Temporal Logics for Concurrent Recursive Programs*

Aiswarya Cyriac
Under the guidance of
Benedikt Bollig, Paul Gastin and Marc Zeitoun

Laboratoire Spécification et Vérification
Ecole Normale Supérieure de Cachan, France

Report of the M2(MPRI) research internship, February—July, 2010

Introduction

Background: Temporal logics enjoy a prime position in the verification
of programs, due to the ability to express properties of systems in a nat-
ural way and the low complexity of decision procedures. Temporal logics
over traces have been well studied and used for verification of concurrent
programs[DR95]. Temporal logics over nested words (words with a binary
nesting relation which matches, say, a push operation with the correspond-
ing pop operation) have been studied for verification of recursive programs
[AABT08].

Problem Statement: Temporal logics for concurrent recursive programs
is naturally the next question to ask, and that is what we consider here.
Nested traces (traces with multiple nesting relations, as each nesting relation
takes care of a single stack or process) have been studied as a model for
concurrent recursive programs in [BGH09], and temporal logics for the same
was posed as a future work.

Results: We adapt the techniques in [GKO03] to get a general procedure
for the satisfiability-checking of temporal logics over nested words if the
modalities are defined in monadic second order logic. Our construction
gives an EXPTIME procedure for satisfiability and model checking. The
procedure is indeed optimal. Though the EXPTIME hardness follows from

*This report is written in English as the author knows little French. The inconvenience
caused is regretted.

the hardness result for pushdown systems [BEM97], we give a direct proof
for a smaller fragment which uses only the pure future unary modalities.

We show that the two variable fragment of first order logic which uses
only the successor relation and the nesting relation is undecidable over
nested words with at least two stacks. To obtain decidability, we adopt
the restrictions on the nested words followed in [LTMP07, BGH09]. We
define a temporal logic over such restricted traces and show that it can be
decided in 2-EXPTIME. In fact, the technique in [GKO03] goes through to
yield 2-EXPTIME decidability of any temporal logic with MSO definable
modalities.

We disprove an erroneous claim in [AABT08]. We prove the expres-
sive incompleteness of the pure future fragment of an expressive complete
temporal logic for nested words at an arbitrary position.

We give a characterization of the regular languages of nested words by
means of recognition by morphisms to suitable algebraic structure. We also
introduce regular expressions for nested words and prove that star free reg-
ular expressions correspond to first order logic over nested words. The same
technique can be used to get the equivalence between star free forest expres-
sions and first order logic over ordered unranked trees ([BW07, Boj07]).

Future directions: Though we have nice complexity results, we do not
have an expressive complete temporal logic for concurrent recursive pro-
grams. We would like to have an algebraic framework for nested traces as
well. We hope the algebraic characterization will help us get an expressively
complete logic for nested traces.

Organization: The rest of this report is organized as follows. Section 1
introduces nested words and the temporal logics for nested words along with
complexity results. Section 2 introduces nested traces and proves the unde-
cidability of FO? over two stack nested traces. A temporal logic NWTrL is
also introduced. Section 3 discusses the expressive completeness of temporal
logic over nested words. Section 4 gives the algebraic characterization of the
regular languages over nested words. Section 5 describes the nested word
expressions and shows some closure properties of regular languages of nested
words. It shows the equivalence of star free regular expressions to first order
logic, over nested words and also over ordered unranked trees.

Acknowledgement

I would like to thank my advisers Benedikt Bollig, Paul Gastin and Marc
Zeitoun for the constant support and guidance throughout the course of this
internship.

Figure 2: A nested word which is not well-nested

1 Nested words

A nested word is a word with additional nesting edges. Nesting edge
matches the hierarchically related positions like a call to a subroutine and
the return from the subroutine. The recursive behavior is captured using a
stack, and hence the nesting edge can be thought of as matching the push
operation with the corresponding pop. In this section, systems with only
one stack are dealt with. The nesting edges are always from left to right and
they do not cross each other. Two nesting edges never share a position. Such
nested words are called well-nested. Figure 1 and Figure 3 show examples of
well nested words and Figure 2 shows a nested word which is not well-nested.

The positions of the nested word where a nesting edge begins are called
call positions, and the positions where a nesting edge ends are called return
positions. We use a call-return alphabet ¥ = CURUT to capture the nesting
information. For a nested word w € ¥*, the call positions are precisely the
ones labeled by €, the return positions are the ones labeled by R and the
positions labeled by J are called internal positions. Let €(i) denote that 4
is a call position, JR(i) denote that i is a return position. Let p(7, j) denote
the existence of a nesting edge from position ¢ to position j. A nested word

A -

Figure 3: Well nested but not complete

w € 3* is well nested if and only if the following conditions hold:
Low(i,j) =CE)ARG)NI<J
2. (i, j) A (i, j) = (i=7 & j=7)
i< JANCH)AR(Y) = Fi <k <ju(ik)Vulk,j)

A well nested word is complete if there are no pending calls or returns.
Figure 1 shows a complete and well-nested word whereas Figure 3 shows a
well-nested word which is not complete. In addition to the above conditions
it should satisfy

4. €(i) = Jj.u(4,)
5. R(j) = Ji.pu(i,)

Regularity of nested word languages is captured by recognition by a
nested word automaton. A nested word automaton is a tuple (Q, Qo, Q¢, 6, %)
where () is the finite set of states, Q9 C @ is the set of initial states, and
Qr C Q is the set of final states. The alphabet is ¥ = €URUT. The transi-
tion relation is given by § C (@ XEX QX Q)U(QXQXRXxQ)U(QXTX Q).
A run of the automaton on a nested word w labels the edges (both linear
and nesting). The initial incoming edge can be labeled by some ¢y € Q. If
(q1,¢,q2,q3) € 0 for some ¢ € €, then at a position labeled by ¢, if the incom-
ing linear edge is labeled g, then the outgoing linear edge can be labeled go
and the outgoing nesting edge can be labeled ¢3. If (g1, g2, 7, q3) € ¢ for some
r € SR, then at a position labeled by r, if the incoming linear edge is labeled
¢1 and the incoming nesting edge is labeled g2, then the outgoing linear edge
can be labeled g3. If (g1, a, g2) € ¢ for some a € J, then at a position labeled
by a, if the incoming linear edge is labeled g1, then the outgoing linear edge
can be labeled ¢s. The run is accepting if the final outgoing edge is labeled
by some gy € Q.

The results given in this paragraph are well established (see e.g. [AMO09]).
The emptiness checking of a nested word automation can be done in poly-
nomial time (cubic in the number of states). The nested word automaton
can be determinized causing an exponential blow-up. The class of regular
nested word languages is closed under Boolean operations. The automaton
for union and intersection is obtained by product construction, and that for
complement is obtained by determinization followed by switching of final
and non-final states.

1.1 MSO and FO over nested words

Monadic Second Order logic over nested words with an alphabet 3 is denoted
MSOsx (<,). We use z,y etc. to denote first-order variables which vary over
the positions of the nested word, and X, Y etc.to denote the second-order

variables which vary over the set of positions. The syntax of MSOx(<, u)
is given by:

0, n=Pola) | X(@) |z <yl plzy) [¢ leVe | Frp|IXp

where a € 3.

A valuation v assigns positions to first-order variables and sets of posi-
tions to second-order variables. Given a nested word w, and a valuation v,
the semantics is defined as follows:

- w,v = P,(x) iff the position v(x) is labeled a in the nested word w.
- w,v E X(x) iff v(z) € v(X)
-w,vEx<yiff v(z) <v(y)

- w,v | p(z,y) iff there is a nesting edge between v(z) and v(y) in the
nested word w.

- w,v = g iff it is not the case that w,v = ¢

-w,vEeVY iffwrEpand w,vE ¢

- w, v | Jz.p iff there is a valuation v/ that agrees with v on all variables
except = such that w,v' = ¢

- w,v = 3X.p iff there is a valuation v/ that agrees with v on all vari-
ables except X such that w,v | ¢

The first order logic over nested words FOx(<, 11) is defined in the same
spirit as MSO; the only difference being the absence of second order vari-
ables.

1.2 Temporal logic over nested words

We recall the definitions of the nested word temporal logic NWTL and the
syntactic extension NWTL* defined in [AABOG].

The presence of nesting edges gives rise to multiple paths between two
positions of the nested word. However, we want the formulas to be evaluated
on an unambiguously specified path. In order to tackle this, we associate
different modalities to different types of paths (the ones which use only linear
edges, the ones which use nesting edges as much as possible and so on). Let
Call(i) denote the innermost call position such that its corresponding return
is after 7. We define the different types of paths below:

Linear paths: A sequence of positions ig < --- < i} is a linear path be-
tween ig and 4, if and only if i; +1 =141 for all 0 < 5 < k.

Call paths: A sequence of positions ig < --- < i is a call path between ig
and iy, if and only if i; = Call(ij41) for all 0 < j < k.

Summary paths: A sequence of positions ig < --- < i} is a summary path
between ig and i if and only if it traces out the shortest path in the
underlying graph of the nested word.

Summary up paths: A restricted summary path which disallows the use
of a linear outgoing edge at a call node.

Summary down paths: A restricted summary path which disallows the
use of a linear incoming edge at a return node.

Abstract paths: Intersection of summary up and summary down paths.
In other words, we are not allowed to take an outgoing linear edge at
a call node or an incoming linear edge at a return node.

Note that a summary path is a concatenation of a summary up path and a
summary down path.

The logic NWTL considers until modality only along summary paths.
NWTL formulas are given by:

=T la|~ploVe | Xo Yo [X | Yo |pU ¢ |08 ¢
The syntactically richer NWTL™ formulas are given by:

/

0,0 w= Tla|l-¢|leVve |Xe|Ye | Xl | Y| oUy' | @S¢
U | S5 ¢ | U ¢ | pS™ ¢/ | U ¢ | Sy
e U%¢' [@S¢ | @UCy | Sy

XHPyp is true at a position z if z is a call position and ¢ holds at the
corresponding return position. Linear until (U) and linear since (S) are
evaluated over linear paths, summary until (U®) and summary since (S°)
are evaluated over summary paths, (U*") and (S*") over summary up paths,
(Us?) and (S*¢) over summary down paths, (U%) and (S?) over abstract
paths and (U¢) and (S°) are evaluated over call paths. The semantics is
given in Appendix A.

The pure future fragment of NWTL is written NWTL U ip this report.
We recall the expressiveness and complexity results on NWTL and NWTL™
from [AABT08].

Theorem 1 ([AAB*08]) The logics NWTL, NWTL*' and FOx(<, 1) over
nested words are expressively equivalent.
That is, NWTL = NWTL" = FOs(<,)

Theorem 2 ([AABT08]) The satisfiability and model checking problems
for NWTLT are EXPTIME Complete.

We adapt the technique in [GK03] to get a general framework for satisfi-
ability of temporal logics over nested words with MSO-definable modalities.

Theorem 3 The satisfiability problem of temporal logics over nested words
with MSOx (<, n)-definable modalities' is decidable in EXPTIME.

Sketch of Proof. Since the modalities are MSO-definable, we have a
nested word automaton for it. We can pre-compute these automaton since
there are only finitely many modalities. Given a temporal logic formula ¢,
we have polynomially many subformulas of ¢. For each of these subformulas,
we have a nested word automaton verifying that the top level modality of
the subformula is computed correctly over an extended alphabet. The satis-
fiability checking is essentially done by an emptiness checking of the product
automaton of the automaton for each subformula. The size of the product
automaton is exponential in the size of the formula, hence satisfiability can
be checked in EXPTIME.

The detailed proof is given in Appendix B. O

Our construction is rather optimal due to the EXpTIME hardness of
NWTL, which follows from the EXPTIME completeness of LTL over push-
down systems [BEM97]. However, we present a direct proof for a smaller
fragment which uses only unary modalities and the pure future fragment.

Theorem 4 Satisfiability checking of NWTLMe with only unary modali-
ties is EXPTIME complete.

Proof. The EXPTIME complexity follows from Theorem 3. For the hardness
we show a reduction from the following EXPTIME hard problem:

Given a linearly bounded alternating Turing machine M and an
input w, does M accept w?

An alternating Turing machine M = (Q = Q34 Qv, X, 0, qo, F), where the
finite set of states @) is partitioned into a set of existential states and a set
of universal states. A configuration C' of M on w is a |w|-length word

o:a.[g]-ﬁ, wherea,ﬁe(EU{u})*,[g] e (ZU{}) x Q.

The symbol . denotes an empty tape cell. It means that the Turing machine
M is in state ¢, the tape head is on letter a, and the tape towards the left
of the head has « and towards the right of the head has 8. If ¢ € Qv we
call C a universal configuration. Similarly, if ¢ € @J3, the configuration C' is
an erxistential configuration. We say C’ is a successor configuration of C' if
there is a transition § € A such that M can go from C to C’ on taking 4.

Lwhich does not alter the model by relativization

Without loss of generality we assume that every configuration has at most
two successor configurations.

Consider the unfolding of the configuration graph rooted at the initial
configuration. If M accepts w, then there is a finite witness subtree with
exactly one successor at an internal node if it is an existential configuration,
two successors at a universal configuration and all the leaves accepting. We
encode a witness subtree as a nested-word. We follow an infix traversal. For
a subtree rooted at C, write ‘begin’ to denote the beginning of the traversal,
followed by C, followed by the encoding of the subtree rooted at its children,
followed by ‘end’ to denote the end of traversal. Nesting relation matches
‘begin’ with the corresponding ‘end’.

Note that the length of a configuration is |w|. Hence we can write a
unary NWTL formula to assert that we have a faithful encoding of the
above description. If w = a1, ..., apy|,

v = \I/im’t A \I/comput A \I/accept

|wl n
Wi = begin A X[@ } AN X'ain [\ X'oA X" begin Vend
q i=2 i=|w|+1

U comput Will be of the form G(begin A X" 2begin = ¢). The premise of
the implication says that we are going to traverse an internal node. The
formula ¢ says the following. Two successor configurations are the same
except for a window of three positions with the tape head at the middle. The
relation between these three cells in both the configurations can be encoded
as dictated by the transition relation of the Turing machine M. The rest
of the positions remain the same between the consecutive configurations.
This can be taken care of by a conjunction /\;’Jr1 X'iq < X"+ for each
a € % for an existential configuration and for a universal node and one of
its successors. For the successor configuration related by the nesting edge,
it will be A7, ; X'a & X" X X a.

VU gecept = G(begin A X"Hend = Dace)

The premise of the implication says that we are traversing a leaf node and
Pace says that it is an accepting one.

Note that || is polynomial in |[M|+ |w|. Clearly if ¥ is satisfiable, then
M has an accepting run on |w].

O

2 When concurrency gets into picture

We assume familiarity with traces (see e.g. [DR95]). We do not need traces
from next section onwards.

2.1 Nested 1-stack traces

Let us consider a hypothetical concurrent system which has only one stack
(with the danger of one process being able to pop the contents pushed onto
the stack by another process). The behavior of such systems could be cap-
tured by traces with nesting edges matching a push operation with the
(intended) pop operation. We call such a trace a nested 1-stack trace. As
before, €(i) denote that 7 is a call position, PR(i) denote that i is a return
position. Let u(i,j) denote the existence of a nesting edge from position
i to position j. A nested 1-stack trace is existentially valid if at least one
linearization of the trace is a valid nested word. It is universally valid if all
the linearizations are valid nested words. For a nested 1-stack trace t, let
Lin(t) denote the set of linearizations of ¢ which are valid nested words.

There exists a FO formula n(z, y) with two free variables such that for all
existentially valid nested-traces ¢, all nested-words w € Lin(t), and positions
p,q, we have t = p < ¢ if and only if w = n(p, q). Hence we can reduce the
satisfiability problem over existentially valid nested 1-stack traces to that
over nested-words as follows. For any MSO-definable temporal logic over
nested 1-stack traces, interpret the semantics of the modality names over
nested-words considering the above translation. For all formulas £ of the
temporal logic, for all existentially valid nested 1-stack traces ¢, all nested-
words w € Lin(t), and all positions p, we have ¢, p |= € if and only if w, p |= &.
Hence, as a corollary of Theorem 3 we get the following theorem:

Theorem 5 The satisfiability problem of any MSO definable temporal logic
over existentially valid nested 1-stack traces is decidable in EXPTIME.

Given a nested 1-stack trace ¢, for all w € Lin(t), w is a valid nested-
word if and only if for all positions p,q, (€(p) AN€(q) = p < qVqg<p A
(R(p) NR(q) = p < qVq<p). Let us call the above formula . A formula
¢ is satisfiable over universally valid nested 1-stack traces if and only if £ A1)
is satisfiable over existentially valid nested 1-stack traces. Hence we get

Theorem 6 The satisfiability problem of any MSO definable temporal logic
over universally valid nested 1-stack traces is decidable in EXPTIME.

2.2 Nested traces

We now move on to real systems where each process has a separate stack of
its own.

Let €; be the push operations on stack ¢ and fR; be the pop operations
on stack ¢. In other words, €; is the call alphabet of process ¢ and R; is
the return alphabet of process i. Let J be the actions that do not touch
any stack, moreover we assume that the processes synchronize on J. That
is to say that the alphabet we work on is ¥ = (J,& U, ?M; UJ. The
nesting relation for stack ¢ matches €;-positions to $R;-positions such that

the projection of a nested trace to €; UR; UT gives a valid nested word. We
write X; for & UR; UTJ.

But this readily gives undecidability. The two variable fragment of first
order logic with only the successor relation (<) and nesting relation () is
undecidable even for nested words with more than one nesting relation (let
us call them multiple-nested words).

Theorem 7 FO?(<) over multiple nested words with at least two nesting
relations is undecidable.

Proof. We give a reduction from Post’s Correspondence Problem.

Given two disjoint alphabets A and B, and two functions f :
A — B* and g : A — B*, is there a word w € A" such that
f(w) = g(w)? (where f(e) = € and f(a-w) = f(a) - f(w), and
similarly for g)

Let X = AUB and ¥ = AU B where X = {Z | z € X}. For a word
w = ¢ - -C W= C]--Ck. We consider multiple nested words over the
alphabet A U B with two nesting relations. One nesting relation matches
a to @ for a € A and the other matches b to b for b € B. That is, ¢; =
A,i)%l :Z,&:B,%gzﬁandjz(]).

Let v denote the reverse of the word v. Let w = a; - - - a, be a solution
to the PCP. It can be encoded as a nested-word as follows.

R —R
a1 - f(a1)---ap - flax) - glax) - ax---g(ar) -a1
with p relating a; to @; and b to the corresponding b for each b € B

Let X(z) stand for \/, 5, Po(z). We now consider the formula ¥ which
defines precisely the solutions encoded as above. It asserts the following:

- VaVy. .z <y A E(y) = 3(x)

VaVy. z <y AX(z) = X(y)

Jrdy.z <y AE(z) AE(y)
This says that the word is of the form 3

- Va3y. u(x,y) V pu(y,)
VaVy. u(x,y) = c(z) < ¢(y) for each c € ¥

- For each a € A, if f(a) =by--- b and k is even,

Vr.a(z) = (Jy.-2 <y Abi(y) A Gr.y <z A bo(x) - (Jz.y <a A bi()
A(Ey.z <y A (S() VAR))))

For each @ € A, if g(a) = b1 -+ - by and k is even, B
Vr.a(z) = (Jy.y<zAbi(y) A Gr.z <y ba(x)--- (Frv.x <y A bi(z)
AFy.y<zn(E(y)VA®Y)))--))

It is similar when k is odd, except that we swap the variables at the
end of the above formula. This says that always a is followed by f(a)

and @ is preceded by g(a) .

10

Clearly the formula ¥ is satisfiable if and only if PCP has a solution.
O

Hence any reasonably expressive logic over words or traces with multi-
ple nesting is undecidable. Hence we proceed to restrict the structure of the
multiple-nested word /trace. We accept the notion of k-phase words [LTMPO07]
and k-phase traces [BGHO09].

2.3 k-phase nested words, Mvpa and temporal logics

A k-phase word is a concatenation of at most & many sub-nested words,
where each of the sub-nested word may pop at most one stack. A k-phase
trace has at least one linearization which is a k-phase word.

In [LTMPO7], authors introduce an automaton called k-multistack vis-
ibly pushdown automaton (k-MVPA), which captures MSO over k-phase
words (called k-MSQO). The emptiness checking of &-MVPA can be done in
time exponential in the number of states and doubly exponential in k.

Theorem 8 The satisfiability problem of k-MSO definable temporal logic
over k-phase words is decidable in 2-EXPTIME.

The proof is similar to the proof of the Theorem 3, except that we use k-
MVPA instead of nested word automaton. Since the emptiness checking of
an exponentially sized k-MVPA can be done in doubly exponential time (it
becomes triply exponential only in k, but in our case k is a constant), we
get the 2-EXPTIME complexity.

Theorem 9 The satisfiability problem of k-MSO definable temporal logic
over k-phase traces is decidable in 2-EXPTIME.

The proof is similar to that of Theorem 5 given in Section 2.1. Now we give
a temporal logic for nested traces. We call it Nested Trace Temporal Logic
NTrTL. It merges the local temporal logic with process based modalities for
traces [Thi94] and NWTL™ for nested words. The syntax is given by

/

o0 u= Tlalpi|=@|leVe | Xip|Yip | Xl | Yo | Ui | 9Si¢
e Us ¢ | 0Sig |0 Ui ¢ | 0S¢ | p Uity | oS5ty
o Ud o' [ST ¢ U ¢' | 9 S5e

The intuitive meaning is that p; holds at a position if and only if the
current letter belongs to X; (or the current vertex is in process 7). X;¢ holds
at a position if and only if the next ¥; labeled position (next position at
process i) satisfies ¢. X!¢ holds at a position if and only if the current
position is labeled by €; and the corresponding return position satisfies .
A position satisfies ¢ Uf ¢’ if ¢ until " holds on a summary path labeled by

11

3 starting from the current vertex. The rest of the modalities are defined
in a similar fashion.

As an example, the formula (X;o) U; (X30) says that from process i’s
perspective, the next position in process j satisfies until the next position
in process k satisfies 5. Since the modalities of NTrTL are definable in MSO,
by Theorem 9 we have a 2-EXPTIME satisfiability problem.

3 Pure future fragment of NWTL and expressive
completeness

A formula is pure future if its truth value at a position in a word (or any
structure with an underlying linear order, like nested words) depends only
on the suffix of the word from that position. Similarly a formula is pure
past if its truth value at a position depends only on the prefix of the word
till that position. A formula is (semantically) separable if it can be written
equivalently as a Boolean combination of pure future and pure past formulas.
A syntactically pure future formula uses only pure future modalities. A
syntactically separable formula can be written equivalently as a Boolean
combination of syntactically pure formulas. Clearly syntactic separation
implies semantic separation.

We would like to bring to your attention Proposition 4.10 in [AAB108].It
says that there are FO sentences over nested words that cannot be expressed
in NWTLf"*"e The (wrong) proof argues that the formula o = X¥ TAX*Y a
cannot be expressed in NWTL"Ure The error in the proof went unnoticed
as the presence of nesting edges was forgotten while considering equivalence
between models. In fact we have a NWTL"we formula equivalent to o :

(cALL A a AXRET) V (CALL A (X (XRET = CALL)) U® (-CALL A X RET Aa))

where CALL = \/,.sa and RET = \/, . a. This makes the proof invalid.
We had a couple of vain attempts to prove the expressive completeness of
NWTLf"twre - Nevertheless we would like to mention them:

- Gabbay style separation: [Gab87] The presence of nesting edges poses
some difficulty. We could not find separated formula at a position
buried under an unbounded number of nesting edges.

- Future preserving translation from CXPath to NWTL: We use an or-
dered unranked tree encoding of nested words. FO over nested words
and FO over ordered unranked trees are expressively equivalent. CX-
Path is FO complete and has the separation property [Mar04]. But a
future preserving translation could not be obtained, especially when
traversing a path along the descendant relation.

12

In fact NWTLftwe j5 strictly less expressive than full NWTL at an
arbitrary position (say, one buried under an unbounded number of nesting
edges).

Theorem 10 NWTL is not semantically separable at an arbitrary position,
even if we consider only complete well nested models.

Proof. We get the result even without using a call-return alphabet (the one
which distinguishes call and return by the letter). Let ¥ = {a,b}. We claim
that the formula

T S (b A X#D)

cannot be separated. Suppose it were expressible as a Boolean combination
of formulas {¢1,...,¢;} where each ; is either pure past or pure future
formula.

By Mi(x) = Ms(y), we mean a k-round Ehrenfeucht-Fraissé game on
structure M; starting at position x and on Ms starting at position y cannot
distinguish the two structures. For every finite set of formulas {1, ..., ¥},
there exists an integer k such that Mj(z) =, Ma(y) = M,z E ¢; <
M,y E ¢ ,Vi € {1...m}. We write M; = M> to mean that a k-round
Ehrenfeucht-Fraissé game cannot distinguish the structures M; and Mo,
with no restriction on the starting position.

Hence there exists an integer k£ such that for pure future formulas 1
from {p1,...,¢1}, and for all words v,v" € ¥*, a,v = av' = av, 1 E¢Y &
a.v’',1 =1 and for all past formulas ¢’ from {¢1, ..., ¢}, and for all words
u, v’ € X ua =k v.a = ua,ful+1 =9 & da, v+ 1 ¢ Since each
of the ¢; is pure past or pure future, for all Boolean combinations " of
{¢1,--.,1}, and all words w,u/,v,v" € ¥*, u.a.v = v'.av' = v.a.v,|ul +
1Y ed.ad |u|+1EY".

There exist constants ki, ko with k1 > ko such that akF1bak2 =, ak2pakr .
Let v = v/ = a*ba® and v = a*a*. Consider the nested words u.a.v
and w.a.v’ with {1,...|u|} being call positions and {(|u| +2)... (|u] + |v| +
1 = |u| + |[v'| + 1)} being the return positions. The nesting relation is
{(Ju| +1—i,Jul+1414) | 1 <i < |ul}. Clearly u.a.v, |u|+1 | T S* (bAXH b)
where as u.a.v’, |u|+1 ¥ TS*(bAXHb). Hence TS*(bAXHb) is not semantically
separable at an arbitrary position.

O

However, for top level positions (positions which correspond to empty stack)
or positions with fixed finite number of nesting edges crossing it, we do not
know whether the theorem holds. We tried to get an algebraic characteri-
zation of FO over nested words in order to understand the situation better.
Some results we obtained so are given in the next two sections.

13

4 Algebraic Characterization

Let NW denote the set of all complete nested words (it does not have
pending calls or pending returns). Let [J be a letter not in . Let NWg
denote the set of complete nested words of the form X*.€.[0R.2*. We
call NW = NW U NWq extended nested words. We define two types of
concatenations — a linear concatenation (denoted -) which is the usual one
and a hierarchical concatenation (denoted [J) in which the [0 in the first
word is replaced by the second word. The operations are partially defined
from NW x NW +— NW. The precise type of the concatenations are as
follows:

- (NW X NW — NW) U (NW x NWpg — NWD) U (NWD X NW — NWD)

L (NWD x NWg — NWD) U (NWD X NW NW)

4.1 Algebraic Structure

We define a class of algebraic structures? as follows:
M= (Sa SDa 7E|)

where (S,-) is a finite monoid, Sp, [is a finite semigroup. Let S denote
S U Sp. The partial operations -,[] : S x § + S are defined exactly as
follows:

i (Sx S S U(SxSao— So)uU(Sox S 9S).
H:(SoxSg—So)U(SgxS—S).

The following identities hold for all s,s’ € S and t,t' € So:
t-s=t where ! s = (tEHs)-sforal seS
s-t=t wheret' s =s-(t[0s) forall s € S
(s-t)-s=s-(t-5)
We call these structures Forest Algebras though they are defined slightly
differently in [BWOT7].

Morphisms A morphism from extended nested words to the structure 9t
is a partial map h : NW — S defined exactly as h : (NW — S) U (NWq —
Sn) such that the following conditions hold for all u,u’ € NW :

h(e) is 1(57.)

h(u-u") = h(u) - h(u)

h(uEu') = h(u) O h(u)

2The algebraic structure we present here is a variant of Forest Algebras introduced in
[BWO07]. We do not need the ‘faithfulness’ condition of forest algebra. Moreover, we need
one semigroup and one monoid, whereas forest algebras need two monoids

14

Recognition by Morphism A language L. C NW is recognized by a
morphism if there is a structure 9t and a morphism h such that L = h~'X
for some X C S.

Theorem 11 A nested-word language is reqular if and only if it is recog-
nized by a Forest Algebra-morphism.

Proof. if: Let h be a recognizing morphism of the language to a forest
algebra 9 = (S, S, -,). Construct a nested word automata with states
S'USo x R. The initial state is 1(g.) and the set of final states is z. At
a call node labeled c¢ in state p, it guesses the label of the matching return
r and propagates p - h(c[OR),r along the nesting edge and propagates h(e)
along the linear edge. At a return node labeled r in linear state p, if the
hierarchical state is (q,r), it propagates g [p along the linear edge.

only if: If the nested word language L is regular, there is a nested word
automaton (Q, X, 4, qo, F') recognizing it. Consider a forest algebra 9t =
(S, So, -,) where S = 20” and S = 29". For s,s' € S and t,t' € Shy

s-s q1,492) | 3g3-(q1,g3) € s and (g3,¢2) € s’}

{(

s-t = {(q1,92,43,q4) | 3g5. (a1, q5) € s and (g5, G2, G3,q4) € t}
{(
{(

t-s = {(q1,92,43,94) | g5 (¢5,q4) € 5 and (q1,92,43,95) € t}

t8t = {(q1,92:93,q4) | 3¢5, 96- (91,95, g6, q2) € t and (g5, 2,93, q6) € '}

The morphism h is defined as follows. For w, w;,ws € NW,

h(w) = {(q1,¢2) | 1 — g2 on w}
h(wicOrws) = {(q1,q2,43,44) | 35,6, 97- (q1,95) € h(wy) and (g6, q4) € h(w2)
and (Q57cv qQ7Q7) € 0 and (Q37q7vra QG) € 6}

L =h"YX) where X = {s|sN(q x F) # 0}

5 Nested word expressions
The set of regular languages over NW is the smallest set such that
e (,{a},{cOr} are regular languages for a € J, ¢ € € and r € R.

e It is closed under Boolean operations.

e -/, LOL' and LxL’ are regular languages where LxL' = L-L'ULEL/,
for regular languages L, L'.

15

e L* is regular where L* = J L % ---* L for all possible bracketings.
Let L' = (LNANW)*- L. (LNNW)* and LY = (LN NWg)* & L.

Proposition 1 Recognizable nested-word languages are closed under the
‘reqular operations’ defined above, inverse morphisms and quotients by lan-
guages of complete nested words.

Sketch of Proof. We extend the alphabet by adding all possible c[Jr, where
each cr is read as a single letter. We define the nested word automaton
for the extended alphabet. Assert that a box ([J) appears at most once in
any string. The automaton for each operation can be constructed similar to
the regular words case. (]

5.1 Forest expressions

We recall the definition of forest expressions from [Boj07]. An ordered un-
ranked forest has a horizontal sibling relation and a vertical descendant re-
lation. A context is a forest with exactly one special place holder (denoted
0). Note that a forest need not have a single root. There is horizontal
concatenation denoted ‘4’ in which two forests (or a forest and a context)
are merged into one side by side. There is a vertical concatenation denoted
‘. in which the place holder of one context is replaced by a forest or another
context. The star free forest expressions F and context expression C are
given by the following grammar:

Fu=0lela|F+F|F|CF|FVF|FAF|-F
C:=0lad|CC|F+C|C+F|CVC|CAC|-C

() is the empty set which is a forest expression. € is the empty forest (which
is omitted in the rest of this report). V stands for union and A stands for
intersection. — stands for complementation.

5.2 Star free forest expressions and First order logic

We give an alternative direct and complete proof for the equivalence between
SF forest expressions and FO. We need a splitting lemma analogous to
Lemma 3.2 in [DGOS]:

Lemma 1 Let A, B be disjoint sub-alphabets of ¥. Abusing notations, let
B*AB* denote the set of all contexts and forests with exactly one node labeled
by A and every other node labeled by B. For any SF language L over ¥,

LNB*AB* = \/ Li(Ly + Ly(Ls + aOL7 4 Lg) + Ls)

where a € A. L1 and Ly are star free context expressions over B. At most
one of La, Ls, L7, Lg, L3 is a star free context expression over B. Every other

16

Figure 4: Splitting lemma

L; is a star free forest expression over B. Moreover we require Ly and Ls
to be mazximal so that the product on the rhs is unambiguous.

Proof. Please refer Figure 4 for a pictorial explanation of the terms.
Please refer Appendix C for the detailed proof.

O

Theorem 12 ([Boj07]) Star free forest expressions have the same expres-
stve power as first order logic.

Sketch of Proof. The proof is similar to the proof of first order and star
free languages over words in [DGO08]. We consider an extended alphabet
to take care of the free variables. We construct star free expression for
the first order formula inductively. The interesting case is the existential
quantification. Since we restrict to valid assignments encoded using the
extended alphabet, exactly one position will mark the bit for the free variable
under consideration. this lets us take an intersection with language of the
form B*AB*. Due to the splitting lemma we can split this language into a
star free expression of star free languages over a smaller sub-alphabet by a
bijective renaming. This corresponds to deleting the bit corresponding to
the free variable under consideration. (]

5.3 Star free Nested word expressions and FO

The splitting lemma for star free nested word expressions is more compli-
cated due the restrictive syntax of the star free nested word expressions.
Please see the remark following the lemma for an explanation.

Lemma 2 Let A, B be disjoint sub-alphabets of . Abusing notations, let
B*AB* denote the set of all extended nested words with exactly one node

17

labeled by A and every other node labeled by B. For any SF language L over
)

LN B*AB* = \/ L1 D(LQ 'L4|Z|(L5 ‘CDTBIN‘LG) ‘Lg) (1)
ceCNA,reR
\/ Lo-LyC(Ls-cdrLy-Lg)- Ly (2)

ceCNA,reR
\/ Ls-cOrOL;-Le (3)
ceCNA,reR
\/ LiO(Ly-LiB(Ls-crBL7-Le)-Ls) (4)
ceC,reRNA

\/ Ly LiO(Ls-cOrlL;-Le)- Ly (5)

ceC,reRNA
\/ Ls-cOr@L;-Le (6)
ce€,reRnNA
\/ LiE(Ly-Ls0(Ls-a-Le)-L3) (7)
a€INA

\ L2 LiB(Ls-a-Lg) (8)

a€INA
\/ Ls-a-Le (9
a€INA
\V/ LiG(Ls-cOr-Lg) (10)
ceECNA,reR
\/ L5 - clr - L6 (11)
ceC,reRnNA

where a € A. Ly,Ly € NWq are star free nested word box expressions
over B. At most one of Lo, Ls, L7, Lg, L3 is a star free nested word box
expression over B. Every other L; is a star free nested word expression over
B. Moreover, we require Lo and Lg to be mazimal so that the product on
the rhs is unambiguous.

Remark. Since a nested word alphabet is typed, for each a € A, the cases
when a is a call or return or internal have to be taken care of separately.
Since we need the words generated by the regular expression to be complete
nested words, we need to consider all possible matching of a given call letter,
and hence the product (1). Product (4) is the symmetric case for a return
letter. Product (7) deals with the internal letter. Recall that an internal
letter do not allow a hierarchical concatenation (or vertical concatenation),
and hence the term L7 is missing in this product. Note that nested word
regular expressions do not have [J. Hence products (2), (5) and (8) are
special cases of products (1), (4) and (7) respectively with L; being the unit

18

(O). Similarly products (3), (6) and (9) are special cases of products (1),(4)
and (7) respectively with L; and L4 being the unit (). Products (10) and
(11) yield nested word context expressions. The proof of the lemma is
given in Appendix D.

Theorem 13 Star free nested word expressions and first order logic over
nested words have the same expressive power.

Sketch of Proof. Star free to first order is by induction on the structure of
the star free expression. Both concatenations require an existential quantifi-
cation to show the splitting of the concatenation followed by relativization
with respect to the newly introduced free variable. First order to star free
is similar to the one in [DGOS|. O

Though the proof of both Theorem 12 and Theorem 13 are along the
same lines, one does not easily give the other as a corollary.

6 Conclusion and future directions

In this report we show that the temporal logic for nested words and k-
phase nested traces have low complexity and that NWTL " do not have
separation property at arbitrary positions. We introduce an algebraic char-
acterization for the regularity of nested word languages. We also introduce
nested word expressions and see that first order coincides with star-freeness.

The following are some directions for further research:

Is there a temporal logic with tolerable complexity for k-phase nested
traces with variable k7

Does NWTLUtUe have separation property at a top level position?

Does there exist an expressive complete logic for k-phase nested traces?

- Is there an algebraic framework for nested trace languages?

References

[AABT08] Rajeev Alur, Marcelo Arenas, Pablo Barcel6, Kousha Etessami,
Neil Immerman, and Leonid Libkin. First-order and temporal
logics for nested words. LMCS, 4(4), 2008.

[AMO09] Rajeev Alur and P. Madhusudan. Adding nesting structure to
words. JACM, 56(3):1-43, 2009.

[BEM97] Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability
analysis of pushdown automata: Application to model-checking.
In CONCUR, pages 135-150, 1997.

19

[BGH09)

[Boj07]

[BWO07]

[DGOS]

[DRY5)|

[Gab87]

[GKO3]

[LTMPO7]

[Mar04]

[Thi94]

Benedikt Bollig, Manuela-Lidia Grindei, and Peter Habermehl.
Realizability of concurrent recursive programs. In FOSSACS 09,
pages 410-424, Berlin, Heidelberg, 2009. Springer-Verlag.

Mikolaj Bojanczyk. Forest expressions. In CSL, pages 146-160,
2007.

Mikolaj Bojanczyk and Igor Walukiewicz. Forest algebras. In
Jorg Flum, Eric Graedel, and Thomas Wilke, editors, “Logic and
Automata”, Texts in Logic and Games. Amsterdam University
Press, 2007.

Volker Diekert and Paul Gastin. First-order definable languages.
In Jorg Flum, Erich Gréadel, and Thomas Wilke, editors, Logic
and Automata: History and Perspectives, volume 2 of Texts in
Logic and Games, pages 261-306. Amsterdam University Press,
2008.

Volker Diekert and Grzegorz Rozenberg, editors. The Book of
Traces. World Scientific Publishing Co., Inc., River Edge, NJ,
USA, 1995.

Dov M. Gabbay. The declarative past and imperative future:
Executable temporal logic for interactive systems. In Temporal
Logic in Specification, pages 409—448, 1987.

Paul Gastin and Dietrich Kuske. Satisfiability and model check-
ing for mso-definable temporal logics are in pspace. In CONCUR,
pages 218-232, 2003.

Salvatore La Torre, Parthasarathy Madhusudan, and Gennaro
Parlato. A robust class of context-sensitive languages. In LICS,
pages 161-170, Washington, DC, USA, 2007. IEEE Computer
Society.

Maarten Marx. Conditional xpath, the first order complete xpath
dialect. In PODS, pages 13-22, 2004.

P. S. Thiagarajan. A trace based extension of linear time tem-
poral logic. In LICS, pages 438447, 1994.

20

A Semantics of NWTL™

We recall the syntax of NWTL+ from Section 1.2.
e u= Tlal-pleVe [Xe| Yo | X | Yo |eUy' |¢S¢f
e U ¢ [0S ¢ U™ |pS™ ¢ U | 95Ty
U@ | S" ¢ | @UY' | S ¢
The semantics is given below.
-wi =T
- w, i = a iff ith position of the nested word w is labeled a
- w,i =~ iff it is not the case that w,i = ¢
-w,iEeVe iff wiEpand w,i ¢
-wiEXpiffw,i+1FE @
-wi EYpiffw,i—1FE@
- w,i = XM iff there is a j such that u(i,j) holds and w,j = ¢
- w,i = Yt iff there is a j such that u(j,7) holds and w, j = ¢

-w,i = @ U iff there is a linear path i = ig,i1,...,i, such that
w, iy = ¢ and for all j such that ig < j < in, w,j =@

-w,i = oS¢ iff there is a linear path ig,i1,...,4, = ¢ such that
w,ig ¢ and for all j such that ig < j <'ip, w,j = ¢

- w,i = @ U ¢ iff there is a summary path i = ig, i1, ..., %, such that
w, i, | ¢ and for all j such that ig < j < in, w,j = ¢

- w,i = ¢ S* ¢ iff there is a summary path ig,i1,...,%, = ¢ such that
w,ig = ¢ and for all j such that ig < j < i,, w,j E @

- w,i = U™ ¢ iff there is a summary-up path i = ig, i1, ...,4, such
that w, i, = ¢ and for all j such that ig < j < i,, w,j FE ¢

- w,i | @ S ¢ iff there is a summary-up path ig,iy,...,4, = ¢ such
that w, i = ¢’ and for all j such that ig < j < in, w,j = ¢

- w,i = Uty iff there is a summary-down path i = 4q, iy, .. ., i, such
that w, i, = ¢’ and for all j such that ig < j < iy, w,j =

- w,i = S iff there is a summary-down path g, 4y, ..., i, = i such
that w,ip = ¢’ and for all j such that ig < j < i,, w,j FE ¢

21

- w,i | U* ¢ iff there is an abstract path i = ig, i1, ...,4, such that
w, i, ¢ and for all j such that ig < j < in, w,j E ¢

- w,i = ¢ S* ¢ iff there is an abstract path ig,1,...,i, = i such that
w,ip = ¢ and for all j such that ig < j < i,, w,j E ¢

- w,i | U iff there is a call path i = i, i1, ..., i, such that w,i, =
¢" and for all j such that ig < j <in, w,j E ¢

- w,i | @Sy iff there is a call path i, i1, . . ., i, = i such that w,ig = ¢
and for all j such that ig < j < in, w,j = ¢

Let F*¢ stand for TU*¢ and P*¢ stand for T.S*¢. T is a shorthand for
aV —a. call and ret are abbreviations for \/, s a and \/, g a respectively.

B Complexity of temporal logics over nested words

Let B be a set of modality names together with a mapping arity : B — N
giving the arity of each modality. The syntax of the temporal logic T'L(B)
is given by the grammar

$pu= > M(p,...,0)

MeB arity(M)

Consider the mapping [—] : B — MSOx(<, , call, ret) such that if arity(M) =
[then [M] is an [-ary MSO modality, that is, an MSO formula with [free set
variables X1,..., X; and one free individual variable x. Given a nested word

w = (w, u, call, ret) and a formula ¢ € T'L(B), the semantics is given by the

set ¢ of positions in w where ¢ holds. Inductively, if ¢ = M(p1,...,¢;)
where M € B is of arity [> 0, then

(Pw = {p < |w‘ ’ w ':MSO [[M]]((pqla e '790?717)}

We also write w,p = ¢ for p € p®

We consider the alphabet ¥; = ¥ x {0,1}! for [€ N. A letter a €
¥, will be written a = (ag,a1,...,q;) and a word will be written w =
(wo, w1, . .., w;) € B°x({0,1}*°)! with |w| = |w;| for 0 < i < 1. The support
of a word u € {0,1}* is denoted supp(u) and is defined to be the set of all
positions labelled by 1 in the word u. We get the following theorem from the
equivalence of MSO over nested-words and nested-word automata [AMO09].

Theorem 14 Let M be an l-ary modality name and let [M] be its as-
sociated MSOsx (<, u, call,ret)-modality. Then there exists a nested word
Biichi-automaton Byr over the alphabet ¥y such that w € L(Byr) where
w = (wo, w1, ..., wi1) if and only if supp(wi+1) = {p € [[w]] | wo Fmso
[M](supp(wy), ..., supp(w;),p)}.

22

For formulas ¢ and 1, we write ¢ < 9 if ¢ is a subformula of . For
€ TL(B), let Sub(§) ={¢p € TL(B) | ¢ < &}. We consider the alphabet
3 =2x{0,1}%. A word w € =7 is (wo, (wy)p<¢) Where wy € X, w,, €
{0,1}° for ¢ < ¢ and |w| = |wo| = |wy|. Let v = M(p1,...,¢1) < &
Then a [¥ = (ao,0p;--.,0p,0y) € Ny1. For w € 5w) ¢ o=
(W0, Wy s -+ s Wy, W) € BT

The construction we present here is similar to the one in [GKO03]. For a
formula ¢ € TL(B), let top(¢) be the outer most modality name of ¢. Let
Qiop(p) be the set of linear states and Py, be the set of hierarchical states
of the nested-word Biichi-automaton By,). We construct the automaton
Ag such that:

- The set of linear states Q) = ngg Qtop(y)
- The set of hierarchical states P = H@S{ Piop(e)
- The alphabet is &

- For p = (py)p<¢ and ¢ = (qp)p<e, (p,a,q) € 6; if and only if for all
¢ <&, we have (pgm al e, Q<,0) € 0; of Btop(cp)

- For p = (py)p<e, ¢ = (qp)p<e and q = (qclp)lpff’ (p,a,q,q') € é. if and
only if for all ¢ <&, we have (py,a [¥, qp,q),) € dc of Byoy(y)

- For p = (py)p<e: P = (plp)p<e and q = (qp)p<s, (p,P's a,q) € 6, if and
only if for all ¢ < &, we have (pw,pio, al¢,qy) € 6 of Biopy)

- Accepting states are the product of the accepting states of each au-
tomation for the finite word case. For the infinite word case we have
a Muller condition.

A sequence of linear states p°, p!, ... and a sequence of hierarchical states

¢°,¢", ... define a run of A for a nested-word w if and only if for each ¢ < &,
§

its projection pg,p}p, ... and qg, qglo, ... on @ is run of Byyy(,) for the nested-

word w [¢. A run of A¢ is accepting if and only if for each ¢ < ¢, its
projection on B, is accepting.

Lemma 3 Let w = (wo, (wy)p<¢). Then w = (w,p,call,ret) € L(Ag) if
and only if for each ¢ < & we have supp(w,) = ¢¥ = {p € [[w|] | ©,p = ¢}.

Lemma 4 The formula ¢ is satisfiable if and only if there exists w € L(Ag)
with supp(we) # 0.

Theorem 15 Let B be a finite set of modality names with associated MSO-
modalities. Then the satisfiability problem for TL(B) is in EXPTIME.

23

Proof. For each modality M € B, the automata By, are fixed and need
not be computed. Let k = max{|Bys| | M € B}. Given a TL(B) formula &,
since |sub(§)| is linear in |£|, we have |A¢| is exponential in [£|. We restrict
the accepted nested-words to the ones with supp(w¢) # (. For this, we
construct A’ with an additional flag bit in its states. |A’¢| is exponential
in |¢|. The emptiness checking of A’¢ can be done in polynomial time in the
size of A’¢ and hence exponential time in [€].

O

C Splitting lemma for ordered unranked trees

Proof. The proof is by induction on the structure of the star free expression
for L.

-IfL={a},a¢ A, orif L =0, then L7 = 0.
-If L= {a}, a € A, then Ly,Ly =0, Lo, L3, L5, Lg, L7 = €.

If L ={a0d}, a € A, then Ly, Ly, Ly =, Ly, L3, L5, Lg = €.
- If L = Ly V Lo, then union of both rhs.
-IfL =1L+ Lo,
(L1+L2)NB*aB* = (LiNB*AB*+ LoNB*)V(L1NB*+ LyNB*AB™)
- If L =L.Lo,
(L1.Lo)NB*aB* = ((L1NB*AB*).(LsNB*))V((L1NB*).(LaNB*AB*))

For the complementation, apart from the unambiguity, we need to
strengthen the rhs slightly as follows.

For each a € A, we make L a partition of contexts over B.

Ly(Lg + La(Ls + aOLy + Lg) + Ls) V L), (Ly + Ly(L})+ L)
= (L \ L) (Ly + Ly(Ls 4+ aOL7 + Lg) + L3)
V(LY \ Ly)(LY + Ly (Ly + aOLL + L) + L)
V(L N LY) (L2 + La(Ls + aOL7 + L) + Ls)
V(L1 N Ly)(Ly + Ly(Ls + aOL7 + Lg) + Ly)

5+ a0L% + Lg) + L

//_/_/

Let LY be the set of contexts which do not belong to any L;. To make
L1’s a partition we can add the product

LY(B* + B*(B* + a00 + B*) + B*)

24

also to the rhs.

For any equivalence class L; from the above partition of Li’s, we can
make Lo also a partition:

Ly(Lo + Ly(Ls + aOL7 + Lg) + L3) V L1 (L + L)LY + aOLL + L) + LY)
= L1((L2 \ L'2) + L4(Ls + aOL7 + Lg) + L3)

VL1 ((L5\ Lo) + L)y(L5 + aOL% + Lg) + L)

VL ((Le N LY) + La(Ls + aOL7 + Lg) + L3)
(() (Ls 6) +Ls)

VL ((Ly N L) + Ly(LE + aOL, + Lg) + L,

Moreover for L, the set of contexts which do not belong to any Lo,
we add the product

Li(Ly + B*(B* + a0 4+ B*) + B*)
also to the rhs.

Similarly, for any given L; and Lo, we make L3 a partition, and then
L4, Ls and Lg successively in that order. Once the rhs is in this form,
we have :

(L1)°N B*AB* = \/ Ly (L + La(Ls + aD0((L7)) + Le) + Ls)

This completes the proof of the splitting lemma.

D

Splitting lemma for nested words

Please refer Figure 4 for a pictorial explanation of the terms.
Proof. The proof is by induction on the structure of the star free expres-
sion for L.

If L ={a} witha¢ A, orif L =0, orif L = {cOr} with ¢,r ¢ A then
L =0.

If L ={a}, a€J,a € A, then Product (9) applies, with Ls, Lg = €.

If L = {cOr} with ¢ € A or r € A, then Product (11) applies and
L5, L6 =€

If L = Ly V Lo, then union of both rhs.
IfL="L-L",
(L'-L"YnB*aB* = (L'nB*AB*)-(L"nB*))v((L'nB*)-(L"NB*AB"))

25

M L=0'0L",

(L'EL"NB*aB* = (I'NB*AB*)A(L'NB*))V((L'nB*)3(L'NB* AB*))

- For the complementation, apart from the unambiguity, we need to
strengthen the rhs as before. We have more cases to consider depend-
ing on the form of the product ((1)...(11)).

For each c[Jr appearing in the rhs of the splitting lemma, and for each
form in which it appear (not that while considering forms (1) and (4)
(alternatively, (2) and(5) or (3) and (6)) are exactly the same for a
given cJr), we make the L;’s a partition. Let us consider the form (1)

(or (4)).

L1 (Ly- Ly B (Ls - cOr O Ly - Lg) - L3) vV Ly B (L O (Lt
(Ll \ L)(L2 + L4(L5 +a0L7 + Lg) + L3

V(LY \ Ly) (L + LYy (L + aOL% + Lg) + LY

V(L1 N LY)(La + La(Ls + aOL7 + Lg) + L

V(Ly N LY) (LS + Ly(Ls + aOL7, + L) + LY

LocOrOLL-Lg) - L

Let LY be the set of contexts which do not belong to any L;. To make
L1’s a partition we can add the product

L"(B* + B*(B* + a00 + B*) + B)

also to the rhs.

For any equivalence class Lj from the above partition of L;’s, we can
make Lo also a partition:

Ly(Ly + La(Ls + aOL7 + Lg) + L3) V Ly (L + Ly(Ls + aOL% + L) + L)
:Ll((L \L2 —I—L4(L5+GDL7+L6)+L3)
VLy((L4y\ L) + Ly(Ly + aOL% 4+ L) + L)
VI (LQDLQ + Ly(Ls + aOL7 + Lg) + L3)
VL1 ((L2 N L) + L)y(Ly + aOL% + Lg) + L)

L
L

\/\/\/\/

(
(

Moreover for L, the set of contexts which do not belong to any Lo,
we add the product

Li(Ly + B*(B* + a0 4+ B*) + B*)

also to the rhs.

26

Similarly, for any given L; and Lo, we make L3 a partition, and then
Ly, Ly and Lg successively in that order. Once the rhs is in this form,
we have :

(L) NB*AB* = \/ Li(Ls + La(Ls + aO((L7)") + L) + L3)

This completes the proof of the splitting lemma.

27

