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Abstract. We study the computational complexity of Nash equilibria in
concurrent games with limit-average objectives. In particular, we prove
that the existence of a Nash equilibrium in randomised strategies is
undecidable, while the existence of a Nash equilibrium in pure strategies
is decidable, even if we put a constraint on the payoff of the equilibrium.
Our undecidability result holds even for a restricted class of concurrent
games, where nonzero rewards occur only on terminal states. Moreover,
we show that the constrained existence problem is undecidable not only
for concurrent games but for turn-based games with the same restriction
on rewards. Finally, we prove that the constrained existence problem for
Nash equilibria in (pure or randomised) stationary strategies is decidable
and analyse its complexity.

1 Introduction

Concurrent games provide a versatile model for the interaction of several com-
ponents in a distributed system, where the components perform actions in
parallel [17]. Classically, such a system is modelled by a family of concurrent
two-player games, one for each component, where one component tries to fulfil
its specification against the coalition of all other components. In practice, this
modelling is often too pessimistic because it ignores the specifications of the other
components. We argue that a distributed system is more faithfully modelled by a
multiplayer game where each player has her own objective, which is independent
of the other players’ objectives.

Another objection to the classical theory of verification and synthesis has
been that specifications are qualitative: either the specification is fulfilled, or
it is violated. Examples of such specifications include reachability properties,
where a certain set of target states has to be reached, or safety properties, where
a certain set of states has to be avoided. In practice, many specifications are
of a quantitative nature, examples of which include minimising average power
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consumption or maximising average throughput. Specifications of the latter
kind can be expressed by assigning (positive or negative) rewards to states or
transitions and considering the limit-average reward gained from an infinite play.
In fact, concurrent games where a player’s payoff is defined in such a way have
been a central topic in game theory (see the related work section below).

The most common solution concept for games with multiple players is that
of a Nash equilibrium [20]. In a Nash equilibrium, no player can improve her
payoff by changing her strategy unilaterally. Unfortunately, Nash equilibria do
not always exist in concurrent games, and if they exist, they may not be unique.
In applications, one might look for an equilibrium where some players receive
a high payoff while other players receive a low payoff. Formulated as a decision
problem, given a game with k players and thresholds x, y ∈ (Q∪{±∞})k, we want
to know whether the game has a Nash equilibrium whose payoff lies in-between
x and y; we call this decision problem NE.

The problem NE comes in several variants, depending on the type of strate-
gies one considers: On the one hand, strategies may be randomised (allowing
randomisation over actions) or pure (not allowing such randomisation). On the
other hand, one can restrict to stationary strategies, which only depend on the
last state. Indeed, we show that these restrictions give rise to distinct decision
problems, which have to be analysed separately.

Our results show that the complexity of NE highly depends on the type
of strategies that realise the equilibrium. In particular, we prove the following
results, which yield an almost complete picture of the complexity of NE:

1. NE for pure stationary strategies is NP-complete.
2. NE for stationary strategies is decidable in Pspace, but hard for both NP

and SqrtSum.
3. NE for arbitrary pure strategies is NP-complete.
4. NE for arbitrary randomised strategies is undecidable and, in fact, not

recursively enumerable.

All of our lower bounds for NE and, in particular, our undecidability result hold
already for a subclass of concurrent games where Nash equilibria are guaranteed
to exist, namely for turn-based games. If this assumption is relaxed and Nash
equilibria are not guaranteed to exist, we prove that even the plain existence
problem for Nash equilibria is undecidable. Moreover, many of our lower bounds
hold already for games where non-zero rewards only occur on terminal states,
and thus also for games where each player wants to maximise the total sum of
the rewards.

As a byproduct of our decidability proof for pure strategies, we give a
polynomial-time algorithm for deciding whether in a multi-weighted graph there
exists a path whose limit-average weight vector lies between two given thresholds,
a result that is of independent interest. For instance, our algorithm can be used
for deciding the emptiness of a multi-threshold mean-payoff language [2].

Due to space constraints, most proofs are either only sketched or omitted
entirely. For the complete proofs, see [27].



Related work. Concurrent and, more generally, stochastic games go back to
Shapley [23], who proved the existence of the value for discounted two-player
zero-sum games. This result was later generalised by Fink [13] who proved that
every discounted game has a Nash equilibrium. Gillette [16] introduced limit-
average objectives, and Mertens and Neyman [19] proved the existence of the
value for stochastic two-player zero-sum games with limit-average objectives.
Unfortunately, as demonstrated by Everett [12], these games do, in general,
not admit a Nash equilibrium (see Example 1). However, Vielle [29, 30] proved
that, for all ε > 0, every two-player stochastic limit-average game admits an
ε-equilibrium, i.e. a pair of strategies where each player can gain at most ε from
switching her strategy. Whether such equilibria always exist in games with more
than two players is an important open question [21].

Determining the complexity of Nash equilibria has attracted much interest
in recent years. In particular, a series of papers culminated in the result that
computing a Nash equilibrium of a finite two-player game in strategic form is
complete for the complexity class PPAD [6, 8]. The constrained existence problem,
where one looks for a Nash equilibrium with certain properties, has also been
investigated for games in strategic form. In particular, Conitzer and Sandholm [7]
showed that deciding whether there exists a Nash equilibrium where player 0’s
payoff exceeds a given threshold and related decision problems are NP-complete
for two-player games in strategic form.

For concurrent games with limit-average objectives, most algorithmic results
concern two-player zero-sum games. In the turn-based case, these games are
commonly known as mean-payoff games [10, 32]. While it is known that the
value of such a game can be computed in pseudo-polynomial time, it is still open
whether there exists a polynomial-time algorithm for solving mean-payoff games.
A related model are multi-dimensional mean-payoff games where one player tries
to maximise several mean-payoff conditions at the same time [5]. In particular,
Velner and Rabinovich [28] showed that the value problem for these games is
coNP-complete.

One subclass of concurrent games with limit-average objectives that has
been studied in the multiplayer setting are concurrent games with reachability
objectives. In particular, Bouyer et al. [3] showed that the constrained existence
problem for Nash equilibria is NP-complete for these games (see also [25, 14]).
We extend their result to limit-average objectives. However, we assume that
strategies can observe actions (a common assumption in game theory), which
they do not. Hence, while our result is more general w.r.t. the type of objectives
we consider, their result is more general w.r.t. the type of strategies they allow.

In a recent paper [26], we studied the complexity of Nash equilibria in
stochastic games with reachability objectives. In particular, we proved that NE
for pure strategies is undecidable in this setting. Since we prove here that this
problem is decidable in the non-stochastic setting, this undecidability result can
be explained by the presence of probabilistic transitions in stochastic games.
On the other hand, we prove in this paper that randomisation in strategies also
leads to undecidability, a question that was left open in [26].



2 Concurrent Games

Concurrent games are played by finitely many players on a finite state space.
Formally, a concurrent game is given by

– a finite nonempty set Π of players, e.g. Π = {0, 1, . . . , k − 1},
– a finite nonempty set S of states,
– for each player i and each state s a nonempty set Γi(s) of actions taken from

a finite set Γ ,
– a transition function δ : S × ΓΠ → S,
– for each player i ∈ Π a reward function ri : S → R.

For computational purposes, we assume that all rewards are rational numbers
with numerator and denominator given in binary. We say that an action profile
a = (ai)i∈Π is legal at state s if ai ∈ Γi(s) for each i ∈ Π. Finally, we call a
state s controlled by player i if |Γj(s)| = 1 for all j 6= i, and we say that a game
is turn-based if each state is controlled by (at least) one player. For turn-based
games, an action of the controlling player prescribes to go to a certain state.
Hence, we will usually omit actions in turn-based games.

For a tuple x = (xi)i∈Π , where the elements xi belong to an arbitrary set X,
and an element x ∈ X, we denote by x−i the restriction of x to Π \ {i} and by
(x−i, x) the unique tuple y ∈ XΠ with yi = x and y−i = x−i.

A play of a game G is an infinite sequence s0a0s1a1 . . . ∈ (S · ΓΠ)ω such that
δ(sj , aj) = sj+1 for all j ∈ N. For each player, a play π = s0a0s1a1 . . . gives rise
to an infinite sequence of rewards. There are different criteria to evaluate this
sequence and map it to a payoff. In this paper, we consider the limit-average
(or mean-payoff ) criterion, where the payoff of π for player i is defined by

φi(π) := lim inf
n→∞

1
n

n−1∑
j=0

ri(sj).

Note that this payoff mapping is prefix-independent, i.e. φi(π) = φi(π′) if π′ is a
suffix of π. An important special case are games where non-zero rewards occur
only on terminal states, i.e. states s with δ(s, a) = s for all (legal) a ∈ ΓΠ . These
games were introduced by Everett [12] under the name recursive games, but we
prefer to call them terminal-reward games. Hence, in a terminal-reward game,
φi(π) = ri(s) if π enters a terminal state s and φi(π) = 0 otherwise.

Often, it is convenient to designate an initial state. An initialised game is
thus a tuple (G, s0) where G is a concurrent game and s0 is one of its states.

Strategies and strategy profiles. For a finite set X, we denote by D(X)
the set of probability distributions over X. A (randomised) strategy for player i
in G is a mapping σ : (S · ΓΠ)∗ · S → D(Γ ) assigning to each possible his-
tory xs ∈ (S · ΓΠ)∗ · S a probability distribution σ(xs) over actions such that
σ(xs)(a) > 0 only if a ∈ Γi(s). We write σ(a | xs) for the probability assigned to
a ∈ Γ by the distribution σ(xs). A (randomised) strategy profile of G is a tuple
σ = (σi)i∈Π of strategies in G, one for each player.



A strategy σ for player i is called pure if for each xs ∈ (S · ΓΠ)∗ · S the
distribution σ(xs) is degenerate, i.e. there exists a ∈ Γi(s) with σ(a | xs) = 1.
Note that a pure strategy can be identified with a function σ : (S · ΓΠ)∗ · S → Γ .
A strategy profile σ = (σi)i∈Π is called pure if each σi is pure, in which case we
can identify σ with a mapping (S · ΓΠ)∗ · S → ΓΠ . Note that, given an initial
state s0 and a pure strategy profile σ, there exists a unique play π = s0a0s1a1 . . .
such that σ(s0a0 . . . aj−1sj) = aj for all j ∈ N; we call π the play induced by σ
from s0.

A strategy σ is called stationary if σ depends only on the last state: σ(xs) =
σ(s) for all xs ∈ (S · ΓΠ)∗ · S. A strategy profile σ = (σi)i∈Π is called stationary
if each σi is stationary. Finally, we call a strategy (profile) positional if it is both
pure and stationary.

The probability measure induced by a strategy profile. Given an initial
state s0 ∈ S and a strategy profile σ = (σi)i∈Π , the conditional probability of
a ∈ ΓΠ given the history xs ∈ (S · ΓΠ)∗ ·S is σ(a | xs) :=

∏
i∈Π σi(ai | xs). The

probabilities σ(a | xs) induce a probability measure on the Borel σ-algebra over
(S · ΓΠ)ω as follows: The probability of a basic open set s1a1 . . . snan · (S · ΓΠ)ω

equals the product
∏n
j=1 σ(aj | s1a1 . . . aj−1sj) if s1 = s0 and δ(sj , aj) = sj+1

for all 1 ≤ j < n; in all other cases, this probability is 0. By Carathéodory’s
extension theorem, this extends to a unique probability measure assigning a
probability to every Borel subset of (S · ΓΠ)ω, which we denote by Prσs0

. Via the
natural projection (S · ΓΠ)ω → Sω, we obtain a probability measure on the Borel
σ-algebra over Sω. We abuse notation and denote this measure also by Prσs0

;
it should always be clear from the context to which measure we are referring to.
Finally, we denote by Eσs0

the expectation operator that corresponds to Prσs0
, i.e.

Eσs0
(f) =

∫
f dPrσs0

for all Borel measurable functions f : (S · ΓΠ)ω → R∪{±∞}
or f : Sω → R ∪ {±∞}. In particular, we are interested in the quantities pi :=
Eσs0

(φi). We call pi the (expected) payoff of σ for player i and the vector (pi)i∈Π
the (expected) payoff of σ.

Drawing concurrent games. When drawing a concurrent game as a graph,
we will adhere to the following conventions: States are usually depicted as circles,
but terminal states are depicted as squares. The initial state is marked by a
dangling incoming edge. An edge from s to t with label a means that δ(s, a) = t
and that a is legal at s. However, the label a might be omitted if it is not essential.
In turn-based games, the player who controls a state is indicated by the label
next to it. Finally, a label of the form i : x next to state s indicates that ri(s) = x;
if this reward is 0, the label will usually be omitted.

3 Nash Equilibria

To capture rational behaviour of selfish players, Nash [20] introduced the notion
of—what is now called—a Nash equilibrium. Formally, given a game G and an
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Fig. 1. A terminal-reward game that has no Nash equilibrium

initial state s0, a strategy τ for player i is a best response to a strategy profile σ
if τ maximises the expected payoff for player i, i.e.

Eσ−i,τ
′

s0
(φi) ≤ Eσ−i,τ

s0
(φi)

for all strategies τ ′ for player i. A strategy profile σ = (σi)i∈Π is a Nash equilibrium
of (G, s0) if for each player i the strategy σi is a best response to σ. Hence, in a
Nash equilibrium no player can improve her payoff by (unilaterally) switching to
a different strategy. As the following example demonstrates, Nash equilibria are
not guaranteed to exist in concurrent games.

Example 1. Consider the terminal-reward game G1 depicted in Fig. 1, which is a
variant of the game hide-or-run as presented by de Alfaro et al. [9]. We claim
that (G1, s1) does not have a Nash equilibrium. First note that, for each ε > 0,
player 1 can ensure a payoff of 1 − ε by the stationary strategy that selects
action b with probability ε. Hence, every Nash equilibrium (σ, τ) of (G1, s1) must
have payoff (1, 0). Now consider the least k such that p := σ(b | (s1(a, a))ks1) > 0.
By choosing action b with probability 1 for the history (s1(a, a))ks1 and choosing
action a with probability 1 for all other histories, player 2 can ensure payoff p,
a contradiction to (σ, τ) being a Nash equilibrium.

It follows from Nash’s theorem [20] that every game whose arena is a tree
(or a DAG) has a Nash equilibrium. Another important special case of concurrent
limit-average games where Nash equilibria always exist are turn-based games.
For these games, Thuijsman and Raghavan [24] proved not only the existence of
arbitrary Nash equilibria but of pure finite-state ones.

To measure the complexity of Nash equilibria in concurrent games, we intro-
duce the following decision problem, which we call NE:

Given a game G, a state s0 and thresholds x, y ∈ (Q ∪ {±∞})Π , decide
whether (G, s0) has a Nash equilibrium with payoff ≥ x and ≤ y.

Note that we have not put any restriction on the type of strategies that realise the
equilibrium. It is natural to restrict the search space to profiles of pure, stationary
or positional strategies. These restrictions give rise to different decision problems,
which we call PureNE, StatNE and PosNE, respectively.

Before we analyse the complexity of these problems, let us convince ourselves
that these problems are not just different faces of the same coin. We first show
that the decision problems where we look for equilibria in randomised strategies
are distinct from the ones where we look for equilibria in pure strategies.
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Fig. 2. A game with no pure Nash equi-
librium where player 0 wins with positive
probability
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Fig. 3. A game with no stationary
Nash equilibrium where player 0
wins with positive probability

Proposition 2. There exists a turn-based terminal-reward game that has a
stationary Nash equilibrium where player 0 receives payoff 1 but that has no pure
Nash equilibrium where player 0 receives payoff > 0.

Proof. Consider the game depicted in Fig. 2 played by three players 0, 1 and 2.
Clearly, the stationary strategy profile where from state s2 player 0 selects both
outgoing transitions with probability 1

2 each, player 1 plays from s0 to s1 and
player 2 plays from s1 to s2 is a Nash equilibrium where player 0 receives payoff 1.
However, in any pure strategy profile where player 0 receives payoff > 0, either
player 1 or player 2 receives payoff 0 and could improve her payoff by switching
her strategy at s0 or s1, respectively. ut

Now we show that it makes a difference whether we look for an equilibrium
in stationary strategies or not.

Proposition 3. There exists a turn-based terminal-reward game that has a pure
Nash equilibrium where player 0 receives payoff 1 but that has no stationary Nash
equilibrium where player 0 receives payoff > 0.

Proof. Consider the game G depicted in Fig. 3 and played by three players 0, 1
and 2. Clearly, the pure strategy profile that leads to the terminal state with
payoff 1 for player 0 and where player 0 plays “right” if player 1 has deviated
and “left” if player 2 has deviated is a Nash equilibrium of (G, s0) with payoff 1
for player 0. Now consider any stationary equilibrium of (G, s0) where player 0
receives payoff > 0. If the stationary strategy of player 0 prescribes to play “right”
with positive probability, then player 2 can improve her payoff by playing to s2
with probability 1, and otherwise player 1 can improve her payoff by playing
to s2 with probability 1, a contradiction. ut

It follows from Proposition 2 that NE and StatNE are different from PureNE
and PosNE, and it follows from Proposition 3 that NE and PureNE are different
from StatNE and PosNE. Hence, all of these decision problems are pairwise
distinct, and their decidability and complexity has to be studied separately.



4 Positional Strategies

In this section, we show that the problem PosNE is NP-complete. Since we
can check in polynomial time whether a positional strategy profile is a Nash
equilibrium (using a result of Karp [18]), membership in NP is straightforward.

Theorem 4. PosNE is in NP.

A result by Chatterjee et al. [5, Lemma 15] implies that PosNE is NP-hard,
even for turn-based games with rewards taken from {−1, 0, 1} (but the number of
players is unbounded). We strengthen their result by showing that the problem
remains NP-hard if there are only three players and rewards are taken from
{0, 1}.

Theorem 5. PosNE is NP-hard, even for turn-based three-player games with
rewards 0 and 1.

Proof. We reduce from the Hamiltonian cycle problem. Given a graph G = (V,E),
we define a turn-based three-player game G as follows: the set of states is V , all
states are controlled by player 0, and the transition function corresponds to E
(i.e. Γ0(v) = vE and δ(v, a) = w if and only if a0 = w). Let n = |V | and v0 ∈ V .
The reward of state v0 to player 1 equals 1. All other rewards for player 0 and
player 1 equal 0. Finally, player 2 receives reward 0 at v0 and reward 1 at all
other states. We claim that there is a Hamiltonian cycle in G if and only if (G, v0)
has a positional Nash equilibrium with payoff ≥ (0, 1/n, (n− 1)/n). ut

By combining our reduction with a game that has no positional Nash equilib-
rium, we can prove the following stronger result for non-turn-based games.

Corollary 6. Deciding the existence of a positional Nash equilibrium in a con-
current limit-average game is NP-complete, even for three-player games.

5 Stationary Strategies

To prove the decidability of StatNE, we appeal to results established for the
existential theory of the reals, the set of all existential first-order sentences that
hold in the ordered field R := (R,+, ·, 0, 1,≤). The best known upper bound for
the complexity of the associated decision problem is Pspace [4], which leads to
the following theorem.

Theorem 7. StatNE is in Pspace.

The next theorem shows that StatNE is NP-hard, even for turn-based games
with rewards 0 and 1. Note that this does not follow from the NP-hardness of
PosNE, but requires a different proof.

Theorem 8. StatNE is NP-hard, even for turn-based games with rewards 0 and 1.
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Fig. 4. Reducing SAT to StatNE

Proof. We employ a reduction from SAT, which resembles a reduction in [25].
Given a Boolean formula ϕ = C1 ∧ · · · ∧ Cm in conjunctive normal form over
propositional variables X1, . . . , Xn, where w.l.o.g. m ≥ 1 and each clause is
nonempty, we build a turn-based game G played by players 0, 1, . . . , n as follows:
The game G has states C1, . . . , Cm controlled by player 0 and for each clause C
and each literal L that occurs in C a state (C,L), controlled by player i if
L = Xi or L = ¬Xi; additionally, the game contains a terminal state ⊥. There
are transitions from a clause Cj to each state (Cj , L) such that L occurs in Cj
and from there to C(j mod m)+1, and there is a transition from each state of the
form (C,¬X) to ⊥. Each state except ⊥ has reward 1 for player 0, whereas
⊥ has reward 0 for player 0. For player i, each state except states of the form
(C,Xi) has reward 1; states of the form (C,Xi) have reward 0. The structure
of G is depicted in Fig. 4. Clearly, G can be constructed from ϕ in polynomial
time. We claim that ϕ is satisfiable if and only if (G, C1) has a stationary Nash
equilibrium with payoff ≥ 1 for player 0. ut

By combining our reduction with the game from Example 1, which has no
Nash equilibrium, we can prove the following stronger result for concurrent games.

Corollary 9. Deciding the existence of a stationary Nash equilibrium in a con-
current limit-average game with rewards 0 and 1 is NP-hard.

So far we have shown that StatNE is contained in Pspace and hard for NP,
leaving a considerable gap between the two bounds. In order to gain a better
understanding of StatNE, we relate this problem to the square root sum prob-
lem (SqrtSum), an important problem about numerical computations. Formally,
SqrtSum is the following decision problem: Given numbers d1, . . . , dn, k ∈ N,
decide whether

∑n
i=1
√
di ≥ k. Recently, Allender et al. [1] showed that SqrtSum

belongs to the fourth level of the counting hierarchy, a slight improvement over
the previously known Pspace upper bound. However, it has been an open ques-
tion since the 1970s as to whether SqrtSum falls into the polynomial hierarchy



[15, 11]. We give a polynomial-time reduction from SqrtSum to StatNE for turn-
based terminal-reward games. Hence, StatNE is at least as hard as SqrtSum,
and showing that StatNE resides inside the polynomial hierarchy would imply a
major breakthrough in understanding the complexity of numerical computations.
While our reduction is similar to the one in [26], it requires new techniques to
simulate stochastic states.

Theorem 10. SqrtSum is polynomial-time reducible to StatNE for turn-based
8-player terminal-reward games.

Again, we can combine our reduction with the game from Example 1 to prove
a stronger result for games that are not turn-based.

Corollary 11. Deciding whether a concurrent 8-player terminal reward game
has a stationary Nash equilibrium is hard for SqrtSum.

Remark 12. By appealing to results on Markov decision processes with limit-
average objectives (see e.g. [22]), the positive results of Sects. 4 and 5 can be
extended to stochastic games (with the same complexity bounds).

6 Pure Strategies

In this section, we show that PureNE is decidable and, in fact, NP-complete. Let
G be a concurrent game, s ∈ S and i ∈ Π. We define

pvalGi (s) = infσ supτ Eσ−i,τ
s (φi),

where σ ranges over all pure strategy profiles of G and τ ranges over all strategies
of player i. Intuitively, pvalGi (s) is the lowest payoff that the coalition Π \ {i}
can inflict on player i by playing a pure strategy.

By a reduction to a turn-based two-player zero-sum game, we can show that
there is a positional strategy profile that attains this value.

Proposition 13. Let G be a concurrent game, and i ∈ Π. There exists a posi-
tional strategy profile σ∗ such that Eσ

∗
−i,τ
s (φi) ≤ pvalGi (s) for all states s and all

strategies τ of player i.

Given a payoff vector z ∈ (R ∪ {±∞})Π , we define a directed graph G(z) =
(V,E) (with self-loops) as follows: V = S, and there is an edge from s to t if
and only if there is an action profile a with δ(s, a) = t such that (1) a is legal
at s and (2) pvalGi (δ(s, (a−i, b))) ≤ zi for each player i and each action b ∈ Γi(s).
Following [3], we call any a that fulfils (1) and (2) z-secure at s.

Lemma 14. Let z ∈ (R ∪ {±∞})Π. If there exists an infinite path π in G(z)
from s0 with zi ≤ φi(π) for each player i, then (G, s0) has a pure Nash equilibrium
with payoff φi(π) for player i.



Proof. Let π = s0s1 . . . be an infinite path in G(z) from s0 with zi ≤ φi(π) for
each player i. We define a pure strategy profile σ as follows: For histories of the
form x = s0a0s1 . . . sk−1ak−1sk, we set σ(x) to an action profile a with δ(sk, a) =
sk+1 that is z-secure at sk. For all other histories x = t0a0t1 . . . tk−1ak−1tk,
consider the least j such that sj+1 6= tj+1. If aj differs from a z-secure action
profile a at sj in precisely one entry i, we set σ(x) = σ∗(tk), where σ∗ is a (fixed)
positional strategy profile such that Eσ

∗
−i,τ
s (φi) ≤ pvalGi (s) for all s ∈ S (which is

guaranteed to exist by Proposition 13); otherwise, σ(x) can be chosen arbitrarily.
It is easy to see that σ is a Nash equilibrium with induced play π. ut

Lemma 15. Let σ be a pure Nash equilibrium of (G, s0) with payoff z. Then
there exists an infinite path π in G(z) from s0 with φi(π) = zi for each player i.

Proof. Let s0a0s1a1 . . . be the play induced by σ. We claim that π := s0s1 . . . is
a path in G(z). Otherwise, consider the least k such that (sk, sk+1) is not an
edge in G(z). Hence, there exists no z-secure action profile at s := sk. Since ak is
certainly legal at s, there exists a player i and an action b ∈ Γi(s) such that
pvalGi (δ(s, (a−i, b))) > zi. But then player i can improve her payoff by switching
to a strategy that mimics σi until s is reached, then plays action b, and after that
mimics a strategy τ with Eσ−i,τ

δ(s,(a−i,b))(φi) > zi. This contradicts the assumption
that σ is a Nash equilibrium. ut

Using Lemmas 14 and 15, we can reduce the task of finding a pure Nash
equilibrium to the task of finding a path in a multi-weighted graph whose limit-
average weight vector falls between two thresholds. The latter problem can be
solved in polynomial time by solving a linear programme with one variable for
each pair of a weight function and an edge in the graph.

Theorem 16. Given a finite directed graph G = (V,E) with weight functions
r0, . . . , rk−1 : V → Q, v0 ∈ V , and x, y ∈ (Q ∪ {±∞})k, we can decide in
polynomial time whether there exists an infinite path π = v0v1 . . . in G with
xi ≤ lim infn→∞ 1

n

∑n−1
j=0 ri(vj) ≤ yi for all i = 0, . . . , k − 1.

We can now describe a nondeterministic algorithm to decide the existence of a
pure Nash equilibrium with payoff ≥ x and ≤ y in polynomial time. The algorithm
starts by guessing, for each player i, a positional strategy profile σi of G and
computes pi(s) := supτ Eσ

i
−i,τ
s (φi) for each s ∈ S; these numbers can be computed

in polynomial time using the algorithm given by Karp [18]. The algorithm then
guesses a vector z ∈ (R ∪ {±∞})Π by setting zi either to xi or to pi(s) for
some s ∈ S with xi ≤ pi(s), and constructs the graph G′(z), which is defined as
G(z) but with pi(s) substituted for pvalGi (s). Finally, the algorithm determines
(in polynomial time) whether there exists an infinite path π in G(z) from s0
with zi ≤ φi(π) ≤ yi for all i ∈ Π. If such a path exists, the algorithm accepts;
otherwise it rejects.

Theorem 17. PureNE is in NP.



Proof. We claim that the algorithm described above is correct, i.e. sound and
complete. To prove soundness, assume that the algorithm accepts its input.
Hence, there exists an infinite path π in G′(z) from s0 with zi ≤ φi(π) ≤ yi.
Since pvalGi (s) ≤ pi(s) for all i ∈ Π and s ∈ S, the graph G′(z) is a subgraph of
G(z). Hence, π is also an infinite path in G(z). By Lemma 14, we can conclude
that (G, s0) has a pure Nash equilibrium with payoff ≥ z ≥ x and ≤ y.

To prove that the algorithm is complete, let σ be a pure Nash equilib-
rium of (G, s0) with payoff z, where x ≤ z ≤ y. By Proposition 13, the algo-
rithm can guess positional strategy profiles σi such that pi(s) = pvalGi (s) for
all s ∈ S. If the algorithm additionally guesses the payoff vector z′ defined by
z′i = max{xi,pvalGi (s) : s ∈ S, pvalGi (s) ≤ zi} for all i ∈ Π, then the graph G(z)
coincides with the graph G(z′) (and thus with G′(z′)). By Lemma 15, there exists
an infinite path π in G(z) from s0 such that z′i ≤ zi = φi(π) ≤ yi for all i ∈ Π.
Hence, the algorithm accepts. ut

The following theorem shows that PureNE is NP-hard. In fact, NP-hardness
holds even for turn-based games with rewards 0 and 1.

Theorem 18. PureNE is NP-hard, even for turn-based games with rewards
0 and 1.

Proof. Again, we reduce from SAT. Given a Boolean formula ϕ = C1 ∧ · · · ∧ Cm
in conjunctive normal form over propositional variables X1, . . . , Xn, where w.l.o.g.
m ≥ 1 and each clause is nonempty, let G be the turn-based game described in
the proof of Theorem 8 and depicted in Fig. 4. We claim that ϕ is satisfiable if
and only if (G, C1) has a pure Nash equilibrium with payoff ≥ 1 for player 0. ut

It follows from Theorems 17 and 18 that PureNE is NP-complete. By com-
bining our reduction with a game that has no pure Nash equilibrium, we can
prove the following stronger result for non-turn-based games.

Corollary 19. Deciding the existence of a pure Nash equilibrium in a concurrent
limit-average game is NP-complete, even for games with rewards 0 and 1.

Note that Theorem 18 and Corollary 19 do not apply to terminal-reward
games. In fact, PureNE is decidable in P for these games, which follows from two
facts about terminal-reward games: (1) the numbers pvalGi (s) can be computed
in polynomial time (using a reduction to a turn-based two-player zero-sum game
and applying a result of Washburn [31]), and (2) the only possible vectors that
can emerge as the payoff of a pure strategy profile are the zero vector and the
reward vectors at terminal states.

Theorem 20. PureNE is in P for terminal-reward games.

7 Randomised Strategies

In this section, we show that the problem NE is undecidable and, in fact, not
recursively enumerable for turn-based terminal-reward games.
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0

t1 0
A : 2
B : 2
D : 3

A : 3
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D : 3

D

0: −1
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E

0: −1
E : 2

s2

0

t2 0A : 4
E : 3

B : 4
E : 3


A : 2
B : 2
D : 2
E : 1

Fig. 5. Incrementing a counter

Theorem 21. NE is not recursively enumerable, even for turn-based 14-player
terminal-reward games.

Proof (Sketch). The proof is by a reduction from the non-halting problem for
two-counter machines: we show that one can compute from a deterministic two-
counter machineM a turn-based 14-player terminal-reward game (G, s0) such
that the computation ofM is infinite if and only if (G, s0) has a Nash equilibrium
where player 0 receives payoff ≥ 0.

To get a flavour of the full proof, let us consider a one-counter machineM
that contains an increment instruction. A (simplified) part of the game G is
depicted in Fig. 5. The counter values before and after the increment operation
are encoded by the probabilities c1 = 2−i1 and c2 = 2−i2 that player 0 plays
from t1, respectively t2, to the neighbouring grey state. We claim that c2 = 1

2c1,
i.e. i2 = i1 + 1, in any Nash equilibrium σ of (G, s0) where player 0 receives
payoff ≥ 0. First note that player 0 has to choose both outgoing transitions with
probability 1

2 each at s1 and s2 because otherwise player D or player E would
have an incentive to play to a state where player 0 receives payoff < 0. Now
consider the payoffs a = Eσs0

(φA) and b = Eσs0
(φB) for players A and B. We have

a, b ≥ 2 because otherwise one of these two players would have an incentive to
play to a state where player 0 receives payoff < 0. On the other hand, the payoffs
of players A and B sum up to at most 4 in every terminal state. Hence, a+ b ≤ 4
and therefore a = b = 2. Finally, the expected payoff for player A equals

a = 1
2
(
c1 · 2 + (1− c1) · 3

)
+ 1

4 · c2 · 4 + 1
4 · 2 = 2− 1

2c1 + c2 .

Obviously, a = 2 if and only if c2 = 1
2c1. ut

For games that are not turn-based, by combining our reduction with the game
from Example 1, we can show the stronger theorem that deciding the existence
of any Nash equilibrium is not recursively enumerable.



Corollary 22. The set of all initialised concurrent 14-player terminal-reward
games that have a Nash equilibrium is not recursively enumerable.

8 Conclusion

We have analysed the complexity of Nash equilibria in concurrent games with limit-
average objectives. In particular, we showed that randomisation in strategies leads
to undecidability, while restricting to pure strategies retains decidability. This is
in contrast to stochastic games, where pure strategies lead to undecidability [26].
While we provided matching and lower bounds in most cases, there remain some
problems where we do not know the exact complexity. Apart from StatNE, these
include the problem PureNE when restricted to a bounded number of players.
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