
Formal Analysis of PIN Block Attacks

Graham Steel ⋆

School of Informatics,
University of Edinburgh,

Scotland

Abstract

PIN blocks are 64-bit strings that encode a PIN ready for encryption and secure
transmission in banking networks. These networks employ tamper proof hardware
security modules (HSMs) to perform sensitive cryptographic operations, such as
checking the correctness of a PIN typed by a customer. The use of these HSMs is
controlled by an API designed to enforce security. PIN block attacks are unantici-
pated sequences of API commands which allow an attacker to determine the value
of a PIN in an encrypted PIN block. This paper describes a framework for for-
mal analysis of such attacks. Our analysis is probabilistic, and is automated using
constraint logic programming and probabilistic model checking.

Key words: Security API Analysis, PIN Blocks, Constraint logic programming,
Probabilistic model checking

1 Introduction

In an automated teller machine (ATM) network, it is vital to keep the personal
identification numbers (PINs) typed in by customers secure as they are passed
back to the card issuer for checking. Typically, each PIN is formatted into a
64-bit block, and encrypted under a secret shared key, ready for transmission.
Different card issuers prescribe different ways of formatting PINs into 64-bit
blocks. Different encryption keys are used in pairwise communication between
different nodes in the network. As the PIN is passed through zones in the
ATM network, it may have to be re-formatted and re-encrypted several times.

⋆ The author is supported by EPSRC grant number GR/S98139/01.
Email address: graham.steel@ed.ac.uk (Graham Steel).
URL: http://homepages.inf.ed.ac.uk/gsteel/ (Graham Steel).

Preprint submitted to Elsevier Science 20 November 2006

To avoid exposing sensitive values in the clear, these PIN block manipula-
tions are carried out inside tamper-proof hardware security modules (HSMs),
which have strictly defined APIs regulating the use of PIN block manipu-
lation functions. Recently, a family of attacks have been discovered which
exploit these operations, and the error checking performed during them, to
determine the value of a PIN in an encrypted block, [2,4]. These attacks are
serious, sometimes reducing the number of operations required to guess a PIN
to just a dozen or so, making attacks potentially lucrative and hard to detect.
They are also hard for API designers to completely eliminate, since a certain
amount of the functionality that gives rise to these attacks is essential for nor-
mal operation. To compound the problem, each node in the banking network
typically requires a different set of operations to be supported, and so a differ-
ent configuration of the API. Even if a manufacturer’s default configuration is
secure, customers may configure the HSM is such a way as to unintentionally
endanger security.

Following discussions with API designers at a manufacturer of HSMs, nCi-
pher 1 plc., it became clear that a formal tool was required that would take
the specification for an API, together with the particular set of PIN block
formats and operations required by a customer, and determine the expected
number of guesses required to determine a PIN using the best available attack.
This would allow designers (and customers) to experiment with different con-
figurations, varying degrees of legacy support and new block formats, whilst
being aware of their effect on the complexity of PIN guessing.

This paper presents a prototype of such a system. It uses constraint logic pro-
gramming techniques, [3], to reason about the effects of particular commands
on the range of possible PIN values. This reasoning leads to the generation of
a model for all possible attacks, assuming uniform distribution of PINs, which
is fed to the probabilistic model checker PRISM, [8]. PRISM extracts the best
attack and returns the expected number of operations required to determine
the PIN. If there is no attack that will always determine the PIN, PRISM
can return the probability of reducing the number of possible PIN values to
a particular range. A script post-processes the output from PRISM to obtain
details of the best attack for the designer to study.

In the rest of this paper, we will first explain the family of attacks we are con-
cerned with, in §2. In §3, we show how we generate models of possible attacks
for a given configuration. We explain our use of PRISM in §4, showing how we
process the output to obtain details of the most effective attack. Results on
a number of different API configurations are given in §5. We consider related
work in §6, further work in §7, and conclude in §8.

1 http://www.ncipher.com/

2

2 Background

HSMs are used in ATM networks to protect sensitive data, such as crypto-
graphic keys and PINs, from eavesdroppers, hackers and corrupt employees.
An HSM typically consists of a tamper-proof enclosure containing a processor
equipped to perform cryptographic operations and a small amount of memory.
This memory is commonly used to store a master key for the HSM. All the
other keys required to perform PIN generation, verification, encryption and so
on are stored outside the HSM, encrypted under the HSM’s master key. They
can only be used by feeding them back into the HSM, along with the relevant
data to be manipulated. This means that all sensitive values such as PINs and
keys only exist ‘in the clear’ inside the tamper-proof enclosure. The operations
allowed by the HSM are governed by a strict API, which is designed to impose
security. This is achieved, for example, by imposing types on keys, and only
allowing certain types of keys to be used for certain operations.

Security APIs can be thought of as a set of two-party security protocols,
each one consisting of an input from the user, and a response from the HSM.
The attacker may compose these protocols in any way he chooses to effect
an attack. In recent years, several such attacks have been found on these
APIs, [1,4]. Some of these are attacks on the key-management scheme, and
can be detected by techniques similar to those for conventional security pro-
tocol analysis, [6,13,14]. Others are flaws in PIN processing, so called ‘PIN
Block Attacks’, [4,2]. These attacks involve the attacker reasoning about the
possible values of a PIN contained in an encrypted PIN block (EPB). His
knowledge of the PIN is affected by the responses from the HSM to various
commands. These ‘informed guessing’ attacks are outside the scope of previ-
ous approaches to security protocol analysis. It is the latter type of attack
that we are concerned with in this paper.

PIN block attacks assume that the attacker has access to an HSM, and a
correct, but encrypted, PIN typed by a customer. He has access to the key
required to verify the PIN, i.e. to obtain a yes/no answer from the HSM as
to whether the PIN is correct, but only in its ‘safe’, encrypted form – so he
must use it under the terms of the API. The problem for the attacker is to
manipulate the inputs to the API commands in order to determine the value of
the PIN in as few operations as possible. We are concerned in this paper with
three families of PIN block attacks: digitwise attacks such as ISO-0 conversion
attacks, decimalisation table attacks, and brute-force guessing attacks such as
the check value attack. We will explain each of these in turn.

3

2.1 ISO-0 (ANSI X7.8) Attacks

The ISO-0 attacks, [4, p. 75], are a family of digitwise attacks, i.e. attacks which
determine each PIN digit in turn. The ISO-0 attacks are so-called because they
exploit a property of the ISO-0 PIN block format 2 . For a 4-digit PIN, the ISO
block format is defined like this:

B1 = 0 4 P1 P2 P3 P4 F F F F F F F F F F

B2 = 0 0 0 0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

PIN Block = B1 ⊕ B2

Each character in the block represents a 4-bit nybble. The 0 at the beginning
of B1 marks the block as being in format 0. The 4 indicates the length of the
PIN, in this case 4 digits. The Pis are the digits of the PIN, the Fs are the
fixed hexadecimal values F, and the Ais are the 12 digits of the customer’s
personal account number (PAN). The ⊕ symbol signifies bitwise exclusive-or
(XOR).The principle behind XORing the PIN against the PAN is to diversify
blocks containing the same PIN, to defeat ‘code book’ attacks by eavesdrop-
pers.

The attack arises when the PAN has to be supplied to a command in order,
for example, for the encrypted PIN block to be translated into another format.
For this operation, the block will be decrypted inside the HSM, and then the
supplied PAN will be XORed against the clear block to reveal the top line
(B1), so that the PIN digits can be formatted another way. At this point, the
HSM performs an error check, to see if all the PIN digits are of decimal value.
Now, suppose that instead of supplying the correct PAN, the attacker supplies
a modified PAN. This modification could be to XOR in the value 8 against
the first digit, producing A′

1 = A1 ⊕ 8. Now, if the third PIN digit P3 is 0, 1, 8
or 9, the error check will still pass, since these values XOR 8 all give a decimal
value. However, if the PIN digit is in the range 2–7, the HSM will signal an
error, since these values all XOR against 8 to give a value between A and F
hexadecimal.

By repeating this process with various values, an attacker can narrow down
the value of the third PIN digit. He can only narrow it down to a pair of
possible values though, since each pair of digits, 0 and 1, 2 and 3, etc., will
give an identical pattern of errors and passes when XORed against values
chosen by the attacker.

2 This is format 0 in ISO Standard 9564-1 (2002). It is the same as the ANSI X7.8
standard format.

4

As it stands, this attack is only applicable to the third and fourth PIN digits,
since in the prescribed format, there is no overlap between the PAN and the
first and second digits. Clulow devised an extension to the attack to overcome
this. The trick is to pass off the ISO-0 PIN block as being under a different
format, namely VISA-3. The VISA-3 block format looks like this:

P1 P2 P3 P4 F F F F F F F F F F F F

Suppose for a moment that the PAN is 00000000000, so our ISO-0 block looks

like 0 4 P1 P2 P3 P4 F F F F F F F F F F . Now suppose we give the HSM

an ISO-0 PIN block, claim that it is in VISA-3 format, and ask for it to be
translated to ISO-0 format. The result is:

0 6 0 4 P1 P2 P3 P4 F F F F F F F F

Why? Because the HSM first looks for a left-justified F-terminated string

of decimal digits as a VISA-3 PIN Block. It finds 0 4 P1 P2 P3 P4
. This it

assumes to be a 6-digit PIN 3 , which it reformats in the ISO-0 style. Now
the real PIN digits have been shifted so that they will all overlap with the
PAN, and so can be attacked by the above method. Furthermore, when we
consider the possibilities when using a non-zero PAN, the attack enables us to
determine all digits uniquely. This is because there are now three possibilities
for the digits overlapping the PIN: they can be decimal, and accepted as a
part of the PIN; they can be F, marking the end of the PIN (and also causing
no error); or they can be in the range A-E hexadecimal, in which case an error
will be reported. This allows the attacker to determine the exact value of a
PIN. In this paper, we show that the expected number of operations for this
attack is 3.4 for each PIN digit, making 13.6 operations for a 4-digit PIN.

2.2 Decimalisation Table Attacks

This family of attacks was discovered by both Bond and Zieliński, [2], and
Clulow, [4, §3.5.5]. Many PIN schemes 4 assign PIN values by encrypting a
customer’s PAN under a secret PIN derivation key (PDK), and then decimal-
ising the result using a decimalisation table (or ‘dectab’). A decimalisation

3 ISO Standard 9564-1 (2002) specifies that PINs may be between 4 and 12 digits
long.
4 For example, the IBM 3624 scheme, Netherlands PIN-1 scheme, and the German
Bank Pool Scheme.

5

table maps each hexadecimal value to a decimal. The ‘standard’ decimalisa-
tion table looks like this:

Hex. value 0 1 2 3 4 5 6 7 8 9 A B C D E F

Dec. value 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

So, if the first four digits of the result of encrypting a customer’s PAN under
the PDK are 4A6B hexadecimal, the assigned PIN will be 4061. Some schemes
allow the customer to change her PIN at an ATM. This is achieved by fixing an
offset, which when added digitwise modulo 10 to the original PIN, gives the
customer’s chosen PIN. This offset is not considered to be security critical,
since without the original PIN it provides no help in guessing the correct
customer PIN.

Decimalisation table attacks do not determine the PIN digitwise, but rather
determine first what digits are in the PIN, and then where these digits are.
Suppose an attacker has an encrypted PIN block which, when supplied along
with the standard decimalisation table and a known offset, correctly verifies
inside the HSM (that is, the HSM reports that the PIN is correct). Now
suppose the attacker alters the decimalisation table like this:

Old value 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

New value 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5

He then tries the PIN verification again, with the modified dectab. If the
verification still passes, then he knows there are no 0s in the PIN. If however
the verification now fails, he knows there must be at least one 0 in the PIN
somewhere. The problem now is to determine how many, and where. This can
be accomplished by altering the offset. The attacker advances the offset by
one at each position, and then at every combination of positions, until the
PIN is once again reported as being correct. This reveals the location of the
0s in the PIN. The table below illustrates the process, for an example where
the customer’s PIN is 3060, and the offset is 0000. We assume the attacker
has already tried the modified dectab shown above, and discovered that there
is at least one 0 somewhere in the PIN.

6

Attacker set offset Result from HSM Knowledge of PIN

0001 Incorrect PIN ????

0010 Incorrect PIN ????

0100 Incorrect PIN ????

1000 Incorrect PIN ????

0011 Incorrect PIN ????

0101 Correct PIN ?0?0

The decimalisation table attack, as described by Bond, takes an average of
16.5 guesses to determine a four-digit PIN, [2].

2.3 Brute Force Guessing Attacks

ANSI standard X7.8 specifies that ‘The system shall not be capable of being
used or misused to determine a PIN by exhaustive trial and error’. However,
APIs can sometimes inadvertently allow this. An example of such an attack
is the check value attack discovered by Clulow, [4, §3.5.8]. It relies on an
attacker being able to obtain the check value of a PIN derivation key (i.e. a 64
bit block of zeros encrypted under that key). Many APIs support a key check
value command, used to ensure that a key has been imported correctly. The
attacker must also be able to supply a block of 0s as the PAN to a command
for verifying PINs calculated using the method shown above (§2.2).

The first step is to obtain the check value of the PDK, and decimalise the first
four characters of the result using the standard decimalisation table. Store
this as IPIN. Now, supply a PAN of 000000000000 to the verify PIN function,
along with some encrypted PIN block (EPB) you want to crack. Start with
offset 0000. Generally, the command will at first fail. Increase the offset by 1
until the command reports a successful verification. Store the final offset as
OFFSET. Now we know that the PIN in the block verifies successfully when
compared against IPIN + OFFSET (mod 10 each digit), and so this must be
the customer’s PIN.

On average, for a four-digit PIN, this attack would require one call to the
check value command and 5000 calls to the PIN verify function. Although not
very efficient in itself, attacks like these can be sometimes be combined with
others to finish off the cracking of a PIN, so it is important to know if such
attacks are possible on a given API configuration.

7

2.4 The Problem for API Designers

API designers face the problem that they are aware of these attacks, but often
have no choice but to support the functionality that gives rise to them. Legacy
PIN schemes must be supported, various different PIN block formats may
be needed, and different decimalisation tables may be used by different card
providers. They must find ways of ‘locking down’ (i.e. preventing an attacker
from manipulating) certain inputs to the API in order to thwart the attacks.
The problem is to find ways of doing this that result in minimal inconvenience
and loss of flexibility for their customers. To add to the problem, each customer
typically configures the API is a different way, specifying a list of commands
they require and other parameters such as decimalisation tables and settings
on keys. The approach taken in this paper was motivated by discussions with
a manufacturer of HSMs, nCipher. They indicated that what was required
was a system that would determine the best (known) attack available as for a
particular configuration of their API. It is important that the system is simple
enough for the API designers to be able to change it as new types of attack are
discovered. We present here a prototype for such a system, based on constraint
logic programming and probabilistic model checking.

3 Generating Models

We model PIN cracking attacks as trees. Each node in the tree represents a
state, where the attacker knows the PIN is in a certain range. For one par-
ticular attack, the edges in the tree will represent probabilistic choices, e.g.
where the attacker tries a command, and the HSM may or may not report
an error, depending on the actual (unknown) value of the PIN. The proba-
bilities of each outcome depend only on properties of the state we are in, i.e.
our attacks are represented by Markov chains (MCs). For a family of attacks,
the tree will contain both probabilistic choices and non-deterministic choices,
where the attacker chooses what he will try next. A family of attacks is thus
represented by a Markov decision process (MDP). The idea is to analyse secu-
rity in two stages: first, to generate an MDP representing all possible attacks,
and then to use a probabilistic model checker to analyse the MDP and choose
the MC representing the most effective attack. This is either the attack that
determines the PIN in the lowest number of steps, or in situations where no
such attack exists, the attack that reduces the PIN to the smallest number of
possible values.

More formally, the nodes in our trees represent states as tuples. The first four
elements of the tuple, P1, . . . , P4, are constrained integers representing the
intruder’s knowledge of the PIN. In the initial state, all four are constrained

8

to the range 0 . . . 9. Successive nodes in a path through the tree will have
monotonically decreasing ranges of possible values. The other three values in
the tuple record information for the special case of the decimalisation table
attack. Section 3.2 below explains their meaning and usage.

Edges in the tree denote transitions. From each node, there are n sets of edges
available, for some n ∈ N. If n = 0 then the node is an endpoint (for example,
when all the PIN digits have been uniquely determined, or when no further
operations are available). If n = 1, there is only one set of possible transitions
from this node. Otherwise, each set of edges represents a non-deterministic
choice. There are one or two edges in each set. A transition set with two edges
represents an intruder calling an HSM command with some particular input
values. One edge represents the successful execution of the command, and the
other represents the HSM reporting an error. Each edge has an associated
probability. The sum of these probabilities is 1. Additionally, each edge has
an associated cost of 1, representing one command call. A transition set with
one edge represents brute-force guessing. The probability associated with this
edge is 1, and the cost depends on the range of possible PIN values represented
by the node from which the edge originates (see §3.3).

As an example, Figure 1 shows a fragment from one of our trees. The line
styles indicate non-deterministic choices, i.e. the pair of solid lines indicate one
non-deterministic choice, the dashed lines another, etc.. The numbers on each
edge indicate probabilities. For simplicity, the nodes are labelled only with the
variable whose constraint changes during the transitions shown, i.e the third
PIN digit, P3. This tree represents three possible initial steps the intruder
could take with an API that supports the ISO-0 format and a translation
function.

0.8

0.2

0.6

0.4

0.4 0.6

P3 in 0..7 P3 in 8..9 P3 in 2..3,8..9P3 in 0..1,8..9 P3 in 2..7 P3 in 0..1,4..7

P3 in 0..9

Call Translate
XOR 2 against A1

Call Translate

Call Translate
XOR 10 against A1

against A1
XOR 8

Fig. 1. Part of a model for the ISO-0 attack family

To construct an exhaustive tree of possible attacks for a given API and config-
uration, we use constraint logic programming in SICStus PROLOG, [3]. This
is suitable because the constraint system allows us to refer easily to the range

9

of possible values of a PIN or PIN digit, resulting in concise code. We also
make use of facilities for meta-programming in PROLOG, i.e. writing clauses
which generate the program, which in turn generates the model. Hence model
construction proceeds in two phases: in the first phase, we analyse the API
and the configuration chosen by the customer, and assert clauses for all oper-
ations available to the intruder. In the second phase, we find all possible ways
of chaining these commands together to try to determine the PIN.

Figure 2 shows how the different parts of the system, which we call AnaBlock,
relate to each other. The purpose of the config file is to specify an exact
configuration of a product that a customer is considering installing. The first
part of this file is a list of commands in the HSM’s API that the customer
intends to enable. The second part specifies other install-time options specific
to the API in question. For example, for the nCipher payShield API, if IBM
PIN verification keys are used, the customer can specify a number n for each
key that specifies the number of right-justified PAN digits which must appear
in the validation data. The minimum n that is used in an installation can have
an impact on the best available attack, so is included in the config file.

The API file is designed to be modified by an API designer or security engineer.
It consists of a set of rules which specify what operations are available to an
intruder when particular commands have been enabled. Currently, the main
weakness of our system is that some detailed work is required to produce an
AnaBlock API file from the written specification of the API. This work must
be done by hand for each API, though our experience in modelling the IBM
4758 CCA API and nCipher payShield API suggest that much work can be
re-used. Though this method seems to work well for assessing the vulnerability
of a system to families of known attacks, it does not provide any guarantees of
security against unknown attacks, although the process of writing these API
definition files has already allowed us to discover a previously unknown varia-
tion of the ISO-0 attack (see §4). The main aim of our immediate future work
will be to address these problems, by allowing the API designer to directly
specify the operation of API commands, and then analysing this specification
automatically to generate the API definition file (see §7).

The rules in the API file are used by AnaBlock to meta-program the clauses of
a recursively defined predicate called determine. Each clause corresponds to
a particular HSM command, with particular values for the user-set inputs like
the PAN and offset. By executing a suitable findall query on this predicate,
we generate the tree of all possible attacks. The determine clauses are meta-
programmed in such a way as to restrict the paths that can be taken in the
tree to those which make some sense. This is accomplished by labelling each
operation as being digitwise, an operation on the whole PIN, or a guessing
step. Then, since brute force guessing is expensive, we only allow such opera-
tions to be used when nothing else applies to the state we are in. Whole-PIN

10

Customer

Config File

API File

API Designer

PRISM best−attack
script Best AttackAnaBlock

Fig. 2. AnaBlock system diagram

operations can only be used on a given state if no digitwise operations are
available, and guessing steps only when nothing else is available. This pattern
of execution of the determine predicate is illustrated in Figure 3. As a further
optimisation, to break symmetry when considering digitwise operations, we
try first all digitwise operations on the first digit of the PIN, and then the
second, then the third and then the fourth.

Operations on
whole PINOperations

Digitwise Brute force
Guessing

Fig. 3. Operation of determine predicate

3.1 Modelling Digitwise Operations

A determine clause for a digitwise operation creates two new states: one
corresponding to the intruder’s revised knowledge of the PIN if an error is
signalled by the HSM, and one corresponding to that for a successful execution
of the command. The determine predicate is then recursively called on these
two states. The following algorithm describes in detail the operation of such
a clause:

(1) If we have already tried this command on the same PIN range, stop.
(2) Calculate the overlap between the range of PIN values accepted by this

command, and the current range of possible PIN Values. Call this Accept Range

(3) Calculate the overlap between the range of PIN values rejected by this
command, and the current range of possible PIN Values. Call this Error Range

(4) If Accept Range = ∅ or Error Range = ∅, stop.

11

(5) Count total number of possible PINs that satisfy Accept Range.
Call this p

(6) Count total number of possible PINs that satisfy Error Range.
Call this q

(7) Output in PRISM format a transition, with the probability of moving
into a state representing Accept Range as p

p+q
, and the probability of

moving into a state representing Error Range as q

p+q

(8) Recursively call determine on Accept Range

(9) Recursively call determine on Error Range

To count the number of possible PINs that satisfy some constrained range,
we use the built-in meta-predicate labeling to enumerate all possible assign-
ments of constrained variables. Given that we are assuming uniform distribu-
tion of PINs inside encrypted PIN blocks, this leads directly to the correct
probability of getting an error from the HSM. This automated approach for
calculating transition probabilities is an important part of our technique, since
it provides modularity, in the sense that commands can be combined in any
order and the probabilities will be correct. This allows us to analyse varying
configurations and APIs without having to change AnaBlock itself.

3.2 Decimalisation Table Attacks

As mentioned above, the first 4 arguments of the determine predicate are the
PIN digits, each expressed as a range of possible values. Clauses for modelling
whole-PIN operations, i.e. decimalisation attacks, also refer to the last 3 argu-
ments. The 5th argument is called Last Dectab, and contains the value of the
last decimalisation table tried against the PIN. An integer value i here means
that the last dectab tried was the standard table modified by adding 1 to all
values i, following the pattern in §2.2. The 6th argument is Last Dectab Hit,
which records the value of the dectab last time we hit a digit, i.e. last time the
PIN failed to verify after we modified the table. The 7th is Last Offset, which
records the last offset value which was tried. Our algorithm for executing the
dectab attack runs like this:

(1) Start with Last Dectab=-1, Last Dectab Hit=11, Last Offset=0.
(2) If all PIN digits determined, stop.
(3) If Last Dectab Hit > Last Dectab:

Increase Last Dectab by 1
If the dectab hits, set Last Dectab Hit to Last Dectab and go to 4,

else adjust digit constraints and go to 2.
(4) Increase offset to next suitable value
(5) If offset hits: set Last Offset to 0, set the digits hit by the offset to

Last Dectab, set Last Dectab Hit to 11, goto 2

12

(6) Goto 4

This algorithm is executed in AnaBlock by two determine clauses. The first
succeeds only when the value of Last Dectab Hit is greater than Last Dectab,
in which case it increases the dectab and creates two new states, one for a
a dectab hit and one for a miss, and recursively calls determine on these
states. The second clause succeeds only when Last Dectab Hit is equal to
Last Dectab, in which case the offset is increased by one and two new states
are again created, one for an offset hit and one for a miss. The values of
Last Offset and Last Dectab Hit are adjusted as required for these states,
and again a recursive call is made.

To apply suitable constraints to the PIN digits for these newly created states,
we make use of the SICStus propositional constraints mechanism. For example,
if we get a dectab hit with the decimalisation table increased at position 2,
we know at least one of the PIN digits is 2. We add the following constraint
to the PIN digits in the new state created:

P1 = 2 ∨ P2 = 2 ∨ P3 = 2 ∨ P4 = 2

To adjust the constraints for a dectab miss, it is a simple matter of removing
the dectab value from the range of possible values for each digit. An offset miss
is more complicated, and requires propositional constraints. Again, this is best
illustrated by an example. Suppose we have had the dectab hit at position 2,
as above. Suppose the first suitable offset to try is 0001. If this fails to verify,
then we know that either the last PIN digit is not 2, or if it is 2, then there
is at least one other 2 in the PIN. This is most concisely expressed by adding
the following constraint to the state created:

¬(P1 6= 2 ∧ P2 6= 2 ∧ P3 6= 2 ∧ P4 = 2)

Note that our scheme for the decimalisation table attack is a little different
to the original method proposed by Bond. His attacker first tried all dectab
values, collated the hits, and then stepped through the offsets as required,
resulting in an average of 16.5 operations to determine the PIN. Our scheme
is fractionally more efficient, requiring 16.15 operations (see §5), but more
pertinently it is simpler to describe as a transition system for a model checker.

3.3 Brute Force Attacks

A brute force attack is available when, for example, as explained in §2.3, a
check value command and an IBM PIN verification command are enabled.
In this case, a determine clause is added to the model which simulates this

13

brute-force attack as a single ‘black box’ transition, with probability 1 of
success, and with an associated cost of (n/2) + 1 for a state representing n
possible PIN values (the 1 is the initial call to the check value function).
Different brute force guessing attacks may have different costs - each one is
added along with the relevant formula for calculating the cost. Note that the
actual values of the PIN variables are not set by a brute force guessing step,
but we do not recursively call determine on the resulting state, so the node
reached becomes an endpoint. In the output for PRISM, this transition sets
the 4 boolean variables P1 guessed, P2 guessed etc. to true. This allows us
to specify this guessed state together with those where the PIN digits have
been set to unique values when we do our model checking.

3.4 Output for PRISM

The models we output for the probabilistic model checker PRISM are written
in PRISM’s own input language, [8]. Each model consists of a single PRISM
‘module’, or process. PRISM does not reason directly about constraints, so
we must create explicit Boolean variables for representing PIN digit ranges
(P1 could be0, P1 could be1, ...). We also add a variable which holds
the number of possible PINs represented by a particular state. This is calcu-
lated by AnaBlock, again using the labeling/2 meta-predicate. This variable,
PIN Possibilities, is used for specifying properties when model checking.
Finally, as mentioned above, our PRISM models include the 4 extra Boolean
variables P1 guessed, P2 guessed, etc.. In the initial state, these are set to
false. They are set to true as each PIN digit is determined, or when brute force
guessing is used to guess all digits.

4 Analysing Models

Having generated a model reflecting all the options available to the attacker,
we use PRISM to analyse the model to extract the best attack. We used
a beta-release of PRISM version 3.0, which is now publicly available. The
costs/reward mechanism is still under development, and this is the first ver-
sion which allows the user to export the costs for each transition, which is
necessary to reconstruct attacks discovered by our method. PRISM has sev-
eral engines for model checking, but currently only the multi-terminal binary
decision diagram (MTBDD) engine supports costs and rewards calculations.
PRISM supports PCTL, [7], a probabilistic extension of the CTL logic, as its
language for describing properties of Markov decision processes.

14

4.1 Checking Correctness

Before examining attacks, we would like to be sure that the models we have
created are in some sense correct. The use of a model checker gives us a natural
means of doing this. We can specify some correctness properties to PRISM
and have them checked automatically for us. For example, for attacks like the
dectab attack which we know are capable of determining the correct PIN, we
would like to be sure that the probability of eventually arriving in a state
where all digits are known is 1. This is achieved by checking the following
property, as specified in PRISM’s syntax for PCTL:

Pmax =? [true U (P1 guessed ∧ P2 guessed∧

P3 guessed ∧ P4 guessed)] (†)

The U is the (strong) until operator in PCTL. By stating the property with
Pmax =?, we are asking PRISM not to check the property, but to return the
probability that the property holds, i.e. that eventually all digits are guessed.
We can further check that the chances of the final PIN being any particular
value are exactly 0.0001, or 1 in 10 000. By doing this, we check that our tran-
sition probabilities have been calculated correctly to reflect a uniform distribu-
tion of PIN values. We can auto-generate a large file containing this property
for all possible PINs, and have that checked, or be satisfied with checking each
digit individually (which requires only 40 properties). Our models described
above do indeed pass these tests.

4.2 Optimising Attacks

Having assured ourselves that our models are correct under our assumption
of uniformly distributed PINs, we can proceed to analyse the models for the
best attack. For models where the best attack always determines the PIN, the
property we are interested in is the expected number of operations required.
To determine this in PRISM, we model check the property:

Rmin =? [F (P1 guessed ∧ P2 guessed∧

P3 guessed ∧ P4 guessed){”init”}{min}]

As used in this context, the F operator specifies that the property must hold
at some time in the future with probability 1. By setting Rmin =?, we are
asking PRISM to return the minimum expected cost required to arrive in a
state where all PIN digits are known, starting from the initial state. For some

15

attacks, or combinations of attacks, it may not always be possible to determine
the PIN exactly. In these cases, we may be interested in knowing the attack
which has the highest probability of obtaining the PIN. This is determined
by model checking the property (†) above. We may also be interested in the
attack with the highest probability of reducing the range of PINs to some
particular size. The latter can be obtained, for some limit on the size of PIN
values k, by model checking

Pmax =? [true U PIN Possibilities ≤ k]

Having obtained a measure of the performance of the best attack, we will
often want to know exactly what the attack is, i.e. how to perform it step by
step. AnaBlock has a small script called ‘best-attack’ which takes the output
from PRISM and produces the attack. The inputs to the script are the list of
states, the transition matrix labelled with transition costs, and the cost/reward
matrix. All of these can be obtained as output from PRISM, at the same time
as model checking is performed, using command line switches. The best attack
is then reconstructed by the following algorithm:

(1) Let r be the expected cost of the best attack. Let s be the initial state.
(2) If s is an endpoint, stop.
(3) Let count = 0
(4) From state s, let T be the set of transitions corresponding to non-deterministic

choice number count .
(5) Calculate r′ = Σt∈T P (t).C(t), where P (t) is the probability associated

with transition t, and C(t) is the cost associated with t.
(6) If r 6= r′, increase count by 1, and go to 4.
(7) If r = r′, store count as the non-deterministic choice to take at state s.

For every state s′ reachable from s by the chosen transitions, recursively
call the procedure from step 2, with s = s′, and r the reward in the
costs/reward matrix for state s′.

The output from the script is a file in the format of the graph drawing program
‘dot’. An example is given in Figure 4. This is the optimised version of the
ISO-0 attack, shown for one PIN digit.

5 Results

To evaluate our system we conducted a series of experiments. These experi-
ments were carried out with a generic API, following that set out in [4, §3.3].
Our configuration file has 13 settings (6 commands, 4 block formats, and 3
extra switches to lock-down the PAN, dectab and offset), allowing 213 different

16

No. Attack P (determined) E(steps)

(1) ISO-0 (full) 1 13.6

(2) Dectab 1 16.145

(3) Dectab & ISO-0 (restricted) 1 15.275

(4)
ISO-0, Check Value

& IBM 3624 PINs
1 57.8

No. Attack k = 400 k = 36 k = 24 k = 14 k = 1

(5) ISO-0 (restricted) 1 0 0 0 0

(6) Dectab no offset 1 1 0.568 0.064 0.001

(7) Dectab no offset 1 1 1 1 0.001

& ISO-0 (restricted)

Table 1
Experiments with AnaBlock and PRISM. See text (§5 for details)

configurations. For our experiments, we chose 7 typical configurations, delib-
erately selected to allow different kinds of attack. The results are summarised
in Table 1.

(1) This is the most insecure configuration, with all commands and block
formats enabled. AnaBlock identifies the most effective attack as the full
ISO-0 format attack, described in §2. Note that the performance of this
attack, with an expected 3.4 operations per digit, is as good as a binary
search on individual digits, making it the ideal attack of this type.

(2) With the PAN locked down, the intruder’s best option is the full deci-
malisation table attack, as explained in §2.2.

(3) The configuration for this experiment allows the PAN to vary, but does
not support the VISA-3 block format. The best attack discovered is a
combination of the decimalisation table attack with the restricted form
of the ISO attack. The restricted form consists of just the first phase, as
described in §2. AnaBlock’s tree uses these digitwise operations first, then
continues with decimalisation table operations. Interestingly, the dectab
attack is not significantly improved.

(4) This is a novel variation of the ISO-0 attack, that we discovered when
analysing an API with no translation function, but allowing IBM 3624
PIN verification. The original version of the 3624 algorithm allows for the
PIN to be calculated based on validation data supplied by the user, that
need not be the same as the PAN (some schemes, for example, convert the
PAN into validation data by taking the ASCII encoding of each decimal

17

digit rather than encoding the numbers directly). This gives the intruder
the potential to independently vary the PAN and the validation data
as inputs to the verification command. Given this ability, the intruder
can perform operations like first XORing 1 against the first digit of the
PAN, increasing the offset by 1 in its third digit, and repeating the call
to the PIN verify command. If the verify call succeeds, then he knows
that XORing 1 against the third digit of the PIN decreases it by 1, i.e.
the third digit of the PIN has bit 1 set. If the call fails, he knows that bit
1 must be unset. He can repeat this for all bits of the PIN, increasing the
offset by 2, by 4, and then by 8, and then repeat the whole procedure for
the fourth digit, thereby determining the last two digits of the PIN.

In this experiment, the configuration file also enables the intruder to
guess PINs by brute force, by enabling the check value command. The
performance of the resulting best attack reflects the fact that the first part
of the attack uniquely determines the last two digits in an expected 6.8
operations, and then an expected 51 operations are needed to determine
the first two digits (one call to the check value command, then an average
of 50 guesses). PRISM determined that the best scheme to carry out the
first part of the attack is to look first at the 8-bit, since if this is set, the
4-bit and the 2-bit must be unset, and need not be tested.

(5) This attack is the best available when no decimalisation table operations
are available, and only the ISO-0 block format is supported. The k values
in this part of the table represent the size of the PIN range. The figures
in the table then indicate the probability this attack has of reducing the
PIN range to less than or equal to k. For the best restricted ISO-0 attack,
the PIN range is reduced to 400 with probability 1, but cannot be reduced
further.

(6) This attack is the decimalisation table without the offset part. The con-
figuration file has the PAN and offset locked down. There is only a 1 in
1000 chance of determining the PIN exactly (when all the digits are the
same), but we can see that the attack will certainly reduce the range to
36 possibilities, and has a good chance of reducing it still further.

(7) The configuration file for this experiment allows the intruder to translate
blocks and vary the PAN, but IBM 3624 PIN verification is not sup-
ported, and neither is the VISA 3 format. The resulting best attack is
a combination of those available in (5) and (6). Having both available
significantly improves the best available attack. This is illustrated clearly
by the graph in Figure 5. Here, the x-axis shows the values of k supplied
to the model checker, i.e. the number of possible PINs, and the y-axis
shows the probability of reducing the number of possible PINs to less that
or equal to that k. Notice that even if the attacker’s only way of finally
guessing PINs is to do it at an ATM, where he only has 3 chances before
the account in blocked, this attack gives him a good chance of success.

18

The run times for the experiments in Table 1 are shown in Table 2. These
times were recorded on a 3.6GHz Pentium IV machine running Linux 2.6.12
and Sun JRE 1.5.0. In general, the more secure the configuration, the fewer
options the intruder has, so more secure configurations produce shorter run
times. The model requiring the most memory was that for experiment 3, which
peaked at around 1.2Gb. Resource requirements vary depending on the Java
virtual machine (JVM) used, and the settings supplied to the JVM. A time-
space tradeoff can be made if one or the other of these resources is limited (or
cheap).

No. AnaBlock time PRISM time Total time

(1) 50 mins 38 mins 88 mins

(2) 71 sec 7 mins 8 mins

(3) 56 sec 11 mins 12 mins

(4) 3 sec 43 sec 46 sec

(5) 3 sec 14 sec 17 sec

(6) 10 sec 2 mins 2mins

(7) 25 sec 16 mins 16 mins

Table 2
Runtimes for the experiments

Our results give some new insights into the attacks, and their combination.
The result from experiment (7) is particularly interesting. Here, we can see
what would happen if an API designer decided to lock down the offset, and
chose to support only PIN block formats which don’t allow the full ISO-0
attack. The system as a whole is still highly vulnerable.

The AnaBlock source code and the files used for the experiments in Table 1
are available from http://homepages.inf.ed.ac.uk/gsteel/AnaBlock.

6 Related Work

Most known API attacks are due to Bond, [1], and Clulow, [4]. Previous work
on automated analysis of APIs has looked at key-management schemes rather
than PIN-processing, e.g. [9,6,13,14]. However, there has been some work on
probabilistic analysis of other security protocols. For example, Shmatikov anal-
ysed the ‘Crowds’ protocol for ensuring anonymity using PRISM, [12]. This
protocol works by routing messages through a network in a random fashion,
thereby preventing even a group of colluding attackers from establishing the

19

origin of messages. Shmatikov was able to find a previously unknown flaw: as
the group size increases, the attacker’s confidence in the identity of the sender
also increases.

There is also related work in the field of guessing attacks, e.g. [10,5]. The major
difference between our work and previous work in this area is that we consider
‘online’ guessing rather than ‘offline’, where terms are merely considered to
be either guessable or not guessable. Our analysis considers the complexity
of guessing particular terms, and the effect of the HSM’s responses on that
complexity.

Our approach has some similarities to the automated generation and analysis
of attack graphs, [11]. In this work, the level of abstraction is much higher,
with nodes representing tasks that the intruder must perform, like effecting a
buffer overflow attack. Tasks are assigned a probability of success, and graphs
are checked to establish the overall chance of a successful intrusion. There may
be scope for some crossover here: our ideas for the use of costs to measure the
difficulty of an attack could be used to enhance attack graphs, or our attack
trees could be included as subgraphs in larger attack graphs used to represent
the process by which an intruder might gains access to a running HSM, or
obtain a fake card.

7 Further Work

The main focus of our future work will be to develop automated support
for the generation of the API specification file. This will involve choosing
a specification language for the API designers to describe the operation of
their functions, and then analysing these specifications to produce a set of all
possible operations the intruder may call. This is quite an ambitious goal, but
it presents an interesting challenge, and may allow us to discover previously
unknown attacks. By hand-coding these specification files we have already
discovered a novel variant of an attack (in experiment 4, above §4), which
leads us to suspect that a comprehensive, automated approach to analysing
these operations would lead to the discovery of many more variations.

Another area for development is the breaking of symmetry in our PRISM
models. We already try digitwise operations in order, as described in §3. For
the decimalisation table attack, there is still some scope for breaking symme-
tries. After a correct offset is discovered, the digits that are set to the dectab
value could be shifted to the left and all remaining unknown digits shifted to
the right. This would have no effect on the complexity analysis, but would
cut much duplication from the model. Care would have to be taken when
combining this with other attacks, however.

20

Our model as it stands abstracts away some detail from the attacks. For exam-
ple, the HSM will not allow an attacker to use an account number digit which
is hexadecimal, which is required in the ISO-0 attack. In reality, depending
on the account number in use, he may have to make 2 XOR operations, to
construct the required modification value. The final outcome will be the same,
but more operations may be required. To analyse this, we would also have to
build a model of uniformly distributed account number digits, which seems
over-complex. Future work will try to address this issue.

8 Conclusions

We have presented a framework for the analysis on PIN block attacks, based
on constructing models with a mixture of non-deterministic and probabilistic
choices, and using a probabilistic model checker to find the most effective
attack. This framework has been used to analyse 3 families of attacks in several
variations and combinations. This ability to combine and vary attacks, without
having to make changes to the model generation software, is a key advantage of
our approach. Our use of constraint logic programming made prototyping the
system a relatively simple job. In particular, it allowed us to easily generate
the correct transition probabilities for the model.

Our framework seems to provide a good solution to the problem of finding and
analysing the best attack once the potential capabilities of the intruder have
been established. The focus for our future work is to automate the generation
of these capabilities for a particular API specification.

Acknowledgements

The author is grateful for instructive conversations with: Nicko van Someren,
Jon Geater, and Ron Carter at nCipher, Mike Bond and Jolyon Clulow at
the University of Cambridge, and Marta Kwiatkowska and Dave Parker at
the University of Birmingham. The anonymous reviewers also made several
helpful suggestions for improving the paper.

References

[1] M. Bond and R. Anderson. API level attacks on embedded systems. IEEE
Computer Magazine, pages 67–75, October 2001.

21

[2] M. Bond and P. Zieliński. Decimalisation table attacks for PIN cracking.
Technical Report UCAM-CL-TR-560, University of Cambridge, January 2003.

[3] M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain
constraint solver. In Proc. Programming Languages: Implementations, Logics,
and Programs, pages 191–206, Southampton, UK, September 1997.

[4] J. Clulow. The design and analysis of cryptographic APIs for security devices.
Master’s thesis, University of Natal, Durban, 2003.

[5] P. Drielsma, S. Mödersheim, and L. Viganò. A formalization of off-line guessing
for security protocol analysis. In Franz Baader and Andrei Voronkov, editors,
LPAR, volume 3452 of LNAI, pages 363–379. ETH Zürich, Computer Science,
Springer, March 2005.

[6] V. Ganapathy, S. A. Seshia, S. Jha, T. W. Reps, and R. E. Bryant.
Automatic discovery of API-level exploits. In ICSE ’05: Proceedings of the
27th International Conference on Software Engineering, pages 312–321, New
York, NY, USA, May 2005. ACM Press.

[7] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability.
Formal Aspects of Computing, 6(5):512–535, September 1994.

[8] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 2.0: A tool
for probabilistic model checking. In Proc. 1st International Conference
on Quantitative Evaluation of Systems (QEST’04), pages 322–323. IEEE
Computer Society Press, 2004.

[9] D. Longley and S. Rigby. An automatic search for security flaws in key
management schemes. Computers and Security, 11(1):75–89, March 1992.

[10] G. Lowe. Analysing protocol subject to guessing attacks. Journal of Computer
Security, 12(1):83–98, 2004.

[11] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing. Automated
generation and analysis of attack graphs. In 2002 IEEE Symposium on Security
and Privacy, pages 273–284, Berkeley, California, May 12-15 2002.

[12] V. Shmatikov. Probabilistic analysis of anonymity. In CSFW ’02: Proceedings
of the 15th IEEE Computer Security Foundations Workshop (CSFW’02), pages
119–128, Washington, DC, USA, 2002. IEEE Computer Society.

[13] G. Steel. Deduction with XOR constraints in security API modelling. In
R. Nieuwenhuis, editor, Proceedings of the 20th Conference on Automated
Deduction (CADE 20), number 3632 in Lecture Notes in Artificial Intelligence,
pages 322–336, Tallinn, Estonia, July 2005. Springer-Verlag Heidelberg.

[14] P. Youn, B. Adida, M. Bond, J. Clulow, J. Herzog, A. Lin, R. Rivest, and
R. Anderson. Robbing the bank with a theorem prover. Technical Report
UCAM-CL-TR-644, University of Cambridge, August 2005.

22

(1,1,1,1,1,1,1,1,1,1,0,10) -> XOR in 8

(0,0,1,1,1,1,1,1,0,0,0,10) -> XOR in 10

0.600000000000

(1,1,0,0,0,0,0,0,1,1,0,10) -> XOR in 10

0.400000000000

(0,0,0,0,1,1,1,1,0,0,0,10) -> XOR in 12

0.666666666667

(0,0,1,1,0,0,0,0,0,0,0,10) -> XOR in 12 (VISA-3)

0.333333333333

(0,0,0,0,0,0,0,0,1,1,0,10) -> XOR in 6 (VISA-3)

0.500000000000

(1,1,0,0,0,0,0,0,0,0,0,10) -> XOR in 14 (VISA-3)

0.500000000000

(0,0,0,0,0,0,1,1,0,0,0,10) -> XOR in 8 (VISA-3)

0.500000000000

(0,0,0,0,1,1,0,0,0,0,0,10) -> XOR in 10 (VISA-3)

0.500000000000

PIN is 2

0.500000000000

PIN is 3

0.500000000000

PIN is 6

0.500000000000

PIN is 7

0.500000000000

PIN is 4

0.500000000000

PIN is 5

0.500000000000

PIN is 8

0.500000000000

PIN is 9

0.500000000000

PIN is 0

0.500000000000

PIN is 1

0.500000000000

F
ig.

4.
O

p
tim

ised
IS

O
-0

A
ttack

(1
d
igit)

23

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

P
ro

ba
bi

lit
y

No. of Possible PINs

Performance of Dectab attack without offset

Dectab without ISO-0 (6)
Dectab with ISO-0 (7)

Fig. 5. Attacks (6) and (7)

24

