, ∀-B-bounded) if each
MSC in the set is ∃-B-bounded (respectively, ∀-B-bounded). Further such a set is
called existentially bounded (respectively, universally bounded) if there exists a B
such that it is ∃-B-bounded (respectively, ∀-B-bounded). We have the following
result from [42].

Lemma 2.9. If an MSC language L is regular then it is ∀-B-bounded for some
B ∈ N>0.
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2.2.3 Message passing automata

Message passing automata (also refered to as communicating finite-state machines)
are a natural machine model for recognizing MSCs. We use the definition from [42].
Recall that Act denotes the set of actions or the communication alphabet over the
set of processes Proc and messages M.

Definition 2.10. A message passing automaton (MPA) over Act is a structure

A = ({Ap}p∈Proc ,∆, F )

where,

• ∆ is a finite alphabet of auxiliary messages

• For each p ∈ Proc, the component Ap is a structure (Sp, ιp,→p), where:

– Sp is a finite set of p-local states.

– ιp ∈ Sp is the p-local initial state.

– →p ⊆ Sp ×Actp ×∆× Sp is the p-local transition relation.

• F ⊆
∏

p∈Proc Sp is the finite set of global final states.

The local transition relation →p specifies how the process p sends and receives
messages. The transition (s, p!q(m), d, s′) says that in state s, p can send the
message m tagged with auxiliary data d to q and move to state s′. Similarly, the
transition (s, p?q(m), d, s′) signifies that at state s, p can receive the message m
tagged with the auxiliary data d from q and move to state s′.

Note that in the above definition, each message can be tagged with auxiliary
data from the set ∆. The ability to convey this finite amount of extra auxiliary
information turns out to be quite powerful, significantly increasing the expressive
power of MPA. For further discussion on MPA without auxiliary data, refer to the
excellent survey by Narayan Kumar [47].

Depending on whether we are interested in the distributed or the global be-
haviour, the semantics of message passing automata can be defined in two ways.
We examine both these approaches in turn.

Semantics of MPAs over MSCs

In the style of [48], we can use MSCs directly to represent successful runs. In other
words, an MPA will run over MSCs rather than linearizations of MSCs, allowing
for its distributed behaviour.

To define the run of A = ({Ap}p∈Proc ,∆, F ) over an MSC M = (E,≤, λ), we
first consider a function r : E →

⋃
p∈Proc Sp which labels each event of Ep with a
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local state from Sp. Now, we define r− : E →
⋃

p∈Proc Sp as follows: For e ∈ Ep,
if there is another event e′ ∈ Ep such that e′ <·pp e, then we set r−(e) = r(e′).
Otherwise (e is the minimal event of Ep with respect to ≤pp), we set r−(e) = ιp.
Then, r is said to be a run of A on M if for all e, e′ ∈ E such that e <pq e

′, there
exists d ∈ ∆ such that,

(r−(e), λ(e), d, r(e)) ∈→p and (r−(e′), λ(e′), d, r(e′)) ∈→q .

We then define fp = r(ep), where ep is the maximal event of Ep with respect
to ≤pp unless Ep = ∅, in which case we set fp = ιp. Then run r is successful if the
tuple (fp)p∈Proc ∈ F . An MSC is accepted by an MPA A if it admits a successful
run. We denote by LMSC (A), the set of MSCs that are accepted by A.

Semantics of MPAs over linearizations of MSCs

In [42], a run of the MPA is defined on linearizations of MSCs rather than on
MSCs, which reflects its operational behaviour at the expense that several execu-
tion sequences may get collapsed into a single run. Such a view relies on the global
transition relation of the MPA as we detail below.

A global state of A is an element of
∏

p∈Proc Sp. For a global state s, sp denotes

the pth component of s. A configuration is a pair (s, χ) where s is a global state
and χ : Ch → (M×∆)∗ is the channel state describing the message queue in each
channel.

An initial configuration of A is of the form (sin, χε) where sin = (ιp)p∈Proc , χε(c)
is the empty string ε for every channel c. The set of final configurations of A is
F × {χε}.

The set of reachable configurations of A, ConfA, is defined inductively, together
with a transition relation =⇒ ⊆ ConfA ×Act × ConfA.

• (sin, χε) ∈ ConfA.

• Suppose (s, χ) ∈ ConfA, (s
′, χ′) is a configuration and there is a transition

(sp, p!q(m), d, s′p) ∈ →p such that for r 6= p, sr = s′r, χ
′((p, q)) = χ((p, q)) ·

(m, d), and for c 6= (p, q), χ′(c) = χ(c) then,

there is a global move, (s, χ)
p!q(m)
=⇒ (s′, χ′) and (s′, χ′) ∈ ConfA.

• Similarly, if (s, χ) ∈ ConfA, (s
′, χ′) is a configuration and there is transition

(sp, p?q(m), d, s′p) ∈ →p such that, for r 6= p, sr = s′r, χ((q, p)) = (m, d) ·
χ′((q, p)), and for c 6= (q, p), χ′(c) = χ(c) then,

there is a global move (s, χ)
p?q(m)
=⇒ (s′, χ′) and (s′, χ′) ∈ ConfA.
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Figure 2.3: An MPA and an MSC recognized by it

For w = (a1 . . . an) ∈ Act∗, a run of A over w is a map r : {0, . . . , n} → ConfA
such that r(0) = (sin, χε) and for each i ∈ {1, . . . , n}, r(i − 1)

ai=⇒ r(i). The
run r is accepting if r(n) is a final configuration. We define L(A) = {w ∈ Act∗ |
A has an accepting run over w}. It follows that, L(A) corresponds to the set of
linearizations of a collection of MSCs.

Example 7. Figure 2.3 shows an MPA along with an MSC that it recognizes. In
the MSC, we have omitted the event names/labels for clarity. In this MPA, at any
point, r can choose to either send message m3 to s and quit. Or it sends message
m1 and waits for an acknowledgement of message m2 from s before continuing this
loop. If Process s receives message m3 it quits, else it sends message m2 to r on
receipt of message m1. The adjoining MSC M shows a run scenario in which the
loop sending message m1 and acknowledgement m2 occurs twice before message
m3 is sent by r. When it is received by s the run terminates at the global final
state (r3, s3).

Note that each configuration of the MPA records the current contents of each
channel, i.e, messages sent and as yet undelivered. A configuration (s, χ) is said
to be B-bounded for some B ∈ N if |χ(c)| ≤ B for all c ∈ Ch. An MPA A is said
to be B-bounded if every reachable configuration of A is B-bounded. Clearly, a
B-bounded MPA accepts a universally B-bounded language of MSCs.

2.2.4 Monadic second-order logic over MSCs

Logic is a classical formalism to describe properties of various structures including
words, trees, graphs etc. In this case we use it as a means to describe sets of
MSCs. In particular we look at monadic second-order logic as way to describe
these objects. We will in fact define several logics, which differ in their signature
and whose syntax depends on the set R of (binary) relation symbols, which we use
to settle the access to the partial order relation of a given MSC.

First, we consider the singleton set of relation symbols containing just the
partial order symbol, R≤ = {≤}. Then, by choosing Σ = Act and R = R≤ in
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Definition 2.4, we obtain the logic MSO(Act ,R≤). Now, an MSC M = (E,≤, λ)
over Act is formally a labeled relational structure (E, {≤M}, λ) over Act , and thus
we obtain the semantics of a formula of MSO(Act ,R≤) in terms of MSCs over Act
.

In addition, for an MSC M , we have the immediate successor relation <·Mpp for
each p ∈ Proc and the message relation <M

pq for each (p, q) ∈ Ch. Thus, for R<· =
{<·pp| p ∈ Proc} ∪ {<pq| p 6= q} we obtain the variant of the logic MSO(Act ,R<·)
which talks only about the immediate partial order and its semantics in terms of
MSCs over Act .

Again we have the existential fragments denoted EMSO(Act ,R≤) (respec-
tively, EMSO(Act ,R<·)) comprising of all formulas ∃X1 . . .∃Xnϕ such that ϕ ∈
MSO(Act ,R≤) (respectively, MSO(Act ,R<·)) does not contain any set quantifier.

For a sentence ϕ in any of the logics defined above, we define LMSC (ϕ) to be
the set of all MSCs over Act which satisfy ϕ.

Example 8. Consider the MSO(Act ,R≤) sentence ϕ given below,

∧

(p,q)∈Ch

∀x∀y∀z

(( ∨

m∈M

Pp!q(m)(x) ∧
∨

m∈M

Pp!q(m)(y) ∧
∨

m∈M

Pp!q(m)(z)

∧ (x < y) ∧ (y < z)
)

=⇒ ∃x′((x <pq x
′) ∧ (x′ < z))

)

where indeed, x < y denotes x ≤ y ∧ ¬(x = y) and so on. Then, we can observe
that this sentence asserts in any sequence of 3 sends, the receive corresponding to
the first send must occur before the third send. In other words, ϕ characterizes the
set of all universally-2-bounded MSCs. Thus, if we take the MSCs M,M ′ shown
in Figure 2.2, we have M |= ϕ but M ′ 6|= ϕ.

2.2.5 Relations between logic and automata over MSCs

Büchi [20] and Elgot [37] show the relationship between MSO logic and finite state
automata over words in one of the cornerstone results in automata theory. This
result has been lifted to the MSC setting in different ways. Below we mention few
of the relevant results.

In 2000, Henrikson et. al [42] gave a following characterization of regular MSC
languages,

Theorem 2.11 (universally bounded MSCs, [42]). Let B ∈ N≥0. Let L be a
language of universally B-bounded MSCs. Then, the following are equivalent:

1. L is a regular MSC language.

2. L = LMSC (ϕ) for some sentence ϕ ∈ MSO(Act ,R≤).
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3. L = LMSC (ϕ) for some sentence ϕ ∈ EMSO(Act ,R≤).

4. L = LMSC (A) for some B-bounded MPA A.

In [39], Genest, Kuske and Muscholl generalized this result to existentially
bounded MSCs,

Theorem 2.12 (existentially bounded MSCs, [39]). Let B ∈ N≥0, L be a language
of existentially B-bounded MSCs. Then the following are equivalent:

1. L = LMSC (ϕ) for some sentence ϕ ∈ MSO(Act ,R≤)

2. L = LMSC (ϕ) for some sentence ϕ ∈ EMSO(Act ,R≤)

3. L = LMSC (A) for some MPA A.

In fact, for proving the above theorem, [39] first prove a crucial result which
we state separately.

Proposition 2.13 (Proposition 5.14, [39]). Let B ∈ N≥0. Then there exists a MPA
A over Act such that LMSC (A) is the set of all existentially B-bounded MSCs over
Act.

And using these two results, [39] show that over existentially bounded MSCs
the logics (E)MSO(Act ,R<·) and (E)MSO(Act ,R≤) are equally expressively, i.e
the Msg relation can be encoded using ≤.

Proposition 2.14 (Proposition 6.2, [39]). Let ϕ be a (E)MSO(Act ,R<·) for-
mula and B ∈ N≥0 with LMSC (ϕ) is existentially B-bounded. Then there exists
a (E)MSO(Act ,R≤) formula ψ such that LMSC (ψ) = LMSC (ϕ).

The above results show the equivalence of MSO logic and MPA automata when
restricted to bounded classes of MSCs. The following remarkable result due to
Bollig and Leucker [17] holds for arbitrary MSC languages. However the tradeoff
is that the logic is weaker.

Theorem 2.15. Let L be a language of MSCs. Then the following are equivalent:

1. L = LMSC (ϕ) for some ϕ ∈ EMSO(Act ,R<·)

2. L = LMSC (A) for some MPA A.
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2.2.6 Message sequence graphs

Message sequence graphs (MSGs) are yet another approach commonly used to
specify infinite collections of MSCs. An MSG is a finite directed graph with des-
ignated initial and terminal vertices. Each vertex in an MSG is labelled by a
non-trivial MSC, i.e, an MSC containing at least one event. The edges repre-
sent (asynchronous) MSC concatenation, in which one MSC is “pasted” below the
other. We formalize these notions below.

Definition 2.16. A graph is a tuple G = (V,→, vin, VF ) where

• V is a set of vertices,

• vin ∈ V is the initial vertex

• → ⊆ V × V

• VF ⊆ V is a set of final vertices

A path π through a graph G is a sequence q0 → q1 → · · · → qn such that
(qi−1, qi) ∈ → for i ∈ {1, 2, . . . , n}.

Definition 2.17. A message sequence graph (MSG) , is a tuple G = (G,LM ,Φ)
where

• G is a graph (V,→, vin, VF ),

• LM is a finite set of non-empty MSCs over Act.

• Φ : V → LM is a map assigning an MSC to every vertex of the graph.

For each vertex v of a given MSG G = (G,LM ,Φ), let Φ(v) ∈ LM be the
MSC Mv = (Ev,≤v, λv). We assume that the events are disjoint across each Mv.
Now, for a non-empty path π in G, we define the MSC generated by π to be
Mπ = (Eπ,≤π, λπ) where,

• Eπ =
⋃

ρv�π E
v × {ρv}

• for each ρv � π, λπ(e, ρv) = λv(e)

• ≤π is defined as the reflexive transitive closure of
⋃

p,q∈Proc

<π
pq where

– (e, ρv) <π
pp (e

′, ρ′v′) for some p ∈ Proc if e, e′ ∈ Ep and either ρv � ρ′v′

or ρv = ρ′v′ and in this case e <v
pp e

′.

– (e, ρv) <π
pq (e

′, ρ′v′) for some processes p 6= q, if ρv = ρ′v′ and e <v
pq e

′.
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CGM1◦M2

Figure 2.4: A message sequence graph

The MSC language of an MSG, LMSC (G), is defined to be the set of all MSCs
over Act generated by paths in the graph that start in an initial vertex and end in
a final one. We say that an MSC language L is MSG-definable if there exists an
MSG G such that L = LMSC (G).

Example 9. An example of an MSG is depicted in Fig. 2.4. The initial state is
marked ⇒ and the final state has a double circle. The language L defined by
this MSG is not regular: lin(L) projected to {p!q(m), r!s(m)}∗ consists of σ ∈
{p!q(m), r!s(m)}∗ such that |πp!q(m)(σ)| = |πr!s(m)(σ)| ≥ 1, which is not a regular
string language.

Locally synchronized MSGs

In general, it is undecidable whether an MSG describes a regular MSC language [42].
However, a sufficient condition for the MSC language of an MSG to be regular is
that the MSG be locally synchronized. We define this below, but first, we need the
notion of a communication graph of an MSC.

Communication graph For an MSC M = (E,≤, λ), let CGM , the communi-
cation graph of M , be the directed graph (Proc, 7→) where:

• the set of nodes is the set of processes Proc and

• the edge relation is: (p, q) ∈ 7→ iff there exists an e ∈ E with λ(e) = p!q(m).

M is said to be com-connected if CGM consists of one nontrivial strongly connected
component and isolated vertices.

Definition 2.18. An MSG G is said to be locally synchronized [51] (or bounded [8])
if for every (simple) loop π = q → q1 → · · · → qn → q, the MSC Φ(π) is com-
connected.

Example 10. In Figure 2.4, CGM1◦M2 is not com-connected, so the MSG is not
locally synchronized.

We have the following result for MSGs [8].

Theorem 2.19. If G is locally synchronized MSG, then LMSC (G) is a regular MSC
language.
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2.3 Timed setting

In this section, we introduce the other building block of this thesis, namely the
world of timed systems.

2.3.1 Timed words and languages

We study formal languages of (finite) timed words. We recall the definition which
was already introduced in Example 3. A timed word over alphabet Σ is σ ∈
(Σ × R≥0)

∗ such that if σ = (a1, t1)...(an, tn) for some n ∈ N≥0, then the time-
stamps ti are non-decreasing, i.e, ti−1 ≤ ti for all i ∈ {2, . . . , n}. Let TWΣ denote
the set of all timed words over Σ.

Then, as observed in Example 3, a timed word over Σ can be viewed as a R≥0-
extended labeled relational structure over Σ. For σ = (a1, t1) . . . (an, tn) ∈ TWΣ,
the associated extended labeled relational structure is Lσ = (E,RA, λ, ρ) where,
E = {1, . . . , n}, R = {<}, with <E being the natural ordering over integers and
λ(i) = ai, ρ(i) = ti.

A timed language over the alphabet Σ is a subset of TWΣ. For a timed word
σ, Untime(σ) denotes the untimed word over Σ obtained by discarding the time
stamps. For a timed language L, Untime(L) = {Untime(σ) ∈ Σ | σ ∈ L}.

2.3.2 Timed automata

Alur and Dill [5] proposed a model of timed automata as an abstract model for
real-time systems with finite control. Timed automata are finite-state machines
whose transitions are constrained by timing requirements, so that they accept or
generate timed words as behaviours. The finite control of the timed automaton
consists of a finite set of states along with a finite set of real-valued variables called
clocks. Each transition between states is allowed to reset some of the clocks. The
value of each clock always records the amount of time that has elapsed since the
last time the clock was reset. The transitions of the automaton specify arithmetic
constraints on the clock values so that, during a run of the automaton, a transition
may be taken only if the values of the clocks satisfy the corresponding constraints.

Example 11. Consider the timed automaton B1 shown in Figure 2.5. We can think
of this automaton as modeling a “double-click” operation. At state s0, if a click,
i.e, action a, occurs twice quickly (within 2 time units), then we move to state s2
and accept. Otherwise, after 2 time units have passed since our first a action, we
are allowed to take the ε-transition back to state s0 and try again.

To define this formally, we begin by defining the type of clock constraints that
are allowed on the transitions. For a set of clocks Z, the set Form(Z) of clock
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s0 s1 s2
a

{x}

x ≤ 2,a

x > 2, ε

Figure 2.5: A timed automaton B1

constraints over Z is given by the grammar,

ϕ ::= true | false | x ⊲⊳ c | ϕ ∧ ϕ | ϕ ∨ ϕ

where x is a clock from Z, ⊲⊳ ∈ {<,≤, >,≥,=}, and c ranges over Q≥0.
A clock valuation over Z is a mapping ν : Z → R≥0. We say that ν satisfies

ϕ ∈ Form(Z), written ν |= ϕ, if ϕ evaluates to true using the values given by
ν. Also, if t ∈ R>0, then we denote by ν + t the clock valuation such that
(ν + t)(x) = ν(x) + t for all x ∈ Z. Finally, for R ⊆ Z, ν[R → 0] denotes the
clock valuation defined by ν[R → 0](x) = 0 if x ∈ R and ν[R → 0](x) = ν(x),
otherwise.

Now, we are in a position to define the fundamental notion of timed automata
as introduced in [5].

Definition 2.20. A timed automaton (with ε-transitions), denoted TA, is a tuple
B = (S,Σ,Z, δ, Inv , ι, F ) where

• S is a set of states,

• Σ is the alphabet of actions,

• Z is a set of clocks,

• δ ⊆ S × Form(Z)× Σε × 2Z × S is the finite set of transitions,

• Inv : S → Form(Z) associates with each state an invariant,

• ι ∈ S is the initial state, and

• F ⊆ S is the set of final states.

Without loss of generality, we will assume that Inv(ι) is satisfied by the clock
valuation over Z that maps each clock to 0. We let Reset(B) = {x ∈ Z | there is
(s, ϕ, a, R, s′) ∈ δ such that x ∈ R} be the set of clocks that might be reset in B.
An ε-transition is a transition (s, ϕ, a, R, s′) ∈ δ where a = ε. Further if a = ε and
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R 6= ∅, then such a transition is called an ε-reset transition. We call a TA B finite
if S, Z, and δ are finite.

A run of the timed automaton B is then defined as a sequence,

(s0, ν0)
a1,t1
−−→ (s1, ν1)

a2,t2
−−→ (s2, ν2) · · · (sn−1, νn−1)

an,tn
−−−→ (sn, νn)

where n ≥ 0, si ∈ S, ai ∈ Σε, and (ti)1≤i≤n is a non-decreasing sequence of values
from R≥0. Further, νi : Z → R≥0 with ν0(x) = 0 for all x ∈ Z. Finally, for
all i ∈ {1, . . . , n}, there are ϕi ∈ Form(Z) and Ri ⊆ Z such that the following
conditions hold:

(si−1, ϕi, ai, Ri, si) ∈ δ (2.13)

νi−1 + t′ − ti−1 |= Inv(si−1) for each t′ ∈ [ti−1, ti] (2.14)

νi−1 + ti − ti−1 |= ϕi (2.15)

νi = (νi−1 + ti − ti−1)[Ri → 0] (2.16)

νi |= Inv(si) (2.17)

We remark that the run of a TA can also be defined as an alternating sequence
of time-elapse and discrete moves. In other words, each move in the above defined

run (si−1, νi−1)
ai,ti
−−→ (si, νi) can split as:

• a time-elapse move of the form: (si−1, νi−1)
ξ
−→ (si−1, νi−1 + ξ) where ξ =

ti − ti−1 and condition(2.14) holds,

• followed by a discrete move of the form: (si−1, νi−1 + ξ)
ai−→ (si, νi) where

conditions (2.13), (2.15), (2.16) and (2.17) hold for some ϕi ∈ Form(Z) and
Ri ⊆ Z.

The run is said to be accepting if s0 = ι and sn ∈ F . With each run as defined
above, we can associate naturally the word σ = (a1, t1) . . . (an, tn) ∈ ((Σ ∪ {ε})×
R≥0)

∗. Since an ε-transition is viewed as an invisible action, we remove from σ all
pairs (ai, ti) such that ai = ε. Thus we obtain a timed word (ai1 , ti1) . . . (ain′

, tin′
) ∈

(Σ× R≥0)
∗ associated with every run. The timed language Ltw(B) ⊆ TWΣ is the

set of timed words associated with accepting runs.
Two timed automata are said to be equivalent if the set of timed words accepted

by them is the same. A timed language L is said to be timed regular language if
L = Ltw(B) for some timed automaton B.

Example 12. Consider again, the timed automaton B1 shown in Figure 2.5, where
Σ = {a} and Z = {x}. Then, only timed words over Σ that end with two
occurences of a within 2 time units are accepted. For instance, the timed word
σ = (a, 1)(a, 5)(a, 7) is in Ltw(B1) as we have an accepting run of B1 on σ:

(s0, x 7→ 0)
(a,1)
−−→ (s1, x 7→ 0)

(ε,4)
−−→ (s0, x 7→ 3)

(a,5)
−−→ (s1, x 7→ 0)

(a,7)
−−→ (s2, x 7→ 2)
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Note that this accepting run is not unique. On the other hand, we can observe
that there is no accepting of B1 on (a, 1)(a, 5)(a, 8).

With these definitions and notations in place we are in a position to recall the
following results about finite timed automata.

Theorem 2.21. For a finite timed automaton B,

1. Untime(Ltw (B)) is regular. Thus, the emptiness problem is decidable, i.e,
given a finite TA B, it is decidable to check if Ltw(B) = ∅ [5].

2. The universality problem, i.e, checking whether B accepts the set of all timed
words is undecidable. Therefore, the inclusion problem is also undecidable,
i.e, given finite TA B and B′, it is undecidable to check if Ltw(B) ⊆ Ltw(B

′) [5].

3. The class of timed regular languages is closed under (finite) union and inter-
section but not under complementation [5].

4. For a finite TA B, if B has no ε-reset transitions, then we can construct an
equivalent finite TA B′ without ε-transitions [13].

Though the theory of timed automata allows the solution of certain verifica-
tion problems for real-valued timed systems, the general verification problem (i.e,
language inclusion) is undecidable as stated above.

2.3.3 Event clock automata

The event clock automata (ECA) introduced in [6] are a subclass of timed automata
which allow non-determinism and are closed under complementation. Further,
in [34] D’Souza showed that these automata have a nice logical characterization
via monadic second-order logic interpreted over timed words.

In a timed automaton, each clock records the time difference between the cur-
rent input alphabet being read and the alphabet that was read when the clock
was last reset. Thus, this association between clocks and the input alphabet read
is dynamically determined by the behaviour of the automaton. In contrast, an
ECA associates each clock to a fixed input letter. The idea is to interpret the
input alphabet symbols as events or actions of the system and so, the event clock
measures the time that has elapsed since the previous occurence of the event. In
addition event-predicting clocks are also allowed, which measure the time to the
next occurence of an event.

The standard way to present such an ECA as done in [6] uses two real-valued
variables as clocks for each letter of the alphabet (to record and predict events)
and defines a valuation of these clocks to reflect the input-regulated behaviour.
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s0 s1 s2
a Preva ∈ [0, 2], a

Preva ∈ (2,∞), a

Figure 2.6: An event clock automaton

We adopt a slightly different approach which uses an equivalent but different pre-
sentation better suited for the results and generalizations that we will see in the
forth-coming chapters.

Along a run of a TA, a clock guard verifies that the time elapsed between
two positions of the timed word, satisfies some constraint. The two positions in
question are the current position and the last position where the clock was reset.
Now, in ECA, the relation between these two positions are independent of the
automaton and determined by the input word itself. Thus, we can define the clock
guards as constraints on these related positions. Then, an ECA can be seen as a
finite state automaton running over timed words by using an extended alphabet
consisting of these guards.

Example 13. Consider the event clock automaton shown in Figure 2.6 which again
simulates the “double-click” operation as in Example 11. For an interval I, we
write Preva ∈ I on a transition to mean that the time elapsed since the previous
occurence of a must be in the interval I. Thus, in Figure 2.6 the first a action
sends us to state s1. Now, if at the next a action, we find the previous one occured
within 2 time units we go to state s2 and accept. Otherwise we loop in state s1.
Similarly, we could formulate another simple automaton which uses next occurence
in the guard instead of previous.

We formalize these ideas below. For an alphabet Σ, we fix a set of symbols
EC = {Preva | a ∈ Σ} ∪ {Nexta | a ∈ Σ}. These symbols are then interpreted as
(binary) relations over the set of positions of a timed word. Given a timed word
σ = (a1, t1) . . . (an, tn) ∈ TWΣ, recall (from Section 2.3.1) that it can be seen as a
labeled relational structure Lσ = (E = {1, . . . , n}, {<}, λ). Then,

• Prevσ
a = {(i, j) ∈ E × E | λ(j) = a, j < i, (k < i ∧ λ(k) = a) =⇒ k ≤ j}

• Nextσa = {(i, j) ∈ E ×E | λ(j) = a, i < j, (i < k ∧ λ(k) = a) =⇒ j ≤ k}

Let [EC 99K I] denote the set of partial maps from the set of symbols EC to
the set of intervals I. Intuitively, interpreted over a timed word σ, g ∈ [EC 99K I]
is a map assigning an interval to some pairs related by Nextσa or Prevσ

a .
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Now, we are in a position to define the event clock automaton formally.

Definition 2.22. An event clock automaton (ECA) is a tuple A = (S,Σ, δ, ι, F )
where

• S is a finite set of states

• Σ is the alphabet

• ι ∈ S is the initial state

• F ⊆ S is the set of final states

• δ ⊆ (S × [EC 99K I]× Σ× S) is the finite set of transitions

We will now define a run of the ECA on a timed word, as a map from the set
of positions of the timed word to the set of states, rather than as a sequence of
states (as was done in the previous section for timed automata). The reason we
prefer this definition here will become clear in the next chapter, where we lift this
definition easily to partial orders rather than words.

Let σ = (a1, t1) . . . (an, tn) ∈ TWΣ be a timed word with associated R≥0-
extended labeled relational structure Lσ = ({1, . . . , n}, {<}, λ, ρ) where λ(i) =
ai, ρ(i) = ti. A run of ECA A over σ is a map r : {0, . . . , n} → S such that
r(0) = ι and for each i ∈ {1, . . . , n}, there is a guard gi ∈ [EC 99K I] such that:

• (r(i− 1), gi, λ(i), r(i)) ∈ δ,

• for each symbol Preva ∈ dom(gi), there exists j ∈ {1, . . . , n} such that
(i, j) ∈ Prevσa and |ρ(i)− ρ(j)| ∈ gi(Preva) and

• for each symbol Nexta ∈ dom(gi), there exists j ∈ {1 . . . , n} such that (i, j) ∈
Nextσa and |ρ(j)− ρ(i)| ∈ gi(Nexta)

The run r is said to be successful if r(n) ∈ F . A timed word is accepted by an
ECA if it admits a successful run. We use Ltw(A) to denote the timed words that
are accepted by an ECA A.

Example 14. Again, consider the event clock automaton from Figure 2.6. Then,
the timed word σ = (a, 1)(a, 5)(a, 7) is in its timed language, since the mapping
r defined by r(1) = r(2) = s1, r(3) = s2 is an accepting run. In fact, it can be
seen that the timed language of this ECA is the same as the timed language of the
timed automaton B1 from Figure 2.5.
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2.3.4 Logical characterization of event clock automata

In this section we extend the monadic second-order logic to include timing predi-
cates as done in [34]. The aim is to have a logic that can be interpreted over timed
words and can characterize the class of languages recognized by the event clock
automata of the previous section.

Here, again, we assume a supply of individual variables x, y, . . ., and set vari-
ables X, Y, . . . which range over positions (and sets of positions) of a given timed
word. Other than the usual predicate Pa(x) for a ∈ Σ, we also have the event
clock timing predicates Preva(x) ∈ I and Nexta(x) ∈ I where, x is an individual
variable, a ∈ Σ and I ∈ I. Then,

Definition 2.23. The set ecMSO(Σ, {<}) of all timed monadic second-order logic
formulae over Σ with the relational symbol <, is generated inductively using the
following grammar:

ϕ ::= Pa(x) | x ∈ X | x < y | Preva(x) ∈ I | Nexta(x) ∈ I | ¬ϕ | ϕ∨ϕ | ∃xϕ | ∃Xϕ

Since, the ordering relation is obvious over timed words, we write ecMSO(Σ)
instead of ecMSO(Σ, {<}). To define the semantics of a formula ϕ of this logic
over timed words, we again associate a timed word σ = (a1, t1) . . . (an, tn) with
its R≥0-extended labeled relational structure Aσ = (E = {1, . . . , n}, {<A}, λ, ρ).
Then, the definition of interpretation I and the satisfaction relation |= are the same
as in the untimed case (refer Section 2.1.2), except for the timing predicates for
which we have,

• Aσ, I |= Preva(x) ∈ I if ∃j ∈ E s.t. (I(x), j) ∈ Prevσa and |ρ(I(x))−ρ(j)| ∈ I,

• Aσ, I |= Nexta(x) ∈ I if ∃j ∈ E s.t. (I(x), j) ∈ Nextσa and |ρ(j)−ρ(I(x))| ∈ I.

Intuitively, the timing predicate Preva(x) ∈ I asserts that the time elapsed since
the last occurence of an a-action with respect to position I(x), lies in the interval
I. Similarly, Nexta(x) ∈ I asserts that the time that will elapse before the next
occurence of an a-action (with respect to position x) will lie in the interval I.

The remaining notions are exactly as in the untimed case and thus, for a sen-
tence ϕ of this logic, we define Ltw(ϕ) = {σ ∈ TWΣ | Aσ |= ϕ}.

Thus, we are in a position to state the main theorem proved by D’Souza in [34].

Theorem 2.24. Let L ⊆ TWΣ. Then L = Ltw(A) for some ECA A over Σ if
and only if L = Ltw(ϕ) for some sentence ϕ ∈ ecMSO(Σ).
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Part I

Changing the behaviour
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3
Adding Time to Scenarios and Systems

3.1 Timed message sequence charts

The first natural attempt while trying to add timing information to MSCs would be
to add time stamps to the events of the MSCs. This is motivated from timed words
where we have words with time stamps added at each letter (action). This approach
is quite realistic when we want to model the real-time execution of concurrent
systems.

We recall that Proc is a finite set of processes that communicate via FIFO
channels using messages from the set M. This generates the alphabet of commu-
nication actions Act = {p!q(m), p?q(m) | p, q ∈ Proc, q 6= p,m ∈ M}.

Definition 3.1. A timed MSC (TMSC) over Act is a pair (M, t) where M =
(E,≤, λ) is an MSC over Act and t : E → R≥0 is a function such that if e ≤ e′

then t(e) ≤ t(e′) for all e, e′ ∈ E. The set of all TMSCs over Act is denoted
TMSC(Act).

In the above definition note that over events e, e′, ≤ is the partial order relating
events, while over reals t(e), t(e′), ≤ refers to the usual ordering between real
numbers.

Example 15. Consider the TMSC T presented in Figure 3.1 which shows a scenario
where two user processes p and r interact with a railway ticket-booking server
process q to book the last available ticket for a certain train journey. Actions are
of the form p!q(req) meaning that User1 sends the Server a request for a ticket.
In the scenario shown, both users send booking requests to the Server at time
instant 1. The Server grants User1 ’s request since it is received first. Then, User1
confirms his/her booking which leads to the server denying the booking to User2.
Meanwhile, User2 repeats his/her request at instant 5 which reaches the Server
at time 8.

An execution or linearization of this scenario is:

(p!q(req), 1)(r!q(req), 1)(q?p(req), 1)(q?r(req), 2)(q!p(grant), 3.5)(p?q(grant), 3.5)
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Figure 3.1: A timed MSC T describing interaction of two users with a server

(r!p(req), 5)(p!q(conf ), 6)(q?p(conf ), 6)(q!r(deny), 7)(r?q(deny), 7)(q?r(req), 8)

Note that in the above execution, the ordering on the time stamps is preserved,
thus making it a timed word over the alphabet of actions. Such an execution is
called a timed linearization of T . A single TMSC might have more than one
timed linearization if concurrent events on different processes have the same time
stamp. For instance, if we swap the first two pairs in the above execution we obtain
another execution which respects the time stamps. Finally, observe that not all
linearizations are timed linearizations as seen by swapping the last two pairs in
the above execution. Formally,

Timed linearizations Let T = (M, t) be a TMSC over Act withM = (E,≤, λ).
Consider a linearization (E,≤′, λ) of (E,≤, λ) according to which the events of E
can be written as a sequence e1 ≤

′ e2 . . . ≤
′ en. Then, the structure (E,≤′ λ, t) is

said to be a linearization of the TMSC T . If in addition, for all 1 ≤ j < k ≤ n, we
have t(ej) ≤ t(ek), then it is said to be a timed linearization . Indeed, this timed
linearization can be seen as a timed word σ over Act by uniquely identifying it with
σ = (λ(e1), t(e1)) . . . (λ(en), (t(en)) ∈ TWAct . We let t-lin(T ) ⊆ TWAct denote the
set of timed linearizations of a TMSC T , seen as a timed word language over Act .

As is the case with untimed MSCs, under the FIFO assumption for channels, a
timed MSC can be faithfully reconstructed from any one of its timed linearizations.

TMSC languages A TMSC language L over Act is a set of TMSCs over Act .
Then, t-lin(L) is the timed word language over Act consisting of all timed lin-
earizations of the TMSCs in L, i.e, t-lin(L) =

⋃
{t-lin(T ) | T ∈ L}.
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3.1.1 Bounded channel setting

As in the case of untimed MSCs, restricting the channel capacity in TMSCs gives
rise to an interesting, more “tractable” subclass of TMSCs. We extend the defini-
tion of existential and universal bounds from MSCs to TMSCs.

Definition 3.2. A TMSC (M, t) is called untimed-existentially-B-bounded (∃u-
B-bounded) if the MSCM is ∃-B-bounded. Similarly (M, t) is untimed-universally-
B-bounded (∀u-B-bounded) if M is ∀-B-bounded.

p q

1, u1

2, u2
v1, 3

v2, 4

Figure 3.2: TMSC T ′

Note that directly lifting the definition of bounds from
the untimed version does not preserve the timed lineariza-
tions. Consider the following example.

Example 16. In the adjoining figure TMSC T ′ is ∃u-
1-bounded since there exists a linearization of the un-
timed MSC which is 1-bounded, namely, u1v1u2v2. How-
ever, this does not correspond to a timed lineariza-
tion. In fact, the only timed linearization of T , namely
(u1, 1)(u2, 2)(v1, 3)(v2, 4) is 2-bounded. This example moti-
vates us to consider an alternative definition of a timed notion of boundedness.

Definition 3.3. For a TMSC T = (M, t), B ∈ N>0, a timed linearization of T ,
(a1, t1) . . . (an, tn) ∈ t-lin(T ) is said to be B-bounded if a1 . . . an is a B-bounded
linearization of M .

Definition 3.4. A TMSC T is timed-existentially-B-bounded (∃t-B-bounded)
if there exists a timed linearization of T which is B-bounded. Similarly T is
timed-universally-B-bounded (∀t-B-bounded) if every timed linearization of T is
B-bounded.

Then, the following lemma is a straightforward consequence of the definitions.

Lemma 3.5. If a TMSC T is ∃t-B-bounded for some B > 0, then T is also
∃u-B-bounded. Similarly, if T is ∀u-B-bounded then it is also ∀t-B-bounded.

3.2 Timed message passing automata

In this section, we define a basic model of a timed and distributed system that
runs on timed message sequence charts. The timed message passing automata are a
combination of timed automata over timed words (from Section 2.3.2) and message
passing automata over MSCs (from Section 2.2.3).

Thus, we begin with the set of communication actions Act over the set of
processes Proc and message alphabet M as before. In addition, we have a set
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of clocks Z which is partitioned into the set of clocks belonging to each process,
i.e, Z =

⋃
p∈Proc

Zp. Each clock constraint is of the form ϕ ∈ Form(Z) for some

p ∈ Proc. As before, a clock valuation is a map ν : Z → R≥0 and we write ν |= ϕ,
if ϕ evaluates to true using the values given by ν.

Definition 3.6. A timed message passing automaton (TMPA) over Act with a
set of clocks Z is a structure A = ({Ap}p∈Proc ,∆, F,Z) where,

• ∆ is a finite set of auxiliary messages

• For each p ∈ Proc, the component Ap is a structure (Sp, ιp,→p, Invp), where:

i. Sp is a finite set of p-local states.

ii. ιp ⊆ Sp, is a set of initial states for p.

iii. →p ⊆ Sp × Form(Z)×Actp ×∆× 2Z × Sp is the p-local transition re-
lation.

iv. Invp : Sp → Form(Z) assigns an invariant to each p-local state.

• F ⊆
∏

p∈Proc Sp is the finite set of global final states.

Further, A is said to be locally timed if the guards, resets and invariants in Ap

only refer to clocks from Zp, i.e., Conditions iii.,iv. above are respectively replaced
by →p ⊆ Sp × Form(Zp)× Actp ×∆× 2Zp × Sp and Invp : Sp → Form(Zp).

As in the untimed case, each message can be tagged with auxiliary data from
the set ∆. The transition (s, ϕ, p!q(m), d, R, s′) says that in state s, p can send
the message m tagged with auxiliary data d to q and move to state s′. This
transition is guarded by the clock constraint ϕ, i.e., the transition is enabled only
when the current values of all the clocks satisfy ϕ. The set R specifies the clocks
whose values are reset to 0 when this transition is taken. Similarly, the transition
(s, ϕ, p?q(m), d, R, s′) signifies that at state s, p can receive the message m tagged
with auxiliary data d from q and move to state s′ provided the current clock values
satisfy ϕ. Once again, all clocks in R are reset to 0.

Example 17. Figure 3.3 shows a timed MPA along with two of the timed MSCs
that it recognizes. In the timed MSCs, we have only written the time-stamps
associated with the events and not the event names themselves. In this timed
MPA, r sends a message m1 to s. Process s replies with m2 exactly 1 time unit
after it receives m1. If m2 is received by r within 2 time units of its sending m1,
it sends m3 and quits. Otherwise, if at least 2.2 time units go by before r receives
m2, it resends m1. Note that there is no transition enabled in r for the interval
2 < x ≤ 2.2. We may also observe here that this TMPA is locally timed since each
process r, s only uses its clocks x, y respectively.

35
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⇑
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Figure 3.3: A timed MPA and some timed MSCs that it recognizes

To formally define the operational semantics of a general TMPA, we can con-
sider it to be a global timed system running over timed linearizations of TMSCs.
Thus, given a TMPA A, we define its global timed automaton BA as follows.

The states of the global timed automaton are the configurations of the untimed
MPA underlying A. That is, a state of BA is a pair (s, χ) where s is a global state
of A and χ : Ch → (M×∆)∗ is the channel state describing the message queue in
each channel c. Recall that a global state of A is an element of

∏
p∈Proc Sp and for

a global state s, sp denotes the p
th component of s. Again, the initial states of BA

are states of the form (sin, χε) where sin ∈
∏

p∈Proc ιp, χε(c) is the empty string ε
for every channel c. The set of final states of BA is the set F × {χε}.

Now, the transition relation δBA
of BA is defined as follows:

((s, χ), ϕ, a, d, R, (s′, χ′)) ∈ δBA

if the following hold:

• for p such that a ∈ Actp, (sp, ϕ, a, d, R, s
′
p) ∈→p and for q 6= p, sq = s′q,

• if a = p!q(m), for some p, q,m, then χ′((p, q)) = χ((p, q)) · (m, d), and for
c 6= (p, q), χ′(c) = χ(c).

Thus, BA is a timed automaton and we define the timed word language of a
TMPA A to be the timed language of its global timed automaton, i.e, Ltw (A) =
Ltw(BA). Then, we may observe that every timed word in Ltw(A) is a timed
linearization of some TMSC over Act . This allows us to define the TMSC language
of a TMPA A, denoted by Ltime(A), to be the set of TMSCs over Act that have
some timed linearization in Ltw(A).

One may note, however, that this is not the only way to define the TMSC
language of a TMPA. For instance, we could require that all the timed lineariza-
tions of a TMSC should be accepted by the TMPA for the TMSC to be in the
language. This gives us a different definition: L∀

time(A) = {T ∈ TMSC(Act) | for
all σ ∈ t-lin(T ), σ ∈ Ltw(A)}. Then, we observe that t-lin(L∀

time(A)) ⊆ Ltw(A) ⊆
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p q
5

6

r s
5
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Figure 3.4: An example of a TMPA Ã that is not locally timed

t-lin(Ltime(A)). Further, both the inclusions may be strict as shown by the follow-
ing example.

Example 18. Consider the TMPA Ã and TMSC T̃ from Figure 3.4. All states of the
TMPA are assumed to be initial and final and we have abstracted away the message
contents for simplicity. Then we can observe that there is a timed linearization of
T̃ which is in Ltw(Ã), namely, (p!q, 5)(r!s, 5)(q?p, 6)(s?r, 7). But the timed word

(r!s, 5)(p!q, 5)(q?p, 6)(s?r, 7) is a timed linearization of T̃ which is not in Ltw(Ã).

Thus, T̃ ∈ Ltime(Ã) but T̃ 6∈ L∀
time(Ã) and we have t-lin(L∀

time(Ã)) ( Ltw(Ã) (
t-lin(Ltime(Ã)).

Indeed when we restrict to TMPA that are locally timed, these three notions
coincide and we have a perfect correspondance between the set of timed lineariza-
tions accepted and the set of TMSCs recognized. Thus, for a locally timed TMPA
A, we have t-lin(Ltime(A)) = Ltw(A).

We could now ask if there are less rigid restrictions having this same property.
For instance, we could restrict only the resets to be local and allow the guards
to mention clocks from other processes. In this case, if in a guard, we allow only
those clocks that are related by the partial order (i.e., the corresponding events
are not concurrent), then we could reach the same result. We will investigate such
a restriction later in the chapter where we replace clocks by event clocks.

Now, we define a TMPA to be B-bounded if its underlying untimed MPA is
B-bounded and it is said to be bounded if there exists such a B.

Lemma 3.7. For a bounded TMPA A, Ltw(A) is a timed regular language.

Proof. If the untimed MPA is B-bounded, then by definition every reachable state
(s, χ) of BA is B-bounded, i.e, |χ(c)| ≤ B for some B ∈ N>0. This implies that
BA is a finite timed automaton and so Ltw(BA) = Ltw(A) is a timed regular
language.
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Figure 3.5: A TCMSC M1 describing interaction of two users with a server

3.3 Message sequence charts with timing con-

straints

In the previous section, it may be noted that though TMPAs are distributed sys-
tems, for defining runs, we consider them operationally as global systems. This is
not a coincidence, for, timed message sequence charts (and indeed timed lineariza-
tions) essentially capture only the operational/global behaviour of distributed sys-
tems.

In some sense, this is due to the fact that TMSCs and their timed linearizations
are not very different! What we mean is that, by attaching time-stamping to events
of an MSC, we lose much of its partial order information. The only partial-order
information retained is through events on different processes with the same time-
stamps.The remaining are totally ordered due to the global time-stamping.

A richer partial order behaviour can be retained by attaching timing constraints
to pairs of events of the MSC. This approach has two other major advantages:

• Firstly, from a specification point of view, it allows the specifier to decide
and enforce constraints between occurences of events as he chooses.

• Secondly, a single MSC with timing constraints can describe a whole family
of TMSCs (with the same underlying MSC) thus being a much more succinct
description of the timed behaviours of a system.

Example 19. Consider the same example as before, namely Example 15, where
two users interact with a railway booking server. It might be that after granting
a User request, the Server waits only for a bounded amount of time for him/her
to respond before cancelling the request. The family of TMSCs satisfying such a
constraint is easier to capture using a scenario with timing constraints as shown in
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Figure 3.5. The label [0, 3] from a3 to a4 specifies that User1 must respond to the
grant within 3 time units. The label [0, 1] on the message from a3 to u3 specifies
the bounds on the delay of message delivery and so on.

The TCMSC that we formally define below uses intervals from a set S ⊆ I as
timing constraints. Recall that I denotes the set of all intervals over the real line.

Definition 3.8. Let S ⊆ I be a set of intervals over the real line. An MSC with
timing constraints or a time-constrained MSC (denoted TCMSC) over (Act ,S) is
a pair M = (M, τ) where M = (E,≤, λ) is an MSC over Act and τ is a partial
map from the set of irreflexive pairs of events, (E × E)\{(e, e) | e ∈ E} to the set
of intervals S.

As τ is a partial map, the domain of τ , denoted dom(τ), consists of the pairs
of events on which timing constraints are imposed by the TCMSC. When S = I,
i.e, if M is a TCMSC over (Act , I), we ignore the latter component and say that
M is a TCMSC over Act . With this notation, it is clear that for any S ⊆ I, if M
is a TCMSC over (Act ,S), then M is also a TCMSC over Act . As usual, when
the set of actions is clear from context, we may ignore Act as well.

With this definition, TCMSCs can be considered as abstractions of TMSCs and
timed words. Here and for the rest of this chapter, we let S ⊆ I to be some fixed
set of intervals.

Definition 3.9. Let M = (M, τ) be a TCMSC over (Act ,S) with M = (E,≤, λ).
A TMSC T = (M, t) is said to realize M if for all (e1, e2) ∈ dom(τ) we have
|t(e2)−t(e1)| ∈ τ(e1, e2). The set of all TMSCs that realize M is denoted Ltime(M).

Example 20. For instance, the TMSC of Figure 3.1 realizes the TCMSC from
Figure 3.5 since each interval constraint between events in the TCMSC is satisfied
by the time-stamps of the events in the TMSC.

This notion of MSCs with interval constraints on arbitrary pairs of events is
in fact similar to the approach adopted by Alur et al. [7]. Thus we can use their
MSC analysis tool to check consistency of these timing constraints in an MSC.

In the above definition, we can a priori define timing constraints between ANY
two distinct but arbitrary events. But is this really what we want? In fact, this
might defeat our purpose for introducing timing constraints in MSCs in the first
place. For instance, in the TCMSC in Figure 3.5, should a specifier be allowed to
have a choice of imposing constraints between the first event of User1 and the first
event of User2? Or, from an implementation point of view, can a machine that
implements such a constraint really be called a distributed machine?

In other words, the vital question is how flexible we want this timing to be,
i.e, between which pairs of events we allow constraints. To define this formally,
we fix an MSC M = (E,≤, λ) over Act and define the following relations that will
relate the pairs of events on which we wish to impose timing constraints. First,
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we denote the set of all irreflexive pairs of E by P(E) = {(e, e′) ∈ E ×E | e 6= e′}.
Then,

• The local process relation which is defined as:
LocM = {(e, e′) ∈ P(E) | e <pp e

′ for some p ∈ Proc}

• The message relation, whose definition we recall:
MsgM = {(e, e′) ∈ P(E) | e <pq e

′ for some (p, q) ∈ Ch}

• The previous occurence of an action a ∈ Act is defined as:
PrevMa = {(e, e′) ∈ P(E) | λ(e′) = a, e′ ≤ e, (e′′ ≤ e∧λ(e′′) = a) =⇒ e′′ ≤ e′}

• The next occurence of an action a ∈ Act is defined as:
NextMa = {(e, e′) ∈ P(E) | λ(e′) = a, e ≤ e′, (e ≤ e′′∧λ(e′′) = a) =⇒ e′ ≤ e′′}

Now we examine some approaches for defining subclasses of TCMSCs which are
natural from the point of view of a specifier. Also, in the next sections and chapters,
we will explicitly provide implementations and specifications for these restricted
TCMSCs as well investigate other interesting properties. The first subclass of
MSCs with timing constraints that we introduce, restricts timing to events on the
same process and across messages. In other words,

Definition 3.10. An MSC with local timing constraints over (Act ,S), denoted
loc-TCMSC is a TCMSC M = (M, τ) over (Act ,S) such that dom(τ) ⊆ (MsgM ∪
LocM).

Example 21. The TCMSC M1 from Figure 3.5 is an example of an MSC with local
timing constraints. Indeed, we can observe that all timing constraints occuring in
M1 are either local to a process or across messages.

A more flexible timing is to allow timing between the next and previous oc-
curence of any action from an event in the MSC along with the messages.

Definition 3.11. An MSC with ec-timing constraints over (Act ,S), which we
denote ecTCMSC, is a TCMSC M = (M, τ) over (Act ,S) such that dom(τ) ⊆
(MsgM ∪ (

⋃
a∈Act

(NextMa ∪ PrevMa ))).

Example 22. Consider the ecTCMSC M2 from Figure 3.6. We have abstracted
away the message contents M for simplicity. M2 has timing constraints defined
between the following pairs of events: The first pair (w3, v3) is a message constraint.
The second pair (w1, u1) is related by Prevp!q. However, note that this constraint
can also be seen as between (u1, w1) which are related by the Nextr?p. In such
cases, our definition requires us to have the same interval as a constraint.

Finally, the third pair of events (u3, v4) are related by the Nextq?p relation.
Here, it is interesting to observe that this pair of events are not related by Msg or
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Figure 3.6: An ecTCMSC M2

Preva relation for any a ∈ Act . Similarly, the pair of events (u3, v5) can be timed
only by a message constraint. And again timing is allowed between the pair (v5, u4)
only because of the Prevp!q relation. This illustrates to us that the expressivity of
the relations Preva, Msg and Nexta are incomparable. Thus, we cannot subsume
one by the other.

Now, if all possible allowed pairs have explicit timing constraints defined, then
we call such a ecTCMSC to be maximally defined.

Definition 3.12. An ecTCMSC M = (M, τ) over (Act ,S) is said to be maximally
defined if dom(τ) = (MsgM ∪ (

⋃
a∈Act

(NextMa ∪ PrevMa ))).

3.4 Event clock message passing automata

We have tried to motivate that the TCMSCs introduced in the previous section are
the ideal formalism for describing timed and distributed scenarios or behaviours.
In this section we introduce a timed system which is an implementation model
for ecTCMSCs. In fact, we have chosen our timing constraints wisely so that the
ECMPAs that we introduce below are the timed extensions of ECA introduced in
the untimed case. Thus ECMPAs can be seen as event-clock versions of TMPAs
just as ECAs were event-clock versions of timed automata. However, ECMPAs are
in general be incomparable to locally timed TMPA, since we allow clocks across
processes in the former, while the latter allows timing between any two events
within a process.

First, we fix a formal set of symbols TC as follows:

TC = {Msg} ∪ {Preva | a ∈ Act} ∪ {Nexta | a ∈ Act} (3.1)
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Figure 3.7: An ECMPA A1

When interpreted over an ecTCMSC M = (M, τ) over (Act ,S), each symbol
α ∈ TC is interpreted as the relation αM defined in the previous section. We let
TCM =

⋃
α∈TC(α

M). Also, [TC 99K I] denotes the set of partial maps from the
set of symbols TC to the set of intervals I.

Definition 3.13. An event clock message passing automaton (ECMPA) is a tuple
A = ({Ap}p∈Proc ,Act ,∆, F ), where

• ∆ is a finite set of auxiliary messages,

• Act is the alphabet

• For each p ∈ Proc, the component Ap is a structure (Sp,→p, ιp) where

– Sp is a finite set of p-local states

– ιp ∈ Sp is the p-local initial state

– →p is a finite subset of (Sp ×Actp × [TC 99K I]×∆× Sp)

• F ⊆
∏

p∈Proc Sp is a set of global final states.

Intuitively the automaton model is just an MPA extended with guards using
clocks from TC. That is, each guard g is a partial map of the form g ∈ [TC 99K I].

Example 23. A simple example of an event clock message passing automaton is
illustrated in Figure 3.7. The ECMPA A1 describes the interaction between a user
and a server, with the server trying to authenticate the user. The user compo-
nents is denoted Ap and the server Aq as shown. The set of actions Act consists
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of: p!q(pswd) (user sends password to server), q?p(pswd) (server receives pass-
word), q!p(correct), q!p(wrong) (server sends appropriate message to user) and
p?q(correct), p?q(wrong) (user receives message from server). Thus, in the above
automaton, the user starts by sending its password. If the password received by
server is correct, it acknowledges this and goes to final state. Else, it sends message
wrong which must reach in 4 time units and waits in state t1. If the user receives
correct it goes to its final state. If not, it must receive wrong in a bounded amount
of time since it last sent its password. And in this case, the user tries to resend
password. Otherwise, the current interaction is considered void and so the run is
rejected.

3.4.1 Semantics over TCMSCs

Formally, we define the run of an ECMPA A over an ecTCMSC M = (M, τ) over
(Act ,S), where M = (E,≤, λ). Again consider r : E →

⋃
p∈Proc Sp labeling each

event of process p with a local state from Sp. Define r− : E →
⋃

p∈Proc Sp as
before: For event e ∈ Ep, if there is another event e′ ∈ Ep such that e′ <·pp e,
then r−(e) = r(e′) and r−(e) = ιp otherwise. Then r is a run of A on M if,
for all e, e′ ∈ E, such that e <pq e′ for some channel (p, q) ∈ Ch, there are
g, g′ ∈ [TC 99K I] and a control message d ∈ ∆ such that,

• (r−(e), λ(e), g, d, r(e)) ∈ →p and (r−(e′), λ(e′), g′, d, r(e′)) ∈ →q, (3.2)

• ∀α ∈ dom(g), ∃ẽ ∈ E s.t., (e, ẽ) ∈ αM and τ(e, ẽ) ⊆ g(α), (3.3)

• ∀α ∈ dom(g′), ∃ẽ′ ∈ E s.t., (e′, ẽ′) ∈ αM and τ(e′, ẽ′) ⊆ g′(α). (3.4)

Note that given e, e′ as above and αM , ẽ and ẽ′ are uniquely defined since αM

is, in fact, a partial function. We define sp = r(ep), where ep is the maximal event
in the pth process. If there are no events on process p, we set sp = ιp. Then run r
is successful if (sp)p∈Proc ∈ F . A TCMSC over (Act ,S) is accepted by an ECMPA
A if it admits a successful run. We denote by LTC (A), the set of all TCMSCs over
Act that are accepted by A. We remark that, since a TCMSC over (Act ,S) for
S ⊆ I is also a TCMSC over Act , LTC (A) is the set of all TCMSCs over (Act ,S)
for all interval sets S ⊆ I.

Example 24. As an example, we can observe that the ecTCMSCM3 from Figure 3.8
is accepted by A1, the ECMPA shown in Figure 3.7. To see this, first note that
M3 = (M, τ) where M = (E,≤, λ) with E = {ui, vi | i ∈ {1, . . . , 4}}, dom(τ) =
{(v2, u2), (u1, u2)} and τ(v2, u2) = [0, 3], τ(u1, u2) = [3, 7]. Also, the set of local
states of A1 is S = {si, ti | i ∈ {1, . . . , 3}}.

Now, consider the map r : E → S such that r(u1) = r(u3) = s1, r(v1) =
r(v3) = t2, r(u2) = s2,r(v2) = t2 and finally r(u4) = s3 and r(v4) = t3. Then, it is
easy to see that Condition (3.2–3.4) hold. Further, (s3, t3) is a final state and so r
is an accepting run of A1 on M3.
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Figure 3.8: ecTCMSC M3 and TMSC T3

3.4.2 Semantics over TMSCs

Since ecTCMSCs are also abstractions of TMSCs, we get the semantics of ECMPAs
over TMSCs. Unsurprisingly, this can also be done directly by defining runs of
ECMPAs on TMSCs rather than TCMSCs. The definition of a run of A over
a TMSC T = (M, t) is the same as over a TCMSC M = (M, τ), except that
conditions (3.3) and (3.4) are respectively replaced by (3.5) and (3.6) defined below:

• for all α ∈ dom(g), ∃ẽ ∈ E s.t., (e, ẽ) ∈ αM and |t(ẽ)− t(e)| ∈ g(α) (3.5)

• for all α ∈ dom(g′), ∃ẽ′ ∈ E s.t., (e′, ẽ′) ∈ αM and |t(ẽ′)− t(e′)| ∈ g′(α) (3.6)

Then, with the same notion of acceptance as above, we can denote the set of
all TMSCs accepted by a given ECMPA A as Ltime(A).

Example 25. Again, the TCMSC T3 from Figure 3.8 is accepted by the ECMPA
Aut1 shown in Figure 3.7. The set of events of T3 are the same as the set of events
of M3 and the map described in Example 24 can easily be seen to be an accepting
run of A1 on T3 as well. We may also notice here that T3 realizes M3. This is not
a coincidence. In fact, we can make the following general observation,

Lemma 3.14. Suppose a TMSC T over Act realizes a TCMSC M over (Act ,S).
Then for an ECMPA A, M ∈ LTC (A) implies T ∈ Ltime(A).

Proof. The lemma essentially follows from the definitions given above. Let the
T = (M, t) be the TMSC over Act with M = (E,≤, λ) and M = (M, τ). Also
let A = ({Ap}p∈Proc ,Act ,∆, F ) as in Definition 3.13. Then, any run r of A on M

satisfies the conditions (3.2–3.4).
Now, since T realizes M, for all (e1, e2) ∈ dom(τ), we have |t(e1) − t(e2)| ∈

τ(e1, e2). This along with (3.3), implies that for all α ∈ dom(g) there exists ẽ ∈ E
such that (e, ẽ) ∈ αM and |t(e) − t(ẽ)| ∈ τ(e, ẽ) ⊆ g(α). Thus, we find that (3.5)
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holds. Similarly, from (3.4) we obtain (3.6). Hence we can conclude that r is a run
of A on T .

Since every run of A on M is also a run of A on T and the acceptance criterion
is the same in both cases we conclude that if M ∈ LTC (A) then T ∈ Ltime(A).

The converse however, holds only under some additional assumptions on M

which will be seen in the next chapter.

3.5 Time constrained message sequence graphs

Just as we used MSGs to describe infinite families of MSCs, to describe infinite
families of TCMSCs, we label the nodes of an MSG with TCMSCs instead of
normal MSCs. We also permit process-wise timing constraints along the edges of
the MSG. A constraint for process p along an edge q −→ q′ specifies a constraint
between the final p-event of Φ(q) and the initial p-event of Φ(q′), provided p actively
participates in both these nodes. If p does not participate in either of these nodes,
the constraint is ignored.

Definition 3.15. A time-constrained message sequence graph (TCMSG), denoted
G, is a tuple (G,LTC,Φ,EdgeC ) where

• G is a graph (V,→, vin, VF ),

• LTC is a finite set of non-empty TCMSCs over Act whose sets of events are
disjoint.

• Φ : V → LTC is a map assigning a TCMSC to every vertex of the graph.

• EdgeC : ((→)×Proc) → I is map which assigns to each edge of the graph a
time interval per process.

In the following, we assume that there is a default interval (−∞,∞) attached,
whenever the constraint is not explicitly defined.

Semantics over TCMSCs

For a given TCMSG G = (G,LTC,Φ,EdgeC ), for each vertex v of G, let Φ(v) ∈
LTC be the TCMSC Mv = (Mv, τv) where Mv = (Ev,≤v, λv). Then we denote the
set of all events by EG =

⋃
v∈V E

v.
Now, for a non-empty path π in G, we define the TCMSC generated by π to be

Mπ = (Mπ, τπ) where,

• we recall that Mπ = (Eπ,≤π, λπ) is such that

45



q1

⇒
r sm1

[0, 3]

q2

r sm2
m3

q3

r sm2

([0, 2],[1, 1]) ((2, 3],[1, 1])

M1
r sm1

[0, 3]
m2

m3

[0, 2] [1, 1]

M2
r sm1

[0, 3]
m2

m1

[0, 3]
m2
m3

(2, 3]

[0, 2]

[1, 1]

[1, 1]
T ′
2

r s
0.5
2.6
2.9
4.5
4.8

1.5
2.5
3.0
4.0
5.0

m1

m2

m1

m2

m3

Figure 3.9: A TCMSG and some TCMSCs that it generates

– Eπ =
⋃

ρv�π E
v × {ρv}

– for each ρv � π, λπ(e, ρv) = λv(e)

– ≤π is defined as the reflexive transitive closure of
⋃

p,q∈Proc

<π
pq where

∗ (e, ρv) <π
pp (e′, ρ′v′) for some p ∈ Proc if e, e′ ∈ Ep and either

ρv � ρ′v′ or ρv = ρ′v′ and in this case e <v
pp e

′.

∗ (e, ρv) <π
pq (e′, ρ′v′) for some processes p 6= q, if ρv = ρ′v′ and

e <v
pq e

′.

• and τπ ∈ [(Eπ × Eπ) 99K I] is a partial map such that

τπ((e, ρv), (e
′, ρ′v′)) =





τv(e, e
′) if ρv = ρ′v′

EdgeC ((v, v′), p) if ρ′ = ρv, and

e = max(Ev
p ), e

′ = min(Ev′

p )

The language LTC (G) is defined to be the set of all TCMSCs over Act generated
by paths in G that start from the initial vertex and end in a final vertex.

Example 26. Figure 3.9 shows a TCMSG and some of the TCMSCs that it gener-
ates. We omit the trivial constraints (which set the default value of true to each
unspecified edge) to avoid cluttering the figure.

In this chapter we have essentially introduced all our models to describe as
well as implement timed and distributed scenarios. We have also tried to motivate
the inherent differences and conflicts that we need to resolve. In the next three
chapters, we will both ask and solve questions about the formalisms introduced
here.
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4
Logical Characterization of ECMPAs

One of the cornerstone results of formal language theory is the connection between
automata theory and classical logic. This was established over words by Büchi
and Elgot early in the sixties [20, 37], who showed that the language of a finite
automaton can be expressed by a formula from monadic second-order logic (MSO)
and that, conversely, any MSO formula can be effectively transformed into an
equivalent finite automaton. The study of relations between logical formalisms and
operational automata has had many attempts at generalization including trying
to extend and abstract the definition of words themselves.

As mentioned in Chapter 2, this equivalence was lifted to the partial order
setting (Section 2.2.5) and the timed setting (Section 2.3.4). Our goal in this
chapter is to merge these two approaches by looking at partial orders with timing
information. For this, we use the TMSCs which we introduced in the previous
chapter as a formalism to describe the executions of timed and partial systems
(the TMPA and the ECMPA).

We prove the equivalence between the logic and ECMPA over TMSCs with
and without existential bounds on channels. However, to do this, we actually use
the TCMSCs as a finite description of an infinite collection of TMSCs thus again
showing the significance of the TCMSCs.

We begin by introducing the logical framework for timed partial orders.

4.1 Timed monadic second-order logic

As usual, we start with a supply of individual variables x, y, . . ., and set vari-
ables X, Y, . . . which range over events (and sets of events) of the timed MSC. We
generalize the timed logic introduced in Section 2.3.4 by using (other than unary
predicates Pa(x) for a ∈ Act) generalized timing predicates of the form δα(x) ∈ I
for a variable x, α ∈ TC and I ∈ I. Here TC is the same set of symbols defined
by Equation (3.1) of the previous chapter and are interpreted as relations over
the events. Again, as for MSO over MSCs introduced in Section 2.2.4, the logic
depends on a set R of (binary) relation symbols, which settles the access to the
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partial order relation. Thus,

Definition 4.1. The set TMSO(Act ,R) of all timed monadic second-order logic
formulae over Act with the relational symbols from R, is generated inductively
using the following grammar:

ϕ ::= Pa(x) | x ∈ X | x = y | R(x, y) | δα(x) ∈ I | ¬ϕ | ϕ ∨ ϕ | ∃xϕ | ∃Xϕ

where, x, y are individual variables, X is a set variable, a ∈ Act , R ∈ R, α ∈ TC
and I ∈ I.

Again, the existential fragment of TMSO(Act ,R), denoted ETMSO(Act ,R), com-
prises of all formulas ∃X1 . . .∃Xnϕ such that ϕ does not contain any set quantifier.

Though we have defined the logic above for arbitrary sets of relational symbols
R, we are in fact interested only in the two restricted sets that we have seen
before, namely R≤ and R<·. Recall, from Section 2.2.4 that R≤ = {≤} and R<· =
{<·pp| p ∈ Proc} ∪ {<pq| p 6= q}. Then a formula ϕ from any of these logics, i.e,
TMSO(Act ,R≤), TMSO(Act ,R<·), ETMSO(Act ,R≤) or ETMSO(Act ,R<·) can
be interpreted over TMSCs as well as TCMSCs as follows. We write TMSO(Act)
or TMSO to denote the union of all formulae from these logics, when there is no
scope for confusion.

4.1.1 Semantics over TMSCs

We start by observing that, like a timed word, a TMSC T = (M, t) over Act for
M = (E,≤, λ) is an R≥0-extended labeled relational structure A = (E,RA, λ, ρ)
over Act with RA = {≤A}, ρ = t. Therefore it is not surprising that the definition
of the semantics of a TMSO formula over TMSCs is identical to that of ecMSO
over timed words from Section 2.3.4 as we see below.

Thus, for the TMSC T , let I be an interpretation mapping first order variables
to elements in E and second order variables to subsets of E. Then, for ϕ ∈
TMSO(Act), we define the satisfaction relation T, I |= ϕ, by induction on the
structure of ϕ. For all operators, except the timing predicate, this is given by
Conditions (2.1–2.8) from Section 2.1.2. For instance, by Condition (2.1), the
unary predicate Pa(x) expresses that I(x) is labeled with a ∈ Act , i.e., λ(I(x)) = a.

The only novelty is the timing predicate, for which we define the satisfaction
relation as follows. Intuitively, by δα(x) ∈ I we mean that there is an event e ∈ E
such that I(x) and e are related by αM and the time difference between these
events I(x) and e is contained in I. Formally for each α ∈ TC we define,

T, I |= δα(x) ∈ I if ∃e ∈ E, s.t., (I(x), e) ∈ αM and |t(e)− t(I(x))| ∈ I (4.1)

Then, as usual, for sentences ϕ (i.e, formulae without free variables) we write
T |= ϕ instead of T, I |= ϕ and denote by Ltime(ϕ) the set of all TMSCs T over
Act such T |= ϕ.
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4.1.2 Semantics over TCMSCs

Now, turning to ecTCMSCs, we observe that an ecTCMSC M = (M, τ) over
(Act ,S) with M = (E,≤, λ) is, in fact, a S-extended labeled relational structure
(E,RA, λ, ρ) over Act where RA = {≤A}, ρ = τ and S ⊆ I is a set of intervals.

Thus, we can give a formula ϕ ∈ TMSO(Act) a natural semantics over M

exactly as done for TMSCs above. The only noteworthy difference is in the timing
predicate δα(x) ∈ I, where for any α ∈ TC, we define

M, I |= δα(x) ∈ I if ∃e ∈ E s.t., (I(x), e) ∈ αM and τ(I(x), e) ⊆ I (4.2)

The set of ecTCMSCs over Act that satisfy a TMSO sentence ϕ is denoted by
LTC (ϕ).

Example 27. Let us again consider the interaction scenario modeled in Example 23,
where a server tries to authenticate a user. Thus the set of actions Act is the same
as in Example 23. Then, suppose we wish to specify that every Message wrong
sent by the server takes no more than 4 units of time to be conveyed. This can be
written as the following sentence in our logic:

∀x Pq!p(wrong)(x) → δMsg(x) ∈ [0, 4] (4.3)

Similarly, we may require that whenever Message wrong is received by the user,
the time elapsed since it last sent its password must be at least 3 units and at most
7 units. This can be easily expressed as:

∀x Pp?q(wrong)(x) → δPrevp!q(pswd)
(x) ∈ [3, 7] (4.4)

We observe immediately that both of these sentences (4.3) and (4.4) are satisfied
by ecTCMSC M3 and TMSC T3 from Figure 3.8. Then, we have the following
lemma for the logic which corresponds to Lemma 3.14 for ECMPA.

Lemma 4.2. Let ϕ be a TMSO formula and let T be a TMSC over Act which
realizes an ecTCMSC M over (Act ,S) for some S ⊆ I. Then, M ∈ LTC (ϕ)
implies T ∈ Ltime(ϕ).

Proof. Let T = (M, t) be the TMSC over Act with M = (E,≤, λ). And for
S ⊆ I, M = (M, τ) is the ecTCMSC over (Act ,S) such that T realizes M. Then,
we show the lemma for any interpretation I, by induction on structure of ϕ. The
only interesting case is the timing predicate. The others are routine deductions.

For this case, we show that if M, I |= δα(x) ∈ I then T, I |= δα(x) ∈ I. By
definition, M, I |= δα(x) ∈ I means that there exists e ∈ E, such that (I(x), e) ∈
αM and τ(I(x), e) ⊆ I. But T realizes M and so we have |t(e) − t(I(x))| ∈
τ(I(x), e) ⊆ I. Thus, by definition, we conclude that T, I |= δα(x) ∈ I.

The converse also holds but in a restricted case, as we will see next.
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4.2 From TMSCs to TCMSCs

A TMSC that realizes a TCMSC can be thought of as its realization. Thus, if
the TCMSC exhibits a property, the corresponding TMSC also does so. This
is illustrated in Lemmas 3.14 and 4.2 where the property is having a run on an
automaton, or satisfying a formula. In this section, we are interested in the converse
question. In other words, if a TMSC exhibits a property, when can we say that a
TCMSC that it realizes also exhibits the same property?

For this, given a TMSC, we derive a canonical representative ecTCMSC using
intervals from a specific set which depends on the property. Then it turns out
that, this representative exhibits the property if and only if a TMSC realizing it
exhibits the property. We formalize these vague ideas in this section.

We begin by introducing the notion of a proper interval set from [34], which
will play an important role in what follows.

Definition 4.3. A set of intervals S ⊆ I is said to be proper if it forms a finite
partition of R≥0.

Definition 4.4. An interval set S is said to refine another interval set S ′ if every
interval I ′ ∈ S ′ is the union of some collection of intervals of S, i.e, I ′ =

⋃
I∈S

I.

Example 28. Consider the set of intervals S1 = {[0, 4], [3, 7]}. Then, we may
observe that the interval set S2 = {[0, 3), [3, 4], (4, 7]} refines S1 and if we add the
interval (7,∞) to S2 we obtain a proper interval set S3 that refines S1.

We can now make the following elementary observations,

Remark 4.5. If S is a proper interval set which refines another interval set S ′, then
for all I ∈ S and I ′ ∈ S ′, we have, either I ⊆ I ′ or I ∩ I ′ = ∅.

Proposition 4.6. For any finite interval set, there exists a proper interval set that
refines it.

Proof. Let S ⊆ I be a finite interval set. Then, we define a canonical proper
interval set of S denoted prop(S) as follows: Let R = (t1, . . . , tn) be the sequence
of bounds that appear in S, arranged in increasing order t1 < . . . < tn and which
are different from 0,∞. If R is empty, we define prop(S) = {[0,∞)}. Otherwise,
we define prop(S) = {[0, 0], (0, t1), [t1, t1], (t1, t2), . . . , [tn, tn], (tn,∞)}.

With this definition it follows that prop(S) is a proper interval set and that
prop(S) refines S.

Now we can show that for a proper interval set S and a TMSC T , there is
a unique maximally defined ecTCMSC using intervals only from S such that T
realizes it. Formally,
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Lemma 4.7. Let S be a proper interval set and T = (M, t) be a TMSC over
Act. Then, there exists a unique ecTCMSC M = (M, τ) over (Act ,S) such that
τ : TCM → S, T realizes M and M is maximally defined.

Proof. We first observe that, for each (e, e′) ∈ TCM , the real number |t(e′)− t(e)|
is in a unique interval of S. Thus, consider the maximally defined TCMSC defined
as: MS

T = (M, τ) where, for any (e, e′) ∈ TCM , τ(e, e′) is defined to be the unique
interval of S containing |t(e′) − t(e)|. Then, T realizes MS

T by definition and the
uniqueness follows since S is a proper interval set.

It turns out that, this unique ecTCMSC is the “canonical representative” for
a TMSC, that we were searching for in the beginning of this section. We fix its
notation with the following definition,

Definition 4.8. For a proper interval set S and TMSC T , we define MS
T to be the

unique maximally defined ecTCMSC over (Act ,S) such that T realizes it.

Example 29. Consider the TMSC T4 from Figure 4.1, which represents a part of the
scenario of TMSC T3 from Figure 3.8. We have also abstracted away the message
contents. Now, let S3 be the proper interval set S3 defined in Example 28. Then,
the unique maximally defined ecTCMSC over (Act ,S3) which is realized by T4 is
the ecTCMSC M

S3
T4

shown in Figure 4.1. Indeed, it is easily seen that it satisfies
the condition described in the proof of Lemma 4.7.

Now, given a TMSO formula ϕ, we let Int(ϕ) denote the finite set of intervals
I for which ϕ has a sub-formula of the form δα(x) ∈ I. Now look at any proper
interval set S that refines Int(ϕ). By Proposition 4.6, there exists at least one,
namely prop(Int(ϕ)).

Lemma 4.9. Given a T-MSC T , a TMSO formula ϕ, and a proper interval set S
that refines Int(ϕ), we have T |= ϕ if and only if MS

T |= ϕ.

Proof. Let T = (M, t) be a T-MSC with M = (E,≤, λ). Then, by Lemma 4.7, we
have the TCMSC M

S
T = (M, τ) such that, for all α ∈ TC, and all (e, e′) ∈ αM ,
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|t(e′)− t(e)| ∈ τ(α). Since T realizes MS
T , one direction of this lemma follows from

Lemma 4.2, i.e, we have M
S
T |= ϕ implies T |= ϕ.

We now show the other direction, for any interpretation I, by induction on
structure of ϕ. The only interesting case is the timing predicate. The others
are routine deductions. Thus we will now show that T, I |= δα(x) ∈ I implies
MS

T , I |= δα(x) ∈ I.
Assume T, I |= δα(x) ∈ I. Then by definition, there exists e ∈ E, such that

(I(x), e) ∈ αM and |t(e)−t(I(x))| ∈ I. Then, asMS
T is maximally defined, τ(I(x), e)

exists and τ(I(x), e) ∈ S. But S refines Int(ϕ) and I ∈ Int(ϕ), so we must have
either τ(I(x), e) ⊆ I or τ(I(x), e) ∩ I = ∅. Now, since T realizes M

S
T , we have

|t(e)− t(I(x))| ∈ τ(I(x), e). Therefore we get, |t(e)− t(I(x))| ∈ τ(I(x), e)∩I and so
we conclude that τ(I(x), e) ⊆ I. Thus, there exists e ∈ E, such that (I(x), e) ∈ αM

and τ(I(x), e) ⊆ I which by definition implies that MS
T , I |= δα(x) ∈ I.

We can do the same for ECMPAs as well. That is, given an ECMPA A, let
Int(A) denote the set of finite set of intervals that occur in A as guards. Again we
can consider a proper interval set S which refines Int(A) since by Proposition 4.6,
there exists at least one. Then again we have,

Lemma 4.10. Given a TMSC T , an ECMPA A and a proper interval set S that
refines Int(A), we have T ∈ Ltime(A) if and only if MS

T ∈ LTC (A).

Proof. The proof essentially uses the same arguments as in the previous lemma.
To see this, let us fix T = (M, t) to be the TMSC over Act withM = (E,≤, λ), and
A = ({Ap}p∈Proc ,Act ,∆, F ) with Ap = (Sp, ιp,→p). Now, since T realizes MS

T , by
Lemma 3.14, we immediately obtain one direction of the result, i.e, MS

T ∈ LTC (A)
implies T ∈ Ltime(A).

For the reverse direction, assume T ∈ Ltime(A). Then by definition there is a
successful run r of A on T . Since r is a run, for all e, e′ ∈ E such that e <pq e

′ for
(p, q) ∈ Ch, we find g, g′ ∈ [TC 99K I] and d ∈ ∆ such that conditions (3.2),(3.5)
and (3.6) hold. We show then that r is also a run of A on MS

T , for which it is
enough to show that conditions (3.3) and (3.4) hold.

We start from (3.5), which says that for each α ∈ dom(g), there is ẽ ∈ E such
that (e, ẽ) ∈ αM . Since MS

T is maximally defined, τ(e, ẽ) exists and as T realizes
MS

T we obtain |t(ẽ) − t(e)| ∈ τ(e, ẽ). But again from (3.5), |t(ẽ) − t(e)| ∈ g(α).
Thus, we find that τ(e, ẽ) ∩ g(α) 6= ∅. Now, τ(e, ẽ) ∈ S, g(α) ∈ Int(A) and we
know that S is a proper interval set that refines Int(A). Thus, we conclude that
τ(e, ẽ) ⊆ g(α) which shows that (3.3) holds. Similarly, (3.4) can be shown starting
from (3.6).

Thus any run of A on T is also a run on MS
T . Since the acceptance criterion

for a run is the same, T ∈ Ltime(A) implies MS
T ∈ LTC (A).
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4.3 Extending the alphabet

In this section, we provide the final pieces of our jigsaw which will help us prove
our main result in the next section.

In particular, we fix a finite set Π and lift MSCs over Act to MSCs over Act×Π.
A Π-extended MSC over Act or alternately, an MSC over Act ×Π is just an MSC
(E,≤, λ) over Act such that λ : E → Act ×Π. To be completely formal, we recall
the original Definition 2.5 of an MSC over Act and modify. This is done for MSCs
below, but for the remaining definitions we just describe the change required in
the original definition rather than redefine completely.

Definition 4.11. An Π-extended MSC over Act or an MSC over (Act × Π) is a
finite (Act × Π)-labeled poset M = (E,≤, λ) such that Conditions (2.9–2.12) are
satisfied.

We note that the definition of boundedness can be immediately adapted to this
setting by ignoring the extra labeling.

Equivalences over the extended alphabet

We lift the MPA and MSO definitions to include the additional alphabet. Since,
such a lift is purely syntactical, we preserve the validity of the theorems mentioned
in Section 2.2.5.

We define an MPA A = ({Ap}p∈Proc ,∆, F ) over Act × Π as in Definition 2.10
with the only change being that, the transition relation on component Ap becomes
→p ⊆ (Sp × Actp × Π×∆× Sp). Then observe that we have the usual semantics
(from Section 2.2.3) for a run of this automaton on a Π-extended MSC over Act .
LMSC (A) denotes the set of all Π-extended MSCs that are accepted by A.

Now, observe that, with the above definition, a Π-extended MSC (E,≤, λ) over
Act is just a labeled relational structure (E, {≤E}, λ) over Act ×Π. Thus, setting
Σ = Act×Π andR = R≤ orR = R<· in Definition 2.4 we obtain MSO(Act×Π,R≤)
and MSO(Act × Π,R<·) and their semantics in terms of Π-extended MSCs over
Act . The existential fragments are obvious. Also for a sentence ϕ from the logic,
LMSC (ϕ) denotes the set of Π-extended MSCs over Act that satisfy it.

With the above definitions, it is easy to see that we can lift the results men-
tioned in Section 2.2.5. We restate the theorems that are relevant to us, namely
Theorem 2.15 and Theorem 2.12 as respectively,

Theorem 4.12. Let L be a language of MSCs over Act ×Π. Then L = LMSC (ϕ)
for some ϕ ∈ EMSO(Act × Π,R<·) if and only if L = LMSC (A) for some MPA A
over Act × Π.

Theorem 4.13. Let B ∈ N≥0.
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1. Let L be a language of existentially B-bounded MSCs over Act × Π. Then,
L = LMSC (ϕ) for some sentence ϕ ∈ MSO(Act × Π,R≤) if and only if
L = LMSC (A) for some MPA A over Act × Π.

2. There exists an MPA A over Act × Π such that LMSC (A) is the set of all
existentially B-bounded MSCs over Act × Π.

TCMSCs as extended MSCs

Let S ⊆ I be a finite set of intervals. Then, we can consider the alphabet Γ =
Act × [TC 99K S] where [TC 99K S] is a finite set of partial maps from TC to S.
Recall that TC is the finite set of symbols defined in the beginning of Section 3.4.

Since S is finite, an ecTCMSC over (Act ,S) can be directly seen as an MSC
over Γ. We make this precise by defining a function f which maps the set of
ecTCMSCs over (Act ,S) to the set of MSCs over Γ:

Definition 4.14. Let M = (M, τ) be any ecTCMSC over (Act ,S), with M =
(E,≤, λ), τ : TCM

99K S. Then f(M) = (E,≤, λ′) is an MSC over Γ with the
same set of events E and partial order ≤. Also, λ′ : E → Γ is defined for all
e ∈ E, by λ′(e) = (λ(e), ge) where ge : TC 99K S is such that, for all α ∈ TC,

ge(α) =

{
τ(e, e′) if there exists e′ ∈ E, s.t., (e, e′) ∈ (αM ∩ dom(τ))

undefined otherwise

Again, we recall that given e ∈ E and α ∈ TC, there can exist at most one
event e′ ∈ E such that (e, e′) ∈ αM .

Proposition 4.15. The f defined above is an injective map, i.e, if f(M1) = f(M2)
then M1 = M2 for ecTCMSCs M1,M2 over (Act ,S).

Proof. Let M1 = (M1, τ1) and M2 = (M2, τ2) with M1 = (E1,≤1, λ1) and M2 =
(E2,≤2, λ2). Then f(M1) = (E1,≤1, λ′1) and f(M2) = (E2,≤2, λ′2) are such that for
all e1 ∈ E1, λ′1(e

1) = (λ1(e
1), g1(e1)) and for all e2 ∈ E2, λ′2(e

2) = (λ2(e
2), g2(e2))

where g1, g2 are as defined above.
First, f(M1) = f(M2) implies that E1 = E2, ≤1=≤2 and λ1(e) = λ2(e) for all

e ∈ E1(= E2), since λ′1 = λ′2. Thus M1 = (E1,≤1, λ1) = (E2,≤2, λ2) =M2 and so
we have αM1 = αM2. We are left with proving that τ1 = τ2. Let E = E1 = E2.

Since λ′1 = λ′2, for each e ∈ E, α ∈ TC, g1e(α) = g2e(α). But that means that
{e′ ∈ E | (e, e′) ∈ (αM1 ∩ dom(τ1))} = {e′ ∈ E | (e, e′) ∈ (αM2 ∩ dom(τ2))}.
Thus for each (e, e′) ∈ αM1 = αM2 for some α ∈ TC, we have (e, e′) ∈ dom(τ1) iff
(e, e′) ∈ dom(τ2) and then τ1(e, e

′) = g1e(α) = g2e(α) = τ2(e, e
′). Thus, we conclude

that M1 = M2 and hence f is an injective map.
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Transforming TMSO formulae

In this section we show that each TMSO formula can be rewritten as an MSO
formula over the extended alphabet of guards introduced above. Let S be a finite
set of intervals and Γ = Act × [TC 99K S]. Then from a given TMSO formula ϕ,
we obtain a formula ϕS ∈ MSO(Γ) by replacing sub-formulas of the form Pa(x) by
the formula: ∨

{(b,g)∈Γ | b=a}

P(b,g)(x)

and sub-formulas of the form δα(x) ∈ I by the formula:

∨

{(b,g)∈Γ | g(α)⊆I}

P(b,g)(x)

Note that this translation preserves the existential fragment, i.e, for instance,
if ϕ ∈ ETMSO(Act ,R<·), then ϕ

S ∈ EMSO(Γ,R<·).
Now since an MSC over Γ is just a labeled relational structure over Γ, from

Section 2.1.2, Definition 2.4, we obtain the semantics of a formula from this logic
in terms of MSCs over Γ. Then, we can relate the ecTCMSC-language of a TMSO
formula and the extended MSC language of its MSO translation as follows,

Lemma 4.16. Let ϕ be a TMSO sentence and S be a finite set of intervals. Then
for an ecTCMSC M over (Act ,S), M |= ϕ if and only if f(M) |= ϕS .

Proof. Let M = (M, τ) be an ecTCMSC over (Act ,S) with M = (E,≤, λ) and
f(M) = (E,≤, λ′) as defined in the previous section. We show the lemma for any
interpretation I by induction on structure of ϕ. As before, the only interesting
cases are atomic and timing predicates. The others are routine deductions.

• Suppose ϕ is of the form Pa(x) for some a ∈ Act . Then, we will show that,

M, I |= Pa(x) if and only if f(M), I |=
∨

{(b,g)∈Γ|b=a}

P(b,g)(x)

Now, M, I |= Pa(x) means that λ(I(x)) = a. But, λ(I(x)) = a if and only if
λ′(I(x)) = (a, gI(x)). But we have λ

′(I(x)) = (a, gI(x)) if and only if f(M), I |=
P(a,gI(x))(x), which holds if and only if f(M), I |=

∨
{(b,g)∈Γ|b=a}

P(b,g)(x). Thus,

we are done.

• Suppose ϕ be of the form δα(x) ∈ I for some α ∈ TC, I ∈ I. Then, we show
that,

M, I |= δα(x) ∈ I if and only if f(M), I |=
∨

{(b,g)∈Γ|g(α)⊆I}

P(b,g)(x)
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( =⇒ ) Let M, I |= δα(x) ∈ I where I(x) = e for some e ∈ E. By definition,
this means that there exists e′ ∈ E such that (e, e′) ∈ αM and τ(e, e′) ⊆ I.
By the definition of f(M), we then have λ′(e) = (λ(e), ge) with ge : TC 99K S
such that ge(α) = τ(e, e′) ⊆ I. This implies that f(M), I |= P(λ(e),ge)(x) with
ge(α) ⊆ I. Hence we have, f(M), I |=

∨
{(b,g)∈Γ|g(α)⊆I}

P(b,g)(x).

(⇐=) Conversely assume that f(M), I |= P(b,g)(x) for some (b, g) ∈ Γ such
that g(α) ⊆ I and let I(x) = e for some e ∈ E. Then by definition λ′(e) =
(b, g), λ(e) = b and g : TC 99K S with g(α) ⊆ I. Since g(α) is defined, there
exists e′ ∈ E such that (e, e′) ∈ dom(τ) ∩ αM and g(α) = τ(e, e′) ⊆ I. Thus,
we conclude that M, I |= δα(x) ∈ I.

Thus, by induction on the structure of ϕ, we obtain that for any interpretation
I, M, I |= ϕ if and only if f(M), I |= ϕS . Hence we conclude that for any TMSO
sentence ϕ, we have M |= ϕ if and only if f(M) |= ϕS .

ECMPA vs MPA over the extended alphabet

Let us fix a finite set of intervals S and an alphabet of guards Γ = Act×[TC 99K S].
Then, observe that any MPA A over Γ is itself an ECMPA which uses intervals
from S as guards, i.e, Int(A) ⊆ S.

Lemma 4.17. Let S be a finite set of intervals and A be an MPA over Γ =
Act × [TC 99K S]. Then for an ecTCMSC M over (Act ,S), f(M) ∈ LMSC (A)
implies M ∈ LTC (A).

Proof. The proof follows from the definitions. Let A be the MPA over Γ = Act ×
[TC 99K S]. and ecTCMSC M = (M, τ) over (Act ,S) with M = (E,≤, λ) and
f(M) = (E,≤, λ′), such that, λ′(e) = (λ(e), ge), for ge : TC 99K S where ge(α) =
τ(e, ẽ) if there exists ẽ ∈ E such that (e, ẽ) ∈ αM ∩ dom(τ).

Let f(M) ∈ LMSC (A). That is, there exists a run r of the (extended) MPA
A on the MSC f(M) which is accepting, i.e, reaches a final state. As defined in
Section 2.2.3, r : E →

⋃
p∈Proc Sp is a map such that, for all e, e′ ∈ E, e <pq e

′,
(p, q) ∈ Ch, there exists d ∈ ∆ such that,

(r−(e), λ′(e), d, r(e)) ∈ →p and (r−(e′), λ′(e′), d, r(e′)) ∈ →q

where, we recall that r− : E →
⋃

p∈Proc Sp is the map: For event e ∈ Ep, if ∃e
′ ∈ Ep

such that e′ <·pp e, then r
−(e) = r(e′) and r−(e) = ιp otherwise.

We claim that r is a run of ECMPA A on the ecTCMSC M. That is, for all
e, e′ ∈ E, e <pq e

′ for some (p, q) ∈ Ch, there are g, g′ ∈ [TC 99K I] and a control
message d ∈ ∆ such that Conditions (3.2–3.4) of Section 3.4 hold.
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Since λ′(e) = (λ(e), ge), Condition (3.2) follows immediately. Again, by the
definition of λ′, ge ∈ [TC 99K S] has the property that for all α ∈ dom(ge),
there exists ẽ ∈ E such that (e, ẽ) ∈ αM ∩ dom(τ) and ge(α) = τ(e, ẽ′). Thus
Condition (3.3) is satisfied. Similarly, ge′ satisfies Condition (3.4). Thus, r is a run
of A on M. It is accepting since the acceptance condition is the same and depends
on reaching the final state. Thus we can conclude that M ∈ LTC (A).

Lemma 4.18. Let S be a proper finite set of intervals and A be an MPA over
Γ = Act × [TC 99K S]. Then, for any TMSC T ∈ Ltime(A), there exists an
ecTCMSC M over (Act ,S) such that f(M) ∈ LMSC (A) and T realizes M.

Proof. We begin with an accepting run r of A on TMSC T = (M, t). Thus, for
all e, e′ ∈ E, e <pq e

′ for some (p, q) ∈ Ch, there are ge, ge′ ∈ [TC 99K I] and
d ∈ ∆ such that Conditions (3.2,3.5–3.6) hold. But since Int(A) ⊆ S, we obtain
ge, ge′ ∈ [TC 99K S].

We recall that by Condition (3.5), for all α ∈ dom(ge) there exists ẽ ∈ E such
that (e, ẽ) ∈ αM and |t(e) − t(ẽ)| ∈ ge(α). Similarly from Condition (3.6), for all
α ∈ dom(ge′) there exists ẽ

′ ∈ E such that (e′, ẽ′) ∈ αM and |t(e′)− t(ẽ′)| ∈ ge′(α).
Using these partial maps above, we define another partial function τ ∈ [TCM

99K

S] as

τ(e1, e2) =

{
ge1(α) if ∃ α ∈ TC s.t (e1, e2) ∈ αM and α ∈ dom(ge1)

undefined otherwise

Observe that τ is well-defined. If τ(e1, e2) = ge1(α) and τ(e1, e2) = ge1(α
′) for

some e1, e2 ∈ E, ge1 ∈ [TC 99K S], α, α′ ∈ TC, then |t(e1)−t(e2)| ∈ ge1(α
′)∩ge1(α).

Now S is a proper interval set implies that ge1(α) = ge1(α
′).

Now using the above map we define an ecTCMSC over (Act ,S) as M = (M, τ).
T realizes M by definition, since for all (e1, e2) ∈ dom(τ), |t(e1) − t(e2)| ∈ ge1 =
τ(e1, e2). We are done if we show that f(M) ∈ LMSC (A). But this follows since
r is itself a run of A over f(M). It is enough to observe that λ′(e) = (λ(e), ge)
where ge is the partial map given above from the run on the TMSC. Then, for all
e, e′ ∈ E such that e <pq e

′ for some (p, q) ∈ Ch, there exists d ∈ ∆ such that
(r−(e), λ′(e), d, r(e)) ∈ →p, (r

−(e′), λ′(e′), d, r(e′)) ∈ →q. Thus r is an accepting
run of A on f(M) (since acceptance depends only on reaching a final state).

4.4 Equivalence between ECMPA and ETMSO

over TMSCs

We are now in a position to be able to state and prove the first main theorem of
this chapter. We show that there is a effective equivalence between ECMPAs and
TMSOs over TMSCs.
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Theorem 4.19. Let L be a set of TMSCs over Act. Then, the following are
equivalent:

1. There is an ECMPA A such that Ltime(A) = L.

2. There is ϕ ∈ ETMSO(Act ,R<·) such that Ltime(ϕ) = L.

This equivalence is constructive in the sense that we can explicitly construct
the ETMSO from the ECMPA and vice versa.

The construction of an ETMSO formula from an ECMPA follows the similar
constructions applied, for example, to finite and asynchronous automata. In ad-
dition, we have to cope with the timing predicate. Assume that g : TC 99K I is
such a guard occurring on a local transition of the given ECMPA. To ensure that
the timing constraints that come along with g are satisfied we use the formula∧

α∈dom(g) δα(x) ∈ g(α).
The difficult part is the construction of an ECMPA from an ETMSO formula.

The basic idea is to reduce this to an analogous untimed case, which has also been
applied in the settings of words and traces [34,35]. For this, we use the connection
we have established in the previous section between TMSO and ordinary MSO
logic without timing predicate.

Usually, the untimed formalisms need to be parameterized by a finite alphabet,
so that we can speak of structures whose labelings are extended with this alpha-
bet. Hence, in our framework, we need to find a finite abstraction of the infinite
set of possible time stamps. For this, we move from T-MSCs to TC-MSCs over
a finite alphabet, using the converse of Lemmas 4.2 and 3.14 in terms of Lem-
mas 4.9 and 4.10, respectively. The latter two lemmas finally allow us to establish
a translation of ETMSO formulas into ECMPAs.

Proof. ( 1 =⇒ 2 ) Given an ECMPA A, we now construct ϕ ∈ ETMSO(Act ,R<·)
such that Ltime(A) = Ltime(ϕ).

LetA = ({Ap}p∈Proc ,Act ,∆, F ) be the ECMPA at hand withAp = (Sp, ιp,→p).
For any local state s ∈ S =

⋃
p∈Proc Sp, we introduce a second order variable Xs.

The formula we are targeting guesses a run of A in terms of an assignment of
events to the variables (Xs)s∈S, i.e., an interpretation that assumes an event e to
be contained in Xs, stands for a run assigning e to s. Accordingly, (Xs)s∈S needs
to be a partition of all the events of an MSC. This can easily be required by a first
order formula Partition((Xs)s∈S) (with free variables (Xs)s∈S):

Partition((Xs)s∈S) =
(
∀x

∨
s∈S

(x ∈ Xs)
)
∧
(
∀x

∧
s,s′∈S,s 6=s′

¬(x ∈ Xs ∧ x ∈ Xs′)
)
.

We now define some further macros. For a synchronization message d ∈ ∆,
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Transd(x, (Xs)s∈S) =

∨

p∈Proc
(s,g,a,d′,s′)∈→p

d′=d

(
Pa(x) ∧ x ∈ Xs′ ∧

[
∃y (y <·pp x ∧ y ∈ Xs)

]
∧

∧

α∈dom(g)

(δα(x) ∈ g(α))
)

∨
∨

p∈Proc
(s,g,a,d′,s′)∈→p

d′=d
s=ιp

(
Pa(x) ∧ x ∈ Xs′ ∧

[
¬∃y, y <·pp x

]
∧

∧

α∈dom(g)

(δα(x) ∈ g(α))
)

This formula describes that, under the assignment (Xs)s∈S, the execution of x
actually corresponds to a local transition of A that communicates d ∈ ∆.

Moreover, for a global state s = (sp)p∈Proc ∈
∏

s∈Proc Sp, we set,

Final s((Xs)s∈S) =

∨

Proc′⊆Proc
∀p∈Proc′: sp=ιp


 ∧

p∈Proc\Proc′

∃x
(
max p(x) ∧ x ∈ Xsp

)
∧

∧

p∈Proc′

¬∃x
( ∨

a∈Actp

Pa(x)
)



Hereby, given a process p ∈ Proc, max p(x) =
∨

a∈Actp
Pa(x) ∧ ¬∃y, x <·pp y.

Moreover, observe that Proc ′ comprises those processes that are assumed not to
move. Hence, Finals((Xs)s∈S) formulates that the run described by (Xs)s∈S ends
up in the global state s.

We are now prepared to give the formula ϕ with Ltime(ϕ) = Ltime(A). Namely,

ϕ = ∃(Xs)s∈S

Partition((Xs)s∈S)

∧ ∀x∀y
( ∨

(p,q)∈Ch

x <pq y →
∨

d∈∆

(
Transd(x, (Xs)s∈S) ∧ Transd(y, (Xs)s∈S)

))

∧
∨

s∈F

Finals((Xs)s∈S)

This concludes the proof in one direction.

( 2 =⇒ 1 ) For the other direction, we now show that, given a sentence ϕ ∈
ETMSO(Act ,R<·), we can construct an ECMPA A such that Ltime(A) = Ltime(ϕ).

Let ϕ be the given ETMSO(Act ,R<·) formula and let S be a proper interval
set which refines Int(ϕ). Fix an alphabet Γ = Act × [TC 99K S]. Thus, we have
ϕS ∈ EMSO(Γ,R<·) using the translation from Section 4.3.

Then, by Theorem 4.12 we obtain an MPA A over Act × [TC 99K S] such that
LMSC (A) = LMSC (ϕ

S). But then, from Definition 3.13, we can infer that A is an
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ECMPA with Int(A) ⊆ S. Now we claim that this is, in fact, the ECMPA that
we require,

Claim 4.20. We will show that Ltime(ϕ) = Ltime(A).

Proof. (⊆) Let T |= ϕ. Since S is a proper interval set that refines Int(ϕ), we can
apply Lemma 4.9 to get MS

T |= ϕ. Since, S is proper, it is finite and hence we use
Lemma 4.16 to obtain f(MS

T ) |= ϕS . But LMSC (ϕ
S) = LMSC (A) and so we have

f(MS
T ) ∈ LMSC (A). As S is finite and MS

T is a ecTCMSC over (Act ,S), we can
then use Lemma 4.17 to conclude that MS

T ∈ LTC (A). Then, since T realizes MS
T ,

we can use Lemma 3.14 to obtain T ∈ Ltime(A).
(⊇) Let T ∈ Ltime(A). Then as S is a proper interval set, and A is an MPA

over Act × [TC 99K S], by Lemma 4.18, there exists a ecTCMSC M over (Act ,S)
such that f(M) ∈ LMSC (A) and T realizes M. But LMSC (ϕ

S) = LMSC (A) implies
f(M) |= ϕS . Now, by Lemma 4.16 we have M |= ϕ. Finally, since T realizes M,
by Lemma 4.2 we conclude that T |= ϕ.

Hence we have shown both directions of the result that we set out to prove in
this section.

4.5 Equivalence between ECMPA and TMSO over

Bounded TMSCs

Along the lines of the proof in the previous section, we can also get a character-
ization of the full TMSO. However, we have to restrict to untimed-existentially-
bounded TMSCs. Thus, we have,

Theorem 4.21. Let B ∈ N≥0 and let L be a set of ∃u-B-bounded TMSCs over
Act. Then, the following are equivalent:

1. There is an ECMPA A such that Ltime(A) = L.

2. There is ϕ ∈ TMSO(Act ,R≤) such that Ltime(ϕ) = L.

Proof. (1 =⇒ 2) Let L be the given set of ∃u-B-bounded TMSCs over Act . Given
an ECMPA A, by Theorem 4.19, we obtain an ETMSO(Act ,R<·) formula ϕ such
that Ltime(A) = Ltime(ϕ) = L. But lifting Proposition 2.14 to this setting, we
can observe that for any ETMSO(Act ,R<·) formula, there is a TMSO(Act ,R≤)
formula that accepts the same set of ∃u-B-bounded TMSCs. Thus, we have the
required result.

(2 =⇒ 1) Let B ∈ N≥0 and ϕ be the given TMSO(Act ,R≤) formula and let S be
a proper interval set which refines Int(ϕ). Fix an alphabet Γ = Act × [TC 99K S].
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Thus, we have ϕS ∈ MSO(Γ,R≤) using the translation from Section 4.3. Now ap-
plying Theorem 4.13[2] to Theorem 4.13[1], we obtain a formula ψ ∈ MSO(Γ,R≤)
such that LMSC (ψ) is the set of all existentially B-bounded MSCs over Γ.

Then, indeed LMSC (ϕ
S ∧ ψ) is an existentially B-bounded set of MSCs over

Γ and so, we apply Theorem 4.13[1] again to the MSO(Γ,R≤) formula ϕS ∧ ψ to
obtain an MPA A over Γ such that LMSC (ϕ

S ∧ ψ) = LMSC (A). Now again, from
Definition 3.13, A is an ECMPA such that S refines Int(A).

Claim 4.22. Ltime(ϕ) = Ltime(A)

Proof. First observe that if T is ∃u-B-bounded, then for anyM such that T realizes
M, f(M) is ∃-B-bounded. This is true since a (untimed) linearization of a TMSC
only depends on its set of events and the partial order. And it is easily seen from
the definitions that the set of events and partial order of T and f(M) are the
same if T realizes M. Thus, they have the same set of linearizations and so T is
∃u-B-bounded if and only if f(M) is ∃-B-bounded.

( =⇒ ) Let us start with T ∈ Ltime(ϕ), T is ∃u-B-bounded. Then, T |= ϕ and by
Lemma 4.9, we obtain that MS

T |= ϕ. Again since S is proper, it is finite and hence
by Lemma 4.16 we get f(MS

T ) |= ϕS . Since T realizes MS
T , f(M

S
T ) is ∃-B-bounded,

and so we get f(MS
T ) |= ψ. Thus we conclude that f(MS

T ) ∈ LMSC (ϕ
S ∧ ψ). But

LMSC (ϕ
S ∧ ψ) = LMSC (A) implies that f(MS

T ) ∈ LMSC (A). Then, by Lemma 4.17
we get MS

T ∈ LTC (A). And finally, since T realizes MS
T , we can use Lemma 3.14

to obtain T ∈ Ltime(A).
(⇐=) Let T ∈ Ltime(A). Then as S is a proper interval set, and A is an MPA

over Act× [TC 99K S], by Lemma 4.18, there exists an ecTCMSC M over (Act ,S)
such that f(M) ∈ LMSC (A) and T realizes M. But LMSC (ϕ

S ∧ ψ) = LMSC (A)
implies f(M) |= ϕS and f(M) is ∃u-B-bounded. Now, by Lemma 4.16 we have
M |= ϕ. Finally, since T realizes M, by Lemma 4.2 we conclude that T |= ϕ.
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5
Checking Emptiness of ECMPAs

In this chapter, we investigate emptiness checking for ECMPAs, leading to a partial
solution to the satisfiability problem for TMSO formulas, which is undecidable in
its full generality. Since the MSCs are used in early protocol design, this problem
is of vital interest as it allows detection of possible design failures at this stage.

Theorem 5.1. The following problem is decidable:

Input: An ECMPA A and an integer B > 0.
Question: Does there exist T ∈ Ltime(A) such that T has a B-bounded timed

linearization?

Then, using Theorem 4.21 we can conclude that,

Corollary 5.2. The following problem is decidable:

Input: A TMSO formula ϕ and an integer B > 0.
Question: Does there exist T ∈ Ltime(ϕ) such that T has a B-bounded timed

linearization?

The rest of the chapter formulates the proof of the above theorem. Let A be an
ECMPA and let B > 0. We construct a (finite) timed automaton B that accepts a
timed word w over Act if and only if w is a B-bounded timed linearization of some
TMSC accepted by A. Since emptiness is decidable for finite timed automata (cf.
Theorem 2.21 (1)), we are done.

The remainder of this section is dedicated to the construction of such a B,
which is done in three steps as sketched below:

• First, we address the main hurdle in simulating an ECMPA by a TA, namely,
a run of a TA is totally ordered, while ECMPAs have partially ordered runs.
Hence, to keep track of clock constraints used in the ECMPA, the TA needs
to recover the partial order information from its runs, i.e, words. This is
done using gadgets that we will define as our first step.

• Next, using these gadgets, we describe an infinite timed automaton which
simulates the ECMPA.
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• Though we allow infinitely many clocks and states in this intermediate con-
struction, on any run we will see that only finitely many states and clocks
are used. We show how to modify this automaton in order to get down to
finitely many states and clocks thus completing our construction.

5.1 Recovering the partial order

We begin by introducing some notations that will be used to classify the set of
actions. For any channel (p, q) ∈ Ch, and each θ ∈ {!, ?}, pθq denotes the set of
actions {pθq(m) ∈ Act | m ∈ M}. Thus, we write a ∈ p!q (respectively, a ∈ p?q)
if a = p!q(m) (respectively, p?q(m)) for some m ∈ M.

Now, recall that the partial order of an MSC can be recovered from any of
its linearizations under the fifo assumption. Indeed, if w = a1 . . . an ∈ Act∗ is
a linearization of MSC M = (E,≤M , λ) over Act , then M is isomorphic to the
unique MSCMw = (Ew,≤Mw

, λw) over Act , where Ew = {1, . . . , n} (i.e., the set of
positions of the word w), λw(i) = ai, and ≤Mw

is defined as the reflexive transitive
closure of

⋃
p,q∈Proc

<Mw

pq where, for all p ∈ Proc, <Mw

pp = {(i, j) ∈ Ew×Ew | i < j and

λw(i), λw(j) ∈ Actp} and for all (p, q) ∈ Ch, <Mw

pq = {(i, j) ∈ Ew × Ew | λw(i) =
p!q(m), λw(j) = q?p(m) for some m ∈ M, |{k ≤ i | λw(k) ∈ p!q}| = {k ≤ j |
λw(k) ∈ q?p}|}

Therefore, we can consider the partial order relation of M to be a relation
over the positions of a given linearization of M . Thus, given a linearization w of
an MSC M , we can identify M with Mw and write i ≤M j for 1 ≤ i, j ≤ |w|,
to mean i ≤Mw

j, i.e, the isomorphic images of positions i, j are related by ≤M .
Similarly, we may write i <M

pp j, i <
M
pq j, (i, j) ∈ PrevM

a and (i, j) ∈ NextMa for
a ∈ Act to mean that the corresponding events are related in M , respectively by,
the local-process relation <M

pp, the message relation <M
pq , the previous and the next

occurence of a relations. In the same way, we can also write λ(i) instead of λw(i).
Note that i ≤M j implies i ≤ j but the converse need not be true (where ≤ is

the usual ordering between i and j as elements of N>0). However, if λ(i) = λ(j),
then i ≤ j implies i ≤M j.

Now, we go further and describe gadgets, which are deterministic finite-state
automata that run on words which are linearizations of an MSC and accept if the
first and last position of the word are related under the partial order. But for this,
we need to restrict to B-bounded linearizations. We begin with a definition,

Definition 5.3. Let M = (E,≤, λ) be an MSC over Act and B ∈ N>0. Then
a B-well-stamping for M is a map ρ : E → {0, . . . , B − 1} such that for any
e ∈ E with λ(e) = pθq(m) for some p, q,∈ Proc, m ∈ M and θ ∈ {!, ?}, we have
ρ(e) = |↓e ∩

⋃
m′∈MEpθq(m′)| mod B.
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Then, by the above considerations, given a linearization w of M , ρ is also a
map from the positions of w to {0, . . . , B − 1}. Now, the following property is
immediate from the definitions of the message relation in an MSC (Section 2.2.1)
and B-boundedness (Section 2.2.2).

Proposition 5.4. Let w = a1 . . . an ∈ Act∗ be a B-bounded linearization of an
MSC M over Act and ρ be a B-well-stamping for M . Then, for 1 ≤ i < j ≤ n
and (p, q) ∈ Ch, we have i <M

pq j if and only if the following conditions hold:

(a) ai ∈ p!q, aj ∈ q?p,

(b) ρ(i) = ρ(j)

(c) for all k, i ≤ k < j, ak ∈ q?p implies ρ(k) 6= ρ(i).

Proof. First, for any i ∈ {1, . . . , n}, if ai = pθq(m) for some θ ∈ {!, ?}, m ∈ M, we
fix the notation ⇓i =

(
↓i ∩

⋃
m′∈M

Epθq(m′)

)
= {i′ ≤ i | λ(i′) ∈ pθq}. Now, the proof

follows once we recall the relevant definitions in this setting.

(1) For 1 ≤ i < j ≤ n, i <M
pq j iff λ(i) = p!q(m), λ(j) = q?p(m) for some m ∈ M

and |⇓i| = |⇓j|.

(2) For all 1 ≤ i ≤ n, ρ(i) = |⇓i| mod B.

(3) w is B-bounded iff for all 1 ≤ ℓ ≤ n, (p, q) ∈ Ch, |{i′ | i′ ≤ ℓ, λ(i′) ∈ p!q}| −
|{j′ | j′ ≤ ℓ, λ(j′) ∈ q?p}| ≤ B.

Now, we prove the proposition. First, let i <M
pq j. Then, by (1), (a) holds

and |⇓i| = |⇓j| = α · B + b. Then, b = ρ(i) = ρ(j) and so (b) holds. Now,
suppose (c) did not hold. Then there exists k, i ≤ k < j such that ak ∈ q?p and
ρ(k) = ρ(i) = ρ(j). Then, by (2), |⇓k| = α′ ·B + b. But then ⇓k ⊆ ⇓j and j ∈ ⇓j,
j 6∈ ⇓k implies that |⇓j| > |⇓k| =⇒ α · B + b > α′ · B + b =⇒ (α− α′) · B > 0.
Thus |⇓j|−|⇓k| ≥ B and so |⇓i|−|⇓k| ≥ B. But now, i < k and λ(k) ∈ q?p implies
that |⇓k| ≥ |{i′ ≤ i | λ(i′) ∈ q?p}|+ 1 and so we can conclude that |⇓i| − |{i′ ≤ i |
λ(i′) ∈ q?p}| > B. This means |{i′ ≤ i | λ(i′) ∈ p!q}| − |{i′ ≤ i | λ(i′) ∈ q?p}| > B
and so by (3) (in particular, by letting ℓ = i) it contradicts the B-boundedness of
w. Thus (c) also holds.

Conversely, let conditions (a), (b) and (c) be true. Then, (a) and (b) together
imply that |⇓i| mod B = |⇓j| mod B. That is |⇓i| = α·B+b and |⇓j| = α′ ·B+b
for some α, α′ ∈ N. We now show that α = α′. First, observe that between i and j,
there can be at most B− 1 actions labelled q?p(m′) for some m′ ∈ M. Otherwise,
we can find an event k, i < k < j such that ak ∈ q?p and |⇓k| = (α′ − 1)B + b.
And for this k, ρ(k) = ρ(j) which contradicts condition (c). Also, we have i < j
and aj ∈ q?p. Thus, (α′ − 1) ·B + b < |{j′ ≤ i | ai ∈ q?p}| < α′ · B + b.
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Now, if α > α′, then |{i′ ≤ i | λ(i′) ∈ p!q}| − |{j′ ≤ i, λ(j′) ∈ q?p}| >
α · B − α′ · B > B which contradicts B-boundedness of w by (3). Else if α′ > α,
then |{j′ ≤ i, λ(j′) ∈ q?p}| − |{i′ ≤ i | λ(i′) ∈ p!q}| > (α′ − 1−α) ·B ≥ 0 which is
a contradiction since in a linearization, at no point can we have that the number
of receives exceeds the number of sends. Thus we conclude that α = α′.

Now since number of p!q events below i is equal to the number of q?p events
below j, we conclude by fifo property that j is the matching receive for i, i.e,
ai = p!q(m) and aj = q?p(m) for some m ∈ M. Thus, by (1), i <M

pq j.

5.1.1 Constructing the gadgets

The first gadget we build is a deterministic finite-state automaton C≤ over Act ×
{0, . . . , B − 1}, that detects if the first and the last position of a word, provided
it corresponds to some factor of a B-bounded MSC linearization, are related with
respect to the associated partial ordering. In what follows, we let Send denote the
set of symbols {p!q | (p, q) ∈ Ch}.

We define C≤ = (Q≤, δ≤, s≤0 , F
≤) where,

• A state of Q≤ is a triple of the form (P,O, f) where f ∈ {0, 1}, P ∈ 2Proc and
O : Send 99K {0, . . . , B − 1} such that if p!q ∈ dom(O) for some (p, q) ∈ Ch,
then p ∈ P .

• The set of transitions is δ≤ ⊆ Q≤ × Act × {0, . . . , B − 1} ×Q≤.

• The initial state is s≤0 = (∅, ∅, 0) ∈ Q≤.

• The set of final states F≤ = {(P,O, f) ∈ Q≤ | f = 1}.

The triple (P,O, f) represents the information we need to recover the partial
order. The set P contains the processes in the future partial view, O indicates the
stamp/numbering of each “open send”, and f will be 1 if and only if the first and
the last position are in fact related as desired. Note that, letting n = |Proc|, we
have

|Q≤| = 2 ·
n∑

k=0

((n
k

)
· (B + 1)k(n−1)

)
= BO(n2) (for B ≥ 2). (5.1)

Now, we define the transition relation as ((P,O, f), (a, β), (P ′, O′, f ′)) ∈ δ≤ if
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the following hold:

P ′ =





P ∪ {p} if a ∈ Actp and either (P = ∅) or (∃q ∈ P such that,

a ∈ p?q and O(q!p) = β)

P otherwise

O′ =





O[p!q 7→ β] if a ∈ p!q 6∈ dom(O) for some (p, q) ∈ Ch and

either p ∈ P or P = ∅

O otherwise

f ′ =

{
1 if a ∈ Actp for p ∈ P ′

0 otherwise

Of course, a run of C≤ on (a1, β1) . . . (an, βn) ∈ (Act × {0, . . . , B − 1})∗ is a

sequence s≤0
(a1,β1)
−−−−→ . . .

(an,βn)
−−−−→ s≤n , where s

≤
i ∈ Q≤ for each i ∈ {0, . . . , n} and

(s≤i , ai+1, βi+1, s
≤
i+1) ∈ δ≤ for all i ∈ {0, . . . , n − 1} and is accepting if s≤n ∈ F≤.

Then, L(C≤) denotes the set of words over Act × {0, . . . , B − 1} having accepting
runs. Note that with this definition, C≤ has a run (which may be accepting or
non-accepting) on every word of (Act × {0, . . . , B − 1})∗. For linearizations, C≤

has the desired property:

Lemma 5.5. Let w = a1 . . . an ∈ Act∗ be a B-bounded linearization of an MSC
M over Act and ρ be a B-well-stamping for M . Then, for 1 ≤ i ≤ j ≤ n,
(ai, ρ(i)) . . . (aj , ρ(j)) ∈ L(C≤) if and only if i ≤M j.

Proof. Let us fix 1 ≤ i ≤ n and let ai ∈ Actp for some p ∈ Proc. For each j such
that i ≤ j ≤ n, we denote wρ

ij = (ai, ρ(i)) . . . (aj , ρ(j)). Then for each j, i ≤ j ≤ n,

there is a run rij of C
≤ on wρ

ij , namely, s≤0
(ai,ρ(i))
−−−−→ (Pi, Oi, fi) . . .

(aj ,ρ(j))
−−−−−→ (Pj, Oj, fj)

where s≤0 = (∅, ∅, 0) and for each k ∈ {i, . . . , j}, (Pk, Ok, fk) ∈ Q≤ is given from
the definition of C≤. Indeed each rij is a prefix of rij′ for j ≤ j′ ≤ n. For
simplicity of notation, in what follows, we let Pi−1 = ∅, Oi−1 = ∅, fi−1 = 0, i.e,
s≤0 = (Pi−1, Oi−1, fi−1).

Now by definition of C≤, Pi−1 = ∅, ai ∈ Actp implies that Pi = {p}. Once a
process gets into P it is never removed, and so, p ∈ Pj for all i ≤ j ≤ n. Also note
that for each j, i ≤ j ≤ n, rij is an accepting run if and only if fj = 1 i.e, if and
only if aj ∈ Act q for some q ∈ Proc and q ∈ Pj .

We now distinguish two cases. First, suppose aj ∈ Actp, then we already have
p ∈ Pj and so rij is accepting. Also in this case, ai, aj belong to the same process
p and so i ≤M

pp j which implies i ≤M j. Thus,

∀j ∈ {i, . . . , n}, aj ∈ Actp =⇒ (rij is accepting) ∧ (i ≤M j). (5.2)
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On the other hand, for all j ∈ {i+1, . . . , n} such that aj ∈ Act q for some q 6= p,
we will show that rij is an accepting run if and only if i ≤M j which completes the
proof of the lemma. We proceed by induction on j − i.

The base case is when j−i = 1, i.e wρ
ij = (ai, ρ(i))(aj , ρ(j)). Then, Pj−1 = Pi =

{p}. Now, since aj ∈ Act q, rij is accepting if and only if q ∈ Pj . By definition of
C≤, this happens if and only if aj ∈ q?p and Oj−1(p!q) = ρ(j). But since j − 1 = i
we have p!q ∈ dom(Oi) and along with Oi−1 = ∅, this implies that ai ∈ p!q and
Oi(p!q) = ρ(i). Thus we can conclude that q ∈ Pj if and only if ai ∈ p!q, aj ∈ q?p
and ρ(i) = ρ(j) which by Proposition 5.4 happens if and only if i <M

pq j (by noting
that there is no event between i and j). But again i + 1 = j and i, j are not on
the same process, thus, i <M

pq j if and only if i ≤M j, which completes the proof of
the base case.

Now, suppose j − i > 1. Then, rij is accepting implies q ∈ Pj. But since
q 6∈ Pi = {p}, there exists j′ for i < j′ ≤ j such that q 6∈ Pj′−1, q ∈ Pj′. By
the definition of C≤, since Pj′−1 6= ∅, there is p′ ∈ Proc such that aj′ ∈ q?p′

and Oj′−1(p
′!q) = ρ(j′). But since Oi−1 = ∅, there is k, i ≤ k < j′ such that

p′!q ∈ dom(Ok) and p
′!q 6∈ dom(Ok−1). Then at k, ak ∈ p′!q and Ok(p

′!q) = ρ(k)
and either p′ ∈ Pk−1 or k = i and Pk−1 = ∅. In both cases, p′ ∈ Pk since ak ∈ Actp′.
Thus, in fact fk = 1 and so rik is an accepting run of C≤ on wρ

ik.
Now, if p′ = p, i.e, ak ∈ Actp, by (5.2), we conclude that i ≤M k. Otherwise,

ak ∈ Actp′, p
′ 6= p and since, k < j′ ≤ j, we can apply the induction hypothesis to

conclude that i ≤M k. Now, the values in O, once defined, are never modified and
so Ok(p

′!q) = Oj′−1(p
′!q) which implies ρ(k) = ρ(j′). Also for any j′′, k ≤ j′′ < j′,

if aj′′ ∈ q?p′ and ρ(j′′) = ρ(j′), then at j′′, we have Oj′′(p
′!q) = ρ(k) = ρ(j′′) and

so q ∈ Pj′′. This is a contradiction since we assumed that q ∈ Pj′−1. Thus, by
Proposition 5.4, k <M

p′q j
′. Also aj′, aj ∈ Act q implies that j′ ≤M

qq j. Thus we have

i ≤M k <M
p′q j

′ ≤M
qq j and so by definition of ≤M , we conclude that i ≤M j.

Conversely, let i ≤M j, be such that i is a p-event and j is a q-event for p 6= q.
Then let j′ be the earliest event on process q which is related to i. This implies
that aj′ is a receive action from some process, say p′ ∈ Proc. In other words, there
exists k, j, such that i ≤ k < j′ ≤ j and i ≤M k <M

p′q j
′ ≤M

qq j and for all j′′ with

j′′ <M
qq j

′, i 6≤M j′′, where ak = p′!q(m) and aj′ = q?p′(m) for some p′ ∈ Proc,
m ∈ M.

Then, if p′ = p, then by (5.2), and otherwise by induction hypothesis, rik is an
accepting run of C≤ on wik. Thus fk = 1 and so p′ ∈ Pk. But since, ak ∈ p′!q, we
find that either Pk = Pk−1 or k = i. Thus either p′ ∈ Pk−1 or Pk−1 = ∅. Also,
p′!q 6∈ dom(Ok−1), for otherwise, we can find k′, i ≤ k′ < k with ak′ = p′!q, whose
corresponding receive contradicts the minimality of j′ under fifo condition.

So by definition of O, we have Ok(p
′!q) = ρ(k) and by Proposition 5.4, ρ(k) =

ρ(j′). Thus, by definition of C≤, we can conclude that Pj′ = Pj′−1 ∪ {q}. Thus,
q ∈ Pj′ ⊆ Pj and along with aj ∈ Actq, we get that fj = 1 and so rij is an accepting
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run.

An ECMPA uses Preva and Nexta in the guards, which along a run constrain
the previous and next occurence of an action a respectively. Hence, we need to
recover not only the general partial order relation but also these previous and next
occurence relations from the linearization. For this, we build two more gadgets
using the gadget described above.

We begin by defining a deterministic finite-state automaton C⊳ = (Q⊳, δ⊳, s⊳0, F
⊳),

which we refer to as the C⊳ gadget and use to recover the previous occurence
relation. Its state space is given by Q⊳ = Q≤ × Q≤ × Act . Thus, |Q⊳| =
|Q≤|2|Proc|(|Proc| − 1)|M| = BO(|Proc|2) by Equation 5.1 (we always consider the
number of message contents |M| to be a constant). Now, the idea is that the
first component, mimicking the automaton C≤, is started when reading the first
occurence of an action a, which is henceforth stored in the third component. The
second component is run if and when a is executed for the second time. Any further
event that is related in the partial order to the first occurence of a but not to the
second occurence matches the Preva relation so that F ⊳ = F≤ × (Q≤ \F≤)×Act .
We let s⊳0 = (s≤0 , s

≤
0 , b) for some arbitrary action b ∈ Act . Finally, for any

(s1, s2, a) ∈ Q⊳, b ∈ Act , and n ∈ {0, . . . , B − 1}, we set δ⊳((s1, s2, a), (b, n)) =





(δ≤(s1, (b, n)), s2, b) if s1 = s≤0
(δ≤(s1, (b, n)), s2, a) if s1 6= s≤0 , s2 = s≤0 and b 6= a

(δ≤(s1, (b, n)), δ
≤(s2, (b, n)), a) otherwise.

Similarly, the C⊲ gadget is defined as C⊲ = (Q⊲, δ⊲, s⊲0, F
⊲) with Q⊲ = Q≤ ×

2Act × {0, 1}. Again by Equation 5.1, |Q⊲| ≤ 2|Q≤| 2|Proc|
2|M| = BO(|Proc|2). The

idea here is that the second component of a state keeps track of the actions we
have seen so far in the future of the first action, and the third component indicates
a final state. Accordingly, s⊲0 = (s≤0 , ∅, 0), F

⊲ = F≤ × 2Act × {1} and for any
(s, A, f) ∈ Q⊲, a ∈ Act , n ∈ {0, . . . , B − 1}, we set δ⊲((s, A, f), (a, n)) =

{
(δ≤(s, (a, n)), A ∪ {a}, 1) if δ≤(s, (a, n)) ∈ F≤ and a 6∈ A

(δ≤(s, (a, n)), A, 0) otherwise.

Then, the following lemma describes the nice property of the above gadgets.

Lemma 5.6. Let w = a1 . . . an ∈ Act∗ be a B-bounded linearization of an MSC M
over Act and ρ be a B-well-stamping for M . Then, for all 1 ≤ i ≤ j ≤ n, letting
wρ

ij = (ai, ρ(i)) . . . (aj , ρ(j)) ∈ (Act × {0, . . . , B − 1})∗, we have

• wρ
ij ∈ L(C⊳) if and only if (j, i) ∈ PrevMai and
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• wρ
ij ∈ L(C⊲) if and only if (i, j) ∈ NextMaj .

Again, recalling that there is an isomorphism that maps positions of w to
events of M , in the above statement (i, j) ∈ PrevMa means that the events in M
corresponding to the positions i, j are related by PrevM

a and so on.

Proof. (1) By definition of C⊳, there is a run r of C⊳ on wρ
ij, namely, s⊳0 = s⊳i−1

(ai,ρ(i))
−−−−→

s⊳i . . .
(aj ,ρ(j))
−−−−−→ s⊳j where for all k, i − 1 ≤ k ≤ j, s⊳k = (s≤k , s

′≤
k , bk). Further note

that, s≤i−1 = s≤0 and s′≤i = s′≤i−1 = s≤0 and for all k, i ≤ k ≤ j, bk = ai.

Now s′≤j ∈ F≤ implies there is k, i < k ≤ j such that s′≤k+1 6= s≤0 which means

that ak = bk. But bk = ai and so ak = ai. Also, for this k, s
′≤
k

(ak ,ρ(k))
−−−−−→ . . .

(aj ,ρ(j))
−−−−−→

s′≤j is an accepting run of C≤ on wρ
kj. Conversely, if ∃k, i < k ≤ j such that ak = ai

and there is an accepting run of C≤ on wρ
kj then in r we find that s′≤j ∈ F≤.

Thus, we can conclude that s′≤j ∈ F≤ if and only if there is k, i < k ≤ j such
that ak = ai and there is an accepting run of C≤ on wρ

kj. But by Lemma 5.5 there

is an accepting run of C≤ on wρ
kj if and only if k ≤M j. Thus s′≤j ∈ F≤ if and only

if there is k, i < k ≤ j such that ak = ai and k ≤M j. Also by Lemma 5.5 we have
s≤j ∈ F≤ if and only if i ≤M j.

Finally r is an accepting run of C⊲ on wρ
ij if and only if s⊳j ∈ F ⊳, i.e, s≤j ∈ F≤

and s′≤j 6∈ F≤. And by the above arguments, this happens if and only if i ≤M j
and for all k, i < k ≤ j, either ak 6= ai or k 6≤M j. But this is exactly the definition
of (j, i) ∈ PrevMai . Thus w

ρ
ij ∈ L(C⊳) if and only if (i, j) ∈ PrevMai .

(2) Similarly, there is a run r′ of C⊲ on wρ
ij , namely, s⊲0 = s⊲i−1

(ai,ρ(i))
−−−−→ s⊲i . . .

(aj ,ρ(j))
−−−−−→

s⊲j where for all k, i − 1 ≤ k ≤ j, s⊲k = (s≤k , Ak, bk) for bk ∈ {0, 1}, such that

r′1 = s≤i−1

(ai,ρ(i))
−−−−→ . . .

(aj ,ρ(j))
−−−−−→ s≤j is a run of C≤ on wρ

ij. Then r
′ is accepting if and

only if s≤j ∈ F≤ and bj = 1 i.e, if and only if r′1 is accepting and aj 6∈ Aj−1. By
Lemma 5.5, r′1 is accepting if and only if i ≤M j. Also aj 6∈ Aj−1 implies aj 6∈ Ak

for all i ≤ k < j which means that for all k, i ≤ k < j, ak 6= aj . Thus, we conclude
that r′ is accepting if and only if i ≤M j and for all k, i ≤ k < j, ak 6= aj i.e, if
and only if (i, j) ∈ NextMaj .

5.2 From ECMPA to timed automata

If we ignore the clock constraints and all the timing related issues, then this sim-
ulation is exactly the same as giving the semantics of an MPA over linearizations
of MSCs as described in Section 2.2.3. However, when we include the timing con-
straints of the ECMPA, then along the run of the TA we need to know, when to
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verify these constraints and against which clocks. We maintain this information
in the state space using the gadgets.

Intuitively, along the run of the TA, we start a new copy of the Prev gadget and
reset a corresponding clock z. Thus, at a later position, if we encounter a Preva

constraint for some a ∈ Act , and if this copy of the Prev gadget is in a final state,
then we know that these positions are related by the Preva relation and hence the
constraint must be checked against the clock z.

Similarly, at each position of the run where we encounter a Nexta constraint, we
start a new copy of the Next gadget and reset a clock z′. Then, when it reaches an
accepting state and the last transition is an a-action, we know that these positions
are related by Nexta relation. Hence, at this point we verify that clock z′ satisfies
the constraint mentioned when the gadget was started. However, note that for
this, we also need to maintain, in the state space, the constraint itself, so that we
can recover it and verify it at the latter position.

Finally, for message constraints, we reset a clock when we encounter the send
action and verify it when we reach the correct receive. This information is already
contained in the state space as we will see. In addition however, we need to
maintain the message constraint itself in the state space, so that when we reach
the receive we know which constraint to check the clock against.

Now, we formalize these ideas below. For the rest of this chapter, we fix
an ECMPA A = ({Ap}p∈Proc ,Act ,∆, F ), with Ap = (Sp, ιp,→p), and an integer
B > 0. We also fix an (infinite) set of indices Ind = Act × N which will be
used to index the “copies” of the gadgets that we will use. We then define the
timed automaton B = (QB,ZB, δB, ιB, FB) as follows. A state st ∈ QB is a 6-tuple
(s, χ, η, ξ⊳, ξ⊲, γ) where:

• s = (sp)p∈Proc ∈
∏

p∈ProcSp is a tuple of local states from the ECMPA.

• χ : Ch → (M×∆)≤B describes the contents of the channels.

• η : Act → {0, . . . , B − 1} gives the B-stamping number that should be
assigned to the next occurrence of an action.

• ξ⊳ : Ind 99K Q⊳ associates with certain indices, states of C⊳. Thus, the indices
in dom(ξ⊳) of a state specify which copies of the gadgets are “active” in that
state.

• ξ⊲ : Ind 99K Q⊲× Int(A) associates with some indices, states of C⊲ along with
constraints that need to be maintained

• γ : Ch×{0, . . . , B−1} 99K Int(A) describes the guards attached to messages.

The initial state is ιB = ((ιp)p∈Proc , χ0, η0, ξ
⊳
0 , ξ

⊲
0, γ0) where χ0 and η0 map any

argument to the empty word and 0 respectively, and the partial maps ξ⊳0 , ξ
⊲
0 and

γ0 are nowhere defined.
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We will use clocks from the set ZB = {z⊳a,i, z
⊲
a,i | (a, i) ∈ Ind} ∪ {zγp,q,i | (p, q) ∈

Ch, i ∈ {0, . . . , B − 1}}. Also, we fix some notations regarding how we write con-
straints using these clocks. For a clock z ∈ ZB and an interval I ∈ I with endpoints
l, r ∈ N, we write “x ∈ I” to denote a constraint from Form(ZB). More specifi-
cally, x ∈ I denotes x > l ∧ x < r, if I = (l, r). If I = [l, r], then x ∈ I refers to
(x > l∨x = l)∧ (x < r∨x = r), the constraint (x > l∨x = l)∧x < r, if I = [l, r)
and the constraint x > l ∧ (x < r ∨ x = r), if I = (l, r].

The transition relation δB ⊆ QB × Form(ZB)×Act × 2Z ×QB is defined by,

((s, χ, η, ξ⊳, ξ⊲, γ), ϕ, a, R, (s′, χ′, η′, ξ′⊳, ξ′⊲, γ′)) ∈ δB

if there are p, q ∈ Proc, m ∈ M, θ ∈ {!, ?} such that a = pθq(m) and there exists
a p-local transition of the ECMPA, (sp, a, g, d, s

′
p) ∈ →p for some g ∈ [TC 99K I]

and d ∈ ∆ such that the following conditions (i.– ix.) hold:

i. s′r = sr for all r ∈ Proc \ {p}.

ii. if θ = !, then χ′(p, q) = (m, d) · χ(p, q) and χ′(r, s) = χ(r, s) for all (r, s) ∈
Ch \ {(p, q)}.

iii. if θ = ?, then χ(q, p) = χ′(q, p) · (m, d) and χ′(r, s) = χ(r, s) for all (r, s) ∈
Ch \ {(q, p)}.

iv. for all b ∈ Act ,

η′(b) =

{
(η(b) + 1) mod B if b ∈ pθq

η(b) otherwise

v. The states of the previous automata are updated and we have initialized a
new copy of C⊳ starting at the current position so that we can determine which
latter positions are related with the current one by the previous relation.

ξ′⊳(b, i) =





δ⊳(s⊳0, (a, η(a))) if b = a and i = min(N \ dom(ξ⊳(a)))

δ⊳(ξ⊳(b, i), (a, η(a))) if (b, i) ∈ dom(ξ⊳)

undefined otherwise

vi. The states of the next automata are updated along with the corresponding
guards. A new copy of C⊲ is initialized for each b ∈ Act , if there is a Nextb
constraint on the local transition. The guard itself is stored in the second
component, so that it can be verified when we reach the next occurence of
the action. Once verified, we release the guard and the corresponding copy
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of C⊲.

ξ′⊲(b, i) =





(δ⊲(s⊲0, (a, η(a))), g(Nextb)) if Nextb ∈ dom(g) and

i = min(N \ dom(ξ⊲(b)))

(δ⊲(s⊲, (a, η(a))), I) if ξ⊲(b, i) = (s⊲, I) and

¬
(
a = b ∧ δ⊲(s⊲, (a, η(a))) ∈ F ⊲

)

undefined otherwise.

vii. The guards attached to message constraints are maintained as expected. A
send event introduces a constraint, which is retained till its matching receive
releases it.

γ′((r, s), i) =





g(Msg) if a ∈ r!s, i = η(a),Msg ∈ dom(g)

undefined if a ∈ s?r and i = η(a)

γ((r, s), i) otherwise.

viii. A clock is reset for every new copy of C⊳, C⊲ and message constraint intro-
duced at this transition.

R = {z⊳a,i | i = min(N \ dom(ξ⊳(a)))} ∪ {zγp,q,i | a ∈ p!q, i = η(a),Msg ∈ dom(g)}
∪ {z⊲b,i | Nextb ∈ dom(g) and i = min(N \ dom(ξ⊲(b)))}.

ix. The guard must ensure that all constraints that get matched at the current
event are satisfied. Thus ϕ = ϕ⊳ ∧ ϕ⊲ ∧ ϕm where,

ϕ⊳ =
∧

{(b,i) | Prevb∈dom(g)
and ξ′⊳(b,i)∈F ⊳}

z⊳b,i ∈ g(Prevb) ∧
∧

{b | Prevb∈dom(g)
and {i|ξ′⊳(b,i)∈F ⊳}=∅}

false

ensures that all previous constraints that are matched are satisfied. Thus
if the local transition contains a Prevb constraint, then we have to check
z⊳b,i ∈ g(Prevb) for the (unique) i such that ξ′⊳(b, i) ∈ F ⊳. If there is no such
i then there is no b-action in the past of the current event and the Prevb
constraint of the local transition cannot be satisfied. In this case, we set ϕ⊳

to false. Next,

ϕ⊲ =
∧

{i∈dom(ξ⊲(a)) | ξ⊲(a,i)=(s⊲,I),
δ⊲(s⊲,(a,η(a)))∈F ⊲}

z⊲a,i ∈ I

is for next constraints. If the current action is the next occurence of a from
some positions where a next guard was registered, for each there is a copy
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(a, i) of C⊲ which reaches a final state. Thus, we verify the corresponding
clock with the constraint recovered from ξ⊲. For message constraints,

ϕm =
∧

{((q,p),i)∈dom(γ) |
a∈p?q, η(a)=i}

zγq,p,i ∈ γ((q, p), i)

Finally, the set of final states is FB = {(s, χ, η, ξ⊳, ξ⊲, γ) ∈ QB | s ∈ F, χ =
χ0, dom(ξ⊲) = dom(γ) = ∅}. This ensures that each registered guard has been
checked. Indeed, a next or message constraint is released only when it is checked
with the guard ϕ.

One critical observation here is that, once we have specified the local transition
of A, this global transition of B gets determined uniquely. Thus, this step is always
deterministic. Note that the above automaton B has no ε-transitions either.

Now, we prove that Ltw(B) contains precisely the B-bounded timed lineariza-
tions of Ltime(A). That is,

Theorem 5.7. Ltw(B) = {σ ∈ (Act × R≥0)∗ | there is T ∈ Ltime(A) such that σ
is a B-bounded timed linearization of T}.

Proof. Let T = (M, t) with M = (E,≤, λ) over Act . Then, a B-bounded timed
linearization σ = (a1, t1)(a2, t2) . . . (an, tn) of T generates the corresponding B-
bounded linearization ofM , namely a1 . . . an over the same set of positions {1, . . . , n}.
Thus, as stated in the previous section, we can interpret the events from E to be
positions from {1, . . . , n}.

Then recall that T ∈ Ltime(A) if and only if there is an accepting run r of A
on T , where r : E →

⋃
p∈Proc Sp is given by Definition 3.13. Also recall that σ ∈

Ltw(B) if and only if there is an accepting run r′ of B on σ, i.e, by Definition 2.20,
there is a sequence,

r′ = (st0, ν0)
a1,t1
−−→ (st1, ν1)

a2,t2
−−→ . . .

an,tn
−−−→ (stn, νn) (5.3)

where for all i ∈ {0, . . . , n}, sti = (si, χi, ηi, ξ
⊳
i , ξ

⊲
i , γi) ∈ QB (with si = (sip)p∈Proc ∈∏

p∈Proc Sp), st0 = ιB, stn ∈ FB and νi : ZB → R≥0 (with ν0(x) = 0, ∀x ∈ ZB) and

for each i ∈ {1, . . . , n}, there exist ϕi ∈ Form(ZB), Ri ∈ 2ZB such that,

(sti−1, ϕi, ai, Ri, sti) ∈ δB (5.4)

(νi−1 + ti − ti−1) |= ϕi, (5.5)

νi = (νi−1 + ti − ti−1)[Ri 7→ 0] (5.6)

We now show that from an accepting r of A on T , we can construct an accepting
run r′ of B on σ and vice versa.
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(=⇒) Let an accepting run r of A on T . Then, we construct run r′ inductively
from i = 0 to i = n. Further, at each step, we will maintain two further state
invariants. That is, for all i ∈ {0, . . . , n} we require

∀p ∈ Proc, sip =

{
r(j) if ∃j ≤ i, j ∈ Ep, ∄k ∈ Ep, j < k ≤ i.

ιp otherwise
(5.7)

∀b ∈ Act , ηi(b) = |{i′ ≤ i | λ(i′) ∈ pθq}| mod B, for b = pθq(m) (5.8)

Then, indeed at i = 0, we have st0 = ιB = (s0, χ0, η0, ξ
⊳
0, ξ

⊲
0 , γ0). This satisfies

our state invariants (5.7-5.8) since s0p = ιp for all p ∈ Proc and η0(a) = 0 for all
a ∈ Act . Now for some i ∈ {1, . . . , n} assuming we have constructed the run r′ till
(sti−1, νi−1), let ai = pθq(m) for some p, q ∈ Proc, m ∈ M and θ ∈ {!, ?}. We then
extend the run r′ to stage i by exhibiting sti, νi, ϕi and Ri such that Conditions
(5.4–5.8) hold.

From the definition of r, we have a local transition on the ECMPA on event i.
More precisely, (r−(i), ai, gi, di, r(i)) ∈ →p for some guard gi and di ∈ ∆. Recall
that r−(i) = r(i′) for i′ <·pp i and r−(i) = ιp if such an event i′ does not exist.
Thus, by Condition (5.7) at stage i − 1, we have si−1

p = r−(i). And by choosing
sip = r(i) we obtain (si−1

p , ai, gi, di, s
i
p) ∈ →p. Again, by choosing for all p′ 6= p,

sip′ = si−1
p′ , Condition (5.7) holds at stage i. (This follows since for p, the largest

j ≤ i such that j ∈ Ep is i itself. And for p′ 6= p, the largest j′ ≤ i such that
j′ ∈ Ep′ is the largest such event j′ ≤ i− 1).

Now, as we commented in our construction the local transition fully specifies
the global transition and thus we get a transition of B,

((si−1, χi−1, ηi−1, ξ
⊳
i−1, ξ

⊲
i−1, γi−1), ϕi, ai, Ri, (si, χi, ηi, ξ

⊳
i , ξ

⊲
i , γi)) ∈ δB

where ϕi, Ri, χi, ηi, ξ
⊳
i , ξ

⊲
i , γi are defined from their values at stage i − 1 and the

local transition. Thus Condition (5.4) holds at i, with sti = (si, χi, ηi, ξ
⊳
i , ξ

⊲
i , γi).

Again Condition (5.8) continues to hold at i if it holds at i − 1. (If b ∈ pθq,
then ηi(b) = (ηi−1(b) + 1) mod B = |{i′ ≤ i− 1 | λ(i′) ∈ pθq}|+ 1 mod B= |{i′ ≤
i | λ(i′) ∈ pθq}| mod B. And for b ∈ Act \ pθq, it follows since ηi(b) = ηi−1(b).)
Now, we just define νi = (νi−1 + ti − ti−1)[Ri 7→ 0], so that Condition (5.6) holds
at i. Thus, we have extended run r′ of B on σ to i, if we prove Condition (5.5), i.e,

Claim 5.8. (νi−1 + ti − ti−1) |= ϕi

Proof. The proof is by induction on the structure of ϕi. But first we observe that
the map ρ : E → {0, . . . , B− 1} which maps ρ(i) = ηi(ai) is a B-well-stamping for
M . This follows from the fact that the state invariant, Condition (5.8), holds till
stage i. We have the following cases to consider.

(1) Previous constraint of the form z⊳a,k ∈ gi(Preva) or false: If for some a ∈ Act,
Preva ∈ dom(gi), then by definition of run r of A on T , (i.e, Condition (3.5) or
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(3.6)), there exists event j, (i, j) ∈ PrevT
a (thus, aj = a). Thus by Lemma 5.6,

(aj , ηj(aj)) . . . (ai, ηi(ai)) ∈ L(C⊳). And so, in the run of B at stage i, ξ⊳i (a, k) ∈ F ⊳

where k = min(N\dom(ξ⊳j−1(a))). Hence for any a such that Preva ∈ dom(gi), the
set {ℓ | ξ′⊳(a, ℓ) ∈ F ⊳} 6= ∅ and so the false constraint cannot occur as a guard in
this simulation, i.e, as part of ϕi.

Now, at stage j, z⊳a,k ∈ Rj (there cannot be another Preva guard for some other
k′ since there is a unique preceding occurrence of each letter). Also z⊳a,k 6∈ R′

j

for all j′ ∈ {j + 1, . . . , i}, since (a, j′) ∈ dom(ξ⊳j′−1). Therefore in the valuation
(νi−1 + ti − ti−1)(z

⊳
a,k) = νi−1(z

⊳
a,k) + ti − ti−1 = νi−2(z

⊳
a,k) + ti−1 − ti−2 + ti − ti−1 =

. . . = νj(z
⊳
a,k) + ti − tj and νj(z

⊳
a,k) = 0. Thus νj(z

⊳
a,k) + ti − tj = ti − tj and so we

are done if we show that ti − tj ∈ gi(Preva). But this follows from Condition (3.5)
(or 3.6), where we have |t(j)− t(i)| ∈ gi(Preva) where t(j) = tj and t(i) = ti. Thus
we conclude that the valuation satisfies any previous clock constraint of the form
z⊳a,k ∈ gi(Preva).

(2) Next constraint of the form z⊲ai,k ∈ I: This implies that there exists k ∈
dom(ξ⊲i−1(ai)) such that, ξ⊲i−1(ai, k) = (s⊲, I) and δ⊲(s⊲, (ai, ηi(ai))) ∈ F ⊲. Then,
by the definition of the next update function ξ⊲, we can conclude that there exists
j < i, k = min(N \ dom(ξ⊲j−1(ai))) such that ξ⊲j (ai, k) = (δ⊲(s⊲0, (aj, η(aj)), I)) such
that I = gj(Nextai). Thus, (aj, ηj(aj)) . . . (ai, ηi(ai)) ∈ L(C⊲) and by Lemma 5.6,
we can conclude that (j, i) ∈ NextTai . Hence from the definition of run r on T-MSC
T , we get |t(j)− t(i)| ∈ gj(Nextai) = I. Also, z⊲ai,k ∈ Rj and it is not reset till i. If
not, let j′, j < j′ < i be the first instance where, z⊲ai,k ∈ Rj′. This (ai, k) 6∈ dom(ξ⊲j′)
and (ai, k) ∈ dom(ξ⊲j′−1) implies that aj′ = ai and (aj, η(j)) . . . (aj′, η(j

′)) ∈ L(C⊲)
which contradicts (j, i) ∈ Nextai . Thus, for all j < j′ < i we get z⊲ai,k 6∈ Rj′. Thus
(vi−1 + ti − ti−1)(z

⊲
ai,k

) = ti − tj ∈ I and so we are done.
(3) Message constraint of the form zγq,p,k ∈ γi−1(q, p, k): Here, (q, p, k) ∈

dom(γi−1) such that ai ∈ p?q, ηi−1(ai) = k. Then we look at the largest j ≤ i such
that aj = q!p and ηj−1(aj) = k. Such a j exists since if not it would contradict the
fact that σ is a linearization of a valid T-MSC T . Further for all j′, j < j′ < i,
it is not the case that aj′ ∈ p?q and ηj′−1(aj′) = k. Then it follows that for all
j′, j ≤ j′ < i, γj′(q, p, k) = gj(Msg). Also (j, i) ∈ MsgT and so by definition of
r on TMSC, |tj − ti| ∈ gj(Msg) = γi−1(q, p, k). And again, zγq,p,k ∈ Rj and for all
j < j′ ≤ i, zγq,p,k 6∈ Rj′, so (vi−1 + ti − ti−1)(z

γ
q,p,k) = ti − tj ∈ γi−1(q, p, k) and thus

we are done.

Now it is easy to see that the state s̃n = (sn, χn, ηn, ξ
⊳
n, ξ

⊲
n, γn) reached at the end

of the above run, is a final state. This follows from the fact that r is a successful
run of A on T , since then we have, sn ∈ F and χn = χ0 (since at the end of r
the channel contents must be empty), and the partial maps ξ⊲ and γ are nowhere
defined (since if that were not the case then this means that a constraint was not
checked with its guard).

(⇐=) For the converse, from r′ as defined in (5.3) above, we want to con-
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struct r a run of A on T , i.e, a map r : E →
⋃

p∈Proc Sp. We define for each

event i ∈ {1, . . . , n}, r(i) = sipi. Now, at each i ∈ {0, . . . , n}, by (5.4), we have
(sti−1, ai, ϕi, Ri, sti) ∈ δB. By definition of B, for each i ∈ {0, . . . , n}, we have
(si−1

pi
, ai, gi, di, s

i
pi
) ∈ →pi for some gi, di. We now show that this map is a run of

A on T by verifying Conditions (3.2,3.5-3.6) in Definition 3.13.
First observe that r−(i) = si−1

pi
. This can be proved by induction on i. For

i = 1, st0 = ιB implies that s0p1 = ιp1 and r−(a1) = ιp1 since a1 is the minimal
event in that process. For i > 1, r−(i) = r(j) if there exists j <·pipi i and r

−(i) = ι
otherwise. Thus we have si−1

pi
= sjpj .

Now, for events i, j, suppose i <M
pq j then (r−(i), ai, gi, di, r(i)) ∈ →pi and

(r−(j), aj, gj, dj, r(j)) ∈ →pj implies that di = dj which means that Condition (3.2)
holds. This follows from definition of χ in δB which ensures that the sent and
received messages are synchronized. To prove the other conditions, for any event
i, and α ∈ TC, we need to show that, if α ∈ dom(gi), then ∃j, (i, j) ∈ dom(αT )
such that |t(i) − t(j)| ∈ gi(α). We have three cases depending on α.

• α = Preva for some a ∈ Act . If Preva ∈ dom(gi), then firstly there exists
some (unique) k such that ξ⊳i (a, k) ∈ F ⊳. If not, then the false constraint will
occur in ϕi which contradicts acceptance of σ by B. Thus we have that for this
(a, k), the constraint z⊳a,k ∈ gi(Preva) occurs in ϕi and (νi−1+ti−ti−1)(z

⊳
a,k) |=

ϕi implies that (νi−1 + ti − ti−1)(z
⊳
a,k) ∈ gi(Preva).

Now by definition of previous state updates in the run of B, we can use
Lemma 5.6 to conclude that there exists j ≤ i for which (i, j) ∈ PrevMa .
Further at j we can see that, z⊳a,k ∈ Rj and for all j′,j < j′ < i, z⊳a,k 6∈ Rj′.

Thus (νi−1 + ti − ti−1)(z
⊳
a,k) = ti − tj. Hence we conclude that (i, j) ∈ PrevTa

and |t(i) − t(j)| ∈ gi(Preva).

• α = Nexta for some a ∈ Act . If Nexta ∈ dom(gi), then by the definition of ξ⊲,
for k = min(N\dom(ξ⊲i−1(a))), we have ξ

⊲
i (a, k) = (δ⊲(s⊲0, (ai, η(ai)), gi(Nexta)).

Also we reset the clock z⊲a,k

But since r′ is an accepting run, ξ⊲n(a, k) is undefined and so there exists j
such that a = aj and ξ⊲j (a, k) = (s, I) with s ∈ F ⊲. Let j be the smallest
such j so that for j′, i < j′ < j, (a, k) ∈ dom(ξ⊲j′). Thus, we note that
I = gi(Nexta). This also ensures that (ai, ηi(ai)) . . . (aj, ηj(aj)) ∈ L(C⊲)
and so by Lemma 5.6, (i, j)NextTa . Now, we have (νj−1 + tj − tj−1)(z

⊲
a,k) =

νi(z
⊲
a,k) + tj − ti = tj − ti. Again because of the successful run, z⊲a,k ∈ I

occurs in ϕj and (vj−1 + tj − tj−1)(z
⊲
a,k) ∈ I. This implies from above that

tj − ti ∈ gi(Nextσ) and so we are done.

• α = Msg. This is similar to above case of next (and in fact simpler since it
does not need the next automata construction).
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This completes both directions of the proof.

5.3 A finite version of B

To get a finite version of B, we will bound the set of indices Ind to a finite set Indfin ,
thus, constructing a finite timed automaton B′ that is equivalent to B. The state
space of B′ is the same as for B except that it uses indices from Indfin to define
the ξ⊳ and ξ⊲ components. We will construct B′ in two steps. First, we describe
how the transitions of B are modified to handle the previous gadgets. Next, we
describe how to modify the transitions of B to handle the next gadgets. Thus, B′,
the timed automaton obtained after both these modifications are made will turn
out to be a finite timed automaton.

To bound the set of indices, our basic idea is to reuse copies of the previous
and next gadgets when it is safe to do so. First, we handle the previous case by
examining when it is “safe” to release a copy of C⊳. The following proposition gives
us the criterion required.

Proposition 5.9. Let (s, χ, η, ξ⊳, ξ⊲, γ) be a reachable state of B. If there exist two
indices (a, i), (a, j) ∈ dom(ξ⊳), i 6= j such that ξ⊳(a, i) = ξ⊳(a, j) = s⊳ ∈ Q⊳, then
no final state of s⊳f ∈ F ⊳ is reachable from s⊳.

Proof. The copies of C⊳ indexed by (a, i) and (a, j) have been started at distinct
positions labeled a to keep track of two different pasts. Now suppose there exists
s⊳f ∈ F ⊳, such that s⊳f is reachable from s⊳. Then at s⊳f , this position is related by
Preva with both starting positions, i.e., when the clocks z⊳a,i and z

⊳
a,j were last reset.

But this is not possible, because there is at most one previous position labeled a
for any position. Thus no final state is reachable from s⊳.

This implies that we can safely remove the corresponding indices (a, i) and (a, j)
from dom(ξ⊳). Thus, we say that a state st = (s, χ, η, ξ⊳, ξ⊲, γ) ∈ QB is ⊳-safe if
there are no two indices (a, i), (a, j) ∈ dom(ξ⊳), i 6= j such that ξ⊳(a, i) = ξ⊳(a, j).
Otherwise, we say that st is ⊳-unsafe and that (a, i), (a, j) are ⊳-unsafe indices at
the state st.

A transition from B is retained in B′ if it is between ⊳-safe states. In addition,
every transition (st, ϕ, a, R, st′) in B from a ⊳-safe state st to a ⊳-unsafe state

st′ = (s′, χ′, η′, ξ′⊳, ξ′⊲, γ′) is replaced by a transition (st, ϕ, a, R, s̃t′) between ⊳-safe

states, where s̃t′ = (s′, χ′, η′, ξ̃′⊳, ξ′⊲, γ′) and,

ξ̃′⊳(b, i) =





ξ′⊳(b, i) if (b, i) ∈ dom(ξ′⊳) and ∄j 6= i such that

(b, j) ∈ dom(ξ′⊳) and ξ′⊳(b, i) = ξ′⊳(b, j)

undefined otherwise

(5.9)
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By Proposition 5.9, B′ still accepts the same set of timed words as B. The
following lemma states that this is enough to ensure finiteness in the previous
case.

Lemma 5.10. For any reachable state (s, χ, η, ξ⊳, ξ⊲, γ) ∈ QB′, we have dom(ξ⊳) ⊆
Act × {0, . . . , |Q⊳|}.

Proof. Suppose not, then for some a ∈ Act , |dom(ξ⊳, a)| ≥ (|Q⊳| + 1). But this
implies that must exist at least two indices (a, i), (a, j) ∈ dom(ξ⊳), i 6= j such that
ξ⊳(a, i) = ξ⊳(a, j). By the above definition, they would have been undefined and
hence cannot be in the domain of ξ⊳. Thus we have a contradiction.

The remaining source of infinity comes from next constraints. The situation is
not as easy as for previous constraints, since next constraints registered at several
positions could be matched at the same time. Thus, the number of registered
Nextb constraints may be unbounded. In particular in some state of B, suppose
(b, i), (b, j) ∈ dom(ξ⊲) for some i 6= j and ξ⊲(b, i) = (s⊲, I), ξ⊲(b, j) = (s⊲, I ′), then
the constraints associated with i and j will be matched simultaneously. When
matched, the guard on the transition of B will include both z⊲b,i ∈ I and z⊲b,j ∈ I ′.
The idea is that we need to keep only the stronger constraint and can release the
other one. To determine the stronger constraint we have to deal separately with
the upper parts and the lower parts of the constraints.

Refining the constraints A clock constraint over ZB is called an upper -guard
if it is of the form x ∼ c where ∼ ∈ {<,≤} for some x ∈ ZB, c ∈ Q≥0. Similarly
x ∼ c is a lower -guard if ∼ ∈ {>,≥}. Note that each x ∈ I defines uniquely a
lower and an upper-guard, depending upon the endpoints of the interval I.

Definition 5.11. Let x ∼ c and x′ ∼′ c′ be two upper-guards with ∼,∼′ ∈ {<,≤}
or two lower guards with ∼,∼′ ∈ {>,≥}. We say x ∼ c is stronger than x′ ∼′ c′

if, when evaluated at the same instant, x ∼ c holds implies x′ ∼′ c′ holds as well.

The stronger constraint can be determined with a diagonal guard: For upper
guards, x ∼ c is stronger than x′ ∼′ c′ if either x′−x < c′− c or else x′−x ≤ c′− c
and (∼ = < or ∼′ = ≤). The relation stronger than is transitive among upper-
guards. It is also total: either x ∼ c is stronger than x′ ∼′ c′, or the converse
holds, or both in which case we say that the two constraints are equivalent. Note
that the constraints are equivalent if and only if x′ − x = c′ − c and ∼ = ∼′. The
above properties are true for lower guards as well, where we have x ∼ c stronger
than x′ ∼′ c′ if either x′−x > c′− c or else x′−x ≥ c′− c and (∼ = > or ∼′ = ≥).
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Restricting the domain of ξ⊲ Now we get back to our problem and show how
to change B so that the size of dom(ξ⊲) in a state st = (s, χ, η, ξ⊳, ξ⊲, γ) can be
bounded by |Act | · (2|Q⊲|+ 1). Note that a transition of B may initiate at most
|Act | new copies of C⊲ (one for each b ∈ Act such that Nextb ∈ dom(g)). Hence,
we say that state st is ⊲-safe if for all b ∈ Act we have |dom(ξ⊲(b))| ≤ 2|Q⊲|. Thus,
transitions of B are retained in B′ only when they are between ⊲-safe states.

For a state st, b ∈ Act , s⊲ ∈ Q⊲, we define Activst(b, s
⊲) = {i | ξ⊲(b, i) =

(s⊲, I), I ∈ I}. Also for i ∈ Activst(b, s
⊲), we denote by Ii the interval such that

ξ⊲(b, i) = (s⊲, Ii). Now, if the state st is not ⊲-safe, then there exist b ∈ Act , s⊲ ∈ Q⊲

such that |Activst(b, s
⊲)| > 2. In this case, we say that st is ⊲-unsafe for (b, s⊲).

Now, for each (b, s⊲) such that st is ⊲-unsafe for (b, s⊲), we can find iℓ, iu ∈
Activst(b, s

⊲) such that the lower-guard defined by z⊲b,iℓ ∈ Iiℓ is stronger than all
lower-guards defined by z⊲b,j ∈ Ij for j ∈ Activst(b, s

⊲) and the upper-guard de-
fined by z⊲b,iu ∈ Iiu is stronger than all upper-guards defined by z⊲b,j ∈ Ij for
j ∈ Activst(b, s

⊲). From the definition of the relation stronger than, all constraints
z⊲b,j ∈ Ij for j ∈ Activst(b, s

⊲) are subsumed by the conjunction of z⊲b,iℓ ∈ Iiℓ and
z⊲b,iu ∈ Iiu . Therefore, we can release all next-constraints associated with (b, j) with
j ∈ Activst(b, s

⊲) \ {iℓ, iu}.
To do this in the automaton, we define guards of the form ϕ(ib,s

⊲

ℓ , ib,s
⊲

u ) that

evaluate to true if ib,s
⊲

ℓ and ib,s
⊲

u determine stronger lower- and upper-constraints
among those defined by Activst(b, s

⊲). Since the relation stronger than can be
expressed with diagonal constraints as we have seen above, we have ϕ(ib,s

⊲

ℓ , ib,s
⊲

u ) ∈
Form(ZB).

Thus, for each transition (st, ϕ, a, R, st′) in B from a ⊲-safe state st to a state

st′ = (s′, χ′, η′, ξ′⊳, ξ′⊲, γ′) that is not ⊲-safe, we replace it by a transition (st, ϕ′, a, R, s̃t′),

where ϕ′ = ϕ ∧
( ∧
|Activst′(b,s

⊲)|>2

ϕ(ib,s
⊲

ℓ , ib,s
⊲

u )
)
and s̃t′ = (s′, χ′, η′, ξ′⊳, ξ̃′⊲, γ′) is such

that,

ξ̃′⊲(b, i) =





ξ′⊲(b, i) if ∃s⊲ ∈ Q⊲ s.t., i ∈ Activst′(b, s
⊲) and

(|Activst′(b, s
⊲)| ≤ 2) or

(
|Activst′(b, s

⊲)| > 2 ∧ i ∈ {ib,s
⊲

ℓ , ib,s
⊲

u }
)

undefined otherwise

(5.10)

Then, observe that s̃t′ is a ⊲-safe state. From the discussion above, we obtain
that B and B′ still accept the same set of timed words. Hence we may conclude
that in B′, we can restrict to the finite index set Indfin = Act × {0, . . . , n} where
n = max{|Q⊳|, 2|Q⊲|}. Consequently, B′ uses finitely many states and clocks.

Theorem 5.12. The timed automaton B′ is finite. It has BO(|Proc|2) many clocks
(for B ≥ 2), and we have Ltw(B

′) = Ltw(B).
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Proof. We first note that the finiteness of the automaton follows immediately from
the fact that Indfin is finite. By Lemma 5.6, we know that, for B ≥ 2, |Q⊳| =
BO(|Proc|2) and |Q⊲| = BO(|Proc|2) and so we can conclude that the number of clocks
is also bounded by BO(|Proc|2).

To prove that the automata accept the same timed language we will use the
alternative definition of an accepting run of a timed automaton, which has moves
with regard to time-elapse instead of time stamps.

We define a relation; between configurations of B and B′ as follows: (st1, ν1) ;
(st2, ν2) if

(i) st1 = (s, χ, η, ξ⊳1, ξ
⊲
1 , γ), st2 = (s, χ, η, ξ⊳2, ξ

⊲
2, γ)

(ii) there exists (b, i) ∈ dom(ξ⊳1) such that ∄(b, j) ∈ dom(ξ⊳1) with ξ⊳1(b, i) =
ξ⊳1(b, j) if and only if there exists (b, k) ∈ dom(ξ⊳2). And in this case ξ⊳2(b, k) =
ξ⊳1(b, i) and ν1(z

⊳
(b,i)) = ν2(z

⊳
(b,k)).

(iii) Similarly, there exists (b, i) ∈ dom(ξ⊲1) such that i ∈ Activst(b, s
⊲) and either

(|Activst′(b, s
⊲)| ≤ 2) or

(
|Activst′(b, s

⊲)| > 2∧i ∈ {iℓ, iu}
)
if and only if there

exists (b, k) ∈ dom(ξ⊲2). Again in this case ξ⊲2(b, k) = ξ⊲1(b, i) and ν1(z
⊲
(b,i)) =

ν2(z
⊲
(b,k)).

We show that the relation ; is a bisimulation. That is,

Claim 5.13. Let (st1, ν1) ; (st2, ν2). Then,

1. for every move (st1, ν1)
a,τ
−→ (st′1, ν

′
1) there exists a move (st2, ν2)

a,τ
−→ (st′2, ν

′
2)

such that (st′1, ν
′
1) ; (st′2, ν

′
2) and

2. conversely, for every move (st2, ν2)
a,τ
−→ (st′2, ν

′
2) there exists a move (st1, ν1)

a,τ
−→

(st′1, ν
′
1) such that (st′1, ν

′
1) ; (st′2, ν

′
2)

Proof. (1) Let st1 = (s, χ, η, ξ⊳1, ξ
⊲
1, γ) and st2 = (s, χ, η, ξ⊳2, ξ

⊲
2 , γ). Then (st1, ν1)

a,τ
−→

(st′1, ν
′
1) with st′1 = (s′, χ′, η′, ξ′⊳1 , ξ

′⊲
1 , γ

′) if

(st1, ϕ, a, R, st
′
1) ∈ δB for some ϕ,R (5.11)

ν1 + τ |= ϕ (5.12)

ν ′1 = (ν1 + τ)[R 7→ 0] (5.13)

We can now define ϕ′, R′ by replacing each occurence of z⊳(b,i) (and z
⊲
(b,i)) in ϕ

by z⊳(b,k) (respectively z
⊲
(b,k)) for some k given by condition (ii) (respectively, (iii)).

Then, (st2, ϕ
′, a, R′, st′2) ∈ δB′ where st′2 = (s′, χ′, η′, ξ′⊳2 , ξ

′⊲
2 , γ

′) with ξ′⊳1 and ξ′⊳2
obtained from the definition of the respective modified transition relation.

Now, by Proposition 5.9 each prev-clock mentioned in ϕ has an image in ϕ′

which by definition has the same constraint. Again, if ϕmentions a next-clock then
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either it itself is in ϕ′ or there exists some other clocks in ϕ′ whose upper guard
and lower guards are stronger than it. We can conclude that ν1 + τ |= ϕ if and

only if ν2 + τ |= ϕ′ and ν ′2 = (ν2 + τ)[R′ 7→ 0]. Thus, we have (st2, ν2)
a,τ
−→ (st′2, ν

′
2)

and we are done once we see that (st′1, ν
′
1) ; (st′2, ν

′
2). Condition (i) is already

true.
For Condition (ii), for (b, i) ∈ dom(ξ′⊳1 ) there are two cases to consider. First, it

was defined here, i.e, b = a and i = min(N\dom(ξ⊳1(a))). In this case, (b, i) is not ⊳-
unsafe at st′1 if and only if (b, k) is not ⊳-unsafe at st′2, for k = min(N\dom(ξ⊳2(a))).
Second, it was updated from the previous state (i.e, (b, i) ∈ dom(ξ⊳1)). Now, if it
was updated from the previous state st1 and it is not ⊳-unsafe at st′1 then it was
not ⊳-unsafe at st1 either (because, otherwise there is (b, j) ∈ dom(ξ⊳1) such that
ξ⊳1(b, i) = ξ⊳1(b, j) which implies that δ⊳(ξ⊳1(b, i), (a, η(a))) = δ⊳(ξ⊳1(b, j), (a, η(a)))
which implies that (b, i) is ⊳-unsafe at st′1). Then, as st1 ; st2, there exists k such
that ξ⊳2(b, k) = ξ⊳1(b, i). Now, (b, k) cannot be ⊳-unsafe at st′2 since otherwise we
obtain that (b, i) will be ⊳-unsafe at st′1. Thus, ξ′⊳2 (b, k) = δ⊳(ξ⊳2(b, k)(a, η(a))) =
δ⊳(ξ⊳1(b, j)(a, η(a))) = ξ′⊳1 (b, i). Conversely, if there exists (b, k) ∈ dom(ξ′⊳2 ) and
ξ′⊳2 (b, k) = ξ′⊳1 (b, i), then there cannot exist (b, j) ∈ dom(ξ′⊳1 ) such that ξ′⊳1 (b, j) =
ξ′⊳1 (b, i). By similar arguments, we can conclude that Condition (iii) also holds.

(2) In the converse direction, for previous, next index (b, i) of st1 which doesn’t
have a corresponding index in st2, we use a fresh previous or next clock and use
the same arguments as above.

Finally, from these bisimulations, and the fact that the final states coincide, we
may conclude that the timed languages are the same.

Thus, from the above theorem and Theorem 5.7, we obtain the proof of the
main result, i.e., Theorem 5.1, that we set out to prove in the beginning of this
chapter.
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6
Checking Conformance for Distributed

Timed Specifications

In this chapter, we consider the specification model of a TCMSG that we intro-
duced in Section 3.5. To begin with, we would like to reason about the set of
behaviours of a TCMSG and examine conditions under which this set is regular.
For this, we lift the notion of locally synchronized from MSGs to TCMSGs and
show that this is a sufficient condition to ensure regularity. We now consider some
other problems that arise naturally in this context. We state them in a general
setting though we will be able solve them only with some restrictions, for instance,
locally synchronized.

6.1 The problem statements

We are interested in comparing these behaviours to those generated by an im-
plementation model of a TMPA. Thus, given a TCMSG G and a TMPA A, we
address the question of checking whether the implementation A conforms to the
specification G. This breaks up as two natural problems.

Consistency For each TMSC T ∈ Ltime(A), is there a TCMSC M ∈ LTC (G)
such that T realizes M?

Coverage For each TCMSC M ∈ LTC (G), is there a TMSC T ∈ Ltime(A) such
that T realizes M?

Let us examine these problems in some detail before going further.

The Consistency Problem

Consistency asks if all the behaviours of a TMPA A are legal with respect to a
TCMSG specification G.
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Figure 6.1: A TCMSG and some TCMSCs that it generates

Example 30. For instance, consider the TCMSG G in Figure 6.1 and the TMPA
A in Figure 6.2. Then it is not difficult to check that for any TMSC T generated
by A there is a TCMSC M generated by G such that T realizes M.

Thus, consistency corresponds to asking if the timed language of MSC lineariza-
tions associated with the TMPA is included in the timed language of the MSC lin-
earizations associated with the TCMSG. In general, this problem is undecidable,
even for regular timed specifications [5], i.e, bounded TMPAs. However, if we
additionally restrict ourselves to locally sychronized TCMSGs, then we can solve
the timed language inclusion problem in this context. This is done by exploiting
the fact that the timing constraints in locally synchronized TCMSGs correspond
to using clocks in a very restricted way.

The Coverage Problem

Let G be a TCMSG and A a TMPA. The coverage problem for G and A is to
determine whether for each TCMSC M ∈ LTC (G), there is a TMSC T ∈ Ltime(A)
such that T realizes M. This is a natural verification problem when we interpret
TCMSGs as incomplete positive specifications.

Example 31. Again, we consider the TCMSG G in Figure 6.1 and the TMPA from
Figure 6.2. Then, M1 and M2 (Figure 6.1) are TCMSCs in LTC (G), generated
by paths q1q2 and q1q3q1q2, respectively. We observe that these are realized by the
TMSCs T1 and T2 (Figure 6.2) in Ltime(A).

Coverage in the untimed case In the untimed case, the corresponding prob-
lem of scenario matching considered in [36,52], asks whether LMSC (G) ⊆ LMSC (A)
where G is an MSG and A is an MPA. In the timed case, we cannot reduce cov-
erage to language inclusion of timed MSCs. A TCMSC M represents an infinite
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Figure 6.2: A timed MPA and some timed MSCs that it recognizes

family of TMSCs, each of which realizes M. However, the implementation need
not, in general, permit all these realizations. For instance, the TMPA in Figure 6.2
will not exhibit any TMSC realizing M2 from Figure 6.1 where the time difference
between the first two p-events is 2.1, such as in the TMSC T ′

2 in Figure 6.1.

Problems with a game-theoretic approach to coverage Another plausible
approach is to treat this as a timed game between Spoiler, who picks a path in
the TCMSG G, and Duplicator, who picks a TMSC in Ltime(A) that realizes the
TCMSC generated along the path chosen by Spoiler. At each step, Spoiler adds
a node to the path in G. Duplicator has to match this move by extending the
current TMSC so that it stays in Ltime(A) and realizes the TCMSC described
by the extended path. However, a winning strategy in this game would have the
following property: if two paths π1 and π2 have a common prefix π, then the
TMSC generated by Duplicator for the prefix π must be the same for the plays in
which Spoiler generates π1 and π2. Notice that the paths that generate M1 and
M2 in Figure 6.1 share a common prefix, namely q1. In any TMSC that realizes
M1, message m1 must be delivered within 1 time unit whereas in any TMSC that
realizes M2, m1 can only reach after 1 time unit. Hence, any TMSC that realizes
Φ(q1) and can be extended to cover M1 cannot simultaneously be extended to
cover M2. In other words, the game-theoretic formulation introduces too strict a
correlation between the TMSCs covering different paths through the TCMSG.

These observations suggest that traditional approaches for scenario matching
in the untimed case do not generalize to the coverage problem in the timed case.
In the last section of this chapter, we formulate a solution to the coverage problem
for a restricted class of locally synchronized TCMSGs.
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6.2 An extended event clock automaton – the

MSC-ECA

To understand the operational behaviour of a TCMSG it is useful to look at it as a
global system and examine the set of timed linearizations it accepts. It is natural
to consider the global system as an infinite-state timed transition system. In this
section, we introduce the MSC-event clock automaton which we develop as an (ex-
tended) event clock automaton designed towards recognizing timed linearizations
of MSCs.

In the next section, we will provide the translation from TCMSGs to MSC-
ECAs thus providing a global semantics (in terms of timed linearizations) for the
TCMSG. This translation will allow us to prove the results in the following sections
in an elegant manner.

We now start by defining the extension of event clock automata, namely MSC-
event clock automata or MSC-ECA. These will be used to capture exactly the
guards that occur in the TCMSGs that we have defined. We denote an MSC-ECA
by C = (Q,Act , δ, q0, F ), where Q is a set of states, with q0 ∈ Q the initial state and
F ⊆ Q the set of final states. The alphabet is the set of actions Act . A transition
in δ is of the form (q, ϕ, a, q′) where q, q′ ∈ Q, a ∈ Act and ϕ is a conjunction
of event clock guards, which are of two types: either Yk

p ∈ I or Msg−1 ∈ I. An
MSC-ECA is said to be finite if it has finitely many states.

We interpret these guards over timed words. Let σ = (a1, t1) . . . (an, tn) ∈
TWAct . Then at a position 1 ≤ j ≤ n, we define

(D1) σ, j |= Yk
p ∈ I if aj ∈ Actp and there exists 1 ≤ i < j such that ai ∈ Actp,

|{ℓ | i ≤ ℓ < j ∧ aℓ ∈ Actp}| = k and tj − ti ∈ I. In other words, the time
elapsed between the kth-previous p-action ai in σ and this action aj is in the
interval I.

(D2) σ, j |= Msg−1 ∈ I if there exists p, q ∈ Proc, m ∈ M, 1 ≤ i < j such
that ai = p!q(m), aj = q?p(m), |{ak | 1 ≤ k ≤ i, ak ∈ p!q}| = |{ak | 1 ≤
k ≤ j, ak ∈ q?p}| and tj − ti ∈ I (recall that we write ak ∈ p!q to mean
ak = p!q(m′) for some m′ ∈ M). In other words, aj is a receive action and
the time elapsed since the occurence of its matching send action ai is in the
interval I.

In both the above definitions, note that the action ai is uniquely defined, i.e.,
there is atmost one position i that matches a given position j.

Now, we define runs of C over timed words. For a timed word σ = (a1, t1) . . . (an, tn),
we say there is a run of C from q to q′ on σ, denoted q

σ
−→ q′ in C, if there exists

a sequence q = q0
ϕ1,a1
−−−→ . . .

ϕn,an
−−−→ qn such that for all j, 1 ≤ j ≤ n, σ, j |= ϕj.

The timed word σ is said to be accepted if it has a run from the initial to some
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final state in F . We denote by Ltw(C) the set of timed words accepted by the
MSC-ECA C.

In what follows, we will call a timed word σ well-formed if every receive action
has a corresponding send action on its left.

6.2.1 Translation from MSC-ECA to TA

Let C = (Q,Act , δ, q0, F ) be an MSC-ECA. Let B ∈ N>0 be a positive integer
which will act as a bound in what follows. Also let K = max{k | Yk

p ∈ I occurs in
some guard in δ}. We define a finite timed automaton BB

C from C as follows:
A state of BB

C is either a dead state denoted ⊥ or a tuple of the form s =
(s, b, n, α, β) where,

• s ∈ Q

• b = (bp)p∈Proc ∈ {0, 1}Proc : We will have bp = 1 if we have already seen at
least K p-events.

• n = (np)p∈Proc ∈ {0, . . . , K − 1}Proc : np is the number of p-events already
seen modulo K.

• α = (αp,q)p,q∈Proc where αp,q ∈ {0, . . . , B}: αp,q is the number of events in
q?p modulo B + 1.

• β = (βp,q)p,q∈Proc where βp,q ∈ {0, . . .B}: βp,q is the number of events in p!q
modulo B + 1.

We say that the Channel (p, q) is empty if αp,q = βp,q and full if βp,q = (αp,q +B)
mod (B + 1). The set of all states is denoted Q′ and the initial state is s0 =
(s0, (0), (0), (0), (0)).

The set of clocks is Y ∪ Z where,

Y ={yip | p ∈ Proc, 0 ≤ i < K}

Z ={zip,q | p, q ∈ Proc, 0 ≤ i ≤ B}

The idea is that we will reset the clock yip when executing the ith p-event modulo
K. Also, zip,q will be reset when executing the ith p!q event modulo B + 1.

The set of transitions δBB
C

is defined as follows: Assume s
ϕ,a
−−→ s′ in C with

a ∈ Actp. Then, we have three types of transitions in BB
C :

(Tr1) (s, b, n, α, β)
true,a,∅
−−−−→ ⊥ is in BB

C if

• either a ∈ p!q and Channel (p, q) is full, i.e., the bound was exceeded.
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• or a ∈ p?q and Channel (p, q) is empty i.e., a receive occurs with no
matching send in the queue.

(Tr2) (s, b, n, α, β)
ϕ′,a,R
−−−→ (s′, b

′
, n′, α′, β

′
) is in BB

C if we are not in the above case
and the following conditions hold:

1. b′p = 1 if np = K − 1 and b′p = bp otherwise. Also, b′r = br for r 6= p.

2. n′
p = (np + 1) mod K and n′

r = nr for r 6= p.

3. if a ∈ p!q, then

(i) β ′
p,q = (βp,q + 1) mod (B + 1) and β ′

p′,q′ = βp′,q′ for (p
′, q′) 6= (p, q).

Also α′ = α.

(ii) R = {y
n′
p

p , z
β′
p,q

p,q }

(iii) ϕ′ is ϕ where Yk
p ∈ I is replaced with

{
false if bp = 0 and k > np

y
(K+n′

p−k) mod K
p ∈ I otherwise

4. if a ∈ p?q, then

(i) α′
q,p = αq,p + 1 mod (B + 1) and α′

q′,p′ = αq′,p′ for (q
′, p′) 6= (q, p).

Also β
′
= β.

(ii) R = {y
n′
p

p }

(iii) ϕ′ is ϕ where Yk
p ∈ I is replaced as above and Msg−1 ∈ I is replaced

with z
α′
q,p

q,p ∈ I

(Tr3) ⊥
true,a,∅
−−−−→ ⊥ is in BB

C for all a ∈ Act .

We can immediately observe some invariant properties that are maintained by
the above transitions.

Remark 6.1. Let s0
ϕ1,a1,R1
−−−−−→ . . .

ϕm,am,Rm
−−−−−−→ sm for m ≥ 0 be a path in BB

C from the
initial state s0 to some state sm 6= ⊥. Then, for sm = (sm, b, n, α, β),

1. bp = 1 if |{ℓ | 1 ≤ ℓ ≤ m ∧ aℓ ∈ Actp}| ≥ K and bp = 0 otherwise.

2. np = |{ℓ | 1 ≤ ℓ ≤ m ∧ aℓ ∈ Actp}| mod K

3. αp,q = |{ℓ | 1 ≤ ℓ ≤ m ∧ aℓ ∈ q?p}| mod (B + 1)

4. βp,q = |{ℓ | 1 ≤ ℓ ≤ m ∧ aℓ ∈ p!q}| mod (B + 1)
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Remark 6.2. On the other hand, suppose s0
ϕ1,a1,R1
−−−−−→ . . .

ϕm,am,Rm
−−−−−−→ sm for m ≥ 0 is

a path in BB
C from the initial state s0 to sm = ⊥. Then, either σ is not well-formed

or it exceeds the bound B for some channel. Indeed, we can reach qi = ⊥ from
qi−1 6= ⊥ only by applying transition (Tr1), where either boundedness or well-
formedness is violated. Further, if we reach ⊥, then only transition (Tr3) applies
and hence we remain in ⊥.

Now, using the above properties in Remark 6.1, we can prove the following
lemmas relating runs of C and BB

C . First, for a run of C on σ passing through the
states s1 . . . sn, we call a run of BB

C its corresponding run on σ, if it passes through
states si = (si, bi, ni, αi, βi) for i ∈ {0, . . . , n}, for some values of bi, ni, αi, βi and
guards are obtained by using (Tr2) 3.(iii) and 4.(iii).

Lemma 6.3. For every run of C on a timed word σ, there exists a unique corre-
sponding run of BB

C on σ.

Proof. Consider a run of C on σ = (a1, t1) . . . (am, tm). Then there exists π =

s0
ϕ1,a1
−−−→ s1

ϕ2,a2
−−−→ . . .

ϕm,am
−−−−→ sm in C such that σ, i |= ϕi for all i ∈ {1, . . . , m}.

Then, we inductively construct the unique corresponding run in BB
C over the same

timed word which starts with the initial state (s0, ν0) where s0 is the initial state of
BB
C and ν0 is the valuation mapping all clocks to 0. Suppose we have constructed

the path till (si−1, νi−1) with si−1 = ⊥ or si−1 = (si−1, b, n, α, β), then for the next
transition we consider the following cases.

Suppose si−1 = ⊥, then there exists a unique transition (Tr3) and so we have
si = ⊥. Otherwise si−1 = (si−1, b, n, α, β). Then, if ai ∈ p!q and the channel (p, q)
is full or ai = p?q and the channel is empty, we have the unique transition (Tr1)

and again si = ⊥. Otherwise, we can observe that using si−1
ϕi,ai−−−→ si in C, we

obtain the unique transition si−1 = (si−1, b, n, α, β)
ϕ′
i,ai,Ri

−−−−→ (si, b
′
, n′, α′, β

′
) = si as

defined by (Tr2). This constructs the (unique) corresponding path in BB
C . Letting,

νi = (νi−1+ ti− ti−1)[Ri → 0] this defines a run of BB
C on σ: (s0, ν0)

a1,t1
−−→ . . .

am,tm
−−−→

(sm, νm), if we show that νi−1 + ti − ti−1 |= ϕ′
i for all i. There are three cases:

1. ϕ′
i contains zkp,q ∈ I where k = α′

p,q = |{aℓ | 1 ≤ ℓ ≤ i ∧ aℓ ∈ q?p}|

mod (B + 1). By definition of the transition, ϕi must contain Msg−1 ∈ I.
Since, σ, i |= ϕi we have ti−tj ∈ I, where j is the index of the matching send:
aj = p!q(m), ai = q?p(m), 1 ≤ j ≤ i and |{aℓ | 1 ≤ ℓ ≤ j ∧ aℓ ∈ p!q}| = |{aℓ |
1 ≤ ℓ ≤ i∧ aℓ ∈ q?p}|. Thus, k = |{aℓ | 1 ≤ ℓ ≤ j ∧ aℓ ∈ p!q}| mod (B + 1).
Using the invariant at state sj , we get zkp,q ∈ Rj . Using the invariant at si,

we get Msg−1 ∈ I is replaced with zkp,q ∈ I in ϕ′
i. Moreover, zkp,q 6∈ Rℓ for

j < ℓ ≤ i. This follows since otherwise the number of events labelled p!q
between j and ℓ would be B more than the number of events labelled q?p
between j and i (and therefore ℓ). This implies that the channel was full
and so at ℓ transition (Tr1) is enabled which means that transition (Tr2)
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cannot be fired, which contradicts the transition at i. Now, zkp,q ∈ Rj implies
νj(z

k
p,q) = 0 and zkp,q 6∈ Rℓ for j < ℓ ≤ i implies that (νi−1 + ti − ti−1)(z

k
p,q) =

νj(z
k
p,q) + ti − tj = ti − tj. So, we have (νi−1 + ti − ti−1) |= (zkp,q ∈ I).

2. We will show that ϕ′ cannot contain false. If ϕ′ contains false, then bp = 0
and there exists Yk

p ∈ I in ϕ such that k > np. But bp = 0 implies that K
events have not been seen and so we are trying to relate two events that are
k apart when we have not seen k events on p. Which is a contradiction with
σ, i |= Yk

p ∈ I and so this cannot happen.

3. ϕ′
i contains y

ℓ
p ∈ I, Then ℓ = (K + n′

p − k) mod K and Yk
p ∈ I is in ϕi.

Consider the event j such that the number of p-events between j and i is
k. Such an event exists since either n′

p > k or bp = 1 (which means that
K > k many p-events have been seen). But if k < n′

p, then ℓ = n′
p − k

and so the value of np-component at j is ℓ. If k > n′
p, then at j, we have

ℓ = K + n′
p − k < K. Thus in both cases, yℓp was reset at j and not reset

again between j and i. Again, σ, i |= ϕi implies that ti − tj ∈ I and so
(νi−1+ ti− ti−1)(y

ℓ
p) = νj(y

ℓ
p)+ ti− tj = ti− tj ∈ I. Thus, (νi−1+ ti− ti−1) |=

yℓp ∈ I.

The next property is the converse of the above but in this case, we see that we
have to restrict the runs as follows:

Lemma 6.4. If BB
C has a run on σ which does not end in the dead state ⊥, then

C has a run on σ as well.

Proof. In (Tr2), given (s, b, n, α, β), a and ϕ we define ϕ′ and hence the transition
of BB

C . But observe that if we know (s, b, n, α, β), a and the resultant ϕ′, then we
can uniquely recover ϕ as well as the transition on C. This allows us to construct
the path in C using the given path in BB

C on the word σ. Indeed this works only
since we assume that the path in BB

C uses only transitions (Tr2). Thus, given the
path in BB

C

s0
ϕ′
1,a1,R1

−−−−−→ s2 . . .
ϕ′
n,an,Rn

−−−−−→ sn

we obtain the path in C,
s0

ϕ1,a1
−−−→ s1 . . .

ϕn,an
−−−→ sn

We need to show that if the former path defines a timed run so does the latter,
i.e., σ, i |= ϕi for all i. Again this follows by considering each case for the guards
and observing that if νi−1 + ti − ti−1 |= ϕ′

i, then σ, i |= ϕ′
i in all the cases.

We can define different notions of acceptance (i.e., final state) on BB
C con-

structed from C to derive different results.
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Corollary 6.5. Given C = (Q,Act , δ, q0, F ), if we construct BB
C = (Q′,Act , (Y ∪

Z), δBB
C
, F ′) as described above and

1. if F ′ = {(s, b, n, α, β) | s ∈ F}, then Ltw (B
B
C ) = Ltw(C) ∩ {σ ∈ TWAct | σ is

B-bounded and well-formed}.

2. if C is complete, i.e., it has a run on every timed word over Act, and F ′ =
{⊥}, then Ltw(B

B
C ) = {σ ∈ TWAct | either σ is not B-bounded or σ is not

well-formed}.

Further if C is finite so is BB
C .

Proof. Statement 1 follows from the above lemmas and Remark 6.2. The state-
ment 2 follows directly from Remark 6.2.

6.2.2 A universal automaton

To justify that the MSC-ECA that we introduced have nice properties, we will
now prove that they can be determinized. We obtain this by constructing a deter-
ministic and complete version of any given MSC-ECA. Let C = (Q,Act , δ, q0, F )
be a finite MSC-ECA.

The set of states of the universal automaton Cuniv is 2Q. Thus, a state is of
the form X ⊆ Q. Before defining the transitions, we introduce some notations.
First, if t ∈ δ is a transition of C, then we let qt, q

′
t respectively denote its source

and target states, ϕt denotes its guard and at the action. Now, for a state X
and an action a, we define T (X, a) = {t ∈ δ | qt ∈ X, at = a}. Then, for some
T ′ ⊆ T (X, a) = T , we have the macros:

ϕ(T ′, T ) =
∧

t∈T ′

ϕt ∧
∧

t∈T\T ′

¬ϕt

target(T ′) = {q′ ∈ Q | q′ = q′t for some t ∈ T ′}

Then, we denote the set of transitions of Cuniv by ∆, where we say that X
ϕ,a
−−→

X ′ is a transition in Cuniv if there exists T ′ ⊆ T = T (X, a) such that

• ϕ = ϕ(T ′, T )

• X ′ = target(T ′)

Indeed, we note that once we have fixed X , a and the set T ′, the transition is
uniquely defined. Also note that for X = ∅, we have T (X, a) = ∅ and the only

transition possible is ∅
true,a
−−−→ ∅. A run is again defined as before on a timed

word σ = (a1, t1) . . . (an, tn) as a sequence of transitions X0
ϕ1,a1
−−−→ X1 . . .

ϕn,an
−−−→ Xn

such that σ, j |= ϕj for all j. The crucial property of this automaton is that it is
deterministic and complete as shown by the following lemma.
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Lemma 6.6. For any timed word σ = (a1, t1) . . . (an, tn), there exists a unique run
of Cuniv on σ starting from X0 = {q0}.

Proof. Given σ = (a1, t1) . . . (an, tn) and X0 = {q0}, for j ∈ {1, . . . , n}, we define
inductively Tj = T (Xj−1, aj), T

′
j = {t ∈ Tj | σ, j |= ϕt} and Xj = target(T ′

j).

Observe that Xj−1

ϕ(T ′
j ,Tj),aj

−−−−−−→ Xj is a transition of Cuniv.
Also by definition of T ′

j , for all T
′ ⊆ Tj , we have

σ, j |= ϕ(T ′, Tj) if and only if T ′ = T ′
j (6.1)

Using the “if” part above, we immediately obtain X0
ϕ(T ′

1,T1),a1
−−−−−−→ X1 . . .

ϕ(T ′
n,Tn),an

−−−−−−−→
Xn is a run of Cuniv on σ. Conversely, we show by induction that this is the unique
run of Cuniv on σ starting from X0 = {q0}. Let X0

ϕ1,a1
−−−→ X ′

1

ϕ2,a2
−−−→ . . .X ′

n be any
such run. Suppose X ′

j−1 = Xj−1. Then we show that ϕj = ϕ(T ′
j , Tj) and X

′
j = Xj.

By definition of a run, we have Xj−1
ϕj ,aj
−−−→ X ′

j and σ, j |= ϕj. But by the definition
of a transition, there exists T ′ ⊆ T (Xj−1, aj) = Tj such that ϕj = ϕ(T ′, Tj) and
X ′

j = target(T ′). Thus, σ, j |= ϕ(T ′, T ′
j) which by Equation 6.1 implies that T ′ =

T ′
j . Thus, we conclude ϕj = ϕ(T ′

j , Tj) and X
′
j = target(T ′) = target(T ′

j) = Xj .

Now we can show

Lemma 6.7. IfX0
ϕ1,a1
−−−→ . . .

ϕn,an
−−−→ Xn is the run of Cuniv on σ = (a1, t1) . . . (an, tn),

then Xn = {q ∈ Q | q0
σ
−→ q in C}

Proof. (1) In one direction, if q0
σ
−→ q in C, let q0

ϕ′
1,a1−−−→ . . .

ϕ′
n,an−−−→ qn = q with

σ, j |= ϕ′
j for 1 ≤ j ≤ n. Using the proof of the above lemma, we will show that

for all j ∈ {0, . . . , n}, qj ∈ Xj. Clearly q0 ∈ X0. Assume qj−1 ∈ Xj−1. Then we
have (qj−1, ϕ

′
j, aj , qj) ∈ T ′

j . Hence we conclude that qj ∈ Xj = target(T ′
j).

(2) In the other direction, for all j and for all qj ∈ Xj we want to show that

q0
a1,t1
−−→ . . .

aj ,tj
−−→ qj is a run of C. The proof is by induction on j. j = 0 is obvious.

Assume j > 0 and let qj ∈ Xj. Then there exists (qj−1, ϕ
′
j, aj , qj) ∈ T ′

j i.e, qj−1 ∈

Xj−1 and σ, j |= ϕ′
j. By Induction hypothesis we have q0

a1,t1
−−→ . . .

aj−1,tj−1
−−−−−→ qj−1.

This implies that q0
a1,t1
−−→ . . .

aj−1,tj−1
−−−−−→ qj−1

aj ,tj
−−→ qj is a run of C.

Note that if C is finite so is Cuniv. Indeed the description of Cuniv is not complete
since we have not specified the final states. Given C = (Q,Act , δ, q0, F ), we will now
construct two universal (i.e., deterministic and complete) MSC-ECA as detailed
above Cuniv

i = (2Q,Act ,∆, {q0}, Fi) for i = {1, 2} differing only in the set of final
states, defined as: F1 = {X ∈ 2Q | ∃s ∈ (F ∩ X)} and F2 = 2Q \ F1. Then, the
following corollary directly follows from the above lemmas,

Corollary 6.8. We have Ltw(C
univ
1 ) = Ltw(C) and Ltw (C

univ
2 ) = {σ ∈ TWAct | σ 6∈

Ltw(C)}.
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6.3 Global semantics for TCMSGs over timed

linearizations

We begin by defining the canonical global semantics of TCMSG in terms of timed
linearizations, i.e.,

Definition 6.9. The timed word language of a TCMSG G is defined to be set
of timed linearizations it accepts, i.e., Ltw(G) = {σ ∈ TWAct | σ is a timed
linearization of some TMSC T over Act, such that T realizes some M ∈ LTC (G)}.

However, this definition does not help us understand or reason about properties
of timed languages accepted by the TCMSG. For this, we would prefer to have an
equivalent automaton which generates the same language. In this section, from a
TCMSG, we construct an MSC-ECA (with infinite states) which accepts exactly
the same set of timed linearizations.

We start with a definition and a remark. For an MSC M = (E,≤, λ) over Act ,
we define a cut c of M over Act to be a subset of the events E which is closed
under the partial order ≤. That is, e ∈ c, e′ ≤ e implies that e′ ∈ c. This can of
course be lifted to MSCs generated by a path π, namely Mπ. We also recall from
Section 2.2.6 that any event of Eπ is of the form (e, ρu) where ρu � π and e ∈ Eu.
Indeed, keeping the prefix of the path along with the event uniquely identifies the
event’s occurence in the path.

For a fixed TCMSG G = (G,LTC,Φ,EdgeC ), where G = (V,→, vin, VF ), we
define the infinite MSC-ECA denoted CG. A global state of CG is a pair s = (π, C)
where

• π is a path in G.

• C ⊆ Eπ is a cut of Mπ

Now, an event (e, ρ) is said to have been executed in s if (e, ρ) ∈ C. The event
is said to be enabled in s if it has not been executed, i.e, (e, ρ) 6∈ C, and all the
events below it (in the partial order) have been executed, i.e, for all (e′, ρ′) ∈ Eπ

with (e′, ρ′) <π (e, ρ), we have (e′, ρ′) ∈ C.
A state s = (π, C) is initial if π is any path in G from an initial state to a final

state and C is empty. It is final if C = Eπ. We denote the set of all states of this
global system by QG.

Now, the transitions can be defined by saying that at any state we execute an
enabled event. We have s = (π, C)

ϕ,a
−−→ s ′ = (π, C ′) if there exists an event (e, ρu)

enabled in s such that λu(e) = a and

• C ′ = C ·∪ {(e, ρu)}
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• the guard ϕ checks all local and edge constraints that are matched here,

ϕ =

( ∧

e′∈Eu,I∈I|τu(e′,e)=I

ϕ(u, e′, e, I)

)
∧ ϕedge where, (6.2)

ϕ(u, e′, e, I) =

{
Msg−1 ∈ I if ∃p, q, p 6= q s.t. e′ <u

qp e

Yk
p ∈ I if e, e′ ∈ Eu

p , |{e
′′ ∈ Eu

p | e′ ≤u
pp e

′′ <u
pp e}| = k

(6.3)

and ϕedge =





Y1
p ∈ I if ρ = ρ′u′, and for some p ∈ Proc, we have

EdgeC ((u′, u), p) = I and e = min(Eu
p )

true otherwise

(6.4)

Note that, in the transition above, the event (e, ρu) which is enabled in s

becomes an executed event of s ′. Thus we can say that the transition s
ϕ,a
−−→ s ′

executes the event (e, ρu).
As before, a global run of CG on a timed word σ = (a1, t1) . . . (an, tn) is a

sequence of transitions s0
ϕ1,a1
−−−→ . . .

ϕn,an
−−−→ sn such that for each j ∈ {1, . . . , n},

σ, j |= ϕj. Again a run is accepting if it starts at an initial state and ends in a
global final state. We say a timed word σ belongs to Ltw(CG), if there is a global
accepting run on σ.

Lemma 6.10. We have the following relation between the timed languages of CG
and G: Ltw (CG) = Ltw(G) = {σ | σ is a timed linearization of some TMSC T over
Act , such that T realizes some M ∈ LTC (G)}.

Proof. (⊆) Let σ = (a1, t1) . . . (an, tn) ∈ Ltw(CG). Then there exists an accepting
run

s0
ϕ1,a1
−−−→ . . .

ϕn,an
−−−→ sn

where for each i ∈ {1, . . . , n}, σ, i |= ϕi and s i−1 = (πi−1, Ci−1)
ϕi,ai
−−−→ (πi, Ci) = s i

executes some enabled event (ei, ρi).
First, π0 = . . . = πn = π (say). Then, as s0 = (π, C0) is an initial state

of the global system, π is a path from the initial vertex vin to some final one in
G. Therefore M

π = (Mπ, τπ) ∈ LTC (G). Now, for each i ∈ {1, . . . , n}, Ci =
Ci−1 ·∪ {(ei, ρi)} is a cut of Mπ. Moreover, Cn = Eπ since sn is final. From
this we get that (e1, ρ1) . . . (en, ρn) is a linearization of Mπ and λπ(ei, ρi) = ai for
all i ∈ {1, . . . , n}. Now consider the TMSC T = (Mπ, t) where we define t by
t((ei, ρi)) = ti. Thus, (a1, t1) . . . (an, tn) is a timed linearization of T since i < j
implies t(ei, ρi) = ti ≤ tj = t(ej, ρj).

We are done if we show that T realizes Mπ. That is, for all ((ei, ρi), (ej, ρj)) ∈
dom(τπ), we want to show that |t(ej , ρj)− t(ei, ρi)| = tj − ti ∈ τπ((ei, ρi), (ej, ρj)).
We have two cases to handle:
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• If ρi = ρj = ρv (say) then τπ((ei, ρv), (ej , ρv)) = τ v(ei, ej) = I. Then, first
ϕ(v, ei, ej, I) is in ϕj. Indeed, if τ v(ei, ej) = I then one of the two following
cases hold:

– Either ei, ej ∈ Ev
p for some p ∈ Proc. Then, |{eℓ ∈ Ev

p | ei ≤
v
pp eℓ <

v
pp

ej}| = k for some k ∈ N>0. Thus ϕ(v, ei, ej , I) = Yk
p ∈ I. At state j,

σ, j |= ϕj implies σ, j |= ϕ(v, ei, ej , I) which implies that σ, j |= Yk
p ∈ I.

Now, eℓ ∈ Ev
p such that ei ≤

v
pp eℓ <

v
pp ej if and only if i ≤ ℓ < j such

that aℓ ∈ Actp. Thus, by Definition (D1), we conclude that tj − ti ∈ I.

– Or ei <
v
qp ej for some p, q ∈ Proc, p 6= q. Then, ϕ(v, ei, ej, I) = Msg−1 ∈

I. Again, we have σ, j |= Msg−1 ∈ I. Now, ei <
v
qp ej implies that

λπ(ej, ρj) = aj = p?q(m) for some m ∈ M and λπ(ei, ρi) = ai = q!p(m)
is its matching send. Thus, |{aℓ | 1 ≤ ℓ ≤ i, aℓ ∈ q!p}| = |{aℓ | 1 ≤ ℓ ≤
j, aℓ ∈ p?q}|. Now, by Definition (D2) we conclude that tj − ti ∈ I.

• Otherwise, ρj = ρiv, ρi = ρv′ for some ρ, ei = max(Ev′

p ) and ej = min(Ev
p )

for some p ∈ Proc, then τπ((ei, ρi), (ej, ρj)) = EdgeC ((v′, v), p) = I. Then at

stage j, we have ϕedge
j = (Y1

p ∈ I). Indeed, ai = λv
′

(ei) is the last p-action
before aj = λv(ej) in σ. Thus, by Definition (D1), tj − ti ∈ I and so we are
done.

(⊇) Suppose M ∈ LTC (G), then there exists a path π = v1 . . . vm in G such that v1
is an initial vertex and vm is a final vertex andM = Mπ = (Mπ, τπ). Now, suppose
σ = (a1, t1) . . . (an, tn) is a timed linearization of T = (Mπ, t) and T realizes M.
Then first we observe that a1 . . . an ∈ lin(Mπ) and so there is (e1, ρ1) . . . (en, ρn) a
linearization of the events of Mπ where for each i ρi � π, λπ(ei, ρi) = ai.

Then we can construct the run of the global system on this timed word. First,
we define Ci = {(e1, ρ1) . . . (ei, ρi)} and s i = (π, Ci) for all i ∈ {0, . . . , n}, where
C0 = ∅. Then observe that (ei, ρi) is enabled in s i−1. Thus there exists a transition

s i−1
ϕi,ai
−−−→ s i that executes event (ei, ρi). We show that σ, i |= ϕi where ϕi is defined

by the transition. Again there are two cases:

• Either ϕi contains an edge constraint, i,e., ϕedge = (Y1
p ∈ I) for some p ∈

Proc. In this case, by Condition 6.4, ρi = ρ′v′v, ei is the first p-event in Mv

and for some j < i, we have ρj = ρ′v′, ej is the last p-event on Mv′ and
EdgeC ((v′, v), p) = I. First, this implies that ai is the next p-action with
respect to aj in σ. Also, τπ((ej, ρj), (ei, ρi)) = I and since T realizes M, we
have t(ei, ρi)−t(ej , ρj) ∈ I which implies that ti−tj ∈ I. By Definition (D1),
we conclude that σ, i |= ϕedge .

• Or there is a local constraint of a node of the form ϕ(u, ej, ei, I), where
ρi = ρu = ρj for some j < i and τu(ej , ei) = I. Again since T realizes M,
t(ei, ρu) − t(ej , ρu) = ti − tj ∈ I. By Condition 6.3, if the constraint is of
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the form Msg−1 ∈ I, then ej <
u
qp ei and otherwise the constraint is of the

form Yk
p ∈ I where the number of p-events between ej and ei is k. Using

Definition (D2) in the former case and Definition (D1) in the latter case, we
conclude that σ, i |= ϕ(u, ej, ei, I).

Thus, we have shown that σ, i |= ϕi for all i ∈ {1, . . . , n} and therefore s0
ϕ1,a1
−−−→

. . .
ϕn,an
−−−→ sn is a run of the global system on σ. Finally, the run ends in a global

final state, since σ is a full linearization of Mπ. Thus, our proof is complete.

6.4 Regularity for locally synchronized TCMSGs

The first question we ask is if the set of timed linearizations of a time-constrained
message sequence graph is regular. We claim that the locally synchronized condi-
tion that we defined for MSGs in Section 2.2.6 is already good enough to ensure
this. We start by restating Definition 2.18 in the TCMSG case,

Definition 6.11. A TCMSG G = (G,LTC ,Φ,EdgeC ) is said to be locally syn-
chronized if for every (simple) loop π in G, the TCMSC generated by π, Mπ =
(Mπ, τπ) is such that the MSC Mπ is com-connected.

Thus, we can state the main result of this section as follows.

Theorem 6.12. If G = (G,LTC ,Φ,EdgeC ) is locally synchronized TCMSG, then
there exists a finite MSC-ECA C, such that Ltw(C) = Ltw(G).

Corollary 6.13. If G is a locally synchronized TCMSG, then there exists a finite
timed automaton which accepts the timed language Ltw(G).

Proof. By the above theorem, from G, we have a finite MSC-ECA C such that
Ltw(C) = Ltw (G) = {σ | σ is a timed linearization of some TMSC T over Act ,
such that T realizes some M ∈ LTC (G)}. Thus, every σ ∈ Ltw(C) is well-formed.
Further, since G is locally synchronized, there exists bound B ∈ N>0 such that each
timed linearization σ is B-bounded. Thus, every σ ∈ Ltw(C) is B-bounded. Now
by Corollary 6.5(1), we obtain a timed automaton BB

C such that Ltw(B
B
C ) = Ltw(C).

In fact, every σ ∈ Ltw(C) is complete as well and so we could have instead used
Corollary 6.5(2) to conclude the above. The timed automaton BB

C is finite since
the MSC-ECA C is finite which completes our proof.

The above result in the untimed case has been stated and proved in different
ways [8, 23, 27, 51] which are interesting in their own respect. We describe below
a fully self-contained proof of this result in the timed version. By keeping it self-
contained, we are able to modify the construction easily to show the results in the
following sections.
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6.4.1 The gap semantics

We want to simulate the global run of a TCMSG in a finite way. So, instead of
maintaining the whole path along the run, we want to maintain only the relevant
portions, i.e, the nodes on which there is at least an event that has occurred.

For segments of nodes in the path that have not seen any event yet, we replace
them by a special gap symbol #. Thus, having a # symbol between two nodes
denotes that some (nonempty) sequence of nodes must be inserted here later.

In fact, the insertion must satisfy two conditions: (1) when we insert a node it
must not conflict with the events that have already occurred in later nodes and (2)
finally, after all insertions, we do obtain a path in the graph. The latter is done by
checking that when we fill a gap the corresponding bordering nodes have an edge
in the graph.

This construction is formalized next. However, note that this construction is
still infinite since we might still have unboundedly many completed nodes, i.e nodes
in which all events have been seen. In the last part of this section, we describe
how to perform a sequence of reductions to throw away such completed nodes from
the current path. However, we have to be careful that the two conditions, in the
infinite case above, are still maintained.

6.4.2 Removing unexecuted nodes

We start by observing that the cut C that we keep in a state in the simulation in
the previous section is global. Thus, if we want to remove some nodes we would
need to maintain the cut C locally within each node. To do this we break up each
state (u1 . . . un, C) into (u1, c1) . . . (un, cn). Formally, we define the map Φ which
we call stratification as follows:

Φ((u1 . . . un, C)) = (u1, c1) . . . (un, cn)

where each ci ⊆ Eui is defined by ci = {e ∈ Eui | (e, u1 . . . ui) ∈ C}. Notice that
each ci is a cut of Eui. Φ is in fact a bijection since we also have the inverse map
given by C = {(e, u1 . . . ui) ∈ Eu1...un | e ∈ ci}.

We define an extended node to be a pair (u, c) where u ∈ V and c ⊆ Eu is a
cut of Eu. As before, c contains the events that have been executed in node u. For
simplicity, we extend the set of vertices V with two dummy vertices ⊲, ⊳ and add
edges from ⊲ to the initial vertex vin and from every final vertex v ∈ VF to ⊳. We
also set E⊲ = ∅ = E⊳ so that for u ∈ {⊲, ⊳}, the only extended node is (u, ∅). The
set of all extended nodes is denoted ExtNodes and we let Γ = ExtNodes ·∪ {#}.

Now, we construct our new automaton C#
G
. A state α of C#

G
is an element of

Γ∗. The initial state is α0 = (⊲, ∅)#(⊳, ∅). Now, we lift the notion of events to
extended events of a state in this new automaton. An extended event of α ∈ Γ∗
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is a pair (e, α1(u, c)) where e ∈ Eu and α1(u, c) � α. We say that the extended
event (e, α1(u, c)) is

• executed in α if e ∈ c and

• enabled in α if the following hold:

(E1) it has not been executed, i.e, e 6∈ c,

(E2) all events within the node which are below it (in the partial order) have
been executed, i.e, for all e′ ∈ Eu with e′ <u e, we have e′ ∈ c

(E3) and if e belongs to process p, then all p-events on any node occurring
before this node in α have been executed, i.e, if e ∈ Eu

p then for all

α′
1(u

′, c′) � α1, we have Eu′

p ⊆ c′.

An extended node (u, c) is said to be completed if c = Eu. Note that (⊲, ∅) and
(⊳, ∅) are completed by default. A state α is final if it is a sequence of completed
nodes.

We will need some notations to describe the set of processes that participate in
node, path or a state. First, for a node u ∈ V , OProc(u) = {p ∈ Proc | Eu

p 6= ∅}
denotes the set of processes that participate (occur) in u. This is extended to V ∗

as a morphism. Also, with OProc(u, c) = OProc(u) and OProc(#) = ∅ it extends
to Γ∗. In addition, for β ∈ Γ∗, EProc(β) denoting the set of executed events in β,
is given by the morphism defined by EProc((u, c)) = {p ∈ Proc | Eu

p ∩ c 6= ∅},
EProc(#) = ∅.

Now, the transitions can be defined by saying that at any state we can choose
to execute an enabled event or add a new (extended) node to the state and then
we must execute an enabled event on the new node. In fact, we always add a node
by inserting it in a #.

Let us now define the node insertion operation which tells us how a node is
inserted in a gap. Formally, this is defined as a macro α1#α2

u
−→ α′

1(u, ∅)α
′
2 which

is said to hold if

(I1) for every process that participates in u, there is no executed event in the
segment α2 on that process, i.e, OProc(u) ∩ EProc(α2) = ∅.

(I2) α′
1 ∈ {α1, α1#} and if α′

1 = α1 then α1 = α′′
1(v, c) and v → u in G.

(I3) α′
2 ∈ {α2,#α2} and if α′

2 = α2 then α2 = (v, c)α′′
2 and u→ v in G.

Now, using this macro we can define the transition relation as follows. Formally,
α

ϕ,a
−−→ α′ is a transition in C#

G
if there exists β = β1(u, c)β2 and an extended event

(e, β1(u, c)) enabled in β such that

• one of the two following conditions hold:
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(i) either β = β1(u, c)β2 = α, i.e, the enabled event is already present in
the current state,

(ii) or α = α1#α2
u
−→ β1(u, ∅)β2 = β. Hence, c = ∅, β1 ∈ {α1, α1#} and

β2 ∈ {α2,#α2}

• and all the below conditions hold:

(T1) a = λu(e)

(T2) the guard ϕ must check all local and edge constraints, i.e,

ϕ =

( ∧

e′∈Eu,I∈I|τu(e′,e)=I

ϕ(u, e′, e, I)

)
∧ ϕedge where, (6.5)

ϕ(u, e′, e, I) =

{
Msg−1 ∈ I if ∃p, q, p 6= q s.t. e′ <u

qp e

Yk
p ∈ I if e, e′ ∈ Eu

p , |{e
′′ ∈ Eu

p | e′ ≤u
pp e

′′ <u
pp e}| = k

(6.6)

and ϕedge =





Y1
p ∈ I if β1 = β ′

1(u
′, c′′) and for some p ∈ Proc, we have

EdgeC ((u′, u), p) = I and e = min(Eu
p )

true otherwise

(6.7)

(T3) α′ = β1(u, c
′)β2, where c

′ = c ·∪ {e}.

Observe as in the case of the automaton CG, once the state and the enabled
event which is to be executed are fixed, the transition that is taken and indeed the
state reached after the transition are uniquely determined.

We can also observe that reachable states of this system satisfy some nice
properties. To capture this we define the notion of a valid state of C#

G
.

A state α of C#
G

is said to be valid if

(V1) Every # symbol in α is surrounded by nodes from ExtNodes . Also α starts
with (⊲, ∅) and ends with (⊳, ∅).

(V2) For any two consecutive extended nodes in α, there exists an edge between
the nodes in G, i.e, for all α1(u, c)(u

′, c′) � α, we have u → u′ in G.

(V3) Executed events in α are downward closed. By this we mean that the follow-
ing two conditions are satisfied:

(a) For all α1(u, c) � α, if e ∈ c and e′ ≤u e then e′ ∈ c.

(b) For all α1(u, c)α2(u
′, c′) � α, if e ∈ Eu

p , e
′ ∈ Eu′

p for some p ∈ Proc, then
e′ ∈ c′ =⇒ e ∈ c.
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Proposition 6.14. Every state of C#
G

reachable from the initial state is valid.

Proof. First note that the initial state is valid. Now, suppose α is valid and
α

ϕ,a
−−→ α′ we want to show that α′ is valid as well. The first two properties follows

from the node-insertion definition. The third follows from the definition of an
enabled event.

We may note however that the converse is not true in general, i.e., a valid state
need not always be reachable.

Lemma 6.15. Ltw(C
#
G
) = Ltw(CG)

Proof. We consider a morphism Ψ : ExtNodes∗ → Γ∗ defined by (u, ∅) 7→ # and
(u, c) 7→ (u, c) if c 6= ∅. We also define a reduction operation which acts on Γ∗

and reduces consecutive multiple occurences of # into a single #. Formally, it is

a rewrite operation where the rule is α1##α2

redn#
−−−→ α1#α2. Then, for a state

α ∈ Γ∗, we denote by Red#(α) the state that we reach by a maximal sequence of
repeated applications of this rule. We denote by Υ, the function that, given a global
state s of QG, assigns the state of C#

G
obtained as β = (⊲, ∅)Red#(Ψ(Φ(s)))(⊳, ∅)

where Φ is the stratification function defined earlier.
Now using the above definitions, we can relate accepting paths of the global

semantics and accepting paths of the automaton C#
G
. The equality of the languages

Ltw(C
#
G
) = Ltw(CG) follows immediately.

(⇐=) Consider any global path of G, i.e,

s0
ϕ1,a1
−−−→ s1 . . . sn−1

ϕn,an
−−−→ sn

where each s i = (π, Ci). For all i ∈ {0, . . . , n}, let βi = Υ(s i). We will show that

β0
ϕ1,a1
−−−→ β1 . . . βn−1

ϕn,an
−−−→ βn

is a path of C#
G
.

Since s0 = (π, C0) is initial, C0 = ∅ which implies that β0 = (⊲, ∅)#(⊳, ∅) which
is the initial state of C#

G
. Fix 1 ≤ i ≤ n and let Φ(s i−1) = (u1, c1) . . . (um, cm) where

π = u1 . . . um. Now, the transition s i−1
ϕi,ai
−−−→ s i executes some event (e, u1 . . . uj)

which is enabled in s i−1. Then, s i = (π, Ci) with Ci = Ci−1 ·∪ {(e, u1 . . . uj)}.
There are two cases to consider:

• Either cj 6= ∅. Then we observe that βi−1 = Υ(s i−1) = α1(uj, cj)α2 where
α1 = (⊲, ∅)Red#(Ψ((u1, c1) . . . (uj−1, cj−1))) and α2 = Red#(Ψ((uj+1, cj+1) . . .
(um, cm)))(⊳, ∅). Then, we observe that (e, u1 . . . uj) is enabled in s i−1 im-
plies that (e, α1(uj, cj)) is enabled in βi−1. Thus, there exists a transi-

tion of C#
G

which executes this event, namely βi−1

ϕ′
i,ai−−−→ α1(uj, c

′
j)α2 where

c′j = cj ·∪ {e}. From Conditions (6.2–6.4) and (6.5–6.7), we deduce that
ϕ′ = ϕ. Then, Φ(s i) = (u1, c1) . . . (uj, c

′
j) . . . (um, cm) by definition of Ci and

so Υ(s i) = α1(uj, c
′
j)α2 = βi.
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• Or cj = ∅. That is, the event being executed is on a node that is not present
in βi−1. Then, there was a gap in βi−1 instead and we can write βi−1 = α1#α2

where α1# = (⊲, ∅)Red#(Ψ((u1, c1) . . . (uj, cj))). Now if cj−1 = ∅, then we
let β ′ = α1# and else β ′ = α1. Similarly if cj+1 = ∅, then we let β ′′ = #α2

and β ′′ = α2 otherwise. Then we can observe that (e, β ′(uj, ∅)) is enabled in

β ′(uj, ∅)β
′′. Also, we have α1#α2

uj

−→ β ′(uj, ∅)β
′′ since Conditions (I1), (I2)

and (I3) hold. Indeed the latter two conditions follow from above, and if
β ′ = α1 or β

′′ = α2, the presence of the edge in (I2), (I3) follows from the fact
that the corresponding nodes are consecutive in π which is a path through G.
Also if Condition (I1) is violated this would contradict the downward-closed
property of the cut Ci.

Thus there exists a transition in C#
G
, βi−1

ϕ′
i,ai−−−→ βi = β ′(uj, c

′
j)β

′′ where c′j =
{e}. As above, we conclude that ϕ′ = ϕ. Now, Φ(s i) = (u1, c1) . . . (uj, c

′
j) . . . (um, cm)

where c′j 6= ∅ and so Υ(si) = β ′(uj, c
′
j)β

′′ = βi.

Finally, since sn is a final state of CG, βn = Υ(sn) is a final state as well as it is a
sequence of completed nodes. This completes the proof in one direction.

(=⇒) For the converse consider an accepting path in C#
G
,

α0
ϕ1,a1
−−−→ α1 . . . αn−1

ϕn,an
−−−→ αn

where each αi ∈ Γ∗.
Then, αn is final if it is a sequence of completed nodes, which we write as

(⊲, ∅)(u1, c1) . . . (um, cm)(⊳, ∅). Then we claim that π = u1 . . . um is a path in G
from an initial state to a final state. This follows since this state is reachable and
therefore valid and so Property (V2) holds (and from the definition of ⊲, ⊳). Then,
we will construct the global run inductively maintaining the invariant Υ(s i) = αi

for all i ∈ {0, . . . , n}.
At i = 0, s0 = (π, C0) = (π, ∅) and Υ(s0) = (⊲, ∅)#(⊳, ∅) = α0. Suppose

we have defined till s i−1 = (π, Ci−1) such that Υ(s i−1) = αi−1, with Φ(s i−1) =

(u1, c1) . . . (um, cm). Consider αi−1
ϕi,ai−−−→ αi. Then again we have two cases:

• either the transition executes event (e, β ′
1(uj, cj)) enabled in αi−1 = β ′

1(uj, cj)β
′
2 =

β ′ where β ′
1 = (⊲, ∅)Red#(Ψ((u1, c1) . . . (uj−1, cj−1))) and β

′
2 = Red#(Ψ((uj+1, cj+1)

. . . (um, cm)))(⊳, ∅).

• Or the transition inserts a node and then executes an enabled event, i.e,
αi−1 = β1#β2 and β1#β2

u
−→ β ′

1(u, ∅)β
′
2 = β ′ and (e, β ′

1(u, ∅)) is enabled in β ′.
Then β ′

1 ∈ {β1, β1#} and β ′
2 ∈ {β2,#β2}. In π consider the first occurence of

u, say uj, which has no executed event in s i−1, i.e, Ci−1∩(E
u1...uj\Eu1...uj−1) =

∅. Thus, in this case, cj = ∅.
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Now, in both of the above cases, we claim that (e, u1 . . . uj) is enabled in s i−1.
Suppose not, choose a maximal event (e′, u1 . . . uj′) which was not executed in s i−1,
such that (e′, u1 . . . uj′) <

π (e, u1 . . . uj). This implies j′ ≤ j and in fact, we have
j′ < j since otherwise e′ <uj e which contradicts enabledness of (e, β ′

1(uj, cj)) in β
′.

Thus, e′ belongs to the same process as e. But then, there can’t be any executed
event in node uj′, since if there was, the node would occur in αi−1 and so would
contradict the fact that (e, β ′

1(uj, cj)) is enabled in β ′ by violating Condition (E3).
Now, if there was no executed event it would have been replaced by # in αi−1.
But then since we are simulating an accepting run of C#

G
, at some later transition,

node uj′ will be inserted in this #. At that stage, we would violate Condition (I1)
for node insertion since the process has seen an event, namely e to the right. Thus,
we have a contradiction.

Once again, the existence of the enabled event immediately implies that there
exists a transition that executes it in CG, namely s i−1

ϕi,ai−−−→ s i such that Ci = Ci−1 ·∪
{(e, u1 . . . uj)}. Then we can also observe that Φ(s i) = (u1, c1) . . . (uj, c

′
j) . . . (um, cm)

and c′j = cj ·∪ {e}. Thus, we conclude that Υ(si) = αi.

In fact, we can strengthen the above lemma slightly without much change in
the proof. If we restrict the above automaton to states that are both reachable
and co-reachable even then the result holds. It turns out that this property of
co-reachability is easy to capture in the automaton. Formally, we call a state α
completable if whenever α = α1(u, c)#(v, c′)α2, there is β ∈ V + such that uβv is
a path in G and OProc(β) ∩ EProc((v, c′)α2) = ∅.

Corollary 6.16. Consider the timed automaton obtained from C#
G

by restricting
to valid and completable states. Then, the timed language of this automaton is
Ltw(C

#
G
).

6.4.3 Removing completed nodes

As we mentioned earlier, from a state α we would like to obtain a finite abstraction
of α, such that

1. the set of events left to be done are the same,

2. if α = α1#α2 where α2 ∈ Γ∗, then we want to preserve the information about
the processes in EProc(α2) so that if some nodes in α2 are deleted we still
know which processes must not be inserted in this gap.

We accomplish this by enlarging the alphabet of nodes and # symbol with
subsets of processes P ⊆ Proc. The idea is that this set P keeps track of the
processes that are not allowed to participate in a node inserted on the left.

3. we preserve (do not throw away) the nodes around a # occurence in α and
also nodes that start an edge constraint which needs to be verified later.
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Formally, the set of states of our new automaton Cfin
G

will be a finite subset of
Π∗ where Π = Γ ∪ 2Proc . Then, in our definition of the morphisms earlier we need
to add OProc(P ) = P , EProc(P ) = P . Now, we define the reduction as a rewrite

operation α
redn
−−→ α′. There are two rewrite rules:

(R1) The first says that if two process sets are together they can be merged, i.e,

α1PP
′α2

redn
−−→ α1(P ∪ P ′)α2.

(R2) Now, we define the rule that removes a completed extended-node (v, c) and

replaces it by the set of processes participating in v, i.e, we have α1(v, c)α2
redn
−−→

α1OProc(v)α2 if the following hold:

(C2.1) v ∈ V , ε 6= α1 6∈ Π∗#, ε 6= α2 6∈ #Π∗ i.e, the node v is not next to a
gap or at the beginning or the end.

(C2.2) c = Ev, i.e, all events in the node have been completed,

(C2.3) and one of the two following cases hold:

(i) either α2 ∈ (v′, c′)Π∗ and then for each p ∈ Proc we must have
either Ev

p = ∅ or Ev′

p = ∅ or (c′ ∩ Ev′

p ) 6= ∅. In other words, if the
first symbol of α2 is an extended node (v′, c′) and there is an event
in both Ev

p and Ev′

p , then some event in Ev′

p has occured and so, the
edge constraint has indeed been checked,

(ii) or α2 ∈ 2ProcΠ∗ in which case there is no unchecked edge constraint.

Remark 6.17. We can observe that, in some sense, the negation of Rule (R2) is
an invariant of the reduction operation. More precisely, let α = α1(u, c)α2 be
such that we cannot apply Rule (R2) to remove node (u, c) (given by its occurence

α1(u, c) � α) and suppose α
redn
−−→ α′. This, of course, implies that (u, c) (or rather,

this occurence of (u, c)) is present in α′ as well. Then, we can easily check that we
cannot apply Rule (R2) to remove this node in α′ either.

Lemma 6.18. The rewrite system defined by the operation
redn
−−→ is confluent.

Proof. Indeed it is easy to see that if the reduction rules apply on non-adjacent
segments in a path, then they can be executed in any order. For instance, for

β 6= ε, if we have α(u, c)βPP ′γ
redn
−−→ αP ′′βPP ′γ where P ′′ = OProc(u) and

α(u, c)βPP ′γ
redn
−−→ α(u, c)β(P ∪ P ′)γ, then of course αP ′′βPP ′ redn

−−→ αP ′′β(P ∪

P ′)γ and α(u, c)β(P ∪ P ′)
redn
−−→ αP ′′β(P ∪ P ′)γ. The interesting case is when

two reduction rules apply on adjacent segments. Again, we may consider several
subcases. If one of the reductions is by applying Rule (R1), then it is easy to
handle since, in some sense, this rule does not depend on the context (i.e., the
surrounding nodes/symbols). We now explicitly illustrate the subcase when we
have two applications of Rule (R2) on adjacent nodes, i.e, let
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• α(u, c)(u′, c′)β
redn
−−→ α(u, c)P ′β where P ′ = OProc(u′) and

• α(u, c)(u′, c′)β
redn
−−→ αP (u′, c′)β where P = OProc(u).

Then, from the first reduction we get c′ = Eu′

, ε 6= β 6∈ #Π∗ and Condition (C2.3)
holds with α2 = β. Using these and observing that αP 6∈ Π∗#, we can conclude

that the first reduction is applicable after the second, i.e., αP (u′, c′)β
redn
−−→ αPP ′β.

From the second reduction we have c = Eu and ε 6= α 6∈ Π∗#. Now from these and
the fact that Condition (C2.3)(ii) holds, we can conclude that the second reduction

is applicable after the first, i.e., α(u, c)P ′β
redn
−−→ αPP ′β.

Using the above lemma we can conclude that, from any state α after any
maximal sequence of reductions, we reach the same state which we denote by

Red(α). Note that if α
redn
−−→ α′, then EProc(α) = EProc(α′) and therefore,

EProc(α) = EProc(Red(α)). In fact, from confluence, we derive some useful prop-
erties of the reduction operation,

(P1) Red(α1#α2) = Red(α1)#Red(α2).

(P2) Red(α1α2) = Red(Red(α1)α2) = Red(α1Red(α2)) = Red(Red(α1)Red(α2))

(P3) Let α = α1(u, c)α2 be such that this (u, c) (given by its occurence α1(u, c))
cannot be reduced in α, i.e., Rule (R2) cannot be applied. Then Red(α) =
γ1(u, c)γ2 where γ1(u, c) = Red(α1(u, c)) and (u, c)γ2 = Red((u, c)α2).

Proof. The first two properties are self-evident. For the third, using Remark 6.17
we deduce that (u, c) is not deleted during the reductions. Let γ1(u, c) = Red(α1(u, c))
and (u, c)γ2 = Red((u, c)α2). Then applying Property (P2) twice on α, Red(α1(u, c)α2) =
Red(Red(α1(u, c))α2) = Red(γ1(u, c)α2) = Red(γ1Red((u, c)α2)) = Red(γ1(u, c)γ2).
Now since γ1(u, c) and (u, c)γ2 are already in reduced form and (u, c) cannot be
deleted in Red(α), we obtain Red(γ1(u, c)γ2) = γ1(u, c)γ2.

The set of final states of Cfin
G

are states of the form (⊲, ∅)P (⊳, ∅) where P ⊆ Proc.

In the definition of a transition of Cfin
G

we replace the final condition (T3) with
the following condition:

(T3’) α′ = Red(β1(u, c
′)β2) where c

′ = c ·∪ {e}.

Now, if we maintain the rest of the definition of a transition of Cfin
G

to be the

same as a transition of C#
G
, we can prove that Cfin

G
is a finite MSC-ECA which

accepts the same timed language as C#
G
. We can also observe that in all reachable

states of Cfin
G
, Properties (V1), (V2) and (V3) continue to hold.

Lemma 6.19. If G is locally synchronized, then Cfin
G

as defined above is a finite
MSC-ECA.
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Proof. We show that ifG is locally synchronized, then the number of states of Cfin
G

is
finite. For this, it is enough to show that the length of each reachable, completable
state of Cfin

G
is bounded. Note that by definition in every state in every extended

node there is at least one executed event. We begin with some properties about a
loop in a state which follow from the locally synchronized assumption.

Claim 6.20. Let α(u, c)β(u, c′)γ be a valid completable state of Cfin
G
. Then if

(u, c)β is not completely executed or if # occurs in β, then EProc((u, c′)γ) (
EProc((u, c)β(u, c′)γ).

Proof. Let e ∈ c such that e ∈ Eu
p for some p ∈ Proc. Since the state α(u, c)β(u, c′)γ

is completable, for each occurence of # in β, there exists u1 . . . un ∈ V ∗ in G such
that if we replace the # by (u1, ∅), . . . (un, ∅), then we obtain a path β ′ such that
α(u, c)β ′(u, c′)γ is a valid state.

Now, we can write (u, c)β ′ = β1(v, c
′′)β2 with c′′ ( Ev. This follows, since

either there is a # in β, and so for any node (v, c′′) on the path inserted we have
c′′ = ∅, or else β ′ = β and by assumption (u, c)β is not completely executed. Now,
let e′ ∈ (Ev \ c′′) such that e ∈ Ev

p′ for some p′.

Consider the path β̂ ′ in G, obtained by restricting β ′ to its first component.

Now, as G is locally synchronized, in the communication graph ofMuβ̂′

there exists
a path from p′ to p. Then let this path be p′ = p0 → p1 → . . . → pn = p for some
n ≥ 1. We call a process q good if there is an executed event and an unexecuted
event on q in (u, c)β ′. If q is good, then q ∈ (EProc((u, c)β ′)\EProc((u, c′)γ)). We
will now show that there is some good process q ∈ {p0, . . . , pn}.

Suppose, pn = p has an unexecuted event in (u, c)β ′ then it is good and we are
done. Otherwise, p must have completed its events in (u, c)β ′ and so it must have
received a message from pn−1. Therefore, pn−1 has also taken part in (u, c)β ′ since it
must have sent the message that was received by pn. Now if pn−1 has another event
in (u, c)β ′ which is unexecuted, then it is good and again we are done. Otherwise,
we repeat this argument till we reach an executed event in p0 = p′. But this implies
that p′ is good and so we are done.

Claim 6.21. If α(u, c)β(u, c′)γ is a valid state such that (u, c)β(u, c′) is completely
executed and β has no #, then α = α′#.

Proof. Since (u, c)β(u, c′) is completely executed, the first occurence of node u, i.e,
(u, c) would have been deleted unless α = α′# or β = #β ′. But since β does not
contain # the latter case is not possible and so we are done.

From the above claim we can conclude that after every two occurences of node
u in a path, there must exist a # or the segment is not completely executed.
Then, along with the previous claim this implies that we can bound the number
of occurences of a node u in a path by 2|Proc|. From which we can conclude that
we have a bound of (2|Proc|)|V | on the number of extended nodes in a path. But
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we know that each # or P ⊆ Proc must have a node u ∈ V next to it on the
left, so we can conclude that the length of the path is O(|Proc||V |). Thus Cfin

G
is

finite.

Now, we will show that the timed language accepted by Cfin
G

is the same as the

timed language accepted by C#
G
. We will accomplish this by defining a bisimulation

between the states of the abstract automata C#
G

and Cfin
G
. From this, we can

conclude that their timed languages coincide. We define the relation ; between
states of C#

G
and Cfin

G
:

α; β if β = Red(α) (6.8)

Now, we have the lemma,

Lemma 6.22. ; is a bisimulation on abstract automata C#
G

and Cfin
G

Proof. Let α be a state of C#
G

and β a state of Cfin
G

such that α ; β, i.e., β =
Red(α).

(=⇒) In one direction we start from a move α
ϕ,a
−−→ α′ in C#

G
and show that there

is a move β
ϕ,a
−−→ β ′ in Cfin

G
, where β ′ = Red(α′). There are two broad cases to

consider depending on whether the transition in C#
G

extends the path or not.

• Suppose the path is extended. Then, we have α = α1#α2
u
−→ α′

1(u, ∅)α
′
2 = α′′

where α′
1 ∈ {α1, α1#} and α′

2 ∈ {α2,#α2}. Also, there exists an extended
event (e, α′

1(u, ∅)) enabled in α′′ such that α′ = α′
1(u, c

′)α′
2 where c′ = {e}.

Then, we observe that

1. we can write β = β1#β2 where β1 = Red(α1) and β2 = Red(α2). This
follows by Property (P1).

2. we have β1#β2
u
−→ β ′

1(u, ∅)β
′
2 = β ′′ where β ′

1 ∈ {β1, β1#} and β ′
2 ∈

{β2,#β2}. Further β ′
1 = β1 if and only if α′

1 = α1 and β ′
2 = β2 if and

only if α′
2 = α2. The existence of this node insertion move follows from

the node insertion in C#
G
above since we have OProc(u)∩EProc(α2) = ∅,

which implies that OProc(u) ∩ EProc(β2) = ∅ (since β2 = Red(α2)).
Notice that we also have for i ∈ {1, 2}, β ′

i = Red(α′
i) since βi = Red(αi).

3. (e, β ′
1(u, ∅)) is enabled in β ′′. Indeed, Conditions (E1), (E2) hold since

they hold for (e, α′
1(u, ∅)). And if there exists (ê, β̂(û, ĉ)) such that

e, ê are on the same process, β̂(û, ĉ) � β ′
1 = Red(α′

1) and ê 6∈ ĉ, then
β̂ ′(û, ĉ) � α′

1 for some β̂ ′. This contradicts the fact that (e, α′
1(u, ∅)) is

enabled in α′′. Therefore Condition (E3) holds as well.

Then by definition of a transition, we have β
ϕ′,a
−−→ β ′ = Red(β ′

1(u, {e})β
′
2)

which executes this enabled event in Cfin
G
.
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Now, we show that the same guard is used, i.e., ϕ′ = ϕ. For this, observe that
ϕ = ϕedge and ϕ′ = ϕ′edge since there are no local-constraints. Now ϕedge =
(Y1

p ∈ I) for some p ∈ Proc if and only if e = min(Eu
p ), α

′
1 = α1 = α′′

1(u
′, c′′),

EdgeC ((u′, u), p) = I. But now, the node u′ cannot be removed during the
reduction of α since it is next to a #, so we have β ′

1 = β1 = β ′′
1 (u

′, c′′) which
implies that we have the constraint ϕ′edge = (Y1

p ∈ I).

Finally, we will be done with this case if we show that Red(α′) = β ′. We have
β ′ = Red(β ′

1(u, c
′)β ′

2) = Red(Red(α′
1)(u, c

′)Red(α′
2)). But by Property (P2)

this is equal to Red(α′
1(u, c

′)α′
2) = Red(α′) and so we are done.

• Else, it was not extended then there exists an enabled event (e, α1(u, c)) in

α which is executed in the transition α
ϕ,a
−−→ α′, where α = α1(u, c)α2, α

′ =
α1(u, c

′)α2 with c′ = c ·∪ {e} and ϕ is defined by Equation (T2). Then
(u, c) is not completely executed and so it cannot be reduced in α. Thus by
Property (P3), β = Red(α) = γ1(u, c)γ2, where γ1(u, c) = Red(α1(u, c)) and
(u, c)γ2 = Red((u, c)α2). Now, (e, γ1(u, c)) is enabled in β, since (e, α1(u, c))
was enabled in α, and Conditions (E1),(E2) and Condition (E3) follow as in
the previous case. That is, if there exists (ê, β̂(û, ĉ)) such that β̂(û, ĉ) � γ1,
then β̂ ′(û, ĉ) � α1 for some β̂ ′.

Thus, there exists a transition β
ϕ′,a
−−→ β ′ that executes (e, γ1(u, c)) in Cfin

G
.

Again we check that ϕ′ = ϕ. This follows as in the previous case except that
we also need to check local constraints in ϕ′. But as the guards are local
to the node (u, c) which is not deleted in β, this follows directly from the
definition.

It remains to show that Red(α′) = β ′. Since α′ = α1(u, c
′)α2 is such that

c ( c′ ⊆ Eu, we have Red(α′) = Red(α1(u, c
′)α2) = Red(γ1(u, c

′)γ2) = β ′.
This follows because, every reduction that can be performed on α can be
performed on α′ and so performing a maximal sequence of reductions on α′

is equivalent to performing all the reductions on α and then again perhaps
performing a few more if the resulting state is not fully reduced (due to events
in (c′ \ c)).

(⇐=) For the other direction, the result follows by observing that the enabled event
that gets executed in the infinite system C#

G
is obtained from the corresponding

event in the finite system Cfin
G
. More formally, we assume that β

ϕ,a
−−→ β ′ is a

transition in Cfin
G

and show that there is a transition α
ϕ,a
−−→ α′ in C#

G
.

Let the transition in Cfin
G

execute the event (e, β1(u, c)) enabled in β = β1(u, c)β2.
Indeed there is another case where the executed event is not in β and so we need
to perform a node insertion before we obtain the enabled event. But as this case
follows by the same arguments (and is in fact simpler due to presence of #), we
only consider the first case.
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Let α1(u, c
′′) be the least prefix of α such that e 6∈ c′′. Then (u, c′′) is not

removed by the reduction operation. Since β = Red(α) and (e, β1(u, c)) is enabled
in β, we deduce from (E3) that c′′ = c and Red(α1(u, c)) = β1(u, c). Now we
claim that (e, α1(u, c)) is enabled in α. Conditions (E1),(E2) hold since they
hold for (e, β1(u, c)). Suppose Condition (E3) did not hold, then for p ∈ Proc
such that e ∈ Eu

p , there exists an event (e′, α̂1(v, c
′)) with e′ ∈ (Ev

p \ c′) and

α̂1(v, c
′) � α1. Again, Red(α̂1(v, c

′)) = β̂1(v, c
′) ≺ β1 (since (v, c′) cannot be

removed by reductions). But then e′ ∈ (Ev
p \c

′) is a contradiction of Condition (E3)
on (e, β1(u, c)). Thus all the conditions hold and (e, α1(u, c)) is enabled in α.

Thus, we can conclude that there is a transition that executes (e, α1(u, c)) in

C#
G
, i.e., α

ϕ′,a
−−→ α′. The fact that ϕ′ = ϕ and β ′ = Red(α′) follows exactly as in

the previous direction so we are done.

Corollary 6.23. Ltw(C
fin
G
) = Ltw(C

#
G
)

Proof. From the above bisimulation at the symbolic level of paths, we deduce easily
that the timed language of C#

G
is equal to the timed language of Cfin

G
.

This completes the proof of the main theorem of this section.

Proof of Theorem 6.12. Given a locally synchronized TCMSG G, consider the
finite MSC-ECA Cfin

G
. Then, by using the above corollary, Lemma 6.15 and

Lemma 6.10, we conclude that Ltw(C
fin
G
) = Ltw(G).

6.5 Solving the consistency problem

Now, we are in a position to solve the consistency problem introduced in the
beginning of this chapter. Indeed, the hard work for this has already been done.
From the set-up that we have established in the previous sections, we can easily
deduce our result.

Theorem 6.24. For a locally synchronized TCMSG G and a TMPA A, the con-
sistency problem for G and A is decidable, i.e., it is decidable to check if for all
T ∈ Ltime(A), there exists some M ∈ LTC (G) such that T realizes M.

Proof. The basic idea is to obtain the complement of the language accepted by the
MSC-ECA Cfin

G
by applying the determinization procedure for MSC-ECA. Recall

that if A is a TMPA, then its global semantics is defined in terms of the timed
automaton BA. Indeed, we have the property that T ∈ Ltime(A) if and only if
there exists σ ∈ Ltw(BA) such that σ is timed linearization of T .

Using this, we may conclude thatA is consistent with G if and only if Ltw(BA)∩

Ltw(C
fin
G
) = ∅. Now, we compute the complement of Ltw(C

fin
G
). For this, we apply

the universal automaton construction detailed in Section 6.2 to the MSC-ECA Cfin
G
.
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Then, by choosing the accept states in the universal automaton to be all those
states that do not contain a final state of Cfin

G
, we obtain by Corollary 6.8, an

MSC-ECA C1 for the complement language.
It remains to define an equivalent finite timed automaton so that we can con-

clude that emptiness checking is decidable. Let B ∈ N>0 be such that each σ ∈ Cfin
G

is B-bounded. As in the proof of Corollary 6.13, the existence of this bound follows
from the fact that G is locally synchronized.

Now, consider the timed automaton BB
C1

obtained by applying the construction
described in Section 6.2.1 on the MSC-ECA C1. Further, we fix the set of final
states to be the union of the states mentioned in Corollary 6.5(1) and (2). That is,
all states of BB

C1
whose first components are final states of C1 are final states and

⊥ is a final state as well.
Let σ be a timed word. Since C1 is complete (which follows from the universality

property), if σ is not well-formed or B-bounded, by Corollary 6.5(2) (or rather
Remark 6.2), it reaches ⊥ and is therefore accepted. Otherwise, by Corollary 6.5(1)
σ is accepted by BB

C1
if and only if it is accepted by C1.

Now observing that C1 accepts all timed words that are not well-formed or
B-bounded, we conclude that Ltw(B

B
C1
) = Ltw(C1). Thus, we have defined a finite

timed automaton that recognizes Ltw(C
fin
G
) which means that checking its intersec-

tion with Ltw(BA) is decidable. Thus we conclude that it is decidable to check if
A is consistent with G.

6.6 Solving the coverage problem

LetG = (G,LTC,Φ,EdgeC ) be a TCMSG andA = ({Ap}p∈Proc ,∆, F,Z) a TMPA.
We recall that the coverage problem for G and A is to determine whether for each
TCMSC M ∈ LTC (G), there is a TMSC T ∈ Ltime(A) such that T realizes M.

Our strategy for the solution is as follows. Note that every TCMSC M ∈
LTC (G) is uniquely defined by the path followed in G to obtain it. We record the
set of paths in G that can be witnessed by the TMPA A by synchronizing A with
Cfin
G
. Comparing this set to the set of all paths in G, we obtain a solution to the

coverage problem.
For recording a path, our strategy is to emit the sequence of nodes visited by

the path. However, if a process, say p, does not participate in a node u but does
participate in the next node v in the path, then by this strategy, we may emit v
before u. Thus, we additionally need to handle the out of order emission of node
labels. The problem is that, instead of a single node u, we could have a loop
(which is still locally synchronized) in which p does not participate. In this case,
it becomes very hard to recover the actual path traversed from the sequence of
nodes emitted.
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One way to get around this problem is by introducing a structural restriction
on the TCMSG forbidding such behaviour. We propose a natural restriction that
handles this in the following section.

6.6.1 Event-saturated TCMSGs

Definition 6.25. A locally synchronized TCMSG G is said to be event-saturated
if in every node of G there is an event present on each process.

Example 32. We can observe that the TCMSG considered in Figure 6.1 is event-
saturated as every process participates in each node of the graph.

Now we see why coverage is easier to establish for event-saturated TCMSGs.
Intuitively, every move α

ϕ,a
−−→ α′ in C#

G
or Cfin

G
between reachable and completable

states, either executes an event in α or extends the current path by exactly one
node. Formally,

Proposition 6.26. Let G be an event-saturated TCMSG and C#
G

and Cfin
G

be the
associated MSC-ECA as defined in Sections 6.4.2 and 6.4.3, respectively. Then,
all reachable and completable states of C#

G
and Cfin

G
are of the form (⊲, ∅)α#(⊳, ∅)

or (⊲, ∅)α(⊳, ∅) where α ∈ (ExtNodes)∗. Further, if α = (u1, c1) . . . (um, cm), then
u1 . . . um is a path in G.

Proof. For any node u, we have OProc(u) = Proc. Thus in any node insertion
move α1#α2

u
−→ α′

1(u, ∅)α
′
2, by Condition (I1) we infer that EProc(α2) = ∅ which

implies that α2 = (⊳, ∅). In addition, from the fact that the state is completable
we obtain α′

1 = α1 and α′
2 = #(⊳, ∅) or α′

2 = (⊳, ∅). Thus, from this and by
Condition (I2), (I3) it follows that the node insertion extends the path with a
single node. Thus, any move either executes an event in the current path or it
is a node insertion which extends the path with a single node. Finally, when a
reduction is applied in Cfin

G
, it always removes the leftmost node (which is not

the endpoint (⊲, ∅)) in the current path. This follows from the definition of the
reduction rules. Hence, we conclude that any completable state reached defines a
path in G and the proposition follows.

Remark 6.27. As observed earlier, each run of C#
G

or Cfin
G

defines a path through
G. In this case, as each process occurs in each node of G, we can further infer that
each process visits all the nodes in the path traced out by the run in the same
order.

6.6.2 Coverage for event-saturated TCMSGs

Recall that our proof strategy is to record the paths that A can follow in G by
constructing a product of G and A. We enlarge the communication actions in Act
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to include the set of nodes in G. Then, we build a product of the global timed
automaton obtained from A and the timed automaton obtained from Cfin

G
thus

synchronizing the runs of A with the runs of Cfin
G
. The language of the resulting

timed automaton would be the set of all runs of the TMPA that are consistent with
some run of the TCMSG. Now, in this automaton, using our enlarged alphabet,
we emit the nodes seen along these runs.

Finally, we use the region construction [5] to obtain an untimed regular lan-
guage Untime(Ltw(B)) ⊆ (Act ∪ Q)∗. This language projected onto the alphabet
Q precisely describes the set of all paths in G that are covered by some run of A.

The product construction Formally, we recall the product construction which
gives a timed automaton Bprod

G,A accepting the intersection of two timed languages
Ltw(A) and Ltw(G). We start with a bounded TMPA A = ({Ap}p∈Proc ,∆, F,Z)
and consider its global finite timed automaton BA as defined in Section 3.2, where
sA denotes a state of BA. Similarly from the locally synchronized TCMSG G =
(G,LTC ,Φ,EdgeC ) we obtain the finite state timed automaton BG by using Corol-
lary 6.13. We let sG be a state of BG. Without loss of generality, we assume that
the set of clocks used by BG and BA are disjoint.

Then, any state of the product automaton is of the form (sA, sG). The set of
clocks is the union of the set of clocks of BA and BG.

A transition is of the form (sA, sG)
ϕ,a,R
−−−→ (s ′A, s

′
G
) where

• ϕ = ϕ1 ∧ ϕ2 and R = R1 ∪ R2, for some ϕ1 ∈ Form(ZA), ϕ2 ∈ Form(ZG)

• (sA, ϕ1, a, R1, s
′
A) is a global transition of BA

• (sG, ϕ2, a, R2, s
′
G
) is a global transition of BG

It then follows that

Lemma 6.28. Ltw(B
prod
G,A ) = {σ | σ is a timed linearization of T ∈ Ltime(A) and

T realizes some M ∈ LTC (G)}

Proof. This follows from Corollary 6.13 and the definition of acceptance of T by
the TMPA A.

Now, we modify the construction by considering the alphabet Σ = Act × (Q ∪
3) where Q is the set of nodes of G and 3 is an extra symbol. The set of
states and clocks are the same as before. We redefine the transitions as follows:

(sA, sG)
ϕ,(a,b),R
−−−−−→ (s ′A, s

′
G
) is a transition if (sA, sG)

ϕ,a,R
−−−→ (s ′A, s

′
G
) is a transition of

the product automaton and

b =

{
q if (sG, ϕ2, a, R2, s

′
G
) and s ′

G
extends sG by the node q ∈ Q

3 otherwise
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The soundness of the above definition follows from Remark 6.27. Let us call
this new timed automaton Bcov

G,A. Then,

Lemma 6.29. Ltw(B
cov
G,A) = {σ ∈ TWAct×(Q∪3) | σ = ((a1, b1), t1) . . . ((an, bn), tn)

such that (a1, t1) . . . (an, tn) is a linearization of a TMSC T ∈ Ltime(A) that realizes
the TCMSC Mbi1 ...bim

∈ LTC (G) where bi1 . . . bim is the projection of b1 . . . bn onto
Q}.

Proof. Consider the timed language obtained by projecting Ltw(B
cov
G,A) onto its

first component. That is, we define, L1
tw(B

cov
G,A) = {(a1, t1) . . . (an, tn) ∈ TWAct |

there exists σ = σ1 . . . σn ∈ Ltw(B
cov
G,A) such that ∀i ∈ {1, . . . , n}, σi = ((ai, bi), ti)}.

Then, this language coincides with the language of Bprod
G,A defined above, i.e, we have

L1
tw(B

cov
G,A) = Ltw(B

prod
G,A ). Thus, by Lemma 6.28, (a1, t1) . . . (an, tn) ∈ Ltw(B

prod
G,A ) if

and only if it is a timed linearization of some TMSC that realizes a TCMSC
M ∈ LTC (G).

Now, consider L2
tw(B

cov
G,A) = {b1 . . . bn ∈ (Q∪{3})∗ | there exists σ = (σ1 . . . σn) ∈

Ltw(B
cov
G,A) such that ∀i ∈ {1, . . . , n}, σi = ((ai, bi), ti)}. Then, from Proposi-

tion 6.26 and the translation in Section 6.2.1, it follows that L2
tw(B

cov
G,A) lists out

the nodes of G in the order in which they are traversed by Bprod
G,A . Therefore by pro-

jecting L2
tw(B

cov
G,A) onto Q (i.e., by erasing 3), we obtain the actual path through

G that corresponds to the run of Bcov
G,A. In other words, the path bi1 . . . bim ob-

tained by projecting b1 . . . bn to Q is exactly the path that generates the TCMSC
M ∈ LTC (G), which completes the proof.

We define L2
Q(B

cov
G,A) = {b1 . . . bn ∈ Q∗ | there exists w ∈ Untime(Ltw (B

cov
G,A))

such that w projected on its second component and projected onto the alphabet
Q gives b1 . . . bn}.

To check coverage, we just need to verify that the node language of G, LQ(G) =
{q0q1 . . . qn ∈ Q∗ | q0 → q1 → · · · → qn is a run}, is included in L2

Q(B
cov
G,A). This

would imply that for every path π through G, the TCMSC Mπ is realized by some
TMSC in Ltime(A).

Lemma 6.30. If LQ(G) ⊆ L2
Q(B

cov
G,A), then for all M ∈ LTC (G), there exists

T ∈ Ltime(A) such that T realizes M.

Proof. M ∈ LTC (G) implies that M = Mπ for some path π ∈ LQ(G). But then
π ∈ L2

Q(B
cov
G,A) which implies by definition that there exists σ ∈ Ltw(B

cov
G,A) such

that Untime(σ) projected onto Q is π. But then by Lemma 6.29, we are done
since σ projected onto the first component gives us the witness.

For the converse, however, there is a slight complication. Some paths in G

may define TCMSCs that cannot be realized, because of self-contradictory timing
constraints. Therefore, it is not enough to directly compare LQ(G) with L2

Q(B
cov
G,A).

The solution is straightforward: we start with the trivial automaton AU that

111



recognizes Act∗, which can be regarded as a degenerate timed automaton with no
timing constraints. To AU , we apply the same construction as we have done for A.
The resulting timed automaton Bcov

G,AU
will mark out all paths π throughG for which

Mπ can be realized by some TMSC. Hence, checking that every realisable path is
witnessed by A amounts to checking that L2

Q(B
cov
G,AU

) is included in L2
Q(B

cov
G,A).

Lemma 6.31. L2
Q(B

cov
G,AU

) ⊆ L2
Q(B

cov
G,A) if and only if for all M ∈ LTC (G) there

exists T ∈ Ltime(A) such that T realizes M.

Since both L2
Q(B

cov
G,AU

) and L2
Q(B

cov
G,A) are regular languages, the result follows.

Theorem 6.32. For an event-saturated locally synchronized TCMSG G and a
TMPA A, the coverage problem for G and A is decidable, i.e, it is decidable to
check if for all M ∈ LTC (G), there exists T ∈ Ltime(A) such that T realizes M.
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Part II

Changing the model
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7
Distributed Timed Automata with

Independently Evolving Clocks

In the previous chapters, while considering systems with time and concurrency, we
have always restricted ourselves to a uniform global time over all the constituent
processes. In some sense, we have concentrated on the distributed behaviour of
the systems and then incorporated timing as an additional feature.

In this chapter, we would like to concentrate on the distributed behaviour of
systems where time itself plays a more important, synchronizing role. In other
words, we want to focus on distributed systems where each constituent process
can have a different time evolution. This allows us to ask questions like, can we
use clocks as a synchronization tool between processes, what global behaviours can
such a system exhibit or deny and so on.

As a first step towards this goal, we introduce a model of a system that allows
different constituent processes to evolve at different time rates. In order to focus
our attention on time as a tool to enforce/exhibit synchronization, we only consider
the untimed global (sequential) behaviours. As mentioned in the introduction, this
differentiates our approach from the earlier ones which consider timed semantics.
Indeed we avoid giving a timed semantics, as it would involve introducing global
time in some way. However, in the conclusion section, we will give pointers to future
extensions where we might consider partial order (but still untimed) behaviours as
well.

7.1 The model

Let us recall the notion of timed automata [5] as defined in the preliminaries
chapter. These will constitute the building blocks of our distributed timed au-
tomata. A finite timed automaton is a tuple B = (S,Σ,Z, δ, Inv , ι, F ) where S
is a finite set of states, Σ is the alphabet of actions, Z is a finite set of clocks,
δ ⊆ S × Σε × Form(Z) × 2Z × S is the finite set of transitions, Inv : S → (Z)
associates with each state an invariant, ι ∈ S is the initial state, and F ⊆ S is the
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Bp: s0 s1 s2
y ≤ 1, a a, {x}

Bq: r0 r1 r2

y ≤ 1
x ≥ 1, b 0 < x < 1, b

Figure 7.1: A distributed timed automaton over {p, q}

set of final states. We let Reset(B) = {x ∈ Z | there is (s, ϕ, a, R, s′) ∈ δ such that
x ∈ R} be the set of clocks that might be reset in B. Without loss of generality,
we will assume in this chapter that Inv(ι) is satisfied by the clock valuation over
Z that maps each clock to 0.

We will now extend the above definition to a distributed setting. First, we fix
a non-empty finite set Proc of processes (unless otherwise stated). For a tuple t
that is indexed by Proc, tp refers to the projection of t onto p ∈ Proc.

Definition 7.1. A distributed timed automaton (DTA) over the set of processes
Proc is a structure D = ((Bp)p∈Proc , π) where Bp = (Sp,Σp,Zp, δp, Invp, ιp, Fp) are
finite timed automata such that the alphabets Σp are pairwise disjoint and π is
a (total) map from

⋃
p∈Proc Zp to Proc such that, for each p ∈ Proc, we have

Reset(Bp) ⊆ π−1(p) ⊆ Zp.

Note that Zp refers to the set of clocks that might occur in the timed automaton
Bp, either as clock guard or reset. The same clock may occur in both Zp and Zq,
since it may be read as a guard in both processes. However, any clock evolves
according to the time evolution of some particular process. This clock is then said
to belong to that process, and the owner map, π, formalizes this in the above
definition. This will become more clear when we describe the formal semantics
later in this section. Finally, we assume that a clock can only be reset by the
process it belongs to.

Example 33. Suppose Proc = {p, q}. Consider the DTA D as given by Figure 7.1.
It consists of two timed automata, Bp and Bq with Zp = Zq = {x, y}. In both
automata, we suppose all states to be final. Moreover, the owner map π assigns
clock x to process p and clock y to process q. Note that Reset(Bp) = {x} and
Reset(Bq) = ∅. Before we define the semantics of D formally and in a slightly
more general setting, let us give some intuitions on the behavior of D. If both
clocks are completely synchronized, i.e., they follow the same local clock rate, then
our model corresponds to a standard network of timed automata [18]. For example,
we might execute a within one time unit, and at time 1, execute b, ending up in
the global state (s1, r1) and clock valuation ν(x) = ν(y) = 1. If we now wanted to
perform a further b, this should happen instantaneously. But this also requires a
reset of x in the automaton Bp and, in particular, a time elapse greater than zero,
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global time

loc time

τp

τq

global time

τp

τq

Figure 7.2: Examples of local time rate functions

violating the invariant at the local state r1. Thus, the word abab will not be in the
semantics that we associate with D wrt. synchronized local-time evolution. Now
suppose clock y runs slower than clock x. Then, having executed ab, we might
safely execute a further a while resetting x and, then, let some time elapse without
violating the invariant. Thus, abab will be contained in the existential semantics,
as there are local time evolutions that allow for the execution of this word. Observe
that a and aa are the only sequences that can be executed no matter what the
relative time speeds are: the guard y ≤ 1 is always satisfied for a while. But we
cannot guarantee that the guard x ≥ 1 and the invariant y ≤ 1 are satisfied at
the same time, which prevents a word containing b from being in the universal
semantics of D.

The semantics The semantics of a DTA depends on the (possibly dynamically
changing) time rates at the processes. To model this, we assume that these rates
depend on some absolute time, i.e., they are given by a tuple τ = (τp)p∈Proc of
functions τp : R≥0 → R≥0. Thus, each local time function maps every point in
global time to some local time instant. Then, we require (justifiably) that these
functions are continuous, strictly increasing, and divergent. Further, they satisfy
τp(0) = 0 for all p ∈ Proc. The set of all these tuples τ is denoted by Rates . We
might also consider τ as a mapping R≥0 → (R≥0)

Proc so that, for t ∈ R≥0, τ(t)
denotes the tuple (τp(t))p∈Proc .

By superimposing the local time rate maps for each process on the same graph,
we can represent τ pictorially, as in Figure 7.2. Thus, in the first picture, clocks on
process p evolve steadily faster than clocks on process q. Whereas, in the second
picture, the clocks on process q are initially faster than clocks on process p but
start to lag behind them after some time.

Now, a distributed system can usually be described by an asynchronous product
of automata. In the case of DTA, the semantics can be defined using such a product
and a mapping that assigns any clock to its owner process. For this, we start by
introducing the following more general model, with a unified state space, for which
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s0

s1

s2

s3
t1

t2

a

0 < x < 1
∧ 0 < y < 1

a

0 < x < 1
∧ 0 < y < 1

b

y ≤ 1 ≤ x

b

x < 1 = y

b

y ≤ 1 ≤ x

c

x < 1 < y

Figure 7.3: An icTA B with independent clocks x and y

it will be easier to define the semantics.

Definition 7.2. A timed automaton with independently evolving clocks (icTA)
over Proc is a tuple B = (S,Σ,Z, δ, Inv , ι, F, π) where (S,Σ,Z, δ, Inv , ι, F ) is a
timed automaton and π : Z → Proc maps each clock to a process.

Now, we would like to define a run of an icTA. Intuitively, this is done in
the same spirit as a run of a timed automaton over a timed word except for one
difference. The time evolution, though according to absolute time, is perceived
by each process as its local time evolution. Let B = (S,Σ,Z, δ, Inv , ι, F, π) be an
icTA. Then, given a clock valuation ν : Z → R and a tuple t ∈ RProc , the valuation
ν + t is defined by (ν + t)(x) = ν(x) + tπ(x) for all x ∈ Z.

Thus, for τ ∈ Rates , we define a τ -run of B as a sequence

(s0, ν0)
a1,t1
−−→ (s1, ν1)

a2,t2
−−→ (s2, ν2) · · · (sn−1, νn−1)

an,tn
−−−→ (sn, νn)

where n ≥ 0, si ∈ S, ai ∈ Σε, and (ti)1≤i≤n is a non-decreasing sequence of values
from R≥0. Further, νi : Z → R≥0 with ν0(x) = 0 for all x ∈ Z. Finally, for
all i ∈ {1, . . . , n}, there are ϕi ∈ Form(Z) and Ri ⊆ Z such that the following
conditions hold:

(si−1, ϕi, ai, Ri, si) ∈ δ (7.1)

νi−1 + τ(t′)− τ(ti−1) |= Inv(si−1) for each t′ ∈ [ti−1, ti] (7.2)

νi−1 + τ(ti)− τ(ti−1) |= ϕi (7.3)

νi = (νi−1 + τ(ti)− τ(ti−1))[Ri → 0] (7.4)

νi |= Inv(si) (7.5)

In this case, we write (B, τ) : s0
a1·...·an−−−−→ sn or also (B, τ) : s0

a1·...·ai−−−−→ si
ai+1·...·an
−−−−−→

sn to abstract from the time instances. The latter thus denotes that B can, reading
w, go from s0 via si to sn, while respecting the local-time rates τ .

Definition 7.3. Let B = (S,Σ,Z, δ, Inv , ι, F, π) be an icTA and τ ∈ Rates. The
language of B wrt. τ , denoted by L(B, τ), is the set of words w ∈ Σ∗ such that
(B, τ) : ι

w
−→ s for some s ∈ F . Moreover, we define L∃(B) =

⋃
τ∈Rates L(B, τ)

to be the existential semantics and L∀(B) =
⋂

τ∈Rates L(B, τ) to be the universal
semantics of B.
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(s1, r1), {a}

y ≤ 1

(s1, r1), {a, b}

y ≤ 1

(s1, r1), ∅

y ≤ 1

(s0, r0) (s0, r1), {b}

y ≤ 1

(s0, r1), ∅

y ≤ 1

(s1, r1), {b}

y ≤ 1
(s1, r1)

y ≤ 1

(s0, r1)

y ≤ 1

(s1, r0), {a} (s1, r0), ∅ (s1, r0)

y ≤ 1 ∧ x ≥ 1, ε

{z}

x ≥ 1, ε

{z}

y ≤ 1, ε
{z}

b

a

b

a

a

b

z ≤ 0, ε

z ≤ 0, ε

z ≤ 0, ε

(T1) (T2) (T3)

Figure 7.4: Part of the icTA BD for the DTA D from Figure 7.1

If |Proc| = 1, then an icTA B actually reduces to an ordinary timed automaton
and we have L∀(B) = L(B, τ) = L∃(B) for any τ ∈ Rates . Moreover, if |Proc| ≥ 1
and τ ∈ Rates exhibits, for all p ∈ Proc, the same local time evolution, then
L(B, τ) is the untimed language of B considered as an ordinary timed automaton.

Example 34. Consider a sample icTA B over the set of processes {p, q} and Σ =
{a, b, c} as depicted in Figure 7.3. Assuming π(x) = p and π(y) = q, we have
L(B, id) = {a, ab, b}, where idp is the identity on R≥0 for all p ∈ Proc (i.e., id
models synchronization of any process with the absolute time). And we observe
that L∀(B) = {a, ab}, L∃(B) = {a, ab, b, c}.

Now, we define the semantics of a DTA in terms of an associated icTA. This is
obtained by taking a product of the components of the DTA which is slightly more
complicated than a direct asynchronous product, in the sense that it simulates the
simultaneous firing of independent actions (as in the DTA).

Thus, given a DTA D = ((Bp)p∈Proc , π) with Bp = (Sp,Σp,Zp, δp, Invp, ιp, Fp),
we associate an icTA, BD = (S,Σ,Z, δ, Inv , ι, F, π) as defined below. The set of
states of S consists of the product of the set of all local states Sp. In addition,
we add states of the form (s, A) where s is a product of local states and A ⊆ Σ
is a set of actions. Intuitively, from a given configuration of a DTA, we guess the
set of processes P ⊆ Proc, that may decide to fire an action (independently) and
collect these actions into the set A. Now, we use a clock invariant to ensure that
the icTA can simulate all these actions, in any order, without time elapsing in
between. Formally, S = (

∏
p∈Proc Sp) ∪

(
(
∏

p∈Proc Sp)× 2Σ
)
.
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Now the alphabet is the disjoint union Σ =
⊎

p∈Proc Σp, but for the clocks, we
add one extra clock Z =

⋃
p∈Proc Zp ∪ {z} where z 6∈ Zp for all p ∈ Proc. We will

use this clock to ensure that some transitions occur instantaneously, i.e, without
any time elapse. Thus, with our assumption stating that if time elapses, then it
must elapse in all processes, we can assume z to belong to any process, i.e, π(z)
to be arbitrary.

We define the state invariants as Inv(s) =
∧

p∈Proc Invp(sp), Inv(s, A) = Inv(s).
Also, ι = (ιp)p∈Proc , and F =

∏
p∈Proc Fp. Then, the transitions in BD are of three

types:

(T1) The first type is an ε-move which guesses the set of processes of the DTA
that will move next and the transitions that each of them would perform. In
addition it checks the guard that each of them must satisfy and resets the
clocks as well. Thus, (s, ϕ, ε, R, (s′, A)) ∈ δ if there exists a set of processes
P ⊆ Proc and transitions (sp, ϕp, ap, Rp, s̃p) ∈ δp for each p ∈ P such that,

• s = (sp)p∈Proc ∈ S

• ϕ =
∧
p∈P

ϕp,

• R =
⋃
p∈P

Rp ∪ {z},

• s′p = s̃p for p ∈ P , s′q = sq for q 6∈ P .

• A = {ap | p ∈ P} \ {ε}

(T2) This move performs an action from its guessed set A and then removes it,
i.e, ((s, A), true, a, ∅, (s, (A \ {a}))) ∈ δ for all (s, A) ∈ S and a ∈ A

(T3) This move allows to continue the simulation if all the guessed actions have
been performed without any time-elapse, i.e, ((s, ∅), z ≤ 0, ε, ∅, s) ∈ δ for all
s ∈ S.

This completes our definition of the icTA BD associated to a DTA D.

Example 35. The Figure 7.4 illustrates how this construction works on the DTA
D from Figure 7.1. The picture illustrates how each move of D is in fact split
into three phases. In the first phase, from a product of local states of the DTA,
transition T1 chooses the set of processes that may fire next. Then in the second
phase, depending on this set we have a sequence of T2 transitions. In the final
phase we have a T3 transition which results in a state which is again just a product
of local states of D. Indeed, all these three phases occur without time elapse since
clock z is reset at T1 and checked to be zero at T3.

Now we can define,
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b

b

b

b

b

b

Figure 7.5: An example of “weird” behaviour

Definition 7.4. For a DTA D and τ ∈ Rates, we set L(D, τ) = L(BD, τ) to be the
language of D wrt. τ , and we define L∃(D) = L∃(BD) as well as L∀(D) = L∀(BD)
to obtain its existential and universal semantics, respectively.

Example 36. For the DTA D that is given in Figure 7.1, we can now formalize
what we had described intuitively: L(D, id) = Pref ({aab, aba, baa}), L∃(D) =
Pref ({aab, abab, baab}), and L∀(D) = Pref ({aa}) where, for L ⊆ Σ∗, Pref (L) is
the set of prefixes of words in L.

It is worthwhile to observe that L(D, τ) can, in general, have bizarre (non-
regular) behavior, if τ is itself a “weird” function. This is one more reason to look
at the existential and universal semantics. Let us quantify this with an example.

Example 37. Consider the simple DTA D1 in Figure 7.5 over Proc = {p, q}, where
Σ = {a, b}, π(x) = p and π(y) = q. The icTA B1 depicted in Figure 7.5 is a
simplified version of BD1 where all the intermediate states and transitions have
been removed. Indeed L(B1, τ) = L(BD1, τ) = L(D1, τ) for any τ ∈ Rates . Now,
let τ = (idp, τq), where τq is any continuous, strictly increasing function such that
τq(0) = 0 and τq(n) = 2n − 0.5 for any n ≥ 1. This is seen in the adjoining
graph in Figure 7.5. Then, an a occurs at every local time unit of p (which is
the same as a unit of global time), and a b occurs at every local time unit of
q. Thus, L(B1, τ) = L(D1, τ) is the set of finite prefixes of the infinite word
bab2ab4ab8ab16a . . ., which is not a regular language.

We end this section by noting that icTAs, in fact, present a unified framework
for many variants of a shared-memory model and their semantics. For instance, in
the spirit of asynchronous automata [58], we could have considered a distributed
timed automaton to be a tuple

(
(Sp)p, (Σp)p,Z, (δa)a, (Invp)p, ι, (Fp)p, π

)
, where a
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ranges over Σ =
⋃

p∈Proc Σp, ι ∈
∏

p∈Proc Sp, and π : Z → Proc. This models a
shared-memory system: executing an action a ∈ Σ does not only affect one single
process but rather involves each process from proc(a) = {p ∈ Proc | a ∈ Σp}.
Therefore,

δa ⊆ Sa × Form(Z)× 2Za × Sa

where Sa =
∏

p∈proc(a) Sp and Za =
⋃

p∈proc(a) π
−1(p). The model from [11] corre-

sponds to such an asynchronous automaton except for two differences: (1) clocks
are local in the sense that they can only be read by those processes to which they
belong, and (2) each process comes with a distinguished clock that is never reset;
a synchronizing transition from δa can then be performed only if the special clocks
that are associated with processes from proc(a) exhibit the same value.

7.2 The existential semantics and the region ab-

straction

Given an icTA B (which might arise from some DTA D) and a set Bad of unde-
sired behaviors, it is natural to ask if B is robust against the (unknown) relative
clock speeds and faithfully avoids executing action sequences from Bad . This
corresponds to checking if L∃(B) ∩ Bad = ∅. In this section, we show that this
question is indeed decidable, given that Bad is a regular language. To this aim,
we define a partitioning of clock valuations into finitely many equivalence classes
and generalize the well-known region construction for timed automata [5].

But first, we give an alternate view of the icTA semantics as an infinite-state
transition system. Given an icTA B = (S,Σ,Z, δ, Inv , ι, F, π), we associate TS (B)
as follows: A state of TS (B) is a tuple (s, ν), where s ∈ S and ν : Z → R≥0.

Then, for a ∈ Σε, (s, ν)
a
−→ (s′, ν ′) is a transition if there exist t ∈ R≥0, τ ∈ Rates ,

ϕ ∈ Form(Z) and R ⊆ Z such that:

(s, ϕ, a, R, s′) ∈ δ (7.6)

ν + τ(t′) |= Inv(s) for each t′ ∈ [0, t] (7.7)

ν + τ(t) |= ϕ (7.8)

ν ′ = (ν + τ(t))[R → 0] (7.9)

ν ′ |= Inv(s′) (7.10)

The initial state is (s0, ν0) with s0 = ι and ν0(x) = 0 for all x ∈ Z. A state
(s, ν) is final if s ∈ F . A run of TS (B) on w = a1 . . . an ∈ Σ∗ is a sequence of
transitions,

(s0, ν0)
a1−→ (s1, ν1)

a2−→ (s2, ν2) · · · (sn−1, νn−1)
an−→ (sn, νn)

where n ≥ 0. It is accepting if sn ∈ F and in this case we say w ∈ L(TS (B)).
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Proposition 7.5. L(TS (B)) = L∃(B).

Proof. Consider w ∈ L∃(B). Then w ∈ L(B, τ) for some τ and we find an accepting
τ -run of B:

(s0, ν0)
a1,t1
−−→ (s1, ν1)

a2,t2
−−→ (s2, ν2) · · · (sn−1, νn−1)

an,tn
−−−→ (sn, νn)

with ai ∈ Σε, w = a1 . . . an and such that (7.1–7.5) hold for some ϕi ∈ Form(Z)
and Ri ⊆ Z. We show that, abstracting away from the ti’s, we obtain a run
of TS (B). For 1 ≤ i ≤ n, we define t̂i = ti − ti−1 (with t0 = 0) and τi by
τi(t) = τ(ti−1 + t)− τ(ti−1). From (7.2–7.4), we obtain

νi−1 + τi(t
′) |= Inv(si−1) for each t′ ∈ [0, t̂i] (7.11)

νi−1 + τi(t̂i) |= ϕi (7.12)

νi = (νi−1 + τi(t̂i))[Ri → 0] (7.13)

Therefore, (s0, ν0)
a1−→ (s1, ν1)

a2−→ (s2, ν2) · · · (sn−1, νn−1)
an−→ (sn, νn) is an accepting

run of TS (B) for w.
Conversely, let w = a1 . . . an ∈ L(TS (B)) and let

(s0, ν0)
a1−→ (s1, ν1)

a2−→ (s2, ν2) · · · (sn−1, νn−1)
an−→ (sn, νn)

be an accepting run of TS (B) for w. By definition, for each 1 ≤ i ≤ n, we find
t̂i ≥ 0, τi, ϕi and Ri such that (7.1,7.11–7.13,7.5) are satisfied. We define now
by induction the non-decreasing sequence (ti)0≤i≤n by t0 = 0 and ti = ti−1 + t̂i
for 1 ≤ i ≤ n. We also define τ in order to obtain a τ -run of B: for 1 ≤ i ≤ n
and t ∈ [ti−1, ti], we let τ(t) = τ(ti−1) + τi(t − ti−1); and for t ≥ tn, we let
τ(t) = τ(tn) + id(t − tn). Then, we can easily check using (7.11–7.13) that (7.2–
7.4) are satisfied. Therefore,

(s0, ν0)
a1,t1
−−→ (s1, ν1)

a2,t2
−−→ (s2, ν2) · · · (sn−1, νn−1)

an,tn
−−−→ (sn, νn)

is an accepting τ -run of B.

In order to prove that L∃(B) is regular, we define on TS (B) a bisimulation of
finite index which preserves final states. In this way, we obtain as a quotient a finite
automaton accepting L(TS (B)) = L∃(B). As one may expect, this bisimulation is
based on clock regions that we define below.

For each clock x ∈ Z, let Cx be the largest constant clock x is compared with
in guards or invariants. Let p ∈ Proc. As before, π−1(p) = {z ∈ Z | π(z) = p}
denotes the set of clocks owned by p. Given a clock valuation ν over Z, define its
p-restriction νp : π

−1(p) → R≥0 by νp(x) = ν(x) for all x ∈ π−1(p). Then, from the
classical region construction for timed automata, we obtain a notion of equivalence
∼p between two such valuations. That is, we say that νp ∼p ν

′
p if the following

hold:
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1. for each x ∈ π−1(p), νp(x) > Cx if and only if ν ′p(x) > Cx,

2. for each x ∈ π−1(p), νp(x) ≤ Cx implies both ⌊νp(x)⌋ = ⌊ν ′p(x)⌋ and
fract(νp(x)) = 0 if and only if fract(ν ′p(x)) = 0, and

3. for each pair x, y ∈ π−1(p) such that νp(x) ≤ Cx and νp(y) ≤ Cy, we have
fract(νp(x)) ≤ fract(νp(y)) if and only if fract(ν ′p(x)) ≤ fract(ν ′p(y)).

From the result on timed automata [5], each ∼p is an equivalence relation and
also a time-abstract bisimulation, i.e, if νp ∼p ν

′
p, then for all t ∈ R>0, there exists

t′ ∈ R>0, s.t., νp + t ∼ ν ′p + t′.
Now, we say that two clock valuations ν and ν ′ over Z are equivalent, denoted

ν ∼ ν ′ if they are equivalent when restricted to each process, i.e, νp ∼p ν
′
p for all

p ∈ Proc. An equivalence class of a clock valuation is called a clock region (of B).
For a valuation ν, [ν] denotes the clock region that contains ν. The set of clock
regions of B is denoted by Regions(B). The number of clock regions is finite: for
instance, from [32] we have the bound |Regions(B)| ≤ ((2C + 2)|Z| · |Z|!), where
C is the largest constant that a clock is compared with in B.

Clearly, equivalent valuations satisfy the same guards and invariants: if ν ∼ ν ′

then ν |= ϕ if and only if ν ′ |= ϕ for all ϕ ∈ Form(Z). Moreover,

Lemma 7.6 (Time-abstract bisimulation). If ν ∼ ν ′, then for all t ∈ RProc
>0 , there

exists t′ ∈ RProc
>0 such that ν + t ∼ ν ′ + t′.

Proof. Given ν, ν ′ : Z → R≥0 and t = (tp)p∈Proc then ν ∼ ν ′ implies that νp ∼p ν
′
p

for each p ∈ Proc. Then, since each ∼p is a time-abstract bisimulation, for each
p ∈ Proc, there exists t′p ∈ R>0 such that νp + tp ∼ ν ′p + t′p. Thus, defining
t′ = (t′p)p∈Proc we obtain ν + t ∼ ν ′ + t′.

This equivalence can be naturally extended to states of TS (B) by (s, ν) ∼
(s′, ν ′) if s = s′ and ν ∼ ν ′. In order to show that this defines a bisimulation on
TS (B) (Proposition 7.7), we first introduce the successor relation on regions.

Let γ and γ′ be two clock regions. We say that γ′ is accessible from γ, written
γ � γ′, if either γ′ = γ or there are ν ∈ γ, ν ′ ∈ γ′, t ∈ RProc

>0 such that ν ′ = ν + t.
Note that � is a partial-order relation. The successor relation, written γ ≺· γ′, is
as usual defined by γ � γ′, γ 6= γ′ and γ′′ = γ or γ′′ = γ′ for all clock regions γ′′

with γ � γ′′ � γ′.

Example 38. The accessible-regions relation is illustrated in Figure 7.6. Suppose
we deal with two processes, one owning clocks x1 and x2, the other owning a single
clock y. Suppose furthermore that, in the icTA at hand, all clocks are compared to
the constant 2. Consider the prisms γ0, γ1, γ2, γ

′
1, γ

′
2, each representing a non-border

clock region, which are given by the following clock constraints:

γ0 = (0 < x2 < x1 < 1) ∧ (0 < y < 1)
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Figure 7.6: Accessible and non-accessible regions

γ1 = (1 < x2 < x1 < 2) ∧ (0 < y < 1)

γ2 = (1 < x2 < x1 < 2) ∧ (1 < y < 2)

γ′1 = (0 < x2 < x1 − 1 < 1) ∧ (0 < y < 1)

γ′2 = (1 < x1 < x2 < 2) ∧ (1 < y < 2)

We have γ0 � γ1 � γ2. However, γ0 6� γ′1 and γ0 6� γ′2.

Proposition 7.7 (Bisimulation). If (s, ν) ∼ (s, ν̂) and (s, ν)
a
−→ (s′, ν ′) then

(s, ν̂)
a
−→ (s′, ν̂ ′) for some ν̂ ′ ∼ ν ′.

Proof. Assume that (s, ν)
a
−→ (s′, ν ′). Let t ∈ R≥0, τ ∈ Rates , ϕ ∈ Form(Z) and

R ⊆ Z such that (7.6–7.10) hold. Consider the successive regions γ0 ≺· γ1 ≺· · · · ≺·
γn visited along ν + τ [0 . . . t]: there is 0 = t0 < t1 < · · · < tn = t such that for
0 ≤ i ≤ n we have γi = [νi] with νi = ν + τ(ti); and moreover, for any 1 ≤ i ≤ n
and all ti−1 < t′ < ti we have ν + τ(t′) ∈ γi−1 ∪ γi.

Assume now in addition that (s, ν) ∼ (s, ν̂). We construct τ̂ such that for
each 0 ≤ i ≤ n we have P (i) : ν̂i = ν̂ + τ̂ (ti) ∼ νi. We start with τ̂(0) = 0
so that P (0) holds. Let now 1 ≤ i ≤ n and assume we have constructed τ̂ up
to ti−1 with P (i − 1). Using Lemma 7.6 we find t̂ ∈ RProc

>0 such that ν̂i−1 + t̂ ∼
νi−1 + τ(ti) − τ(ti−1) = νi. Then, define τ̂ on the interval [ti−1, ti] using a linear
interpolation so that τ̂ (ti) = τ̂ (ti−1) + t̂. We obtain ν̂i−1 + t̂ = ν̂ + τ̂ (ti) = ν̂i and
P (i) also holds. Finally, for t′ ≥ tn = t, we let τ̂ (t′) = τ̂ (tn) + id(t′ − tn).

For any 1 ≤ i ≤ n and all ti−1 < t′ < ti we have

γi−1 = [ν̂i−1] � [ν̂ + τ̂(t′)] � [ν̂i] = γi

and since γi−1 ≺· γi we obtain ν̂ + τ̂(t′) ∈ γi−1 ∪ γi. Therefore, ν̂ + τ̂ (t′) |= I(s) for
all t′ ∈ [0, t] and ν̂n = ν̂ + τ̂ (t) |= ϕ. We let ν̂ ′ = ν̂n[R→ 0] ∼ νn[R→ 0] = ν ′. We
have ν̂ ′ |= I(s′) and we deduce that (s, ν̂)

a
−→ (s′, ν̂ ′) in TS (B).

To obtain the main result of this section, it remains to consider the finite
quotient TS (B)/∼ = (S ′′,Σ, δ′′, ι′′, F ′′). A state in S ′′ is an equivalence class
[(s, ν)] and we have a transition [(s, ν)]

a
−→ [(s′, ν ′)] ∈ δ′′ whenever (s, ν)

a
−→ (s′, ν ′)
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is a transition of TS (B). The initial state is indeed ι′′ = [(ι, ν0)] where (ι, ν0) is
the initial state of TS (B). Moreover, a state [(s, ν)] is final if and only if s ∈ F .
Since the bisimulation equivalence relation ∼ on TS (B) preserves final states, we
obtain by standard (and easy) arguments:

Corollary 7.8. L(TS (B)/∼) = L(TS (B)).

The finite quotient TS (B)/∼ is not exactly what is usually called the region
automaton in the classical theory of timed automata. The main difference is that
in the region automaton, transitions are decomposed into time-elapse ε-transitions
from a region to a successor region, and discrete transitions with no time-elapse.
The other minor difference is that we use as set of states S ′ = S×Regions(B) which
is indeed isomorphic to S ′′. In particular, ι′ = (ι, [ν0]) and F

′ = F × Regions(B).
The region automaton associated with B is therefore RB = (S ′,Σ, δ′, ι′, F ′) where,
for a ∈ Σε and s, s

′ ∈ S and γ, γ′ ∈ Regions(B), δ′ contains (s, γ)
a
−→ (s′, γ′) if

• a = ε, s = s′, γ ≺· γ′, and ν ′ |= Inv(s) for some ν ′ ∈ γ′

(we then call (s, γ)
ε
−→ (s, γ′) a time-elapse transition), or

• there are ν ∈ γ and (s, ϕ, a, R, s′) ∈ δ such that ν |= ϕ ∧ Inv(s), ν[R →
0] |= Inv(s′), and ν[R → 0] ∈ γ′ (we then call (s, γ)

a
−→ (s′, γ′) a discrete

transition).

A part of the region automaton for the icTA from Figure 7.3 is shown in Figure 7.15.
It is easy to see that a sequence of time-elapse transitions followed by a dis-

crete transition of RB is a transition of TS (B)/∼. Conversely, any transition of
TS (B)/∼ can be decomposed into a sequence of time-elapse transitions followed
by a discrete transition of RB. Therefore,

Theorem 7.9. Let B = (S,Σ,Z, δ, Inv , ι, F, π) be an icTA and let C be the largest
constant a clock is compared with in B. Then, the number of states of TS (B)/∼
and of RB is bounded by |S| · (2C + 2)|Z| · |Z|! and we have

L(RB) = L(TS (B)/∼) = L(TS (B)) = L∃(B)

which is therefore a regular word language.

Now, if we are given a negative specification as a regular set Bad . Then since
L∃(B) is a regular word language, so is L∃(B)∩Bad and hence we can check empti-
ness and so on. Thus, we solved the verification problem stated at the beginning
of this section:

Theorem 7.10. Model checking icTAs wrt. regular negative specifications is de-
cidable.
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Figure 7.7: dir(τ) = 010 . . .

7.3 The universal semantics

While the existential semantics allows us to verify negative specifications, the uni-
versal semantics is natural when we want to check if our system has some good
behavior. By good we mean a behavior that is robust against clock variations.
Unfortunately, we show in this section that emptiness and universality are unde-
cidable for the universal semantics. This is shown for icTAs first and then will
be extended to DTAs. Therefore, it is undecidable if, for a positive specification
Good containing the behaviors that a system must exhibit and a DTA D, we have
Good ⊆ L∀(D).

Theorem 7.11. The following problem is undecidable if |Proc| ≥ 2: Given an
icTA B over Proc, does L∀(B) 6= ∅ hold?

Proof. The proof is by reduction from Post’s correspondence problem (PCP). An
instance Inst of the PCP consists of an alphabet A and two morphisms f and g
from A+ to {0, 1}+. A solution of Inst is a word w ∈ A+ such that f(w) = g(w).

Suppose Proc = {p, q} and let τ ∈ Rates . One may associate with τ two
sequences t-dir(τ) = t1t2 . . . ∈ (R≥0)

ω of time instances and dir(τ) = d1d2 . . . ∈
{0, 1, 2}ω of directions as follows: for i ≥ 1, we let first (assuming t0 = 0) ti =
min{t > ti−1 | τr(t)− τr(ti−1) = 2 for some r ∈ Proc}. With this, we set

di =





0 if τp(ti)− τp(ti−1) = 2 and 1 < τq(ti)− τq(ti−1) < 2

1 if τq(ti)− τq(ti−1) = 2 and 1 < τp(ti)− τp(ti−1) < 2

2 otherwise

The construction of dir(τ) is illustrated in Figure 7.7. The idea is to allow the
shape of the relative time-rate function (from τ) to encode a word in {0, 1, 2}ω.
We do this using 2 × 2-square regions, each consisting of 4 sub-squares as shown.
If the rate function leaves this region by the upper boundary or right boundary of
the right-upper sub-square, then we write 1 or 0, respectively. If it leaves by any
other boundary or by end-points of any sub-square, then we write 2. A new square
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s si

ri

guard(d1), a guard(d2), ε guard(dn), ε

{x, y} {x, y} {x, y}

guard(d1), a guard(d2), ε guard(d3), ε guard(dn), ε

. . .

Figure 7.8: Transition macro

region is started at the point where the rate function left the old one. Thus, the
direction sequences partition the space of time rates.

Roughly speaking, a word is accepted universally by an icTA iff it is accepted
for all directions. Our trick will be to define an icTA, where the invariants, guards
and resets are used in a restricted way, so that, the PCP instance has a solution
w iff the word wb is accepted by the icTA for all directions. Thus, if there is no
solution to the PCP, there will be some direction sequence (respectively, local time
rates) for which the icTA does not accept.

Let an instance Inst of the PCP be given by an alphabet A = {a1, . . . , ak}
with k ≥ 1 and two corresponding morphisms f and g. We will construct an
icTA B = (S,Σ,Z, δ, Inv , ι, F, π) over the set of processes Proc = {p, q} and Σ =
{a1, . . . , ak, b} such that L∀(B) = {wb | w ∈ A+ and f(w) = g(w)}. First, let
Z = {x, y} with π(x) = p and π(y) = q. For d ∈ {0, 1, 2}, we set

guard(d) =





x = 2 ∧ 1 < y < 2 if d = 0

y = 2 ∧ 1 < x < 2 if d = 1

((x ≤ 1 ∨ x = 2) ∧ y = 2) ∨ (y ≤ 1 ∧ x = 2) if d = 2

Moreover, let guard(d) =
∨

d′∈{0,1,2}\{d} guard(d
′).

The final encoding of the given PCP instance in terms of the icTA is given by
Figure 7.9. Hereby, given a ∈ A, σ = d1 . . . dn ∈ {0, 1, 2}+ (with dj ∈ {0, 1, 2} for
any j ∈ {1, . . . , n}) and i ∈ {1, 2}, a transition of the form

s

ri

si

(a, σ)

will actually stand for the sequence of transitions that is depicted in Figure 7.8,
say, with intermediate states s(i,a,σ,1), . . . , s(i,a,σ,n−1).

Example 39. Consider the PCP instance Inst given by A = {a1, a2}, f(a1) = 101,
g(a1) = 1, f(a2) = 1, g(a2) = 01110 with the obvious solution w = a1a2a1. One
can check that a1a2a1b ∈ L∀(B). This is illustrated in Figure 7.10. In the tree
depicted, any path corresponds to a finite prefix (of length |f(w)| + 1) of some
sequence of directions. The edges are labeled by this sequence, where a left-edge
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s1

s0

s2

sf

r1 r2

(ai, f(ai)) (ai, g(ai))

b

guard(2)
b
guard(2)

b

A Σ
(ai, f(ai)) (ai, g(ai))

Figure 7.9: Encoding of PCP: icTA B

is 0, downward is 2 and right-edge is 1. Thus, intuitively, a word wb is in the
universal language iff all paths of the tree correspond to accepting runs in B.
Now, lets verify that the word wb is accepted by B. If clock rate τ is such that
dir(τ) ∈ f(w) ·d · {0, 1, 2}ω with d ∈ {0, 1}, then the accepting run of B is the path
shown in the left figure, which assigns states s1 to nodes of the tree and finishes at
sf . If d = 2, then the accepting run of B is the path in the figure on right, which
assigns states s2 appropriately, crucially using the fact that f(w) = g(w), and
finally ends at sf . If the clock rate τ has dir(τ) different from the above cases, it
is easy to see that there is an accepting run in which B reaches state sf by passing
through state r1.

Let us show that our reduction is indeed correct. In the following, let ≤ denote
the usual prefix relation on words. We begin by observing that if a τ -run starting
from s0 on B satisfies the guards given by guard(d) (and thus avoids states r1 and
r2), then the time stamps of the run are exactly the ones given by dir(τ).

Claim 7.12. Let τ ∈ Rates and let t-dir(τ) = t1t2 . . . ∈ (R≥0)
ω and dir(τ) =

d1d2 . . . ∈ {0, 1, 2}ω be the associated sequences. In addition, we set t0 = 0. Con-
sider a τ -run

(s0, ν0)
a1,t′1−−→ (u1, ν1) . . . (un−1, νn−1)

an,t′n−−−→ (un, νn)

of B with ai ∈ Σε and where un−1 /∈ {r1, r2, sf}. Assume moreover d′1, . . . , d
′
n are

the (unique) elements from {0, 1, 2} such that νi−1 + τ(t′i) − τ(t′i−1) |= guard(d′i)
for all i ∈ {1, . . . , n}. Then, t′i = ti and d

′
i = di for all 1 ≤ i ≤ n, and νi = ν0 for

all 1 ≤ i < n.

Proof. We proceed by induction. Assume t′i−1 = ti−1 and νi−1(x) = νi−1(y) = 0
for some 1 ≤ i ≤ n (note that this is the case for i = 1). Since we have a
τ -run, τ(t′i) − τ(ti−1) |= guard(d′i). Here we consider the former expression as
a valuation by considering the p-component of the pair as the clock value of x
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Figure 7.10: The tree generated by w = a1a2a1b with respect to f and g.

and the q-value as that of y. Now assume d′i = 0 (the cases d′i ∈ {1, 2} are
analogous). Then, τp(t

′
i) − τp(ti−1) = 2 and 1 < τq(t

′
i) − τq(ti−1) < 2. Hence,

t′i = min{t > ti−1 | τr(t)− τr(ti−1) = 2 for some r ∈ Proc}. We deduce t′i = ti and
d′i = di. Moreover, νi(x) = νi(y) = 0 if i < n.

Claim 7.13. For τ ∈ Rates and w ∈ A+, the following hold:

(1) f(w) ≤ dir(τ) iff (B, τ) : s0
w
−→ s1

(2) g(w) ≤ dir(τ) iff (B, τ) : s0
w
−→ s2

(3) f(w) 6≤ dir(τ) iff (B, τ) : s0
w
−→ r1

Proof. First note that (1) and (2) can be shown along the same lines. Moreover,
their “if”- directions follow from Claim 7.12.

Let τ ∈ Rates and let t-dir(τ) = t1t2 . . . ∈ (R≥0)
ω and dir(τ) = d1d2 . . . ∈

{0, 1, 2}ω be the associated sequences. We also set t0 = 0. Suppose w = a1 . . . an
where ai ∈ A for all i ∈ {1, . . . , n}. For i ∈ {1, . . . , n}, let moreover ℓi denote the
length of f(a1 . . . ai). Finally, ν is the valuation with ν(x) = ν(y) = 0.

(1) Suppose f(w) ≤ dir(τ). We have f(w) = d1 . . . dℓn. Let us check that

(s0, ν)
(a1,t1)
−−−→ (s(1,a1,f(a1),1), ν)

(ε,t2)
−−−→ . . .

(ε,tℓ1)−−−→ (s1, ν)
(a2,tℓ1+1)
−−−−−→ (s(1,a2,f(a2),1), ν)

(ε,tℓ1+2)
−−−−−→ . . .

(ε,tℓ2)−−−→ (s1, ν)
...

(a2,tℓn−1+1)
−−−−−−−→ (s(1,an,f(an),1), ν)

(ε,tℓn−1+2)
−−−−−−→ . . .

(ε,tℓn)−−−→ (s1, ν)

is a τ -run of B, which implies (B, τ) : s0
w
−→ s1. We need to show that, for all

i ∈ {1, . . . , ℓn}, τ(ti) − τ(ti−1) |= guard(di). So let i ∈ {1, . . . , ℓn}. Assuming
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di = 0, we indeed have τ(ti)− τ(ti−1) |= x = 2 ∧ 1 < y < 2, whereas di = 1 implies
τ(ti)− τ(ti−1) |= y = 2 ∧ 1 < x < 2.

(3) Let us assume f(w) 6≤ dir(τ). There is j ∈ {1 . . . , ℓn} such that we have
f(w) = d1 . . . dj−1d

′
j . . . d

′
ℓn
for some d′j, . . . , d

′
ℓn

∈ {0, 1} with d′j 6= dj. We construct
a τ -run that coincides with the run that we constructed above until the (j − 1)-th
transition. Now, τ(tj)− τ(tj−1) |= guard(dj) and since d′j 6= dj , the j-th transition

leads to state r1. Once in r1, we stay in r1 under any timing. Thus, (B, τ) : s0
w
−→ r1.

Conversely, assume that (B, τ) : s0
w
−→ r1 and consider a τ -run

(s0, ν0)
a′1,t

′
1−−→ (u1, ν1)

(a′2,t
′
2)−−−→ · · ·

(a′j−1,t
′
j−1)

−−−−−−→ (uj−1, νj−1)
a′j ,t

′
j

−−→ (r1, ν
′)

with a′1 · · · a
′
j ≤ w and uj−1 6= r1. Let moreover d′1, . . . , d

′
j be the (unique) elements

from {0, 1} such that νi−1 + τ(t′i) − τ(t′i−1) |= guard(d′i) for all 1 ≤ i ≤ j. By
Claim 7.12, we deduce that ti = t′i and d′i = di for all 1 ≤ i ≤ j. Since the last
transition reaches state r1 from uj−1 6= r1, we deduce that d1 · · ·dj−1 ≤ f(w) but
dj differs from the j-th letter of f(w). Therefore, f(w) 6≤ dir(τ).

With Claim 7.13, we can now show both directions of the correctness of the
construction of B: L∀(B) = {wb | w ∈ A+ and f(w) = g(w)}.

Let w ∈ A+ with f(w) = g(w) and let τ ∈ Rates . We distinguish three cases.

If dir(τ) ∈ f(w) · {0, 1} · {0, 1, 2}ω, then (B, τ) : s0
w
−→ s1

b
−→ sf by Claim 7.13 (1).

If dir(τ) ∈ f(w) · 2 · {0, 1, 2}ω, then (B, τ) : s0
w
−→ s2

b
−→ sf by Claim 7.13 (2), since

g(w) = f(w). If f(w) 6≤ dir(τ), then (B, τ) : s0
w
−→ r1

b
−→ sf by Claim 7.13 (3).

Hence, wb ∈ L∀(B).
Conversely, let w ∈ A+ and suppose wb ∈ L∀(B). Pick τ ∈ Rates such that

dir(τ) ∈ f(w) · 2 · {0, 1, 2}ω. As f(w) ≤ dir(τ), we have (B, τ) : s0
w
−→ s1 and

(B, τ) : s0 6
w
−→ r1 by Claim 7.13 (1,3), and since f(w) · 2 ≤ dir(τ) we deduce

that (B, τ) : s0
w
−→ s1 6

b
−→. Thus, we must have (B, τ) : s0

w
−→ s2

b
−→ sf . Hence,

g(w) · 2 ≤ dir(τ) by Claim 7.13 (2). As f(w), g(w) ∈ {0, 1}∗ and we have both
f(w) · 2 ≤ dir(τ) and g(w) · 2 ≤ dir(τ), we deduce that f(w) = g(w).

Thus we have shown that it is undecidable to check the emptiness of universal
semantics. We also show that, the universality problem for this case continues to
be undecidable.

Theorem 7.14. Suppose that |Proc| ≥ 2. For icTA B over Proc, it is undecidable
to know if L∀(B) = Σ∗ (where Σ is the set of actions of B).

Proof. As before, the reduction is from the PCP problem. The construction of the
corresponding automaton is obtained by a slight modification of the automaton in
the previous proof as we shall see below. We consider, as before, an instance of
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A b

b Σ
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Figure 7.11: Encoding of PCP: icTA B̃

the PCP. We will then construct an icTA B̃ over Proc = {p, q} and Σ = A ∪ {b},
where A = {a1, . . . , ak}, such that

L∀(B̃) = Σ∗ \ {wb | w ∈ A+ and f(w) = g(w)}.

Thus, the PCP instance has a solution iff L∀(B̃) 6= Σ∗.

Define icTA B̃ as in Figure 7.11 where the transition macros are as defined in
Figure 7.8. This automaton is almost the same as B in Figure 7.9, except for two
differences. One is that we have switched the final states and b-transitions leading
to them. Further, we have a 3-state gadget on the top of the previous automaton
which does not use any clocks. In fact, this gadget is just the automaton which
accepts the language Σ∗ \ A+b. Thus, if we have a word which is not in A+b, it
gets nondetermistically accepted by this gadget. If the word is in A+b then it can
only be accepted in states r1 or r2.

Claim 7.15. For τ ∈ Rates, w ∈ A+,

( a) f(w) · 2 6≤ dir(τ) iff (B̃, τ) : s0
wb
−→ r1

(b) g(w) · 2 6≤ dir(τ) iff (B̃, τ) : s0
wb
−→ r2

Proof. The proof of both these statements follows that from Claim 7.13 which
itself depends on Claim 7.12.. But, since we have only fiddled with the final
states/transitions, these claims still hold.

We resume with the proof of Theorem 7.14. First, suppose the PCP has a
solution, say w ∈ A+, then consider the word wb and choose τ such that dir(τ) ∈

f(w) · 2 · {0, 1, 2}ω. Then, by Claim 7.15, we have (B̃, τ) : s0 6
wb
−→ r1. Now, since w

is assumed to be a solution, we have f(w) = g(w) and dir(τ) ∈ g(w) · 2 · {0, 1, 2}ω
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Figure 7.12: Transition macro for the distributed setting

and so again from Claim 7.15 we have (B̃, τ) : s0 6
wb
−→ r2. Further, on reading wb, B̃

can only (nondeterministically) reach the reject state u3, not the accepting states

u1 or u2 or s0. Therefore, wb 6∈ L(B̃, τ) and so L∀(B̃) 6= Σ∗.

Conversely, suppose L∀(B̃) 6= Σ∗. Let w′ ∈ Σ∗ such that w′ 6∈ L∀(B̃). Necessar-
ily, w′ = wb with w ∈ A+, since otherwise it would be accepted by the gadget for
all τ ∈ Rates . Moreover, there exists τ such that w′ 6∈ L(B̃, τ), i.e., after reading

w′ = wb, B̃ does not reach the accepting states r1 or r2. By Claim 7.15, we can
now conclude that f(w) · 2 ≤ dir(τ) and g(w) · 2 ≤ dir(τ), which finally implies
that f(w) = g(w) and thus the PCP has a solution, namely w.

In fact, the above proof also demonstrates that checking if the existential and
universal semantics coincide is undecidable.

Corollary 7.16. Suppose that |Proc| ≥ 2. For icTA B over Proc, it is undecidable
to check if L∀(B) = L∃(B).

Proof. Consider the icTA B̃ in Figure 7.11 constructed for the above proof. Then
L∃(B̃) = Σ∗ and thus checking if L∀(B̃) = L∃(B̃) is the same as checking if L∀(B̃) =
Σ∗. But this is undecidable by Theorem 7.14.

These results can be strengthened and extended to the distributed setting as
follows:

Theorem 7.17. Suppose |Proc| ≥ 2. For DTAs D over Proc, the emptiness and
universality of L∀(D) are undecidable.

Proof. We fix Proc = {p, q} and the clock distribution π(x) = p and π(y) = q.
Each process will be a copy of the automaton B that is depicted in Figure 7.9 for
emptiness (respectively, B̃ in Figure 7.11 for universality), except for one difference:
in the copy Bp for process p, the transition macro from Figure 7.8 is replaced with
that from Figure 7.12 where L is the letter a ∈ A and R is the singleton set {x};
and in the copy Bq for process q, we use the same new macro, but now we have
L = ε and R = {y}.

The main difficulty is to make sure that transitions with guard(dj) or guard(dj)
are taken simultaneously in the two copies Bp and Bq. If this is the case, then clock
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y is always reset synchronously with clock x and Bp faithfully simulates the icTA

B (or B̃) with the slight difference induced by the additional ε-transitions from the
states with invariant x ≤ 1∧ y ≤ 1. Therefore, the proof of Theorems 7.11 or 7.14
can be carried out similarly.

We explain now how we make sure that transitions with guards are taken
simultaneously. We have splitted each state of the transition macro described in
Figure 7.8 (except si and ri) into two. The combination of the guards and the
invariants ensure that both clocks have been reset simultaneously.

Let us examine this in more detail. Being in two identical copies of a state with
an invariant, the ε-transitions might indeed be taken asynchronously by Bp and
Bq. However, the following transitions will be performed synchronously. Assume
first that p follows a transition of the form (sp, guard(d), a, {x}, s

′
p) before process

q moves. As guard(d), where d ∈ {0, 1}, is satisfied when p goes to s′p, the value
of both clocks exceeds 1. But as x is reset at the same time whereas y is not,
the invariant associated with s′p is violated, which is a contradiction. Thus, q has
to take the corresponding transition, which is of the form (sq, guard(d), a, {y}, s

′
q),

simultaneously. This explains why we use 2 × 2-squares as in Figure 7.7 and
corresponding guards. In the DTA D, they allow us to check when one clock
has been reset and the other has not. Now consider the case where p performs
a transition of the form (sp, guard(d), a, ∅, s

′
p). When p executes its transition, at

least one clock has reached the value 2. As this clock cannot be reset anymore,
q is obliged to follow instantaneously the corresponding transition of the form
(sq, guard(d), a, ∅, s

′
q), to reach a final state.

Corollary 7.18. Given a DTA D and a regular positive specifications Good, it is
undecidable to check whether Good |= L∀(D).

7.4 Playing with local time rates

In the previous sections, we considered the set of behaviours when the local-time
rates are arbitrarily chosen (existential) or arbitrarily enforced (universal). It is
then natural to ask what would happen if there are some restrictions on the way
these rates are chosen or enforced. In this section, we consider some such questions.
Broadly, we examine two types of restrictions on the local-time rates. In the first
case, we try to bound the clock drifts between processes, while in the second case,
we restrict to a natural sub-class of local-time rate functions.

7.4.1 Bounding the clock drifts

Our first attempt is to try to bound the way the clocks drift on different processes,
thus curtailing the independence of the local-time rates. We consider two sub-cases
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Figure 7.13: Bounding the clock drifts by ratio and difference

here, where we insist (1) the ratio or (2) the difference of local times in different
processes is always bounded by a constant.

We might expect that such a strong restriction could lead to a decidability
result for the universal semantics. However, it turns out that we can strengthen
the undecidability proof in Section 7.3 to show that emptiness and universality of
the universal semantics is already undecidable in this restricted case.

Let us formalize this. We will restrict to two processes, Proc = {p, q}. We
note however that the following definitions (and results) can easily be generalized
to more processes. For a rational number k ≥ 1, we define Ratesrat(k) = {τ =

(τp, τq) ∈ Rates | 1
k
≤ τp(t)

τq(t)
≤ k for all t ∈ R>0}. This is the set of all rate-function

tuples such that the ratio of the local times in the two processes are always bounded
by fixed rationals. Thus, when we plot the local times in the two components of
the rate-function tuple against each other, this function lies completely within the
shaded region in Figure 7.13 (a).

Further, for a rational number ℓ ≥ 0, Ratesdiff(ℓ) = {τ = (τp, τq) ∈ Rates |
|τp(t) − τq(t)| ≤ ℓ for all t ∈ R≥0}. These are the rate-function tuples for which
the difference between the local times in the two processes are bounded by some
constant. Thus again, any function in the shaded region in Figure 7.13 (b) describes
such a bounded rate-function tuple.

Accordingly, for an icTA or a DTA B, we define

• Lrat,k
∃ (B) =

⋃
τ∈Ratesrat(k)

L(B, τ), Lrat,k
∀ (B) =

⋂
τ∈Ratesrat(k)

L(B, τ),

• Ldiff,ℓ
∃ (B) =

⋃
τ∈Ratesdiff(ℓ)

L(B, τ), Ldiff,ℓ
∀ (B) =

⋂
τ∈Ratesdiff(ℓ)

L(B, τ).

Theorem 7.19. For icTAs or DTAs B over Proc = {p, q},

1. checking emptiness of Lrat,1
∀ (B) = Ldiff,0

∀ (B) is decidable while checking uni-
versality is undecidable.

2. checking emptiness and universality of Lrat,k
∀ (B) are undecidable for every

rational k > 1.
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3. checking emptiness and universality of Ldiff,ℓ
∀ (B) are undecidable for every

rational ℓ > 0.

Proof. For k = 1 or ℓ = 0, the sets Ratesrat(k) and Ratesdiff(ℓ) consist of exactly
the tuples in which time evolves at the same rate in both processes. Thus, the
sets Lrat,1

∀ (B) and Ldiff,0
∀ (B) are identical and correspond to the language of an

ordinary timed automaton. Hence, checking emptiness is decidable, while checking
universality is undecidable. This proves Part (2) of the theorem.

To prove the remaining parts of the theorem, we need the following lemma.

Lemma 7.20. Let k > 1, ℓ > 0 be some fixed rationals. For all σ ∈ {0, 1, 2}∗,
there exists τ ∈ Ratesrat(k) ∩ Ratesdiff(ℓ) such that σ is a prefix of dir(τ).

Proof. Let σ = d1d2 . . . dn ∈ {0, 1, 2}∗ be of length n. We define τ (in terms of
n + 1 points) as follows: τp is the piecewise linear function with τp(2i) = xi for
i ∈ {0, . . . , n} and τp(2n+ t) = xn+ t for all t ∈ R≥0. Similarly, τq is defined as the
piecewise linear function with τq(2i) = yi for i = {0, . . . , n} and τq(2n+ t) = yn+ t
for t ∈ R≥0. The points (xi, yi) are defined by x0 = y0 = 0 and, for i ∈ {1, . . . , n},
xi = 2i − α|d1 . . . di|1 and yi = 2i − α|d1 . . . di|0 (|σ′|d denoting the number of
occurrences of d in σ′), where α is a rational parameter to be fixed.

With the above definition, we observe that, for all i, we have |xi−yi| ≤ iα, and,
for i > 0, we have 1− α

2
≤ xi

yi
≤ 1

1−α/2
. Thus, by choosing α = min{1

2
, ℓ
n
, 2(1− 1

k
)},

we can check that τ ∈ Ratesrat(k) ∩ Ratesdiff(ℓ).
Finally, we show that dir(τ) = σ · 2ω. This is done by induction. Assume that

d1 · · · di−1 ≤ dir(τ) for some 1 ≤ i ≤ n. If di = 2 then xi − xi−1 = 2 = yi − yi−1

and we deduce that d1 · · · di−1di ≤ dir(τ). If now di = 0 then xi − xi−1 = 2 and
yi − yi−1 = 2 − α. Since 0 < α < 1, we deduce that d1 · · · di−1di ≤ dir(τ). The
proof is similar when di = 1. Hence, σ = d1 · · · dn ≤ dir(τ). Since after t = 2n
clocks x and y are synchronous, we obtain dir(τ) = σ · 2ω.

With the above lemma, we now prove Parts (3) and (4) of the theorem. Let
k > 1 and ℓ > 0. First, we will show that checking emptiness is undecidable.
Given a PCP instance as before, we again consider the icTA (or DTA) B from
Figure 7.9. We want to show that w ∈ A+ is solution iff wb ∈ L∀(B) = Lrat,k

∀ (B) =

Ldiff,ℓ
∀ (B). One direction is trivial. If, for w ∈ A+, we have f(w) = g(w), then

wb ∈ L∀(B), and this implies that wb ∈ Lrat,k
∀ (B) and wb ∈ Ldiff,ℓ

∀ (B). On the

other hand, if wb ∈ Lrat,k
∀ (B) or wb ∈ Ldiff,ℓ

∀ (B), then, by Lemma 7.20, we pick
τ ∈ Ratesrat(k) ∩ Ratesdiff(ℓ) such that dir(τ) = f(w) · 2 · 2ω, and the remaining
part of the proof follows as before.

Now, to show that the universality is undecidable, we consider icTA B̃ from
Figure 7.11 and show that w ∈ A+ is a solution iff wb is not in Lrat,k

∀ (B̃) or not

in Ldiff,ℓ
∀ (B̃). One direction is again easy. If wb 6∈ Lrat,k

∀ (B̃) or wb 6∈ Ldiff,ℓ
∀ (B̃)

then wb 6∈ L∀(B̃) and since wb ∈ A+b, we deduce that f(w) = g(w) as in the
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proof of Theorem 7.14. On the other hand, assume w is a solution so that we
have f(w) = g(w). Again by Lemma 7.20, we pick τ ∈ Ratesrat(k) ∩ Ratesdiff(ℓ)

such that dir(τ) = f(w) · 2 · 2ω and so by Claim 7.15, (B̃, τ) : s0 6
wb
−→ r1 and

(B̃, τ) : s0 6
wb
−→ r2. We also have that after wb, states s0, u1,u2 cannot be reached

and so wb 6∈ Lrat,k
∀ (B̃) and wb 6∈ Ldiff,ℓ

∀ (B̃).
This completes the proof of the whole theorem.

As a related question, we could also ask if the existential semantics still de-
scribes a regular set of behaviours, i.e, for each k ≥ 1, ℓ ≥ 0 are Lrat,k

∃ (B),Ldiff,ℓ
∃ (B)

regular? We leave this as an open question. We note however, that this does not
immediately follow from the region construction, since the restriction induced by
the bounds may not result in classical zones (union of regions).

7.4.2 Restricting to fixed slopes

In this subsection, we restrict the behaviour by considering a selected subclass of
local-time rate functions, rather than all of them. In particular, we restrict to the
class of local-time rate functions that have fixed and constant (rational) slopes.
Surprisingly, even checking emptiness of the existential semantics turns out to be
undecidable with this restriction.

In fact, we show that checking emptiness of the existential semantics is unde-
cidable even in a slightly weaker setting, where the local-time rate functions have
a fixed slope with respect to each other. To see this, let us define Ratesfix = {τ ∈
Rates | for each pair p, q ∈ Proc, there is a constant αpq ∈ Q≥0 such that τp(t) =
αpq · τq(t) for all t ∈ R≥0}. Again, for an icTA or DTA B, we define Lfix

∃ (B) =⋃
τ∈Ratesfix

L(B, τ) and Lfix
∀ (B) =

⋂
τ∈Ratesfix

L(B, τ). Now, we can state the theo-
rem formally:

Theorem 7.21. For icTAs or DTAs B over Proc, checking emptiness of Lfix
∃ (B)

is undecidable.

The proof is by reducing to the above problem a certain “unknown-sampling
rate discrete-time reachability problem” for timed automata [9, 22], which was
proved in [22] to be undecidable. The idea is that the fixed constant β between
the local-time rates of two processes can be used to simulate a β-sampled run of
a timed automaton. To make this clear, we need to define sampled runs and the
results known about them.

Recall that a timed run σ = (a1, t1) . . . (an, tn), with ai ∈ Σε, ti ∈ R≥0, of a
timed automaton B = (S,Σ,Z, δ, I, i, F ) can be seen as an alternating sequence of
discrete moves and time elapse moves. Then, σ is called a β-sampled run for some
β ∈ Q≥0, if each time elapse is exactly β, i.e., ti − ti−1 = β for all i ∈ {1, . . . , n},
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x = 2
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{x}

Figure 7.14: The timed automaton Bp

t0 = 0. A state s of B is reachable in the β-sampled semantics of B, if there is a
β-sampled run of B that reaches it. It is easy to see that this definition coincides
with the one in [22] from which we have the following theorem:

Theorem 7.22 (cf. [22]). The following problem is undecidable: Given a timed
automaton B and a state s of B, does there exist β ∈ Q≥0 such that s is reachable
in the β-sampled semantics of B.

Proof. (of Theorem 7.21) Given a timed automaton B and a state s of B, we will
construct a DTA D such that Lfix

∃ (D) 6= ∅ if and only if there is a β such that s is
reachable in the β-sampled semantics of B. Thus, from the undecidability result
of the theorem above, it follows that checking emptiness of Lfix

∃ (D) is undecidable.
The DTA we construct will consist of two components/processes. The broad

idea is that the first component just measures its local time by making a transition
at every clock tick. The second component simulates the timed automaton B and
in addition checks a clock of the first component, to ensure that its transitions
occur exactly at clock ticks of the first component. Thus, if the relative local-time
rate is β, then a run of the automaton in the second component corresponds to a
β-sampled run of the timed automaton.

There is a point of subtlety here. The automaton in the second component
must make a transition every clock tick and cannot be allowed to remain at a state
as time passes. It turns out that straightforward use of state invariants is not
enough. Our construction below describes one way to handle these concerns.

Let B = (SB,ΣB,ZB, δB, InvB, ιB, FB) be the timed automaton and sB ∈ SB.
We set Proc = {p, q} and define DTA D = ((Bp,Bq), π) as follows.

The p-component uses and owns a single clock x (which occurs in both com-
ponents, as will be seen). Thus, Zp = {x} and π(x) = p. This automaton Bp is
described in Figure 7.14.

The second component consists of two copies of B with transitions alternating
between them, defined as follows: Bq = (Sq,Σq,Zq, δq, Inv q, ιq, Fq), where

• Sq = SB × {0, 1},

• Σq = ΣB,

• Zq = ZB ·∪ {x} and π(y) = q for all y ∈ ZB,
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• if (s, ϕ, a, R, s′) ∈ δB, then ((s, 0), ϕ, a, R, (s′, 1)), ((s, 1), a, ϕ, R, (s′, 0)) ∈ δq,

• Inv q((s, 0)) = InvB(s)∧(0 ≤ x ≤ 1) and Inv q((s, 1)) = InvB(s)∧(1 ≤ x ≤ 2),

• ιq = (ιB, 0), and

• Fq = {(sB, 0), (sB, 1)}.

Thus, in the above construction of Bq, in any state of the first copy, the value
of clock x must be between 0 and 1. Similarly, in any state of the second copy, the
clock has a value between 1 and 2. Further, transitions can only occur from one
copy to another (never within a copy). These properties ensure that transitions
(of Bq) occur at every clock tick (of clock x) and there must occur a transition
at every clock tick (else a state invariant is violated). But clock x measures its
local time, i.e, the local time of process p. Thus, if β is the ratio between the fixed
local-time rates of the two processes τ = (τp, τq) ∈ Ratesfix, then each transition of
Bq (which simulates B) occurs at β-intervals, thus simulating a β-sampled run of
B. Finally, a run of D under this local-time rate function τ is accepting, if and only
if the corresponding β-sampled run reaches sB. Thus, the existential fixed-slope
semantics of D is not empty if and only if there is a β such that sB is reachable
in the β-sampled semantics. And further, the universal fixed-slope semantics of D
is empty if and only if there is a β such that sB is not reachable in the β-sampled
semantics. This completes the proof of the theorem.

We could also consider the emptiness problem for the universal semantics, i.e.,
is Lfix

∀ (D) = ∅? From the above construction, we have Lfix
∀ (D) = ∅ if and only if

there is a β such that s is not reachable in the β-sampled semantics of B. Thus if
the safety problem for β-sampled semantics is undecidable then this would imply
undecidability here as well.

7.5 The reactive semantics

The universal semantics described in the previous section is a possible way to im-
plement positive specifications, i.e, to make sure that our system must satisfy some
behavior irrespective of the time/clock evolution. Unfortunately, since emptiness
and universality are undecidable even for bounded restrictions, it is not of any
practical use. We would indeed like a semantics that describes only regular behav-
iors.

There is another subtle but powerful reason for looking for other semantics.
When we want to check if the system satisfies a positive specification, we would
like to be able to design a controller which can actually do this. For this, the
semantics has to be “reactive”. The universal semantics fails in this, in the sense
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that, to choose a correct run in the system, we might need to know the future time
rates.

Let us illustrate this problem through an example. Consider the icTA B from
Figure 7.3. We have that ab is in the universal language since for any time rate,
we can find an accepting run. In such an accepting run on ab, we start at s0 and
we can move to either s1 or s2. But this choice of which state to move to now (i.e,
at s0 with clock values x < 1, y < 1), depends on how the local time rates behave
later. In particular, suppose we move to s1, then it is possible that when y = 1, we
still have x < 1, in which case, the transition reading b will never be enabled and
we will be stuck. Similarly, if we move to s2, then the local times might evolve in
such a way that we have y < 1 and x = 1 and then we would be stuck at s2. The
universal semantics works by assuming that we can guess the whole future time
rate function at any point. Thus, for instance, if we knew that later the region
y ≤ 1, x ≥ 1 will be reached, then we would go to s1 else we would go to s2. (This
can be seen pictorially from Figure 7.15.)

However, if we are designing a controller, then we do not know how the time
rates will change later. Thus, we do not know apriori whether we will reach this
region or the other, and so the controller actually has no way of deciding which
transition to take, to ensure an accepting run. Thus, we can argue that in this
case, though ab is in the universal language, there is no step-by-step, “practically
constructible” accepting run on ab!

In this section, we introduce a new game-like semantics that solves both the
above mentioned worries. It is regular and it is “reactive”. We believe that this
is the most promising semantics for checking positive specifications since it allows
us to control the behaviour rather than guess it in advance. Formally, we will
describe it using an alternating automaton, which is based on the region automaton
introduced in Section 7.2. Intuitively, time-elapse transitions are controlled by the
environment whereas discrete transitions are controlled by the system that aims at
exhibiting some behavior. This game is not turn-based because the system should
be able to execute several discrete transitions while staying in the same region.
After moving from some region to a successor region, the environment hands over
the control to the system so that the system always has a chance to execute some
discrete transition. On the other hand, after executing some discrete transition,
the system may either keep the control or hand it over to the environment.

As suggested, our reactive semantics will be described by alternating automata.
Since icTAs or DTAs have ε-transitions, we define an alternating automaton with
ε-transitions (ε-AA) as a tuple A = (S,Σ, δ, ι, F ) where S is a finite set of states,
ι ∈ S is the initial state, F ⊆ S is the set of final states, and δ : S × Σε →
B+(S) is the alternating transition function. Here, B+(S) denotes positive boolean
combinations of states from S.

As usual, a run of an ε-AA will be a (doubly) labeled finite tree. We assume
the reader to be familiar with the notion of trees and only mention that we deal
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with structures (V, σ, µ) where V is the finite set of nodes with a distinguished
root, and both σ and µ are node-labeling functions. Given a node u ∈ V , the set
of children of u is denoted children(u). Let w = a1 . . . a|w| ∈ Σ∗ be a finite word. A
run of A on w is a doubly labeled finite tree ρ = (V, σ, µ) where σ : V → S is the
state-labeling function and µ : V → {0, . . . , |w|} is the position-labeling function
such that, for each node u ∈ V , the following hold:

• if u is the root, then σ(u) = ι and µ(u) = 0 (we start in the initial state at
the beginning of the word),

• if u is not a leaf (i.e., children(u) 6= ∅), then we have

– either µ(u′) = µ(u) for all u′ ∈ children(u) and in this case
{σ(u′) | u′ ∈ children(u)} |= δ(σ(u), ε)

– or µ(u′) = µ(u) + 1 = i ≤ n for all u′ ∈ children(u) and in this case
{σ(u′) | u′ ∈ children(u)} |= δ(σ(u), ai).

The run is accepting if all leaves are labeled with F × {|w|}. The set of words
from Σ∗ that come with an accepting run is denoted by L(A). This set is indeed
regular since ε-AA’s are special cases of two-way alternating automata (2-AA)
which accept only regular languages.

Lemma 7.23 (cf. [15]). Given a 2-AA A with n states, one can construct a non-
deterministic finite automaton with 2O(n2) states that recognizes L(A).

Let B = (S,Σ,Z, δ, Inv , ι, F, π) be an icTA over Proc. We associate with B an
ε-AA AB = (S ′,Σ, δ′, ι′, F ′) as follows: First, let S ′ = S × Regions(B) × {0, 1}.
Intuitively, tag 0 is for system positions while tag 1 is for environment positions
(recall that the environment controls how time elapses whereas the system wants
to accept some word). Then, ι′ = (ι, [ν], 0) where ν(x) = 0 for each x ∈ Z, and
F ′ = F ×Regions(B)×{0, 1}. Finally, for (s, γ) ∈ S×Regions(B) and a ∈ Σε, we
let

δ′((s, γ, 1), a) = False if a 6= ε
δ′((s, γ, 1), ε) =

∧
{(s, γ′, 0) | γ ≺· γ′}

δ′((s, γ, 0), a) =

{∨
{(s′, γ′, 0) | (s, γ)

a
−→d (s′, γ′)} if a 6= ε or γ maximal

(s, γ, 1) ∨
∨
{(s′, γ′, 0) | (s, γ)

ε
−→d (s′, γ′)} otherwise

where
a|ε
−→d denotes a discrete transition of the region automaton RB (Section 7.2).

Definition 7.24. For an icTA B, let Lreact(B) = L(AB) be the reactive semantics
of B. Moreover, for a DTA D, Lreact(D) = Lreact(BD) is the reactive semantics of
D.
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Figure 7.15: Part of the region/alternating automaton for the icTA from Figure 7.3

Example 40. Consider, again, the icTA B from Figure 7.3. A part of its ε-AA AB

is shown in Figure 7.15. States with tag 0 are depicted as ovals and are existential
(non-deterministic) states and states with tag 1 are depicted as rectangles and
are universal states. We have, e.g., δ′(r1, ε) = r3 ∧ r4 ∧ r5. Note, however, that a
transition from an oval to a rectangles should actually be split into two transitions,
which is omitted in the picture. For example, there is a state r′1 between r0 and
r1 which resembles r1 but is tagged 0. Similarly, there is another state r′2 between
r0 and r2, and we have δ′(r0, a) = r′1 ∨ r

′
2. Then, as mentioned in the beginning of

the section, under the reactive semantics, the language of this automaton contains
a but does not contain ab. Thus, Lreact(B) = {a}.

The following theorem follows from Lemma 7.23:

Theorem 7.25. Let B = (S,Σ,Z, δ, Inv , ι, F, π) be an icTA and let n be the num-
ber of states of RB (which is bounded by |S| · (2C + 2)|Z| · |Z|! where C is the
largest constant a clock is compared with in B). Then, Lreact(B) is regular and one
can compute a non-deterministic finite automaton with 2O(n2) states that recognizes
Lreact(B).

As expected, the reactive semantics is more restricted than the universal se-
mantics, so we get the inclusion of Proposition 7.26. Therefore, we can safely use
the reactive semantics to check an icTA for a positive specification Good containing
the behaviors that a system must exhibit. If Good ⊆ Lreact(B) then the system
has a strategy to ensure each good behaviors robustly against all possible clock
variations.

Proposition 7.26. For any icTA B, Lreact(B) ⊆ L∀(B).

Proof. Assume B = (S,Σ,Z, δ, Inv , ι, F, π) to be an icTA and let furthermoreAB =
(S ′,Σ, δ′, ι′, F ′) be the associated ε-AA, and let w ∈ Lreact(B) = L(AB). Let
furthermore ρ = (V, σ, µ) be an accepting run of AB on w. We pick τ ∈ Rates .

We construct inductively a maximal branch u0u1 . . . un ∈ V ∗ in ρ and two
sequences t0, t1, . . . , tn and ν0, ν1, . . . , νn as follows. First, we let u0 = ε, t0 = 0
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and ν0(x) = 0 for all x ∈ Z. Note that σ(u0) = (ι, [ν0], 0). Assume that the
sequences have been constructed up to k and that σ(uk) = (sk, [νk], plk). If uk
is a leaf, the construction is over and n = k. Otherwise, there are three cases.
First, assume that plk = 1. Let tk+1 > tk be such that [νk] ≺· [νk+1] with νk+1 =
νk + τ(tk+1) − τ(tk). By definition of δ′, there exists a child uk+1 of uk such that
σ(uk+1) = (sk, [νk+1], 0). Assume now that plk = 0. Choose uk+1 in children(uk).
Either σ(uk+1) = (sk, [νk], 1) and we let tk+1 = tk and νk+1 = νk in this second
case. Otherwise, the move from uk to uk+1 corresponds to some discrete transition
of RB with label ak+1 ∈ Σε and some reset set R ⊆ Z. In this third case, we let
tk+1 = tk and νk+1 = νk[R] so that we have σ(uk+1) = (sk+1, [νk+1], 0).

The discrete moves along the constructed branch correspond to the sequence
0 < i1 < · · · < iℓ ≤ n of indices k such that plk−1 = plk = 0. As ρ is an accepting
run for w, we have w = ai1 · ai2 · · · · · aiℓ and siℓ = sn ∈ F . It is now easy to verify
that the sequence

(s0, ν0)
ai1 ,ti1−−−→ (si1 , νi1)

ai2 ,ti2−−−→ . . .
aiℓ ,tiℓ−−−→ (siℓ , νiℓ)

is a τ -run of B so that w ∈ L(B, τ).

To summarize, we have the following strict hierarchy of our semantics.

Proposition 7.27. Suppose that |Proc| ≥ 2. There are some DTA D over Proc
and some τ ∈ Rates such that Lreact(D) $ L∀(D) $ L(D, τ) $ L∃(D).

Proof. Consider the icTA B from Figure 7.3. Recall that Lreact(B) = {a}, L∀(B) =
{a, ab}, L(B, id) = {a, ab, b}, and L∃(B) = {a, ab, b, c}. As B does not employ any
reset, we may view it as a DTA where B models a process owning clock x, and
where a second process, owning clock y, does nothing, but is in a local accepting
state.
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8
Conclusions and Future Work

In this thesis, we have used formal methods to study and model systems where the
interplay of time and concurrency is crucial to the behaviour of the system.

In the first part of the thesis, we have focussed on using timed partial orders
as formalisms to describe the behaviours of such systems. In Chapter 3 we began
by introducing these formalisms, i.e., TMSCs and TCMSCs. Then we defined two
automata models that exhibit such behaviour, i.e., TMPA and ECMPA. Finally,
we introduced the TCMSG formalism that is used to specify collections of such
behaviours.

The first main result proved in Chapter 4 shows that timed monadic second-
order logic formulae and ECMPA are expressively equivalent over TMSCs. Indeed,
this equivalence holds without assumptions on the bounds of channels, only when
we restrict to the existential fragment of the logic. Further, the proof of this equiva-
lence is constructive, since we are able to formulate an explicit translation between
the two. The second main result in Chapter 5 proves that checking emptiness for
ECMPA is decidable in the bounded case. These two results together allow us to
check satisfiability for the timed logic. These results have been published in [2].

In Chapter 6 we have considered some problems that arise when checking if
the specification (given as a TCMSG) conforms with the implementation (given as
a TMPA). The solutions are provided in a natural setting, where we assume the
TCMSG to be locally synchronized. We have first shown that a locally synchro-
nized TCMSG recognizes a timed regular language. Then, we improved this result
by showing that the automaton that we construct to demonstrate regularity can
be determinized and hence complemented. This allowed us to provide a solution
to the consistency problem in Section 6.5. Finally, with the additional assumption
that TCMSGs are event-saturated, we provided a solution for the coverage prob-
lem stated in Section 6.6. A preliminary version of some of these results appeared
in [4].

In the second part of the thesis, we have tried to focus on a different phe-
nomenon that is interesting in the context of combining time and concurrency.
This concerns the notion of local time obtained by allowing independently evolv-
ing clocks. We have introduced a distributed timed automaton model, DTA, where
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clocks on different processes can evolve at rates that are independent of one an-
other. the interaction between processes is captured by allowing processes to read
the clock values of one another. We have also defined an intermediate global model
icTA, where the states are shared but the clocks still evolve independently.

We defined the existential and universal semantics to capture the behaviours
that may occur under some choice of clock rates and the behaviours that must
occur under any choice of clock rates, respectively. We proved that the former
always generates a regular set of behaviours. The universal semantics however
turned out to be intractable since checking emptiness was shown to be undecidable.
This result was then strengthened to show undecidability of the semantics even
when the time rates on different processes are not arbitrary but have some fixed
relationship. Finally, to be able to guarantee behaviour under any choice of clock
rates, we introduced a game-like reactive semantics. We were able to show that this
always yields a regular set of behaviours by constructing an equivalent alternating
automaton. This work has appeared as a preliminary version in [3].

Future work and perspectives We see this thesis as a starting point for a
better understanding of timed and distributed systems in a formal setting. There
are several levels at which one could branch out and explore extensions of the work
reported here.

At a very immediate level, we would like to improve some of the results for
problems that we have already introduced in the thesis. For instance, some of our
results are proved under natural assumptions and we would be interested in how
to extend them to more general settings. In particular, it would be nice to relax
some of the restrictions on the TCMSG (event-saturated, locally-synchronized),
that were required in our current approach in Chapter 6. Further, in Section 7.4,
when we consider DTA with fixed slopes or bounded drifts, there are some cases
where we have not settled the decidability (or indeed, the undecidability) of the
problem. These are technical issues that nevertheless provide valuable intuition
towards understanding the model better.

At the next level, there are several well-defined open problems that arise nat-
urally from our models and results. We plan to investigate the expressive power
of DTAs and, in particular, the synthesis problem: For which (global) specifica-
tions Spec can we generate a DTA D (over some given system architecture) such
that Lreact(D) = Spec? A similar synthesis problem has been studied in [38] in the
framework of untimed distributed channel systems. There, additional messages are
employed to achieve a given global behavior. In this context, it would be helpful
to have partial-order based specification languages and a partial-order semantics
for DTAs (see, for example, [50]).

At a higher level, it would be interesting to relate our approach for modelling
timed distributed systems to other formalisms that were mentioned in the intro-
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duction. As one such instance, we would like to compare and contrast unfoldings
of time petri nets with our approach. Also, it would be interesting to see what
happens if we replace timed automata by hybrid automata while considering in-
dependently evolving clocks.

Finally, we hope that the work in this thesis, by leading to a better under-
standing of timed and distributed systems, will eventually find application in the
design and analysis of the systems that surround us.
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