
A New Version of Focus Games for
LTL Satisfiability★

Aiswarya Cyriac

Laboratoire Spécification et Vérification
École Normale Supérieure de Cachan, France

Email: aiswarya.cyriac@lsv.ens-cachan.fr

Abstract. We aim to relate game theoretic method and automata the-
oretic method for the satisfiability problem of LTL. We introduce a one-
player focus game as an intermediate formalism between the two.

1 Introduction

Automata theoretic methods are widely used for the satisfiability problem of
temporal logics [6]. In [5], Lange and Stirling employ a game theoretic approach
for the same. A study on how the different methods relate is interesting on its
own account. Moreover it may allow results/techniques in one paradigm to be
applied in another.

In this note we try to understand and establish the connection between the
game theoretic approach and the automata theoretic approach for LTL satisfia-
bility. To this end, we define a turn-based variant of the focus games introduced
in [5] and prove the completeness result for this variant. While unraveling the
relations with automata, we come up with a new one player game which serves
as an intermediate formalism between the two methods.

We describe focus games in the next section. A proof outline for its com-
pleteness is given in Section 3. Some connections to automata are also briefly
discussed in this section. Section 4 introduces the new one player game and
proves the completeness.

2 Focus Games

In this section we describe the focus game (which is a two player game) for the
satisfiability of an LTL formula. We assume that the reader is familiar with LTL,
see e.g. [1]. Our variant is a concrete form of the high level description of the
focus games defined in [5]. We assume the formula is in negation normal form
(negation appears only at the literal level) which is given by:

�1, �2 ::= q ∣ ¬q ∣ �1 ∨ �2 ∣ �1 ∧ �2 ∣ X�1 ∣ �1 U �2 ∣ �1 R �2

★ Extended abstract of an internship report. The internship was supported by project
ARCUS Île-de-France/Inde and supervised by Stéphane Demri and Paul Gastin.

Let Subf(�) denote the set of all subformulas of �. A set � ⊆ Subf(�) is called
a reduced set if for all formulas � ∈ � , � is either a literal or a ‘next’ formula
(that is there is a �′ such that � ≡ X�′).

⋀
� denote the conjunction of all

formulas in � .

The players are denoted ‘∃’ and ‘∀’. The focus game for an LTL formula � is
given by G(�) = (V, 7−→,W) where:

– V ⊆ Subf(�)×2Subf(�)×{∃,∀}. A typical node is a tuple ([�1], �,Q) where
� ⊆ Subf(�), �1 ∈ � and Q ∈ {∃,∀}. We may abuse the notations and write
([�1], � ∖{�1}, Q) as well for the same. Intuitively Player∃ tries to prove that⋀
� is satisfiable, where as Player ∀ tries to prove it is not. Moreover he hopes

�1 to cause an inconsistency and focuses on that (denoted by ‘[�1]’). ‘Q’ says
whose turn it is to make a move.

– the set of moves, 7−→, is given in the Table 1. Rule 1 allows change of
focus. Rules 2–4 show the decomposition of a conjunction. Rules 5–8 show
the unfolding of an until or release formula in and outside the focus. Rules
11–14 show the choices of Player∃ on a disjunction. Rule 15 is applicable
only at reduced positions (a game node ([�], �, ∀) with a reduced set �) and
shows the unwinding of a next. Note that all nodes by default belong to
Player ∀ . In the presence of a disjunction, at his discretion, Player∀ may
give the turn to Player∃ using Rules 9–11.

– W defines the winning conditions given in the Table 2. The conditions ∀1 and
∃1 are self-explanatory. Winning condition ∀2 can be explained as follows: If
a game node repeats with an until formula in the focus and focus not being
changed throughout, then Player ∃ has failed to fulfill the until requirement.
Had she been able to do it, she could have done that at the first chance given
to her. Winning condition ∃2 can also be explained similarly.

Note that the winning conditions make the plays finite. Moreover, they are
mutually exclusive and cover all possible plays. Hence each play has a unique
winner. Since exactly one player is allowed to make a move at any node, we can
apply Zermelo’s theorem [7] to get determinacy.

Theorem 1 (Zermelo). The game G(�) is determined. That is, for every LTL
formula �, one of the players has a winning strategy.

3 Correctness and Completeness

We can prove the completeness of the focus games by adapting the technique
in [5] with slight adjustments.

Theorem 2. Player ∃ has a winning strategy in the game G(�) if and only if �
is satisfiable.

Sketch of Proof For the only if direction, we consider a rational strategy
by Player ∀ . The strategy uses a priority list (finite memory). Consider a linear

2

1. [�1], �2, �,∀ 7−→ [�2], �1, �,∀
2. [�1 ∧ �2], �,∀ 7−→ [�1], �2, �,∀
3. [�1 ∧ �2], �,∀ 7−→ [�2], �1, �,∀
4. [�1], �2 ∧ �3, �,∀ 7−→ [�1], �2, �3, �,∀
5. [�1], �2 U �3, �,∀ 7−→ [�1], �3 ∨ (�2 ∧X(�2 U �3)), �,∀
6. [�1 U �2], �,∀ 7−→ [�2 ∨ (�1 ∧X(�1 U �2))], �,∀
7. [�1], �2 R �3, �,∀ 7−→ [�1], �3 ∧ (�2 ∨X(�2 R �3)), �,∀
8. [�1 R �2], �,∀ 7−→ [�2 ∧ (�1 ∨X(�1 R �2))], �,∀
9. [�1 ∨ �2], �,∀ 7−→ [�1 ∨ �2], �,∃

10. [�1], �2 ∨ �3, �,∀ 7−→ [�1], �2 ∨ �3, �,∃
11. [�1 ∨ �2], �,∃ 7−→ [�1], �,∀
12. [�1 ∨ �2], �,∃ 7−→ [�2], �,∀
13. [�1], �2 ∨ �3, �,∃ 7−→ [�1], �2, �,∀
14. [�1], �2 ∨ �3, �,∃ 7−→ [�1], �3, �,∀
15. [X�1], . . . , X�m, q1, . . . , qn, ∀ 7−→ �1, . . . , �m, ∀

Table 1. Game rules.

Player ∀ wins the play P0, P1, . . . , Pn if:
∀1. Pn is [q], �,Q and (q is ⊥ or ¬q ∈ �) or
∀2. Pn is [�U], �,Q and for some i < n the position Pi = Pn and between Pi, . . . , Pn

player ∀ has not applied Rule 1.

Player ∃ wins the play P0, P1, . . . , Pn if:
∃1. Pn is [q1], . . . , qn, Q and {q1, . . . , qn} is satisfiable or
∃2. Pn is [�], �,Q and for some i < n the position Pi = Pn and between Pi, . . . , Pn

player ∀ has applied Rule 1 or � is not an until formula.

Table 2. Winning Conditions.

3

ordering of all the until formulas present in Subf(�) which also preserves sub-
formula relation. i.e, �1 ∈ Subf(�2) ⇒ �2 > �1. The priority list is initialized
according to this ordering.

At any position (['], �, ∀) if Player ∀ can find a propositional inconsistency
discarding the X formulas, he will set the focus appropriately so as to win by
condition ∀1 given in Table 2. If the first element of the priority list is a subfor-
mula of the current focus, he does not change focus. Else he focuses on the first
available formula from the priority list, cyclically shifting the preceding ones.
Note that the definition of rational strategy is not complete.

The idea is to extract a model from a play obtained when Player ∃ plays her
winning strategy and Player ∀ plays the rational strategy described above. Let
P0, . . . , Pn be the resulting play. Let Pi0 , Pi1 . . . , Pik be the positions of the play
where the rule 15 was applied. Pij is of the form (Aij , Bij ,∀) where Aij has only
X formulas and Bij has only literals.

If the play is terminated using winning condition ∃1, Pn ⊆ Literals. We
claim that the infinite word � = Bi0 ⋅ . . . ⋅ Bik ⋅ Pn ⋅ ⊤! is a model for �. If
the play is won using winning condition ∃2, for some m < n, Pm = Pn. Let
Pim′ be the next reduced position after Pm. We claim that the infinite word
� = Bi0 ⋅ . . . ⋅Bim′−1

⋅ (Bim′ ⋅ . . . ⋅Bik)!. For each case of the winning condition
reached, the proof proceeds by an induction on the structure of the formula.

The if direction relies on preserving satisfiability. But this could potentially
lead to repetition of game nodes. In order to avoid that, we follow the adornment
techniques from [5]. Player ∃ keeps a separate copy of the current game node in
her memory. Each time a principal formula is decomposed into its subformulas,
she keeps a copy of the principal formula as well in the game node (hence building
a downward closed consistent set). Every time an until formula is unfolded she
adorns its interpretation by the negation of conjunction of formulas in the current
game node in her memory, and keep them along until the second argument of the
until is present in the game node. Thus preserving satisfiability also helps her to
meet the until requirements at the earliest. Note that Player ∃ needs polynomial
space for this strategy. ⊓⊔

Checking for the existence of a winning strategy can be done in PSPACE
which matches the lower bound for LTL satisfiability.

When we look into the details of the completeness proof, the only if direc-
tion reveals some relation with tableaux construction in the automata theoretic
method [6]. We observe that the set of all formulas present in the nodes between
two consecutive application of Rule 15 forms a downward closed set. The play we
considered for extracting the model corresponds to a witness path in the Büchi
automaton. Player ∀ , playing the rational strategy, changes the focus on meeting
the until requirements in focus. Hence the corresponding downward closed sets
will correspond to one of the acceptance conditions of the generalized Büchi au-
tomaton. The order in which the priority list is initialized in the rational strategy
of Player∀ may correspond to an order followed in converting the generalized
Büchi acceptance to normal Büchi acceptance.

4

4 One player focus game

The interesting plays of a focus game are the ones in which Player ∀ plays sensibly
(some rational strategy). We can in fact embed the rational strategy of Player ∀
in the two-player focus game into the definition of the game to get a one-player
game. We observe that the role of focus is to force the satisfaction of the until
requirement. Hence instead of focusing on just a single formula, we want to focus
on the set of unfulfilled until requirements at one go.

A game node has focused formulas (enclosed in ‘[’,‘]’) and unfocused ones.
We have two modes: a Reset mode where we populate the ‘focus’, and a Check
mode where we empty the focus. A game node looks like (mode : [�1], �2). The
initial position of the one-player game G(�) is (Reset : [], �) If the satisfaction
of an until requirement is postponed for a later moment, then the promise to
satisfy it later (next-until formula) gets into the focus. In the Check mode, if
an until requirement is satisfied, it is removed from the focus. We do not add
formulas into the focus in this mode. Between two consecutive applications of
‘Next’ rule, the game remains in the same mode. When a ‘Next’ rule is applied,
if the focus is empty, the next mode is Reset otherwise the next mode is Check
no matter what the current mode is. The rules are given in Table 3, where Mode
stands for both Check and Reset and the winning and losing conditions in
Table 4.

1. Mode : [�1], �1 ∧ �2, �2 7−→ [�1], �1, �2, �2.
2. Mode : [�1], �1 ∨ �2, �2 7−→ [�1], �1, �2

3. Mode : [�1], �1 ∨ �2, �2 7−→ [�1], �2, �2.
4. Mode : [�1], �1 U �2, �2 7−→ [�1], �2, �2.
5. Reset : [�1], �1 U �2, �2 7−→ [X(�1 U �2), �1], �1, �2.
6. Check : [�1], �1 U �2, �2 7−→ [�1], �1, X(�1 U �2), �2.
7. Check : [�1 U �2, �1], �2 7−→ [�1], �2, �2.
8. Check : [�1 U �2, �1], �2 7−→ [X(�1 U �2), �1], �1, �2.
9. Mode : [�1], �1 R �2, �2 7−→ [�1], �1, �2, �2.

10. Mode : [�1], �1 R �2, �2 7−→ [�1], �2, X(�1 R �2), �2.
11. Mode : [], X�1, . . . , X�m, q1, . . . , qn 7−→ Reset : [], �1, . . . , �m.
12. Mode : [X�1, . . . , X�l], X�l+1, . . . , X�m, q1, . . . , qn

. 7−→ Check : [�1, . . . , �l], �l+1, . . . , �m.

Table 3. Game rules.

Theorem 3. If Player ∃ can win the one-player game G(�), then � is satisfiable.

Proof. Let R1, . . . , Rn be the set of reduced positions in the winning play. Let
�i be the set of literals appearing in the position Ri. If the play was terminated
using winning condition ∃1, let w = �1 ⋅ . . . ⋅ �n ⋅ ⊤!. If the play was terminated

5

Player ∃ loses the play P0, P1, . . . , Pn if:
∀1. Pn is Mode : [�1], �2 and (⊥ ∈ �2 or q,¬q ∈ �2) for some literal q or
∀2. Pn is a reduced position with a non empty focus and for some i < n the position

Pi = Pn disregarding mode and there is no position in between with an empty
focus.

Player ∃ wins the play P0, P1, . . . , Pn if:
∃1. Pn is Mode : [], q1, . . . , qn and {q1, . . . , qn} is satisfiable or
∃2. Pn is a reduced position and for some i < n the position Pi = Pn disregarding

the mode and there exists a j such that i ≤ j ≤ n and Pj has an empty focus.

Table 4. Winning Conditions.

using winning condition ∃2, there exists a k < n such that Rn = Rk. Let
w = �1 ⋅ . . . ⋅ �k−1.(�k ⋅ . . . �n−1)! in this case.

We claim that for any formula present in the play, if Ri is the nearest
reduced position in its future, then w, i ∣= . This is proved by an induction on
the structure of . The only difficult case is to show that the until requirements
are eventually satisfied in the case with winning condition ∃2. Recall that an until
formula once put in focus is removed only when the second argument is chosen
on expansion. Hence if an until formula is present in focus at some instance, it is
eventually satisfied since we have a reduced set with an empty focus. If there is
no reduced set with empty focus in its future, it is either satisfied before Rn or it
is present in Rk as well. If an until formula never enters the focus, it is satisfied
either before the empty focus is reached or in the Reset mode right after that.

Hence w, 0 ∣= �. ⊓⊔

We take the following lemma from [5, 4]:

Lemma 1. If ∧('U) is satisfiable, then ∧(∨('∧X(('∧¬)U (∧¬))))
is satisfiable.

Theorem 4. If � is satisfiable, then Player ∃ has a winning strategy in the one-
player focus game G(�).

Proof. We construct a strategy which avoids both losing conditions. Player∃
uses a finite memory to remember a context in order to avoid losing condition
∀2. A position Mode : ['1 U 1, . . . , 'k U k, X('k+1 U k+1), . . . , X('k+l U
 k+l)], � in context c is interpreted as Mode : ['1U 1, . . . , 'kU k, X('k+1U

 k+1), . . . , X('k+lU k+l)], �, cU (c∧
⋁k+l
i=1 i). The game starts in the context ⊤.

When multiple formulas are ready to be expanded, we take them in left to right
order though the order in which they are taken does not matter. To avoid losing
condition ∀1, Player ∃ preserves satisfiability respecting the context at disjunc-
tion, release and until moves. In case of ambiguity, choose the second argument.

6

If it is possible to choose the second argument on expanding an until formula in
focus, do so and reset the context to ⊤. At a reduced position (Mode : [�0], �j)
in context c, update the context to c∧(¬

⋀
�0∨¬

⋀
�j) with the next rule. If the

focus is empty at a reduced position, the context is reset to ⊤. This preserves
satisfiability and avoids losing condition ∀2 as explained below.

At a reduced position (Mode : [�0], �j) in context c, where �0 = {X(�1 U

 1), . . . , X(�k U k) }, the formula c U (c ∧
⋁k

1 i) ∧
⋀
�0 ∧

⋀
�j is satisfiable

since satisfiability respecting context is preserved, but (c∧
⋁k

1 i)∧
⋀
�0 ∧

⋀
�j

is not satisfiable. Indeed, the game rules preserve unsatisfiability, if c ∧ i ∧⋀
�0 ∧

⋀
�j were satisfiable for some i, then at the position (Mode : [� ′0], � ′j)

with no reduced positions between the two and where 'i U i was going to be
expanded, (cU (c∧

⋁k
1 i)), [�

′
0], � ′j , i would have been satisfiable, and Player∃

playing consistent with the strategy above, would have chosen i on expansion
and hence X('i U i) would not be present in �0. Hence owing to Lemma 1,⋀
�0 ∧

⋀
�j ∧ X((c ∧ (¬

⋀
�0 ∨ ¬

⋀
�j)) U (c ∧ (¬

⋀
�0 ∨ ¬

⋀
�j) ∧

⋁k
1 i)) is

satisfiable. If (Mode : [�0], �j) gives (Check : [� ′0], � ′j) by Rule 12, then⋀
� ′0∧

⋀
� ′j∧(c∧(¬

⋀
�0∨¬

⋀
�j))U (c∧(¬

⋀
�0∨¬

⋀
�j)∧

⋁k
1 i) is satisfiable.

Recall that the context is reset to ⊤ whenever the size of the focus reduces. Hence
updating the context preserves satisfiability.

Note that when a reduced position repeats under losing condition ∀2, the size
of the focus is the same. If the size of the focus once reduces, it cannot increase
without touching zero. Hence it is enough to show that the reduced position can-
not repeat with the same (non-empty) focus throughout the loop. If it could re-
peat with the same non-empty focus [�0], we have a sequence of reduced positions
(Mode : [�0], �1), . . . , (Mode : [�0], �n) with �n = �m for some m < n. The

strategy ensures that the context at the last position is
⋀n−1
i=1 (¬

⋀
�0 ∨ ¬

⋀
�j)

which is equivalent to ¬
⋀
�0 ∨

⋀n−1
i=1 ¬

⋀
�j , and that satisfiability is preserved

respecting the context. Hence [�0], �n,¬
⋀
�0 ∨

⋀n−1
i=1 ¬

⋀
�j is satisfiable. Since⋀

�0 ∧ ¬
⋀
�0 is not satisfiable,

⋀
�n ∧

⋀n−1
i=1 ¬

⋀
�j is satisfiable. This would

mean that
⋀
�n ∧ ¬

⋀
�m is satisfiable which is a contradiction. Thus losing

condition ∀2 can not be reached.
Every play is finite. Each play is either winning or losing. The strategy does

not allow Player ∃ to lose. Hence it is winning. ⊓⊔

In order to illustrate that preserving satisfiability alone is not enough and how
context helps in the winning strategy given in the completeness proof above, we
consider an example game1 G(FGp∧G(q∨p)∧(XF¬p)∧p) given in Figure 1. Note
that at position Pb, both the disjuncts of q∨p are satisfiable. But the left branch
is losing since R1 and R′2 witness losing condition ∀2, whereas the right branch
is winning since R3 and R4 witness winning condition ∃2. On the other hand,
assume Player ∃ remembers the context and preserves satisfiability respecting
context. The context from Pa to R′2 is ¬p ∨ ¬XF¬p ∨ ¬XG(q ∨ p) ∨ ¬XFGp.
Since the position Pb has XG(q∨p), the disjunct ¬XG(q∨p) cannot be satisfied.

1 F' and G' are shorthands for ⊤ U ' and ⊥R ' respectively.

7

The disjunct ¬XFGp cannot be satisfied since XFGp is present in the position.
p ∧ F¬p ∧ (¬p ∨ ¬XF¬p) is not satisfiable, hence p cannot be chosen in the
disjunction q ∨ p. Hence preserving satisfiability respecting context eliminates
the losing branch.

(P0) Reset : FGp ∧G(q ∨ p) ∧XF(¬p) ∧ p
↓ ∗

(R1) Reset : [XFGp],XG(q ∨ p),XF(¬p), p
↓ Rule 12

(Pa) Check : [FGp],G(q ∨ p),F(¬p)
↓ ∗

(Pb) Check : [XFGp], q ∨ p,XG(q ∨ p),F(¬p)
↙ Rule 3 ↘ Rule 2

Check : [XFGp], p,XG(q ∨ p),F(¬p) Check : [XFGp], q,XG(q ∨ p),F(¬p)
↓ Rule 6 ↓ Rule 4

(R′
2) Check : [XFGp], p,XG(q ∨ p),XF(¬p) (R2) Check : [XFGp], q,XG(q ∨ p),¬p

↓ Rule 12

Check : [FGp],G(q ∨ p)
↓ ∗

(R3) Check : [], p,XGp,XG(q ∨ p)
↓ ∗

(R4) Check : [], p,XGp,XG(q ∨ p)

Fig. 1. An example game

The game is very close to automata. But the game does not give rise to all
models, and we cannot build a winning strategy from any model. It is not clear
if we can build a winning strategy from some minimal ultimately periodic model
or if the game yields all minimal ultimately periodic models. The length of a
play is at most exponential in the size of the formula. Hence checking for the
existence of a winning strategy can be done in NPspace and hence in Pspace
owing to Savitch’s technique.

In [3] a one-player game which uses multiple foci in parallel is defined. All the
until formulas in foci games are in focus, whereas our one-player game may have
until formulas which never enter focus. The completeness of the foci games builds
a strategy from an arbitrary model of the formula, but an arbitrary model cannot
yield a strategy for the one-player focus game presented here. In [2], Brünnler
and Lange introduce cut-free sequent systems for LTL which can be thought of
as a one-player game. But it is technically more similar to the two-player focus
games. The ‘history’ in their definition corresponds to the ’adornment’ in the
proof of Theorem 2.

8

5 Conclusion

We introduced a turn based and determined variant of the focus games which
was originally introduced in [5]. A new one-player game for the satisfiability prob-
lem of LTL is introduced as an intermediate formalism between game theoretic
approach and automata theoretic approach. This new game is very close to au-
tomata, but the completeness-proof is similar to that of two-player focus game.
This manifests the relation between automata theoretic method and the focus
games method. A similar study on branching time logics is an immediate future
work.

Acknowledgments

I am extremely indebted to Stéphane Demri and Paul Gastin for constant sup-
port and valuable discussions. I would like to thank Rajeev Goré, James Thom-
son and Florian Widmann for pointing out a critical mistake in the definition of
the one-player focus game in an earlier version.

References

1. B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, and P. Sch-
noebelen. Systems and Software Verification, Model-Checking Techniques and Tools.
Springer-Verlag, 2001.

2. K. Brünnler and M. Lange. Cut-free sequent systems for temporal logic. J. Log.
Algebr. Program., 76(2):216–225, 2008.

3. C. Dax and M. Lange. Game over: The foci approach to ltl satisfiability and model
checking. Electr. Notes Theor. Comput. Sci., 119(1):33–49, 2005.

4. D. Kozen. Results on the propositional mu-calculus. Theor. Comput. Sci., 27:333–
354, 1983.

5. M. Lange and C. Stirling. Focus games for satisfiability and completeness of tem-
poral logic. In LICS’01, pages 357–365. IEEE, 2001.

6. M. Vardi and P. Wolper. Reasoning about infinite computations. Information and
Computation, 115:1–37, 1994.

7. E. Zermelo. Über eine anwendung der mengenlehre auf die theorie des schachspiels.
volume 2, pages 501–504. Cambridge University Press, 1913.

9

