
Counter Systems with Presburger-definable Reachability Sets :

Decidability and Complexity

Amit Kumar Dhar
Master Parisien de Recherche en Informatique

work done at LSV, ENS Cachan
under the guidance of

Stéphane Demri
LSV, ENS Cachan

Arnaud Sangnier
LIAFA, Paris 7

18th August 2011

General Context

Model checking deals with the techniques of verifying whether a given formula in a suitably expressive
logic is satisfied in a given abstract structure. The techniques as well as the cost for such task vary
depending on the abstract formalism used to represent the model and the logic used to express the
properties [CGP00]. For abstract formalism, it is worth to note that most of the practical systems
are infinite-state systems. The challenge is to manipulate infinite sets of configurations. Whereas
many abstract formalisms for representing infinite-state system exist, most of them tend to have an
undecidable model checking. Counter systems are such a formalism used in many places like, broadcast
protocol [EFM99], programs with pointers [BFLS06], and data words (XML) [BMS+06], [DL06]. But,
alongwith their large scope of usability, many problems on general counter systems are known to
be undecidable. For example, systems with two counters are known to simulate Turing Machine
operations [Min67]. We consider the Linear Temporal Logic for specifying properties. LTL is enough
powerful to specify temporal properties like liveness or safety conditions and yet have many desirable
properties. We consider here LTL with the basic Until and Next operator. Later we also look into
basic LTL extended with linear constraints on counter as atomic propositions.

The Problem Studied

A more general kind of counter systems, namely “flat counter System with finite monoid property”
was first studied in [FL02] where the reachability problem for these systems was shown to be decidable.
Later, in [DFGvD10], it was shown that CTL* is decidable for specific kind of counter systems called
“flat Admissible Counter System (ACS)”, by reduction to Presburger Arithmetic, the decidable first-
order logic of natural numbers with comparisons and addition. Whereas CTL* can express richer

1The report is written in English, because the author knows very little French

properties than reachability, the procedures described there have high complexity upto 4-EXPtime.
Our goal is to study the lower bounds of subclasses of this kind of systems and investigate tight upper
bounds for model checking LTL and its fragments.

Proposed Contribution

Here, we obtain a tight complexity bound on LTL model checking over such system and show that
the problem is in fact NP-complete. For this, we first show the NP-completeness of model checking
LTL on flat Kripke structures using “general stuttering principle” [KS05]. Next, using this result,
we show that LTL model checking on counter systems with linear sums as updates is NP-complete.
For this result we also use the “small solution property” [BT76] of system of equations. The small
solution property by itself is sufficient to decide the reachability problem on counter system and have
been used to show decidability of reachability problem of different type of systems in [Rac78],[GI81].
Later building on the previous results we show the NP-completeness of checking LTL with counter
constraint over counter systems with updates as linear sums.

Future Work and Perspectives

Due to the relative lower complexity of the algorithms developed, I plan to implement the algorithms
developed or a variant of that is well-suited for implementation. There are several related problems
which are not addressed here, like: extension of the logic with past operators, model-checking for
CTL*, model checking over flat counter systems with no restriction over the guards, other extensions
of counter systems like Affine counter system with finite monoid property [FL02] etc. Though as stated
earlier, all these problems are known to be decidable but the upper bounds known for these problems
are very crude. Hence it is interesting to investigate the problems to look for tighter upper bounds.
Finally, the restrictions on the counter systems may as well be increased to find out when the model
checking problem falls below NP.

2

1 Introduction

Model checking counter systems Model Checking is a well-known approach in computer science
to verify properties of computing systems, in order to say that a given system always does something
good or it never does something bad. For this purpose, the computing system is represented in
abstract structures leaving out irrelevant details and the property that is to be verified is expressed
by a formula in a suitable logic, thus reducing the problem to checking the satisfaction of a given
formula by a given model. Model checking deals with the techniques of verifying whether such a given
formula in a suitably expressive logic is satisfied in a given abstract structure. The techniques as well
as the cost for such task varies depending on the abstract formalism used to represent the model and
the logic used to express the properties [CGP00]. For abstract formalism, it is worth to note that
most of the practical systems are infinite-state systems. The challenge is to manipulate infinite sets of
configurations. Whereas many abstract formalisms for representing infinite-state system exist, most
of them tend to have an undecidable model checking. Counter systems are such a formalism used
in many places like, broadcast protocol [EFM99], programs with pointers [BFLS06], and data words
(XML) [BMS+06], [DL06]. But, alongwith their large scope of usability, many problems on general
counter systems are known to be undecidable. For example, systems with two counters are known to
simulate Turing Machine operations [Min67]. However, certain restricted classes of counter systems
have decidable properties. Restriction on counter systems may be imposed on counter operations,
guards, underlying structure of the system (e.g. flatness), boundedness of counter values (e.g. reversal-
boundedness) etc. Here, we concentrate on flat counter systems, where the restriction is imposed on
the underlying structure. For the logic used for specifying properties, again there are many logics and
subclasses, like LTL, CTL, CTL*. We consider the Linear Temporal Logic for specifying properties.
LTL is enough powerful to specify temporal properties like liveness or safety conditions and yet have
many desirable properties. We consider here LTL with the basic Until and Next operator. Later we
also look into basic LTL extended with linear constraints on counter as atomic propositions.

Motivations A more general kind of counter systems, namely “flat counter System with finite
monoid property” was first studied in [FL02] where the reachability problem for these systems was
shown to be decidable. Later, in [DFGvD10], it was shown that CTL* is decidable for specific kind of
counter systems called “flat Admissible Counter System (ACS)”, by reduction to Presburger Arith-
metic, the decidable first-order logic of natural numbers with comparisons and addition. Whereas
CTL* can express richer properties than reachability, the procedures described there have high com-
plexity upto 4-EXPtime. Our goal is to study the lower bounds of subclasses of this kind of systems
and investigate tight upper bounds for model checking LTL and its fragments.

Goal and results We start with the goal of finding optimal complexity of model checking LTL
with counter constraints over counter systems. But, counter systems in its full generality is known
to be Turing complete, and thus have undecidable reachability. So, we look into decidable fragments
of counter systems which restricts the counter systems structurally and also in the type of updates
that are used. The type of counter systems we explore are flat and have only linear sum over counter
values. These type of systems are a subclass of the kind of system shown to have decidable CTL* model
checking. Here, we obtain a tight complexity bound on LTL model checking over such system and show
that the problem is in fact NP-complete. For this, we first show the NP-completeness of model checking

3

LTL on flat Kripke structures using “general stuttering principle” [KS05]. Next, using this result, we
show that LTL model checking on counter systems with linear sums as updates is NP-complete. For
this result we also use the “small solution property” [BT76] of system of equations. The small solution
property by itself is sufficient to decide the reachability problem on counter system and have been
used to show decidability of reachability problem of different type of systems in [Rac78],[GI81]. Later
building on the previous results we show the NP-completeness of checking LTL with counter constraint
over counter systems with updates as linear sums.

Structure In Section 3, we start with the preliminary definitions of logics and considered systems.
Then, in Section 4, the problem of model checking LTL over flat Kripke structures. The result
presented here is an adaption of the general stuttering principle to a restricted case. In Section 5,
we extend the model with counters and consider flat counter systems and model checking simple LTL
over them. Later in Section 6, we consider a richer problem of investigating the complexity of model
checking LTL formulas with linear counter constraints as atomic propositions over flat counter systems.
In Section 7, we present possible extensions and open problems related to the problems studied here.
Due to constraint of space, omitted proofs can be found in the technical appendix.

2 Related Work

Counter systems are a very popular class of infinite-state systems studied and analyzed. Fragments
of counter systems over which some problems like reachability are decidable, have been studied ex-
tensively. For example, counter systems for which the reachability set is effectively semilinear (or
equivalently the reachability relation is effectively semilinear) is studied in [CJ98]. Again a more gen-
eral class of counter systems with decidable reachability property is studied in [ISD+00]. Though,
restrictions are placed on counter systems to make them decidable, there are some classes of counter
systems like the flat admissible counter system with finite monoid property which have decidable reach-
ability [FL02] and also decidable CTL* model checking [DFGvD10]. While optimal bounds of model
checking simple LTL on Flat Kripke structure are studied earlier in [Kuh10] and [KF11], but tight
bound for model checking simple LTL or LTL with counter constraints on counter systems were still
open.

3 Preliminaries

In this section, we provide the definitions of structures used throughout the thesis. At the end we
define the background of the problem and the problem itself that we want to study.

3.1 Counter Systems

For abstract models we use flat counter systems with linear sum on counters as constraints and its
fragments.

Definition 1. A counter system of dimension n is a labelled graph C= 〈Q, δ,Σ, C, qinit〉 consisting of

• n counters represented as C = (c1, · · · , cn)

4

q1

q2

q3 q4

q5 q6

q7

q8

Figure 1: A flat-counter system

• Σ is a finite set of tuples of the form (g,−→u), where g is used to check the counter values and
−→u ∈ Zn is a vector to update the counter values.
g is a conjunction of conditions of the form

∑
i aici ∼ k for 1 ≤ i ≤ n, where ci is a counter whose

value is compared with any constant k ∈ Z, ai ∈ Z are any constant and ∼∈ {=,≤,≥, <,>}. −→u
is a vector whose each element −→u [i] ∈ Z, where −→u [i] denotes the ith element of −→u .

• Q is a finite set of states.

• δ ⊆ Q × Σ × Q is a transition relation. For each transition t = q
(g,−→u)−−−→ q′, we denote by

source(t) and target(t) as the source and target states of each transition. Similarly, guard(t)
and update(t) denotes the guard g, and update −→u , of the transition t.

• qinit is the initial state.

Every counter system C with n counters naturally induces a transition system TC = 〈S,→〉 where

S = Q × Nn is the set of configurations and →⊆ S × δ × S. Also, t = 〈q,−→x 〉 (g,−→u)−−−→ 〈q′,
−→
x′ 〉 (also

denoted as 〈q,−→x 〉, t, 〈q′,
−→
x′ 〉) iff

• q = source(t)

• q′ = target(t)

• −→x satisfies guard(t)

•
−→
x′ = −→x + update(t)

where
−→
x′ , −→x , −→u are elements of Nn. For a finite word w ∈ δ+, w = t0t1 · · · tk, we have 〈q,−→x 〉 w−→ 〈q′,

−→
x′ 〉

if ∃〈q0,−→y0〉, · · · , 〈qk+1,
−−→yk+1〉 ∈ S such that 〈q0,−→y0〉 = 〈q,−→x 〉 and 〈qk,−→yk〉 = 〈q′,

−→
x′ 〉 and for 0 ≤ i ≤ k,

〈qi,−→yi 〉
ti−→ 〈qi+1,

−−→yi+1〉.
An infinite word w ∈ δω is fireable if for all finite prefix w′ of w, there exists 〈q,−→x 〉 ∈ S such that

〈qinit,
−→
0 〉 w′−→ 〈q,−→x 〉. In other words, w = t0t1 · · · is fireable iff there exists an infinite sequence of

5

configurations 〈qi,−→xi〉 for i ∈ N such that ∀i, 〈qi,−→xi〉
ti−→ 〈qi+1,

−−→xi+1〉 and 〈q0,−→x0〉 = 〈qinit,
−→
0 〉. A run

ρ in C , is an infinite path in TC denoted as

ρ = (q0,
−→x0)

t0−→ · · ·
tk−1−−−→ (qk,

−→xk)
tk−→ · · ·

we denote by δ(ρ) the infinite word w = t0t1 · · · tk · · · . Also, we denote by fireable(C), the set of
infinite words in δω which are fireable.

A flat counter system is a counter system in which every node in the underlying graph is part
of at most one cycle. In spite of this restriction, flat counter systems are found in many places in
practice [LS05]. Also, despite their simplicity of structures, not all flat counter system have decidable
model checking problem [Cor02]. Here, we look at flat counter systems with finite monoid property,
for which decidability was proved in [DFGvD10]

The system obtained by leaving out counter operations and guards from a counter system is also
called a Kripke structure. Alternative, a Kripke structure can be viewed as a counter system with
C = {c1}, all guards are True and all update u ∈ Z equal to zero vector. In a Kripke structure every
node is labelled by proposition symbols. Without loss of generality, we may assume that each state
satisfies a unique proposition. A control path π in a counter system/Kripke structure is defined as
a sequence of nodes from the structure which forms an infinite path in the underlying graph of the
structure.

π = q0, q1, · · · , qk, · · ·

where, every qi ∈ Q. For counter systems, a control path π , can also be seen as the projection
of states from the corresponding run ρ . A control path is also considered a word over states, i.e.
π ∈ Qω. For any such control path π , we denote by πi as the path obtained from π by deleting the
first i states and by π(i, j) the subpath (π(i), π(i + 1), · · · , π(j)) where π(i) denotes the ith node in
π(i). We also extend the definition of the function δ defined on run, for the case of the control paths
similarly as, δ(π) is the sequence of transitions taken for the control path π .

3.2 Temporal Logic

For model checking, we consider LTL formula whose atomic predicates are propositional symbols and
linear constraints on counters of the form

∑
1≤i≤n aici ∼ k, where ci is a counter whose value is

compared with any constant k ∈ Z, ai ∈ Z are any constant and ∼∈ {=,≤,≥, <,>}. Also, the logic
is equipped with U and X as the only temporal operators. The formulas are defined as follows:

ϕ = > | p |
∑

i aici ∼ k | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ

where p is propositon symbol, which in our case are state symbols. We call this class of formulas as

LTLC(U,X). Thus, models of LTLC(U,X) are elements of (Q × Nn)ω. Given a run ρ = (q0,
−→x0)

t0−→
· · · tk−1−−−→ (qk,

−→xk)
tk−→ · · · , the satisfaction relation |= is defined over a run ρ as:

• ρ, i � >. > is taken as True and is satisfied by all runs.

• ρ, i � p iff p = qi.

• ρ, i �
∑

i aici ∼ k iff −→xi �
∑

j ajcj ∼ k using the valuation that cj = −→xi [j]

6

• ρ, i � ¬φ iff ρ, i 2 φ.

• ρ, i � φ ∧ ψ iff ρ, i � φ and ρ, i � ψ.

• ρ, i � Xφ iff ρ, i+ 1 � φ.

• ρ, i � φUψ iff there exist j ≥ 0 such that ρ, j � ψ and for all i ≤ k < j, ρ, i � φ.

In general, for a run ρ and a formula ϕ we say, ρ � ϕ iff ρ, 0 � ϕ. LTL(U,X) is defined in the same way
as LTLC(U,X) with all the counter constraints removed, hence having only propositional symbols as
atomic propositions. Also, models of LTL(U,X) are restricted to elements of Qω, for the case where
Kripke structures are considered. Formulas from LTL(U,X) are interpreted over a control path. For
example the formula

>U(q7 ∧Xq6)

says that finally there is a node which is labelled by q7 and the next position is labelled by q6 and is
satisfied by the control path q1q5q6q7q6q8q8 · · · among others in the counter system of Figure 1. We
define the temporal depth of any LTL formula ϕ, written as td(ϕ), as the maximum nesting level of
the temporal operators occuring in ϕ. For example the LTL formula presented above has temporal
depth 2 as X occurs within U .

3.3 Paths, Schemas and Runs

For a given flat counter system C = 〈Q, δ,Σ, C〉, a path segment σ, is defined as a finite sequence of
transitions t0t1 · · · tk with k ≥ 0 i.e. σ ∈ δ∗ as defined earlier. We denote by σ(i) the ith transition in
σ. A path segment t0t1 · · · tk is simple if k > 0 and for all 0 ≤ i, j ≤ k i 6= j we have that ti 6= tj . A
loop is defined as a simple path segment σ for which source(t0) = target(tk). Otherwise it is called a
non-loop segment. For a path segment σ, σ≤i denotes (t0, t1, · · · , ti), a prefix path segment of length
i + 1 for 0 ≤ i < |σ|. A path schema, L = 〈y0, l0, y1, · · · , yk, lk〉 is defined as a sequence of path
segments following an expression such that:

• For all i ∈ [1, k], yi is a simple non-loop segment.

• For all i ∈ [0, k], li is a loop.

• y0 is a non-loop segment.

• For all i ∈ [1, k] target(li−1(|li−1|)) = source(yi(0)) and target(yi(|yi|)) = source(li(0)). If y0 is
non-empty, then target(y0(|y0|)) = source(l1(0)).

• For any transition t occuring in any segment yi, t does not occur in any of the segments lj for
j > i

•
∑

i update(lk(i)) ≥ 0

• For a flat counter system C , if L is a path schema then for i 6= j, we have yi 6= yj and li 6= lj .

7

For a path schema L, SL = {y0, l0, y1, l1 · · · , yk, lk} denotes the set of path segments in the schema.
Since we consider only flat counter systems, there is a natural ordering of the path segments in a
path schema. Also, L<σ denotes the path schema obtained from L by taking all path segments
which are strictly before σ in L in ordering. For example, L<li = 〈y0, l0, y1, l1 · · · , yi〉. The language
associated with L is a collection of ω-words, which can be represented using the ω-regular expression
LL = y0l

+
0 y1 · · · yklωk . We also extend the definition of fireable sequence of transitions to L in a

counter system C as fireable(L) = LL ∩ fireable(C). For a word w ∈ fireable(L), thus we can

associate a unique vector of integer denoted as
−→
M(w) ∈ (N \ {0})k such that w = y0l

−→
M(w)[0]
0 y1 · · · yklωk ,

where
−→
M(w)[i] is the ith element of

−→
M(w) for 0 ≤ i ≤ k − 1. In the same way for a run ρ such

that δ(ρ) ∈ fireable(L), we define
−→
M(ρ) =

−→
M(δ(ρ)). Also, realizable(L) is a subset of vectors of

integers realizable(L) ⊆ (N \ {0})k, k+ 1 being the number of loops in L , such that realizable(L) =

{
−→
M(w)|w ∈ fireable(L)}. Clearly, the maximum possible size of any path schema, |δ|, is bounded by

the size of the structure.

Lemma 1. The total number of path schemata in a flat counter system is finite and is at most
exponential in the size of the system.

Proof. We know that the size of a simple path segment is bounded by |δ|. Hence, the number of
possible simple path segments is bounded by |δ||δ|. Also, the number of loops are bounded by |δ|.
Since, a path schema contains loops and simple path segments alternatively, the number of possible
path schema is bounded by (|δ||δ|.|δ|)|δ|.

We define the model checking problem MC(L,CS), where L is a fragment of LTLC(U,X) (possibly
equal to it) and CS is a class of counter systems (possibly the whole class) as following:

Input: A system C ∈CS , a configuration (q,−→x) and a formula φ ∈ L
Output: Is there a run ρ starting with (q,−→x) in C such that ρ � φ?

This is a the existensial version of the model checking problem. Note that without loss of generality,
we can assume that the initial value of all counters in a counter system is 0, as we can always put
transitions as a prefix to the run to reach any given counter value. We also consider many fragments
of counter systems like:

• PS - path schema. Note that path schema is not exactly a counter system in the way that, each
loop in a path schema is assured to be taken at least once, which is not the case with counter
system.

• PSn - path schema with n loops, for a fixed n ∈ N,

• FKS - flat Kripke structures,

• FCS - flat counter systems.

The main goal is to provide an optimal algorithm for MC(LTLC(U,X),FCS). This problem can be
proved decidable as corollary of the following proposition

Proposition 1. [DFGvD10] MC(LTLC(U,X), FCS) is decidable.

8

It is also shown that the decidability holds even when the logic can be extended to CTL* with
past-time operator and with first order quantification over counter values. But the complexity of the
presented procedure is very high and lower bounds are also unknown. We here obtain optimal com-
plexity bound by combining two well-known methods: General stuttering principle [KS05] and small
solutions to equations [BT76] leading to short runs [Rac78]. The procedure proceeds by transforming
the formula from LTLC(U,X) to one in LTL(U,X) and also transforming the counter system to pre-
serve satisfiability. Then, we characterize the valid runs in the structure using system of equations.
Then, a polynomial size solution to the equations is guessed and checked which is guaranteed by the
two stated methods of “General stuttering principle” and “small solutions to equations”. A solution
to the equations gives us a run in the system satisfying the formula.

4 Model Checking on Path Schema

In this section, we prove that MC(LTL(U,X),PS) is NP-complete, where PS denotes the class of
path schema. As a corollary, we obtain the same complexity characterization on flat Kripke structures.
Moreover, it is shown in Theorem 3, that further restriction of the model to fixed number of loops,
reduces the complexity of the problem to polynomial time. We will first prove the following:

Theorem 1. Given a path schema L = 〈y0, l0, y1, l1 · · · lk〉, and a formula ϕ ∈ LTL(U,X), if there

exists a word w = y0l
i0
0 y1 · · · l

ik−1

k−1 yk−1l
ω
k such that for a run ρ with δ(ρ) = w and ρ � ϕ then there

exists a word w′ = y0l
i′0
0 y1 · · · l

i′k−1

k−1 yk−1l
ω
k and a run ρ′ with δ(ρ′) = w′ and ρ′ � ϕ and for all 0 ≤ j < k,

i′j ≤ 2.td(ϕ) + 2, where td(ϕ) denotes the temporal depth of ϕ as defined above.

To get a tight bound on the number of unfoldings, we consider the depth of U and X separately.
The maximum depth of the temporal operator U (respectively X) in a formula is the maximum nesting
depth of U (respectively X) in the formula. We write LTL(Um, Xn) to denote the set of formulas in
LTL(U,X) with maximum depth of U and X operator, m and n respectively. Consider an infinite
word of transition w = t0t1t2 · · · such that w belongs to fireable(L) for a given path schema L . A
finite word of transitions u ∈ δ+ is (m,n)-redundant in w if there exists a finite word of transitions
(possibly empty) w1 and an infinite word of transitions w2 such that:

w = w1.u
k.w2

where k.|u| ≥ (m + 1).|u| + n + 1 (that is in w the word u is repeated enough number of times to
cover (m+ 1).|u|+ n+ 1 letters). For a run/control path ρ in a system without counters, such that
δ(ρ) ∈ LL, u starts for ρ(i) is defined as source(u(0)) = ρ(i).

For a word of transitions u, which is (m,n)-redundant in w, we fix the functions begin(w, u) ∈
δ+, end(w, u) ∈ δω and iter(w, u) ∈ N (with iter(w, u) ≥ (m + 1).|u| + n + 1) such that w =
begin(w, u).uiter(w,u).end(w, u). We define w \ u = begin(w, u).uiter(w,u)−1.end(w, u). Note that there
might be different choices for the function begin, end and iter, since there might be more than one way
of partitioning the word, but for our case one of the partitions is chosen arbitrarily. We also define the
relation→m,n as: two runs α, β are said to be related as α→m,n β if β is obtained from α by removing
the first iteration of an (m,n) redundant loop, u, that is, δ(β) = δ(α)\u. For a finite word of transitions
u ∈ δ+ such that u = t0t1 · · · tl, for 0 ≤ k < |u|, u[k] is the word tk.mod|u|.t(1+k).mod|u| · · · t(l+k).mod|u|.
We will prove the following claim :

9

Claim 1. For two runs α and β, if α→m,n β, and for ϕ ∈ LTL(Um, Xn) α |= ϕ iff β |= ϕ.

It is evident that, if the claim is proved then for any formula satisfied by a run in the given
structure can be satisfied by a run with bounded numbers of iteration of each loop (possibly by a
series of removal of first iterations of the loops that occur more than the specified number of times in

the run). Also, note that though the quantity m + 1 +
⌈n+ 1

|u|

⌉
is not exactly td(ϕ), but for |u| ≥ 1

we have, m+ 1 +
⌈n+ 1

|u|

⌉
≤ 2.td(ϕ) + 2. Hence this proves Theorem 1.

The proof of the Claim can be found in the technical appendix.
The proof of the Claim as presented, though in the line of the proof of the general stuttering

principle [KS05], is suited for path schemas. The proof presented in [KS05] deals with Kripke structures
which are non-flat and also gives a tighter bound on the number of iterations. For our case, we have
simplified the proof for flat Kripke structures and also for less tight upperbound as needed by later
proofs. This helps in extending the proof and applying it to more general models as presented in the
later sections.

As a result of the previous theorem, we can state the following lemma,

Lemma 2. MC(LTL(U,X),PS) is in NP.

The proof proceeds by guessing the number of times each loop is taken and then checking the
formula on a constructed uniformly periodic path in polynomial time. The detailed proof can be found
in the technical appendix.

Lemma 3. MC(LTL(U,X),PS), is NP-hard.

The proof proceeds by a reduction of the satisfiability problem of propositional logic to the given
problem. Details about the reduction can be found in the technical appendix.

From the above lemmas, we have the following:

Theorem 2. MC(LTL(U,X), PS) is NP-complete.

From the previous proof of NP-completeness, we can say the following:

Corollary 1. [KF11] MC(LTL(U,X), FKS), is NP-complete, where FKS denotes flat Kripke struc-
ture.

This follows directly from the above proof, by additionally guessing the path schema in the struc-
ture which is of size polynomial in the size of the structure and then checking the formula on the
path-schema. In the NP-hardness proof in [KF11], the non-determinism is simulated from the non-
determinism in structure instead of the number of loops taken as in this case.

Furthermore, we can also restrict the number of loops in a path schema. But in this case the
complexity is much lower.

Theorem 3. MC(LTL(U,X), PSn) is in P where PSn denotes path schemas with at most n loops
for some fixed n ∈ N.

The proof can be found in the technical appendix.
Note that from the NP-hardness proof of [KF11], where the proof deals with a flat Kripke structure

with a unique loop, we have the following:

10

Corollary 2. [KF11] MC(LTL(U,X), FKSn), is NP-complete, where FKSn denotes flat Kripke
structure with number of loops restricted to be at most some fixed constant, n.

So, to summarize, we obtain that model checking LTL(U,X) over path schemas is NP-complete.
Whereas if we restrict the model to be path schemas with a fixed number of loops, then the model
checking problem of the same kind of formula is in P. Also, we show that, MC(LTL(U,X), FKS) is
NP-complete where FKS denotes flat Kripke structure. As a summary,

• MC(LTL(U,X),PS) is NP-complete.

• MC(LTL(U,X),FKS) is NP-complete.

• MC(LTL(U,X),FKSn) is NP-complete.

• MC(LTL(U,X),PSn) is P.

5 Model Checking Simple LTL over Flat Counter Systems

Now, let us consider a more general and powerful system than Kripke structures namely flat counter
system in FCS. A flat counter system is represented as C = 〈Q, δ,Σ, C, qinit〉 as defined earlier and
we will look into the complexity of model checking LTL(U,X) on such systems. We shall prove the
following:

Theorem 4. MC(LTL(U,X),FCS) is NP-complete where FCS denotes the class of flat counter
systems.

Intuitively, we will formulate a system of equations characterizing the infinite runs over the struc-
ture which are valid with respect to the counter values. The equations contain as variables the number
of times each loop is taken. We use the small solution property of integer equations, to guess a polyno-
mial size solution of the equations. Though this is sufficient for deciding reachability, it is not sufficient
for deciding LTL(U,X). Hence, we use Theorem 1, to guess a path satisfying the formula and then
we compare the two solutions to decide whether the formula is satisfiable.

5.1 Characterizing infinite runs

Here, we will define the system of equations which characterizes the set of valid infinite runs of a path
schema. That is, the equations will characterize the set realizable(L). We have variables identifying
how many times each loop is taken. The equations ensures that any path satisfying all the equations
are valid, i.e. they respect the guards and the updates. This is achieved by expressing the effect
of updates in the transitions taken, on the counters and then checking them with the guards in the
system at appropriate places.

Consider a path schema L = 〈y0, l0, y1, l1 · · · , yk, lk〉. For a path segment σ ∈ SL (which is a word
in δ+), we define the effect of the path segment on a counter ci as,

4=σ(i)
def
=

∑
0≤j≤|σ|

update(σ(j))[i]

11

We extend the definition of 4=σ to path schema. But in this case, due to the involvemnent of loops
and the number of times they are taken in the effect, we obtain an expression for the effect of a path
schema on a counter ci with variables in it. In the expressions, Xσ is a variable signifying how many
times the path segment σ is taken. The expressions for effect are obtained as described below,

4<σ(i)
def
=

∑
σ′∈SL<σ

Xσ′ .4=σ′(i)

The expression is a sum of the effects of all the path segments σ′ in the path schema taken Xσ′ times
which occur strictly before σ in the path schema. Since, all yis in a path schema are taken only once
in any run through the path schema, we also impose the condition that Xyi for all 0 ≤ i ≤ k is equal
to 1. Also, we emphasize that each of the segment is taken at least once. Hence Xσ ≥ 1 for any σ.

Now, we will define a system of equations which characterizes the valid infinite runs ρ such that
δ(ρ) ∈ fireable(L). The set of equations for characterizing valid runs, E , is the smallest set of
equations which contains the following type of equations:

1. For i ∈ [0, k], we add the following equation.

Xyi = 1

This ensures that each of the non-loop path segment is taken only once.

2. For i ∈ [0, k − 1], we add the following equation.

Xyi ≥ 1

This ensures that each of the loops is taken at least once.

3. For each σ ∈ SL and for all 0 ≤ j < |σ|, for all constraints of the form
∑

i aici ∼ k in guard(σ(j)),
E contains an equation of the form:∑

1≤i≤n
ai.(4<σ(i) +4=σ≤j−1

(i)) ∼ k

This ensures that each segment can be taken at least once. In other words, the equation ensures
that each of the guards on any transition is satisfied by the counter values upto that guard in a
given configuration path.

4. For each σ ∈ SL \ {lk} (except the last loop) and for all 0 ≤ j ≤ |σ|, for all constraints of the
form

∑
i aici ∼ k in guard(σ(i)), E contains an equation of the form:∑

1≤i≤n
ai.(4<σ(i) + (Xσ − 1).4=σ(i) +4=σ≤j−1

(i)) ∼ k

This type of equations, effectively only for loops, ensures that in the last iteration of a loop too,
the guards on the transitions of the loop are satisfied by the counter values upto that transition
in the configuration path.

12

5. For each counter ci and for each σ ∈ SL \ {lk} and for all 0 ≤ j ≤ |σ|, E contains equations of
the form:

4<σ(i) +4=σ≤j−1
(i) ≥ 0

4<σ(i) + (Xσ − 1).4=σ(i) +4=σ≤j−1
(i) ≥ 0

And for each counter ci and σ = lk and for all 0 ≤ j ≤ |σ|, E contains equations of the form:

4<σ(i) +4=σ≤j−1
(i) ≥ 0

The effect on each of the counters till the transition in the configuration path is positive, similarly
at the starting and ending iteration of repetition for loops. Note that, since we don’t have any
variable defined for the last loop, we don’t have a formula of the second type for the last loop.

6. For the last loop lk, and for all 0 ≤ j ≤ |lk|, E contains an equation for guard(lk(j)) which are
obtained by replacing each constraint of guard(lk(j)) of the form

∑
i aici ∼ k where∼∈ {<,≤,=}

by a formula as specified below: ∑
i

ai4=lk(i) = 0

For ∼∈ {<,≤,=} in any constraint
∑

i aici ∼ k in the last loop lk the effect of the loop is 0. As
for other cases, of the effect being negative or positive, the last loop can not be taken infinite
number of times.

Note that since the guards are conjunction of constraints of the form
∑

i aici ∼ k and state symbols,
after replacing the constraints with the corresponding equations as above, we might get more than
one equation for one guard in the system.

Consider a counter constraint of the form
∑

i aici ∼ k occuring in the guard guard(li(j)) in the
path schema L. Also, let the loop li is taken n times, and the vector of counter values at the transition
li(j) at corresponding iterations are (−→x1,−→x2, · · · ,−→xn).

Claim 2. For any −→x ∈ Nn and ∆ ∈ Zn for N ≥ 1 and ∼∈ {=, <,>,≤,≥, 6=}, if
∑

i ai
−→x [i] ∼ k and∑

i ai(
−→x +N.∆)[i] ∼ k then ∀j ∈ [1, N − 1],

∑
i ai(
−→x + j.∆)[i] =

∑
i ai
−→x [i] + j.

∑
i ai∆[i] ∼ k.

The proof can be found in the technical appendix.
The combined effect of updates of edges of each loop segment can be summed up as ∆ ∈ Zn. Thus,

applying the above claim to the case of loop segments, we get that if a term is satisfied at the first
and last iteration of a loop, then it is also satisfied in the intermediate iterations of the loop.

For simplicity we replace the variables Xyi with 1, as equations of Type 1 ensures this. Thus, we
get, E′ = E[1/yi]. Clearly, E′ contains only the variables for loops and thus contains only k variables
for L . Note that this does not change the solution of the equations, but reduces the number of
variables. Thus, if (m0,m1,m2 · · ·mk−1) is a solution to E′ then (1,m0, 1,m1, 1,m2, · · · , 1,mk−1) is a
solution to E .

Now, we can now prove the following property of the constructed system of equations E′:

Claim 3. For a given path schema L , for all
−→
M ∈ Nk

−→
M is a solution to E′ iff ∃ρ such that

δ(ρ) ∈ fireable(L) and
−→
M(ρ) =

−→
M ∈ realizable(L)

The proof of the claim can be found in the technical appendix.

13

5.2 A NP decision procedure for MC(LTL(U,X),FCS)

Here we will prove the following lemma by giving a non-deterministic polynomial-time algorithm in the
size of the structure and the formula, which decides MC(LTL(U,X),FCS). We will formulate a system
of equations for such runs and find a small solution for such system using the following theorem:

Theorem 5. [BT76] Let A ∈ [−M,M]U×V and
−→
b ∈ [−M,M]U where U, V,M ∈ N. If there is

−→x ∈ NV such that A−→x ≥
−→
b , then there is −→y ∈ [0, (max{V,M})CU]V such that A−→y ≥

−→
b , where C is

some constant.

Lemma 4. MC(LTL(U,X),FCS) is in NP.

Proof. Let ϕ ∈ LTL(U,X) and C be a flat counter system in FCS.

Algorithm

1. Guess a path schema in C , L = 〈y0, l0, y1, l1 · · · , yk, lk〉.

2. Guess a vector of integers
−→
M ∈ [1, 2.td(φ) + 2]k and we write,

−→
M = (m0, · · · ,mk−1).

3. Check if y0l
m0
0 y1l

m1
1 · · · l

mk−1

k−1 ykl
ω
k � ϕ. If not, then abort.

4. Construct the set of formulas E from L as describe in the Section 5.1.

5. Construct E−→
M

as:

E−→
M

=
⋃

0≤i<k

{
Xli ≥ 2.td(ϕ) + 2 if mi = 2.td(ϕ) + 2
Xli = mi otherwise

6. Guess a small polynomial size solution for the system of equations E ∪ E−→
M

.

7. Check if the guess satisfies the equations.

Correctness The correctness proof of the algorithm can be found in the technical appendix.

Complexity To prove that the algorithm presented above is in NP we need to show that both the
size of all guess done and the running time of the algorithm is a polynome in the size of the system
and the size of the formula.

Size of guess: As seen previously, the size of a path schema guessed in Step 1 is bounded by |δ|
and hence by |C|. Also, the size of the vector of integers guessed in Step 2 is at most kdlog22.td(ϕ)+2e
which is again bounded by both O(|ϕ|.|C|). Again, as shown in the correctness proof, the guess of
solution of system of equation in Step 6 is at most 2k.max(|Q|,max(|ϕ|, |δ|22|δ|))C((2n+5)|δ|). But the
encoding of such a solution in binary is bounded by O(n.|δ|.(log2(|Q|+ |ϕ|+ |δ|22.|δ|)). Hence the size
of the overall guess is a polynome in the size of formula and the size of the system.

Running time:As the guesses are polynomial in size, guessing them in Step 1, 2 and 6 takes
polynomial time. As in the proof of Lemma 2, the checking of the satisfaction of ϕ can be performed
in O(|C|.|ϕ|). As shown previously, the size of the formula E ∪ E−→

M
is |U | × (|V | + 1) × |M | which is

14

(2k+ 1).C((2n+ 5)|δ|).max(|ϕ|, |δ|22|δ|). But again this is of polynomial size. Moreover, constructing
the equation, requires one pass over the path schema, and hence takes polynomial time. Since the
guessed solution of the equation and the equations themselve are of polynomial size, checking the
equation, requires addition and multiplication of polynomial number of bits and hence polynomial
time. Thus, the whole procedure completes in polynomial amount of time.

Thus, the lemma follows.

Lemma 5. MC(LTL(U,X),FCS) is NP-hard.

Proof. The proof follows directly from the proof of Lemma 3, as flat Kripke structures are a specific
kind of flat counter systems.

6 Model Checking LTL with Counter Constraints over Flat Counter
Systems

We now consider flat counter systems as before, but now we would like to check LTLC(U,X) formulas.
These are formulas whose atomic propositions are allowed to be linear sum of counter values compared
with a fixed constant (e.g.

∑
i aici ∼ k). We use an NP procedure that calls the NP procedure

developed in the previous section to solve MC(LTL(U,X),FCS).
Given a flat counter system C = 〈Q, δ,Σ, C, qinit〉 with n counters, and a formula φ ∈ LTLC(U,X),

we first guess a path schema L = 〈y0, l0, y1, l1 · · · , yk, lk〉 in C . Now we would enlarge/modify the path
schema, by making copies of the loops li in the path schema such that each copy differs in the validity
of some of the constraints appearing in φ. Thereafter, we construct a new flat counter system D

from the new path schema and transform φ to φ′ ∈ LTL(U,X) such that solving the model checking
problem of φ′ over D yields solution to the original problem.

6.1 Enlarging path schema by copying loops

By our assumption, we have all the guards and the constraints in the formula concerning the counters
of the form

∑
i aici ∼ k. We call a term, the expression of the form

∑
i aici occuring on the left side

of a constraint. First, we order all such terms arbitrarily and form an arbitrary ordering of terms from

the counter system and the formula
−→
T = (t1, t2, · · · , tm′). Now, we take all such k appearing in the

right hand side of each constraint as K = (k1, k2, · · · , km) where for all 1 ≤ i < m, ki < ki+1. Note
that, both m and m′ are bounded by the size of input (i.e. |φ| + |C|). Now we can define (2.m + 1)
intervals using the elements of K as I = {[−∞, k1), [k1, k1], (k1, k2), [k2, k2], · · · , [km, km], (km,∞)}
with a linear ordering of intervals. The loops are copied to make a distinction in the copies of the
loop where different constraints are satisfied. With each copy of a loop, we associate properties about
terms related to the intervals in I. For making copies of the loops we make the following guesses:

1. The number of times each loop should be copied
−→
N = (n0, · · · , nk) (we copy the loop li, ni times

and thus replace li in L with 〈l(i,1), li, l(i,2), · · · , li, l(i,ni)〉. Intuitively, l(i,j) is the jth copy of ith

loop and the kth nodes and transitions of the loop l(i,j) is denoted as nk(i,j) and tk(i,j) respectively.

2. A collection of functions vk(i,j) :
−→
T → I for each tk(i,j), the kth transition of jth copy of loop li,

which assigns an interval for each of the terms in
−→
T , with the following conditions:

15

Figure 2: Enlarging path schema by copying loops.

(a) For all 1 ≤ h ≤ m, the term th(
−→x [0], · · · ,−→x [n− 1]) ∈ vk(i,j)(th) for all configurations (q,−→x)

in a run ρ = · · · (q,−→x)(q′,−→x ′) · · · where tk(i,j) is the transition beween (q,−→x), (q′,−→x ′). Here,

th(
−→x [0], · · · ,−→x [n − 1]) denotes the value of th after replacing ci with the value xi for all

0 ≤ i < n

(b) For all 0 ≤ i ≤ k and 1 ≤ j1, j2 ≤ m1, if j1 6= j2 then there exists k and h such that
vk(i,j1)(th)6= vk(i,j2)(th) (i.e. every copy of a loop is distinct from the other with respect to

the vectors attached to each transition)

(c) For all tki,j , we have that guard(tki,j) is satisfied by some
−→
X , then th(

−→x [0], · · · ,−→x [n− 1]) ∈
vki,j(th), for all terms th ∈

−→
T .

(d) For all i ∈ [1, k], for all 1 ≤ h < m′, we have either,

• for all 1 ≤ j, j′ ≤ m, j < j′ ⇒ vki,j [th]≤ vki,j′ [th], or,

• for all 1 ≤ j, j′ ≤ m, j < j′ ⇒ vki,j [th]≥ vki,j′ [th]
where for two intervals i1 and i2, i1 ≥ i2, iff max(i1) ≥ max(i2). This conditions ensure
that the intervals chosen are monotonous in successive copies of the same loop for the same
term.

Thus, we have finally the path schema L1 = 〈y0, l(0,1), l0, l(0,2), · · · l(0,n1), y1, · · · , yt, lt〉 where each of

the transitions tk(i,j) of each of the loop l(i,j) is associated with a set of guessed intervals vk(i,j) =

(i1, i2, · · · , im′).

Claim 4. The size of L1 as constructed above is bounded by a polynome in |φ| and |C|.

The proof can be found in the technical appendix.
As L1 is of polynomial size in the size of the input, the number of intervals we need to guess is

also polynomial in the size of the input. Thus, collectively, the guess is of polynomial in the size of
the input.

6.2 Construction of counter system and transforming φ

Intuitively, next we are going to construct a new counter system D from L1 and the guessed intervals.
And then transform the given formula φ ∈ LTLC(U,X) to a formula φ′ ∈ LTL(U,X) with the

16

constraints removed in such a way that φ′ is satisfied on D iff φ is satisfied by a path in L1. In other
words, there exists ρ such that ρ, 0 � φ with δ(ρ) ∈ L in C iff there exists ρ′ such that ρ′, 0 � φ′ with
δ(ρ′) ∈ L1 in D

For simplification, we rename the loops and paths in L1 as 〈y0, l0, y1, l1 · · · , yp, lp〉 and each path
segment σi is a sequence of alternate nodes and transitions denoted as below:

yi = (t1yi , t
2
yi , · · · , t

l
yi)

li = (t1li , t
2
li
, · · · , tlli)

The vector of intervals associated to each of the transitions tjσ of any path segment σ is denoted by vjσ

Transformation of φ We define a function f to assign, a unique propositional variable to each
constraint as follows:

f : Constraints→ AP
f(t ∼ b) = qt∼b

where, each of the qt∼b does not appear in the formula (i.e. qt∼b /∈ AP (φ)).
Now,we get, φ′ = f(φ), where, the function f is extended in the usual way for formulas and f(φ)

denotes relabelling the counter constraints in φ to propositional symbols according to the function f .
Clearly, φ′ ∈ LTL(U,X).

Construction of counter system The construction of the new counter system D is done by
labeling the nodes and putting guards in appropriate places. First, in L1, by the method of assigning
the intervals to the transitions, we are assured that the guards on the transitions are satisfied if the
transition appears in a run with the terms in the specified intervals associated with the transition.
Thus, we can delete all such guards from L1 and instead ensure that for a transition tjσ, all the terms
are within the alloted interval of vjσ whenever tjσ appears at any point of a run. This can be done by
putting new guards at some points of the system. Thus the new counter system D is defined from
the given counter system C = 〈Q, δ,Σ, C, qinit〉 and the schema L1, as :

D = 〈Q, δ′,Σ′, C, qinit〉 where,

• Σ′ ⊆ ∪σ∈SL1
(σ)×{

∧
1≤h≤m′ th∈ v

j
li

(th)|σ ∈ SL1 , 0 ≤ j ≤ |σ|} for each term th, where th∈ vjli(th)
is the conjunction two conditions as, th≥ min(vjli(th))∧th≤ max(vjli(th))

• δ′ is the set of transitions in L1 (i.e. ∪σ∈SL1
σ) without the guards. New guards are assigned to

the transitions as described below.

1. We add the following guards on the transition t1l for each loop l:

– for each term th and for all 1 ≤ j < |l| we add the constraint th+4=l≤j−1
∈ vjl (th) in

conjunction.
∧

1≤h≤m′ th+4=l≤j−1
∈ vjl (th), where for a term th

def
=
∑

i ai.ci, we define

th+4=σ≤j−1

def
=
∑

i(ai.ci +4=σ≤j (i)). This ensures that when the loop is visited all
the terms are in their respective intervals.

2. If δ(li−1) = δ(li) for 1 ≤ i ≤ p, we add conjunction of the following constraints on t1yi :

17

– For all transition tjli−1
in li we add

∧
1≤h≤m′,vjli−1

(th)6=v
j
li
(th)

th−4=li−1
+4=(li−1)≤j−1

/∈

vjli−1
(th), where for a term th

def
=
∑

i ai.ci, we say th−4=σ +4=σ≤j−1

def
=
∑

i(ai.ci −
4=σ(i) + 4=σ≤j−1

(i)). This ensures that for the successive copies of same loop, the
loop is changed only when some term falls out of an interval.

Given v :
−→
T → I we can define, v � t ∼ b. Thus, we can say for each constraint t ∼ b of the form∑

i aici ∼ b appearing in the given formula φ, whether, t ∼ b is true in the interval vjσ(t). Also note
that by the construction of the intervals, a constraint can only be either true or false over the range
of a single interval.

The labelling of the system is done by finding out which of the constraints t ∼ bs are satisfied
by any specific interval vjσ[i] and then putting the propositional symbol f(t ∼ b) as the label of
source(tjσ) = njσ. That is, for constraints of the form t ∼ b if max(vjσ[i]) ∼ b and min(vjσ[i]) ∼ b then
we assign the label qt∼b to njσ. Also, note that, we may have more than one propositional symbols
as label for each node. This, in particular is not a problem as we can always re-label each node with
exactly one propositional symbol and change the formula such that the old propositional symbol qi
is replaced by a disjunction of all the new propositional symbols that replaced qi from some node.
In other words, if at node n1, n2 · · ·nl, qj was replaced by the new propositional symbols q′1, q

′
2, · · · q′l,

then we change the formula φ by replacing every occurrance of qj by ∨i∈[1,l](qi). Note that this
introduces a blow-up in the size of the formula which is at most polynomial in |φ|+ |C| as the number
of propositional symbols introduced in the formula are bounded by the number of constraints in the
formula and the number of such clause is bounded by |C|

Let us denote the new counter system obtained as D and the transformed formula as φ′. Note that
we do not put any condition on leaving the last copy of any loop, because the last copy of the loop
might be taken any number of times less than the specified number. In spite of this condition, we can
still uniquely determine the labels of the nodes of the path segment after the last copy (yi), as it can
be reached in at most two intervals (either in the interval where the last copy was preempted, or the
interval after the ones in the labels of the last copy of the loop. Thus, we can consider D as a counter
system on which we want to check the simple LTL formula φ′.

6.3 NP decision procedure

Lemma 6. MC(LTLC(U,X),FCS) is in NP.

Given a flat counter system C and a formula φ ∈ LTLC(U,X)

1. Guess a path schema L = 〈y0, l0, y1, l1 · · · , yp, lp〉

2. Create an enlarged path schema L1 by making copies of the loops in L with guesses as described
in Section 6.1.

3. Transform L1 into a flat counter system D and φ into φ′ ∈ LTL(U,X) as described in Section
6.2.

4. Apply the NP decision procedure for MC(LTL(U,X),FCS) on D and φ′

Proof. We will show the correctness of the algorithm and the proof that it is in NP.

18

Correctness The proof of the correctness of the algorithm can be found in the technical appendix.

Complexity The guess of path schema in Step 1, is bounded by |C|. For Step 2, as proved in Claim
4, L1 is also bounded by a polynomial in |C|+ |φ|. Hence the guesses of interval and number of copy
is also bounded by a polynomial in |C|+ |φ|. The transformations in Step 3 requires one pass through
L1 and φ, and hence is also bounded by a polynomial in |C| + |φ|. Also, as shown in the proof of
Lemma 4, the NP procedure for MC(LTL(U,X), FCS) completes in polynomial time. Thus, the
algorithm completes in time bounded by a polynomial in |C| + |φ| with guesses of size which is less
than O(|C|.|φ|).

NP-hardness of the problem follows directly from the proof of Lemma 3.
Combining the above lemma and the above observation, we can say that,

Theorem 6. MC(LTLC(U,X),FCS) is NP-complete.

7 Conclusion

Here, we investigate the model checking problem of various fragments of LTL with counter constraint
over various classes of counter systems and establish their optimal complexity bounds. We show that
MC(LTL(U,X), PS), MC(LTL(U,X), FKS), MC(LTL(U,X), FCS) and MC(LTLC(U,X), FCS) are
all NP-complete. Whereas restricting the model further by fixing the number of loops allowed in a
path schema, we obtain that MC(LTL(U,X), PSn) is in P for any fixed n ≥ 1. The result presents a
major improvement over the known 4EXP-time upper bound from [DFGvD10]. The techniques used
in the proof, though are well known, but never been combined as is done in the proof.

There are several related problems which are not addressed here, like: extension of the logic
with past operators, model-checking for CTL*, model checking over flat counter systems with no
restriction over the guards, other extensions of counter systems like affine counter system with finite
monoid property [FL02] etc. Though as stated earlier, all these problems are known to be decidable
but the upper bounds known for these problems are very crude. Hence it is interesting to investigate
the problems to look for tighter upper bounds. Finally, the restrictions on the counter systems may
as well be increased to find out when the model checking problem falls below NP.

References

[BFLS06] S. Bardin, A. Finkel, E. Lozes, and A. Sangnier. From pointer systems to counter sys-
tems using shape analysis. Proceedings of the 5th International Workshop on Automated
Verification of Infinite-State Systems (AVIS’06), 2006.

[BMS+06] M. Bojańczyk, A. Muscholl, Th. Schwentick, L. Segoufin, and C. David. Two-variable
logic on words with data. In LICS’06, pages 7–16. IEEE, 2006.

[BT76] I. Borosh and L. Treybig. Bounds on positive integral solutions of linear diophantine
equations. American Mathematical Society, 55:299–304, 1976.

19

[CGP00] E. Clarke, O. Grumberg, and D. Peled. Model checking. The MIT Press Books, 2000.

[CJ98] H. Comon and Y. Jurski. Multiple counters automata, safety analysis and Presburger
arithmetic. In CAV’98, volume 1427 of Lecture Notes in Computer Science, pages 268–
279. Springer, 1998.

[Cor02] V. Cortier. About the decision of reachability for register machines. Theoretical Infor-
matics and Applications, 36(4):341–358, 2002.

[DFGvD10] S. Demri, A. Finkel, V. Goranko, and G. van Drimmelen. Model-checking CTL* over flat
Presburger counter systems. Journal of Non-Classical Logics, 20(4):313–344, 2010.

[DL06] S. Demri and R. Lazić. LTL with the freeze quantifier and register automata. In LICS’06,
pages 17–26. IEEE, 2006.

[EFM99] J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In
LICS’99, pages 352–359, 1999.

[FL02] A. Finkel and J. Leroux. How to compose Presburger accelerations: Applications to
broadcast protocols. In FST&TCS’02, volume 2256 of Lecture Notes in Computer Science,
pages 145–156. Springer, Berlin, 2002.

[GI81] E. Gurari and O. Ibarra. The complexity of decision problems for finite-turn multicounter
machines. In ICALP’81, volume 115 of Lecture Notes in Computer Science, pages 495–
505. Springer, 1981.

[ISD+00] O. Ibarra, J. Su, Z. Dang, T. Bultan, and A. Kemmerer. Counter machines: Decidable
properties and applications to verification problems. In MFCS’00, volume 1893 of Lecture
Notes in Computer Science, pages 426–435. Springer, 2000.

[KF11] L. Kuhtz and B. Finkbeiner. Weak Kripke structures and LTL. In CONCUR’11, Lecture
Notes in Computer Science. Springer, 2011. To appear.

[KS05] A. Kučera and J. Strejček. The stuttering principle revisited. Acta Informatica, 41(7-
8):415–434, 2005.

[Kuh10] L. Kuhtz. Model Checking Finite Paths and Trees. PhD thesis, Universitat des Saarlandes,
2010.

[LS05] J. Leroux and G. Sutre. Flat counter systems are everywhere! In ATVA’05, volume 3707
of Lecture Notes in Computer Science, pages 489–503. Springer, 2005.

[Min67] M. Minsky. Computation: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs,
NJ, 1967.

[Rac78] C. Rackoff. The covering and boundedness problems for vector addition systems. Theo-
retical Computer Science, 6(2):223–231, 1978.

[Sch03] Ph. Schnoebelen. The complexity of temporal logic model checking. In AiML’02, volume 4
of Advances in Modal Logic, pages 393–436. King’s College, 2003.

20

Appendices

A Proof of Claim 1

Before proving the Claim, we would like to prove the following lemma:

Lemma 7. Let m,n ∈ N ∪ {0} and ρ a run such that w = δ(ρ) ∈ LL where the loop u is (m,n)-
redundant. Then, in w,

1. u is also (m′, n′)-redundant for all m′ ∈ [0,m] and n′ ∈ [0, n].

2. u[1] is (m,n− 1)-redundant.

3. u[k] is (m− 1, n)-redundant for all k ∈ [0, |u| − 1].

Proof. 1. follows immediately, as the conditions on m′ and n′ implies that
iter(w, u) ≥ (m+ 1).|u|+ n+ 1 ≥ (m′ + 1).|u|+ n′ + 1. Hence u is (m′, n′)-redundant.

2. Since u is (m,n)-redundant, its iterations cover at least (m+ 1).|u|+ n+ 1 letters and thus by
the periodicity of the iterated portion of the path, we have that u[1]’s iterations covers at least
(m + 1).|u| + n letters leaving the first letter of the first iteration of u. Note that, the number
of full iterations of u[1] may be one less, but the last few letters required to cover the specified
number of letters after the full iterations are in fact prefix of u[1]. So, the last iteration may be
incomplete.

3. Similarly as above, if u is (m,n)-redundant, its iterations cover at least (m+1).|u|+n+1 letters.
Then u[k]’s iterations, for 0 ≤ k < |u| covers at least (m + 1).|u| + n + 1 − k letters. This, for
the given bound of k implies that u[k]’s iteration cover at least m.|u|+ n+ 1 letters and thus, is
(m − 1, n)-redundant. Similar to the previous case, note that the last iteration of u[k] may be
incomplete.

Proof of Claim 1 First note that though α and β considered here are runs, they can also be
considered as control paths as there are no counters in the structure. We will prove the claim using
induction on both m and n simultaneously. We consider any formula ϕ ∈ LTL(Um, Xn) and two
paths α→m,n β where u is the loop that is (m,n)-redundant and the first iteration of u in α is deleted
in β. We show that α |= ϕ iff β |= ϕ.

Base case. m = 0 and n = 0. Since u is (m,n)-redundant, it is iterated more than or equal to 2
times in δ(α) and δ(β) contains u once, with the first occurence deleted. Now, since ϕ doesn’t contain
any of the operators U and X, it only contains boolean combination of the state symbols. And thus
the satisfiablility of ϕ depends only on the first node of α and β. Except for the case where u starts
from the first node of α, in all other cases the first node of α and β are the same. Hence, we need
to consider only this case. But, since u is iterated twice consecutively and only one copy of u was
removed. We get that the second copy of u also starts with the same node and thus β starts with the
same node as α. Hence it satisfies the induction hypothesis.

Induction Step. Let m,n ∈ N ∪ {0}, and let us assume that the claim holds for all m′, n′ such
that either m′ < m and n′ ≤ n, or m′ ≤ m and n′ < n. We have four possibilities:

21

1. ϕ ∈ LTL(Um
′
, Xn′) for some m′, n′ such that either m′ < m and n′ ≤ n, or m′ ≤ m and

n′ < n. By Lemma 7(1) we have u is also (m′, n′)-redundant, and thus α→m′,n′ β. By induction
hypothesis it follows that α |= ϕ iff β |= ϕ.

2. ϕ = Xψ. We need to prove that α1 |= ψ iff β1 |= ψ. We know that ψ ∈ LTL(Um, Xn−1). So,
we just need to show that α1 →m,n−1 β1, then by induction hypothesis it follows that α1 |= ψ
iff β1 |= ψ.

If u did not start from the first node of α then, like the base case, we have that u is (m,n− 1)-
redundant (by Lemma 7(1)) and thus α1 →m,n−1 β1. For the case where u start from the first
node of α, we get β1 from α1 by deleting the loop u[1] as u[1] starts from the first node of α1. We
know from Lemma 7(2) that u[1] is (m,n− 1)-redundant. Thus, α1 →m,n−1 β1 and as previous,
the result follows by induction.

3. ϕ = ψUη. Clearly, ψ, η ∈ LTL(Um−1, Xn). α |= ψUη implies that at some position j, αj
satisfies η and for all 0 ≤ i < j, αi satisfies ψ.

We decompose δ(α) into components as : v - occuring before the first copy of u, y - the iterations
of u, w - rest of the path (possibly of infinite length), with v ∈ δ∗ and u, y, w ∈ δ+. Thus, we
have, δ(α) = vuyw and δ(β) = vyw. We will first prove that β |= ϕ assuming α |= ϕ. We deal
with three cases, depending on the position of j in α:

(a) Before u : In the case where u starts after the position j in α, we note that for all 0 ≤ i ≤ j
we have that αi →m−1,n βi, since by Lemma 7(1), u is also (m − 1, n)-redundant. Thus,
η is also satisfied at j in β and ψ is satisfied at all positions before j by the induction
hypothesis. Hence, β |= ϕ.

(b) After u : In this case j occurs after the start of yw in α. Let us consider that the position
of j within yw is k. Again, we take the corresponding position k in β (i.e. position (j−|u|)
in β). We have, by the same reasoning as previous, that all positions within v in β satisfies
ψ. And also, we note that the remaining positions in β occuring before the position k in yw
occurs within yw as yw starts just after v in β. Again considering any position i within yw
in α, we have the suffix of both the paths starting at i is same. And since we are concerned
with only future modalites, they both satisfy the same formulas. Thus, in particular, η is
satisfied at k in yw and ψ in all the positions before k within yw. Hence, β |= ϕ.

(c) Within u : Since u is deleted in β, we need to find another position k in β, such that
αj →m−1,n βk (hence if αj |= η then βk |= η) and for all 0 ≤ i < k,∃l, l < j such that
αl →m−1,n βi(hence if for all positions before j, ψ is satisfied then for all positions i before
k βi |= ψ). Then it follows from the induction hypothesis that β |= ϕ.
We will prove that for 0 ≤ i ≤ |v| + |u|, i ≤ j, αi →m−1,n βi. It is clear from the first case
that for 0 ≤ i ≤ |v| we have αi →m−1,n βi. Now for |v| < i ≤ |v| + |u| and i ≤ j we note
that, βi is obtained from αi by deleting u[i−|v|−1]. By Lemma 7(3), we have, u[i−|v|−1]
is (m−1, n)-redundant. Hence, for 0 ≤ i ≤ |v|+ |u|, i ≤ j, αi →m−1,n βi and if some formula
(ψ or η) is satisfied at αi then it is also satisfied at βi. Thus, β |= ϕ

We will now prove that α |= ϕ assuming β |= ϕ. We deal with three cases again, depending on
the position of j, where η is satisfied in β:

22

(a) Within v : In the case where j occurs within v in β, we note that for all 0 ≤ i ≤ j we have
that αi →m−1,n βi, since by Lemma 7(1), u is also (m − 1, n)-redundant. Thus, η is also
satisfied at j in α and ψ is satisfied at all positions before j by the induction hypothesis.
Hence, α |= ϕ.

(b) Within the first iteration of u in y : As proved in the last case of the previous case
analysis, we have, for all 0 ≤ i ≤ j ≤ |v| + |u|, αi →m−1,n βi and for this case we have
j ≤ |v| + |u|. Thus, we have that in α, η is satisfied at j and ψ is satisfied in all the
positions before it as in β. Hence, α |= ϕ.

(c) After the first iteration of u in y : In this case we note that, by previous arguments, for
0 ≤ i ≤ |v| we have αi →m−1,n βi. Thus, in all these positions, ψ is satisfied in β and hence
ψ is also satisfied in α. Now, observe that for positions |v| < i ≤ |v|+ |u|, by previous case
analysis, αi →m−1,n βi. Also, by case b. of the previous analysis (reasoning about yw) we
have for positions |v| < i ≤ |v| + |u|, αi+|u| →m−1,n βi. In this case we have, j > |v| + |u|
and thus, for all positions |v| < i ≤ |v|+ |u| βi satisfies ψ. Hence, by combining the previous
two equivalences we get for positions |v| < l ≤ |v|+ |u|+ |u| αl satisfies ψ. Also, we know
that, for positions i > |v|+ |u|+ |u| αi = βi−|u| and hence they satisfy same formulas. Thus,
we have that αj+|u| satisfies δ and all the prior positions in α satisfies ψ. Hence, α |= ϕ.

4. ϕ = ¬ψ or ϕ = ψ ∧ δ. This follows directly from the induction on structure of ϕ, assuming the
induction hypothesis holds for ψ and δ. Thus, ¬ψ is satisfied by α iff it is satisfied by β. Also,
ψ ∧ δ is satisfied by α iff it is satisfied by β, as either of the both is satisfied in one of the path
iff it is satisfied in the other path.

B Proof of Lemma 2

For the proof, given a formula ϕ and a path schema, L = 〈y0, l0, y1, l1 · · · , yk, lk〉 in the structure,

we guess a vector of integers
−→
M = (m0,m1, · · · ,mk−1), we guess

−→
M ∈ [1, 2.td(ϕ) + 2]k signifying the

number of times the loop li should be taken (loop lk will be taken an infinite number of times). From

Theorem 1, it is clear that the each of the mi ’s and in turn
−→
M can be bounded by a polynom in the

size of the formula ϕ and the size of the path schema. So, the guess is polynomial in the size of the
input. Now, we construct an ultimately periodic path P , from the path schema by unfolding each
cycle the specified number of times with the exception of the last cycle. An ultimately periodic path,
uvω is defined to be a path with two path segments, where u is a path segment and v is a loop segment
which is taken infinite number of times. Clearly, the path P , a sequence of states, is of infinite size,
but its encoding can be of size O(|L|.|ϕ|). Now, we transform the given LTL(U,X) formula ϕ into a
CTL formula ψ by introducing ∃ quantifiers before every temporal operator. Note that it does not
change the models accepted by the formula as we are checking the formula over an infinite path, where

23

CTL and LTL coincide. Also, note that the size of ψ is atmost 2.|ϕ|. Now, we employ the bilinear
algorithm of CTL model checking, see e.g. [Sch03], to check whether the formula ψ is satisfied by the
path P in time O(|P |.|ψ|). Thus, we can check whether the given formula ϕ is satisfied by the given
path schema L , in time O(|L|.|ϕ|2) with a guess of size O(k.log2d2.td(ϕ) + 2e).

C Proof of Lemma 3

We will prove this by a reduction of the satisfiability problem of propositional logic to the given
problem. The satisfiability problem of propositional logic states that, a formula is satisfiable with
respect to a class of interpretations if it is possible to find an interpretation that makes the formula
true. Given a propositional logic formula f over a finite set of variables AP = {b1, · · · , bn}. We replace
each of the boolean variable in f by a LTL formula which says that, a variable in the propositional
formula is set to true, if the corresponding loop is taken once, and false otherwise. We get the LTL
formula from f by replacing the occurence of each variable bi by the LTL formula∨

i+1≤j≤3i−1
Xjpi, where pi ∈ AP. (1)

In effect, we would like to have that a valid control path satisfying the formula over the path schema in
Figure 3 gives a satisfying assignment to f . Consider a truth assignment to the variables of f . If bi is
assigned true, then pi must occur at least once in the control path in the interval i+ 1 to 3i−1, which
amounts to taking the loop of pi at least once within that interval. Note that it is possible to take
the loop in the interval even if we take all the loops for pj , j < i once or zero times. Otherwise if bi is
assigned false, then we can skip the corresponding loop and make the corresponding LTL formula false.
Thus there exists a run in Figure 3 to satisfy the transformed formula, if there exists an assignment
to satisfy the propositional formula.

On the other hand, if there exists a control path satisfying the LTL formula, we can assign truth
values to the boolean variables by looking at the validity of the corresponding formula on the control
path. Note that taking any loop more than once, in a control path amounts to falsifying one of the
replaced LTL formula by restricting the occurrance of some pi outside its interval.

We now give a variant proof of the NP-hardness. This proof ensures that each loop is taken
only once and also gives a formula of fixed temporal depth. Instead of Equation 1, we now have the
following equation: ∧

i

(G(pi ⇒ XG¬pi)) ∧ f [Fpi/bi] (2)

where, f [Fpi/bi] represents the transformation of f from a propositional logic formula to a LTL formula
by replacing each variable bi with Fpi. The proof is same as previous except that the first part of the
formula ensures that each loop is taken at most once.

D Proof of Theorem 3

Let us assume the constant restricting the number of loops is n and the formula to be verified is ϕ.
Now, from Theorem 1, we know that each loop can occur at most 2.td(ϕ) + 2. If it occurs more than

24

start

p1 p2 p3 pn

Figure 3: NP-hardness of path schema

that, then they are redundant and can be removed. So, to check whether ϕ is satisfied or not, we have
to check all the ultimately periodic paths obtained by taking each of the cycles from 0 to 2.td(ϕ) + 2
times. So, at most we get (2.td(ϕ) + 2)n paths. Since as previously proved each path is polynomial
in the size of the input and model checking can also be performed in polynomial time. The number
of paths is exponential in n, but since n is fixed for an instance of the problem, we have that the
number of paths (2.td(ϕ) + 2)n is polynomial in the size of the input and hence, the overall procedure
completes in P.

E Proof of Claim 3

Consider an infinite run ρ = (q0,
−→x0), · · · , (qk,−→xk), · · · such that δ(ρ) ∈ LL = y0l

+
0 y1l

+
1 · · · yklωk . If

−→
M(ρ) =

−→
M = (m0,m1, · · · ,mk−1) with each mi ≥ 1 then we need to prove that

−→
M is a solution to E′

1. Since δ(ρ) ∈ LL, each simple segment yi is taken only once and hence
−→
M satisfies all equations

of Type 1 in E′.

2. Again, since ρ is a valid run, every guard of the transition are satisfied in ρ. Also, since δ(ρ) ∈ LL,

every segment is taken at least once. Hence
−→
M satisfies all equations of Type 2 in E′.

3. Since ρ is a valid run, every guard of the transition are satisfied in ρ. Also, every segment appears
at least once. Thus, by the validity of ρ , we have that all the guards on the transitions are

satisfied at least once. Hence
−→
M satisfies all equations of Type 3 in E′.

4. Again, the guards on the edges for the last iteration also appear in ρ and are satisfied in the

last iteration also. Thus,
−→
M satisfies all equations of Type 4.

5. Since ρ is a valid path, the counter values never reach negative. Hence
−→
M satisfies all equations

of Type 5 in E′.

6. Again by validiy of ρ , the last loop is taken infinite number of times. So,
−→
M satisfies all

equations of Type 6.

Since, for every transition,
−→
M satisfies all type of formulas in E′, we have that

−→
M is a solution to E′.

On the other hand, consider a vector of integers
−→
M = (m0,m1, · · · ,mk−1) such that

−→
M is a solution

to E′. Now, from the given path schema L and
−→
M , we can construct ρ = (q0,

−→x0), · · · , (qk,−→xk, · · · with

25

−→x0) a zero vector and all other −→xk are defined from the update functions such that
−→
M(ρ) =

−→
M and

δ(ρ) ∈ LL. Note that ρ is not necessarily a run, since it may happen that in ρ , each xi ∈ Zn. We

would show that δ(ρ) ∈ fireable(L) and hence ρ is indeed a run. Since
−→
M is a solution to E′,

−→
M

satisfies all the formulas in E′:

• Formulas of Type 1 and Type 2, ensures that δ(ρ) ∈ LL

• Formulas of Type 5 ensure that for all −→xk ∈ Nn and in fact ρ ∈ (Q× Nn)ω.

• Formulas of Type 3 ensure that counter values at any point in ρ satisfies the guards of the next
transition and hence allowing to take the transition for the first copy of any segment in ρ .

• Formulas of Type 4 ensure that the counter values at the last repetition of any segment satisfy
the guards on the transitions. As proved in Claim 2, this ensures that in all the repetition of a
segment, the counter values are valid with respect to the guards. Hence, ρ contains every loop
designated number of times and again all the guards on the transitions are satisfied.

• Formulas of Type 6 ensure that during the infinite number of iterations of last loop, the guards
are not violated.

In effect, the equations ensure that for every configuration in ρ , −→xk satisfies the guard on the transition
((qk,

−→xk), (qk+1,
−−→xk+1)) and ρ ∈ (Q× Nn)ω. Hence ρ is a run such that δ(ρ) ∈ fireable(L).

F Correctness proof of algorithm of Lemma 4

Let us define a function:

truncate : N→ [1, 2.td(ϕ) + 2]

truncate(i) =

{
2.td(ϕ) + 2 if i ≥ 2.td(ϕ) + 2
i otherwise

The function truncate is extended to vector of integers as truncate(
−→
M)[i] = truncate(

−→
M [i]) for i ∈

[1, k]. Now, let us consider, a run ρ = (q0,
−→x0), · · · , (qk,−→xk), · · · such that ρ � ϕ. From ρ we get L

such that δ(ρ) ∈ fireable(L) and a vector of integers
−→
M(ρ) = (i0, · · · , ik−1) ∈ realizable(L).

1. Since we non-deterministically guess the path schema, let L is the guessed path schema.

2. Since we guess the integers non-deterministically, without loss of generality we may assume that

the guessed vector
−→
M = (j0, j1 · · · jk−1) = truncate(i0, i1 · · · ik−1)

3. If y0l
j0
0 y1l

j1
1 · · · l

jk−1

k−1 ykl
ω
k � ϕ then y0l

i0
0 y1l

i1
1 · · · l

ik−1

k−1 ykl
ω
k � ϕ as proved in Theorem 1.

4. By Claim 3, (i0, i1, · · · , ik−1) is a solution to E′.

5. Formula E−→
M

ensures that if (i0, i1, · · · , ik−1) is a solution to E−→
M

then
−→
M = truncate(i0, i1 · · · ik−1)

26

6. Since ρ is a valid configuration path and since
−→
M = truncate(i0, i1 · · · ik−1), ρ � ϕ, by Claim 3,

(i0, i1 · · · ik−1) is a valid assignment to the variables Xl0 , Xl1 · · ·Xlk−1
In this case, the existence

of a small polynomial size solution of E∪ E−→
M

is ensured by looking at the formulas as system of
equations and applying Theorem 5. Here, we take |δ| to be the size of the encoding of the set of
transitions δ. By application of the Theorem 5 we get:

(a) V is number of variables in the system, which in our case is the number of segments in the
path schema(i.e. 2k). This value is bounded by the number of transitions in the structure.
Thus, we have |V | ≤ |δ|.

(b) M is maximum coefficient appearing in the equations. For equations of Type 1 and 2, the
maximum coefficient is 1. For equations of Type 3 and 4, the maximum coefficient of any
variable is bounded by maximum update by any segment and maximum ai occuring in any
guard. This is bounded by (|δ|.2|δ|).2|δ| as these are encoded in binary in the definition of
δ. Again, the maximum constant on right side is bounded by 2|δ|. For equations of Type
6, the maximum constant that can appear is bounded by 2|δ|.2|δ|. For formulas in E−→

M
, the

maximum constant is bounded by 2.td(φ) + 2 which is turn is bounded by |φ|. Thus, M in
our case is bounded by max(|ϕ|, |δ|22|δ|).

(c) U is the number of equations. There are k equations of Type 1 and 2, which is bounded by
|δ|. Also, |δ| equations each of Type 3 and 4. Moreover, 2n|δ| and |δ| equations of Type 5
and 6 respectively. And, at most k equations in E−→

M
, which again is bounded by |δ|. Thus,

we have, U = (2n+ 5)|δ|

From the theorem, we have that if there is a solution to the equations, there is one in the interval
[0,max(|Q|,max(|ϕ|, |δ|22|δ|))C((2n+5)|δ|)]2k. Thus, we can guess a solution of E∪E−→

M
which is at

most exponential in the size of the input, but such a solution requires just polynomial number
of bits to represent as we are encoding the solution in binary.

7. Again since we guess the solution to E∪ E−→
M

non-deterministically, without loss of generality we
may assume that the guessed solution (g0, h0, g1, h1 · · · gk−1, hk−1) such that gi = 1, ∀0 ≤ i < k
and (j0, j1 · · · jk−1) = truncate(h0, h1 · · ·hk−1) = truncate(i0, i1 · · · ik−1)

Since there exists a solution to E ∪ E−→
M

, the algorithm completes successfully and returns witness.
For the other direction, consider a witness output by the algorithm. It consists of a path schema

L , a vector of integers
−→
M = (m0, · · · ,mk−1) and a small solution −→n = (n′0, n0, n

′
1, n1 · · ·n′k−1, nk−1))

for E ∪ E−→
M

. We would construct a run ρ such that ρ, 0 � ϕ.
From the given path schema L and −→n , we can construct ρ = (q0,

−→x0), · · · , (qk,−→xk), · · · with −→x0 is

a zero vector and all other −→xk are defined from the update functions and
−→
M(ρ) = (n0, n1 · · · , nk−1)

and δ(ρ) ∈ LL. Since the −→n is a solution to E ∪ E−→
M

, we know by Claim 3, that ρ is a valid run and

truncate((n0, n1, · · ·nk−1)) =
−→
M . Also, since

−→
M is one of the witness of the algorithm, we have that

y0l
−→
M [0]
0 y1l

−→
M [1]
1 · · · l

−→
M [k−1]
k−1 ykl

ω
k � ϕ. Hence, by Theorem 1, ρ, 0 � ϕ.

27

G Proof of Claim 2

Clearly f(−→x)
def
=
∑

i ai
−→x [i] is a either a monotonically increasing or monotonically decreasing function.

Let us denote by max and min as max(−→x ,−→x + N.∆) and min(−→x ,−→x + N.∆) respectively, where
for two vectors −→x ,−→y , max(−→x ,−→y) (respectively min(−→x ,−→y)) is defined to be x (respectively y) if for
all 0 ≤ i ≤ |−→x |,−→x (i) ≥ −→y (i). Also, maxf and minf are defined as max(f(−→x), f(−→x + N.∆)) and
min(f(−→x), f(−→x + N.∆)) respectively. Hence, ∀j ∈ [1, N − 1], f(−→x + j.∆)[i]) ∈ [minf ,maxf] since,
−→x + j.∆ ∈ [min,max]. Hence the claim holds.

H Proof of Claim 4

First note that, the size of L as mentioned in the text, and the number of loops in L is bounded by
a polynomial in |φ|+ |C|. Also, the number of intervals |I| is bounded by |φ|+ |C|. Consider any loop
li in L . The number of nodes in li is also bounded by |C|. The number of intervals m′ associated
with any node of li is also bounded by |φ|+ |C|. Now, each of this intervals can independently change
only |I| times because of the monotonicity of updates in a loop as discussed in the proof of Claim 2.
Hence, the maximum number of copies of li can be |I|.m′.|li|.|L| which is bounded by (|φ|+ |C|)2.|C|2
which is the required bound.

I Correctness proof of algorithm of Lemma 6

First we consider a run ρ = (q0,
−→x0), · · · , (qk,−→xk), · · · in C , such that ρ, 0 � φ. We will show that if

ρ, 0 � φ, then there exists an accepting computation of the above algorithm.

1. Since there exists a run ρ � φ, we can get a path schema L in C such that δ(ρ) ∈ L and we

also get a vector of integers
−→
M = (m0,m1, · · · ,mk), where mi signifies the number of times li is

taken in ρ . Since, the path schema is guessed non-deterministically, without loss of generality,
we may assume that L is the guessed path schema.

2. Now, for each mi, we can decompose it into mi = m1
i + 1 + m2

i + 1 + m3
i + · · · + mk

i such

that if (qji ,
−→xi j)

mji .li−−−→ (q
j+mji .|li|
k ,−→xkj+m

j
i .|li|) denotes the part of the run covered by li taken mj

i

times then ∀tk ∈
−→
T , tk(

−→xi j) ∈ I[k] ⇒ ∀1 ≤ h < m
j.|li|
i tk(

−→xi j+h) ∈ I[k] and for at least one k,

tk(
−→xi j) ∈ I[k]⇒ tk(

−→xi j+m
j
i .|li|) /∈ I[k] where tk(

−→x) is as defined earlier to be the value of term
tk where the counter values are substituted from −→x . Again, due to nondeterminism of our guess
of the new path schema L1 we may assume without loss of generality, that each loop li is copied
exactly the number of times mi is partitioned. And the intervals are guessed accordingly. Note
that, L1 and the partitions of mi give us the same run ρ .

3. The construction of the counter system D ensures that, there exists ρ′ in D such that if
ρ[i] = (qi,

−→xi) and −→xi � t ∼ b then ρ′[i] = (q′i,
−→x) and q′i = qt∼b where ρ[i] for a run ρ denotes

the ith configuration in ρ . Thus, if ρ , 0 � φ then ∃ρ′, ρ′, 0 � f(φ) = φ′.

4. Since, ∃ρ′, ρ′, 0 � φ′, the NP decision procedure for MC(LTL(U,X),FCS) on D and φ′ and
hence the present procedure will return true.

28

Now for the other side, we consider that the given procedure returns true.

• Since the algorithm returns true, we know that the NP decision procedure for MC(LTL(U,X),FCS)
on D and φ′ and hence ∃ρ′, ρ′, 0 � φ′. Again from ρ′ we can get a path schema L′ and a vector

of integers
−→
M ′ such that δ(ρ′) ∈ L′.

• By construction of D and non-determinism in guessing of L1 we may assume that, if ρ′[i] =
(q′i,
−→xi) and q′i = qt∼b then ∃ρ, such that δ(ρ) ∈ L1 and ρ[i] = (qi,

−→x) and −→xi � t ∼ b. Hence,

ρ, 0 � φ. Again, ρ and L1 gives us a vector of integers
−→
M1 as before.

• We can collaspe the loops li and lj in L1 if li = lj and add the corresponding integers too. Again,
by the non-determinism in guessing the path schema and by the construction of L1 we get the
path schema L . Note that δ(ρ) ∈ L.

• L is a path schema in C . Hence, ∃ρ in C such that, ρ, 0 � φ

29

