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Abstract. Dominance links were introduced in grammars to model long dis-
tance scrambling phenomena, motivating the definition of multiset-valued lin-

ear indexed grammars (MLIGs) by Rambow (1994b), and inspiring quite a

few recent formalisms. It turns out that MLIGs have since been rediscovered
and reused in a variety of contexts, and that the complexity of their emptiness

problem has become the key to several open questions in computer science. We

survey complexity results and open issues on MLIGs and related formalisms,
and provide new complexity bounds for some linguistically motivated restric-

tions.

1. Introduction

Scrambling constructions, as found in German and other SOV languages (Becker
et al., 1991; Rambow, 1994a; Lichte, 2007), cause notorious difficulties to linguistic
modeling in classical grammar formalisms like HPSG or TAG. A well-known illus-
tration of this situation is given in the following two German sentences for “that
Peter has repaired the fridge today” (Lichte, 2007),

dass [Peter] heute [den Kühlschrank] repariert hat
that Peternom today the fridgeacc repaired has

dass [den Kühlschrank] heute [Peter] repariert hat
that the fridgeacc today Peternom repaired has

with a flexible word order between the two complements of repariert, namely be-
tween the nominative Peter and the accusative den Kühlschrank.

Rambow (1994b) introduced a formalism, unordered vector grammars with domi-
nance links (UVG-dls), for modeling such phenomena. These grammars are defined
by vectors of context-free productions along with dominance links that should be en-
forced during derivations; for instance, Figure 1 shows how a flexible order between
the complements of repariert could be expressed in an UVG-dl. Similar dominance
mechanisms have been employed in various tree description formalisms (Rambow
et al., 1995, 2001; Candito and Kahane, 1998; Kallmeyer, 2001; Guillaume and
Perrier, 2010) and TAG extensions (Becker et al., 1991; Rambow, 1994a).

However, the prime motivation for this survey is another grammatical formalism
defined in the same article: multiset-valued linear indexed grammars (Rambow,
1994b, MLIGs), which can be seen as a low-level variant of UVG-dls that uses mul-
tisets to emulate unfulfilled dominance links in partial derivations. It is a natural
extension of Petri nets, with broader scope than just UVG-dls; indeed, it has been
independently rediscovered by de Groote et al. (2004) in the context of linear logic,

Originally published in the Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics (ACL 2010), pages 514–524, 2010. This is a revised version from
February 4, 2014, that makes the difference between leaf and root coverability explicit and provides
updated references to the literature.
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Figure 1. A vector of productions for the verb repariert together
with its two complements.

and by Verma and Goubault-Larrecq (2005) in that of equational theories. More-
over, the decidability of its emptiness problem has proved to be quite challenging
and is still uncertain, with several open questions depending on its resolution:

• provability in multiplicative exponential linear logic (de Groote et al., 2004),
• emptiness and membership of abstract categorial grammars (de Groote

et al., 2004; Yoshinaka and Kanazawa, 2005),
• emptiness and membership of Stabler (1997)’s minimalist grammars with-

out shortest move constraint (Salvati, 2011),
• satisfiability of first-order logic on data trees (Bojańczyk et al., 2009), and

of course
• emptiness and membership for the various formalisms that embed UVG-dls.

Unsurprisingly in the light of their importance in different fields, several authors
have started investigating the complexity of decisions problems for MLIGs (Demri
et al., 2012; Lazić, 2010). We survey the current state of affairs, with a particular
emphasis on two points:

(1) the applicability of complexity results to UVG-dls, which is needed if we
are to conclude anything on related formalisms with dominance links,

(2) the effects of two linguistically motivated restrictions on such formalisms,
lexicalization and boundedness/rankedness.

The latter notion is imported from Petri nets, and turns out to offer interesting
new complexity trade-offs, as we prove that k-boundedness and k-rankedness are
ExpTime-complete for MLIGs, and that the emptiness and membership problems
are ExpTime-complete for k-bounded MLIGs but PTime-complete in the k-ranked
case. This also implies an ExpTime lower bound for emptiness and membership
in minimalist grammars with shortest move constraint.

We first define MLIGs formally in Section 2 and review related formalisms in
Section 3. We proceed with complexity results in Section 4 before concluding in
Section 5.

Notations. In the following, Σ denotes a finite alphabet, Σ∗ the set of finite sen-
tences over Σ, and ε the empty string. The length of a string w is noted |w|, and
the number of occurrence of a symbol a in w is noted |w|a. A language is formalized
as a subset of Σ∗. Let Nn denote the set of vectors of positive integers of dimen-
sion n. The i-th component of a vector x in Nn is x(i), 0 denotes the null vector,
1 the vector with 1 values, and ei the vector with 1 as its i-th component and 0
everywhere else. The ordering ≤ on Nn is the componentwise ordering: x ≤ y iff
x(i) ≤ y(i) for all 0 < i ≤ n. The size of a vector refers to the size of its binary
encoding: |x| =

∑n
i=1 1 + max(0, blog2 x(i)c).

We refer the reader unfamiliar with complexity classes and notions such as hard-
ness or LogSpace reductions to classical textbooks (e.g. Papadimitriou, 1994).
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Figure 2. A derivation for bcaabc in the grammar of Example 2.

2. Multiset-Valued Linear Indexed Grammars

Definition 1 (Rambow, 1994b). An n-dimensional multiset-valued linear indexed
grammar (MLIG) is a tuple G = 〈N,Σ, P, (S, x0)〉 where N is a finite set of non-
terminal symbols, Σ a finite alphabet disjoint from N , V = (N × Nn) ] Σ the
vocabulary, P a finite set of productions in (N × Nn)× V ∗, and (S, x0) ∈ N × Nn

the start symbol. Productions are more easily written as

(?) (A,x)→ u0(B1,x1)u1 · · ·um(Bm,xm)um+1

with each ui in Σ∗ and each (Bi, xi) in N × Nn.
The derivation relation ⇒ over sequences in V ∗ is defined by

δ(A,y)δ′ ⇒ δu0(B1,y1)u1 · · ·um(Bm,ym)um+1δ
′

if δ and δ′ are in V ∗, a production of form (?) appears in P , x ≤ y, for each
1 ≤ i ≤ m, xi ≤ yi, and y − x =

∑m
i=1 yi − xi.

The language of a MLIG is the set of terminal strings derived from (S, x0), i.e.

L(G) = {w ∈ Σ∗ | (S, x0)⇒∗ w}
and we denote by L(MLIG) the class of MLIG languages.

Example 2. To illustrate this definition, and its relevance for free word order
languages, consider the 3-dimensional MLIG with productions

(S, 0)→ ε | (S, 1), (S, e1)→ a (S, 0),

(S, e2)→ b (S, 0), (S, e3)→ c (S, 0)

and start symbol (S, 0). It generates the MIX language of all sentences with the
same number of a, b, and c’s (see Figure 2 for an example derivation):

Lmix = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c} .

The size |G| of a MLIG G is essentially the sum of the sizes of each of its pro-
ductions of form (?):

|G| = |x0|+
∑
P

(
m+ 1 + |x|+

m∑
i=1

|xi|+
m+1∑
i=0

|ui|

)
.
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2.1. Normal Forms

A MLIG is in extended two form (ETF) if all its productions are of form
terminal: (A, 0)→ a or (A, 0)→ ε, or
nonterminal: (A, x)→ (B1, x1)(B2, x2) or (A, x)→ (B1, x1),

with a in Σ, A, B1, B2 in N , and x, x1, x2 in Nn. Using standard constructions,
any MLIG can be put into ETF in linear time or logarithmic space.

A MLIG is in restricted index normal form (RINF) if the productions in P
are of form (A,0) → α, (A,0) → (B,ei), or (A,ei) → (B,0), with A, B in N ,
0 < i ≤ n, and α in (Σ ∪ (N × {0}))∗. The direct translation into RINF proposed
by Rambow (1994a) is exponential if we consider a binary encoding of vectors, but
using techniques developed for Petri nets (Dufourd and Finkel, 1999), this blowup
can be avoided:

Proposition 3. For any MLIG, one can construct an equivalent MLIG in RINF
in logarithmic space.

2.2. Restrictions

Two restrictions on dominance links have been suggested in an attempt to reduce
their complexity, sometimes in conjunction: lexicalization and k-boundedness. We
provide here characterizations for them in terms of MLIGs. We can combine the
two restrictions, thus defining the class of k-bounded lexicalized MLIGs.

2.2.1. Lexicalization. Lexicalization in UVG-dls reflects the strong dependence be-
tween syntactic constructions (vectors of productions representing an extended do-
main of locality) and lexical anchors. We define here a restriction of MLIGs with
similar complexity properties:

Definition 4. A terminal derivation α⇒p w with w in Σ∗ is c-lexicalized for some
c > 0 if p ≤ c · |w|.1 A MLIG is lexicalized if there exists c such that any terminal
derivation starting from (S, x0) is c-lexicalized, and we denote by L(MLIG`) the set
of lexicalized MLIG languages.

Looking at the grammar of Example 2, any terminal derivation (S, 0) ⇒p w

verifies p = 4·|w|
3 + 1, and the grammar is thus lexicalized.

2.2.2. Boundedness. As dominance links model long-distance dependencies, bound-
ing the number of simultaneously pending links can be motivated on competence/per-
formance grounds (Joshi et al., 2000; Kallmeyer and Parmentier, 2008), and on
complexity/expressiveness grounds (Søgaard et al., 2007; Kallmeyer and Parmen-
tier, 2008; Chiang and Scheffler, 2008). The shortest move constraint (SMC) intro-
duced by Stabler to enforce a strong form of minimality also falls into this category
of restrictions.

Definition 5. A MLIG derivation α0 ⇒ α1 ⇒ · · · ⇒ αp is of rank k for some
k ≥ 0 if, no vector with a sum of components larger than k can appear in any αj ,
i.e. for all x in Nn such that there exist 0 ≤ j ≤ p, δ, δ′ in V ∗ and A in N with
αj = δ(A, x)δ′, one has

∑n
i=1 x(i) ≤ k.

A MLIG is k-ranked (noted kr-MLIG) if any derivation starting with α0 = (S, x0)
is of rank k. It is ranked if there exists k such that it is k-ranked.

A 0-ranked MLIG is simply a context-free grammar (CFG), and we have more
generally the following:

1This restriction is slightly stronger than that of linearly restricted derivations (Rambow,
1994b), but still allows to capture UVG-dl lexicalization.
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Lemma 6. Any n-dimensional k-ranked MLIG G can be transformed into an equiv-

alent CFG G′ in time O(|G| · (n+ 1)k
3

).

Proof. We assume G to be in ETF, at the expense of a linear time factor. Each A
in N is then mapped to at most (n+ 1)k nonterminals (A, y) in N ′ ⊆ N ×Nn with∑n

i=1 y(i) ≤ k. Finally, for each production (A, x)→ (B1, x1)(B2, x2) of P , at most

(n+ 1)k
3

choices are possible for productions (A, y)→ (B1, y1)(B2, y2) with (A, y),
(B1, y1), and (B2, y2) in N ′. �

A definition quite similar to k-rankedness can be found in the Petri net literature:

Definition 7. A MLIG derivation α0 ⇒ α1 ⇒ · · · ⇒ αp is k-bounded for some
k ≥ 0 if, no vector with a coordinate larger than k can appear in any αj , i.e. for all
x in Nn such that there exist 0 ≤ j ≤ p, δ, δ′ in V ∗ and A in N with αj = δ(A, x)δ′,
and for all 1 ≤ i ≤ n, one has x(i) ≤ k.

A MLIG is k-bounded (noted kb-MLIG) if any derivation starting with α0 =
(S, x0) is k-bounded. It is bounded if there exists k such that it is k-bounded.

The SMC in minimalist grammars translates exactly into 1-boundedness of the
corresponding MLIGs (Salvati, 2011).

Clearly, any k-ranked MLIG is also k-bounded, and conversely any n-dimen-
sional k-bounded MLIG is (kn)-ranked, thus a MLIG is ranked iff it is bounded.
The counterpart to Lemma 6 is:

Lemma 8. Any n-dimensional k-bounded MLIG G can be transformed into an

equivalent CFG G′ in time O(|G| · (k + 1)n
2

).

Proof. We assume G to be in ETF, at the expense of a linear time factor. Each A in
N is then mapped to at most (k+1)n nonterminals (A, y) in N ′ = N ×{0, . . . , k}n.
Finally, for each production (A, x)→ (B1, x1)(B2, x2) of P , each nonterminal (A, y)
of N ′ with x ≤ y, and each index 0 < i ≤ n, there are at most k + 1 ways to
split (y(i) − x(i)) ≤ k into y1(i) + y2(i) and span a production (A, y) → (B1, x1 +

y1)(B2, x2 + y2) of P ′. Overall, each production is mapped to at most (k + 1)n
2

context-free productions. �

One can check that the grammar of Example 2 is not bounded (to see this, repeat-
edly apply production (S, 0)→ (S, 1)), as expected since MIX is not a context-free
language.

2.3. Language Properties

Let us mention a few more results pertaining to MLIG languages:

Proposition 9 (Rambow, 1994b). L(MLIG) is a substitution closed full abstract
family of languages.

Proposition 10 (Rambow, 1994b). L(MLIG`) is a subset of the context-sensitive
languages.

Natural languages are known for displaying some limited cross-serial dependen-
cies, as witnessed in linguistic analyses, e.g. of Swiss-German (Shieber, 1985), Dutch
(Kroch and Santorini, 1991), or Tagalog (Maclachlan and Rambow, 2002). This
includes the copy language

Lcopy = {ww | w ∈ {a, b}∗} ,
which does not seem to be generated by any MLIG:

Conjecture 11 (Rambow, 1994b). Lcopy is not in L(MLIG).



6 S. SCHMITZ

S

e1 e2 e3

a b cε

ε

Figure 3. The labeled Petri net corresponding to the right linear
MLIG of Example 2.

Finally, we obtain the following result as a consequence of Lemmas 6 and 8:

Corollary 12. L(kr-MLIG) = L(kb-MLIG) = L(kb-MLIG`) is the set of context-
free languages.

3. Related Formalisms

We review formalisms connected to MLIGs, starting in Section 3.1 with Petri
nets and two of their extensions, which turn out to be exactly equivalent to MLIGs.
We then consider various linguistic formalisms that employ dominance links (Sec-
tion 3.2).

3.1. Petri Nets

Definition 13 (Petri, 1962). A marked Petri net2 is a tuple N = 〈S, T, f,m0〉
where S and T are disjoint finite sets of places and transitions, f a flow function
from (S × T ) ∪ (T × S) to N, and m0 an initial marking in NS . A transition t ∈ T
can be fired in a marking m in NS if f(p, t) ≥ m(p) for all p ∈ S, and reaches a new
marking m′ defined by m′(p) = m(p)−f(p, t)+f(t, p) for all p ∈ S, written m [t〉 m′.
Another view is that place p holds m(p) tokens, f(p, t) of which are first removed
when firing t, and then f(t, p) added back. Firings are extended to sequences σ in
T ∗ by m [ε〉 m, and m [σt〉 m′ if there exists m′′ with m [σ〉 m′′ [t〉 m′.

A labeled Petri net with reachability acceptance is endowed with a labeling homo-
morphism ϕ : T ∗ → Σ∗ and a finite acceptance set F ⊆ NS , defining the language
(Peterson, 1981)

L(N , ϕ, F ) = {ϕ(σ) ∈ Σ∗ | ∃m ∈ F,m0 [σ〉 m} .

Labeled Petri nets (with acceptance set {0}) are notational variants of right
linear MLIGs, defined as having production in (N ×Nn)× (Σ∗ ∪ (Σ∗ · (N ×Nn))).
This is is case of the MLIG of Example 2, which is given in Petri net form in
Figure 3, where circles depict places (representing MLIG nonterminals and indices)
with black dots for initial tokens (representing the MLIG start symbol), boxes
transitions (representing MLIG productions), and arcs the flow values. For instance,
production (S,e3) → c (S,0) is represented by the rightmost, c-labeled transition,
with f(S, t) = f(e3, t) = f(t, S) = 1 and f(e1, t) = f(e2, t) = f(t, e1) = f(t, e2) =
f(t, e3) = 0.

2Petri nets are also equivalent to vector addition system (Karp and Miller, 1969, VAS) and
vector addition systems with states (Hopcroft and Pansiot, 1979, VASS).
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3.1.1. Extensions. The subsumption of Petri nets is not innocuous, as it allows to
derive lower bounds on the computational complexity of MLIGs. Among several
extensions of Petri net with some branching capacity (see e.g. Mayr, 1999; Haddad
and Poitrenaud, 2007), two are of singular importance: It turns out that MLIGs
in their full generality have since been independently rediscovered under the names
vector addition tree automata (de Groote et al., 2004, VATA) and branching VASS
(Verma and Goubault-Larrecq, 2005, BVASS).

3.1.2. Semilinearity. Another interesting consequence of the subsumption of Petri
nets by MLIGs is that the former generate some non semilinear languages, i.e. with
a Parikh image which is not a semilinear subset of N|Σ| (Parikh, 1966). Hopcroft and
Pansiot (1979, Lemma 2.8) exhibit an example of a VASS with a non semilinear
reachability set, which we translate as a 2-dimensional right linear MLIG with
productions3

(S, e2)→ (S, e1), (S, 0)→ (A, 0) | (B, 0),

(A, e1)→ (A, 2e2), (A, 0)→ a (S, 0),

(B, e1)→ b (B, 0) | b, (B, e2)→ b (B, 0) | b
and (S, e2) as start symbol, that generates the non semilinear language

Lnsm = {anbm | 0 ≤ n, 0 < m ≤ 2n} .

Proposition 14 (Hopcroft and Pansiot, 1979). There exist non semilinear Petri
nets languages.

The non semilinearity of MLIGs entails that of all the grammatical formalisms
mentioned next in Section 3.2; this answers in particular a conjecture by Kallmeyer
(2001) about the semilinearity of V-TAGs.

3.2. Dominance Links

3.2.1. UVG-dl. Rambow (1994b) introduced UVG-dls as a formal model for scram-
bling and tree description grammars.

Definition 15 (Rambow, 1994b). An unordered vector grammars with dominance
links (UVG-dl) is a tuple G = 〈N,Σ,W, S〉 where N and Σ are disjoint finite sets
of nonterminals and terminals, V = N ∪ Σ is the vocabulary, W is a set of vectors
of productions with dominance links, i.e. each element of W is a pair (P,D) where
each P is a multiset of productions in N×V ∗ and D is a relation from nonterminals
in the right parts of productions in P to nonterminals in their left parts, and S in
N is the start symbol.

A terminal derivation of w in Σ∗ in an UVG-dl is a context-free derivation
of form S

p1
=⇒ α1

p2
=⇒ α2 · · ·αp−1

pp
=⇒ w such that the control word p1p2 · · · pp is

a permutation of a member of W ∗ and the dominance relations of W hold in
the associated derivation tree. The language L(G) of an UVG-dl G is the set of
sentences w with some terminal derivation. We write L(UVG-dl) for the class of
UVG-dl languages.

An alternative semantics of derivations in UVG-dls is simply their translation
into MLIGs: associate with each nonterminal in a derivation the multiset of pro-
ductions it has to spawn. Figure 4 presents the two vectors of an UVG-dl for the
MIX language of Example 2, with dashed arrows indicating dominance links. Ob-
serve that production S → S in the second vector has to spawn eventually one

3Adding terminal symbols c in each production would result in a lexicalized grammar, still
with a non semilinear language.
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Figure 4. An UVG-dl for Lmix.

occurrence of each S → aS, S → bS, and S → cS, which corresponds exactly to
the MLIG of Example 2.

The ease of translation from the grammar of Figure 4 into a MLIG stems from the
impossibility of splitting any of its vectors (P,D) into two nonempty ones (P1, D1)
and (P2, D2) while preserving the dominance relation, i.e. with P = P1 ] P2 and
D = D1 ]D2. This strictness property can be enforced without loss of generality
since we can always add to each vector (P,D) a production S → S with a dominance
link to each production in P . This was performed on the second vector in Figure 4;
remark that the grammar without this addition is an unordered vector grammar
(Cremers and Mayer, 1974, UVG), and still generates Lmix.

Theorem 16 (Rambow, 1994b). Every MLIG can be transformed into an equiva-
lent UVG-dl in logarithmic space, and conversely.

Proof sketch. One can check that Rambow (1994b)’s proof of the inclusion L(MLIG) ⊆
L(UVG-dl) incurs at most a quadratic blowup from a MLIG in RINF, and in-
voke Proposition 3. More precisely, given a MLIG in RINF, productions of form
(A,0) → α with A in N and α in (Σ ∪ (N × {0}))∗ form singleton vectors, and
productions of form (A,0) → (B,ei) with A, B in N and 0 < i ≤ n need to be
paired with a production of form (C,ei)→ (D,0) for some C and D in N in order
to form a vector with a dominance link between B and C.

The converse inclusion and its complexity are immediate when considering strict
UVG-dls. �

The restrictions to k-ranked and k-bounded grammars find natural counterparts
in strict UVG-dls by bounding the (total) number of pending dominance links
in any derivation. Lexicalization has now its usual definition: for every vector
({pi,1, . . . , pi,ki}, Di) in W , at least one of the pi,j should contain at least one
terminal in its right part—we have then L(UVG-dl`) ⊆ L(MLIG`).

3.2.2. More on Dominance Links. Dominance links are quite common in tree de-
scription formalisms, where they were already in use in D-theory (Marcus et al.,
1983) and in quasi-tree semantics for fbTAGs (Vijay-Shanker, 1992). In particu-
lar, D-tree substitution grammars are essentially the same as UVG-dls (Rambow
et al., 2001), and quite a few other tree description formalisms subsume them (Can-
dito and Kahane, 1998; Kallmeyer, 2001; Guillaume and Perrier, 2010). Another
class of grammars are vector TAGs (V-TAGs), which extend TAGs and MCTAGs
using dominance links (Becker et al., 1991; Rambow, 1994a; Champollion, 2007),
subsuming again UVG-dls.

4. Computational Complexity

We study in this section the complexity of several decision problems on MLIGs,
prominently of emptiness and membership problems, in the general (Section 4.2),
k-bounded (Section 4.3), and lexicalized cases (Section 4.4). Table 1 sums up the
known complexity results. Since by Theorem 16 we can translate between MLIGs
and UVG-dls in logarithmic space, the complexity results on UVG-dls will be the
same.
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4.1. Decision Problems

Let us first review some decision problems of interest. In the following, G denotes
a MLIG 〈N,Σ, P, (S, x0)〉:

boundedness: given 〈G〉, is G bounded? As seen in Section 2.2, this is equiv-
alent to rankedness.

k-boundedness: given 〈G, k〉, k in N, is G k-bounded? As seen in Section 2.2,
this is the same as (kn)-rankedness. Here we will distinguish two cases
depending on whether k is encoded in unary or binary.

root coverability: given 〈G, F 〉, G ε-free in ETF and F a finite subset of
N × Nn, does there exist y0 ≥ x0 and α = (A1, y1) · · · (Am, ym) in F ∗ such
that (S, y0)⇒∗ α?

leaf coverability: given 〈G, F 〉, G ε-free in ETF and F a finite subset of
N × Nn, does there exist α = (A1, y1) · · · (Am, ym) in (N × Nn)∗ such that
(S, x0)⇒∗ α and for each 0 < j ≤ m there exists (Aj , xj) with xj ≤ yj?

reachability: given 〈G, F 〉, G ε-free in ETF and F a finite subset of N ×Nn,
does there exist α = (A1, y1) · · · (Am, ym) in F ∗ such that (S, x0)⇒∗ α?

non emptiness: given 〈G〉, is L(G) non empty?
(uniform) membership: given 〈G, w〉, w in Σ∗, does w belong to L(G)?

Boundedness and k-boundedness are needed in order to prove that a grammar
is bounded, and to apply the smaller complexities of Section 4.3. Coverability is
often considered for Petri nets, and allows to derive lower bounds on reachabil-
ity. Emptiness is the most basic static analysis one might want to perform on a
grammar, and is needed for parsing as intersection approaches (Lang, 1994), while
membership reduces to parsing. Note that we only consider uniform membership,
since grammars for natural languages are typically considerably larger than input
sentences, and their influence can hardly be neglected.

There are several obvious reductions between reachability, emptiness, and mem-
bership. Let →log denote LogSpace reductions between decision problems; we
have:

Proposition 17.

root coverability→log reachability(1)

leaf coverability→log reachability(2)

reachability↔log non emptiness(3)

↔log membership(4)

Proof sketch. For (1), construct a reachability instance 〈G′, F 〉 from a root cover-
ability instance 〈G, F 〉 by adding to G a fresh nonterminal S′ and the productions

{(S′, 0)→ (S′, ei) | 0 < i ≤ n}
∪ {(S′, 0)→ (S, 0)} .

For (2), construct a reachability instance 〈G′, {(E, 0)}〉 from a leaf coverability
instance 〈G, F 〉 by adding to G a fresh nonterminal E and the productions

{(A, x)→ (E, 0) | (A, x) ∈ F}
∪ {(E, ei)→ (E, 0) | 0 < i ≤ n} .

For (3), from a reachability instance 〈G, F 〉, remove all terminal productions from
G and add instead the productions {(A, x) → ε | (A, x) ∈ F}; the new grammar
G′ has a non empty language iff the reachability instance was positive. Conversely,
from a non emptiness instance 〈G〉, put the grammar in ETF and define F to match
all terminal productions, i.e. F = {(A, x) | (A, x) → a ∈ P, a ∈ Σ ∪ {ε}}, and then
remove all terminal productions in order to obtain a reachability instance 〈G′, F 〉.
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Table 1. Summary of complexity results.

Problem Complexity

Petri net k-Boundedness PSpace-c. (Jones et al., 1977)

Petri net Boundedness ExpSpace-c. (Lipton, 1976; Rackoff, 1978)

Petri net {Emptiness, Membership} ExpSpace-hard (Lipton, 1976), ∆0
1-easy (Mayr,

1981; Kosaraju, 1982)

{MLIG, MLIG`} k-Boundedness ExpTime-c. (Corollary 21)

{MLIG, MLIG`} Boundedness 2ExpTime-c. (Demri et al., 2012)

{MLIG, MLIG`} Emptiness
Tower-hard (Lazić and Schmitz, 2014), Σ0

1-easy
MLIG Membership

{kb-MLIG, kb-MLIG`} Emptiness
ExpTime-c. (Theorem 20)

kb-MLIG Membership

{MLIG`, kb-MLIG`} Membership NPTime-c. (Koller and Rambow, 2007)

kr-MLIG {Emptiness, Membership} PTime-c. (Jones and Laaser, 1976, and Lemma 6)

For (4), from a non emptiness instance 〈G〉, replace all terminals in G by ε to
obtain an empty word membership instance 〈G′, ε〉. Conversely, from a membership
instance 〈G, w〉, construct the intersection grammar G′ with L(G′) = L(G) ∩ {w}
(Bar-Hillel et al., 1961), which serves as non emptiness instance 〈G′〉. �

4.2. General Case

Verma and Goubault-Larrecq (2005) were the first to prove that coverability and
boundedness were decidable for BVASS, using a covering tree construction à la
Karp and Miller (1969), thus of non primitive recursive complexity. Demri et al.
(2012) proved tight complexity bounds for these problems, extending earlier results
by Rackoff (1978) and Lipton (1976) for Petri nets.

Theorem 18 (Demri et al., 2012). Root coverability and boundedness for MLIGs
are 2ExpTime-complete.

More recently, Lazić and Schmitz (2014) proved a Tower lower bound on leaf
coverability: here the tower function is defined by tower(0) = 0 and tower(n+ 1) =
2tower(n), and

(5) Tower =
⋃

e∈FElem
DTime

(
tower(e(n))

)
is the class of problems that can be solved by a deterministic Turing machine
operating in time tower of some elementary function e of the input. Complete
problems for Tower are understood relative to elementary many-one reductions.

Theorem 19 (Lazić and Schmitz, 2014). Leaf coverability for MLIGs is Tower-
complete.

Regarding reachability, emptiness, and membership, decidability is still open. A
2ExpSpace lower bound was found by Lazić (2010), and improved to Tower by
Lazić and Schmitz (2014). If a decision procedure exists, we can expect it to be
quite complex, as already in the Petri net case, the complexity of the known decision
procedures (Mayr, 1981; Kosaraju, 1982) is not primitive recursive (Cardoza et al.,
1976, who attribute the idea to Hack).
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4.3. k-Bounded and k-Ranked Cases

First observe that, in the k-bounded and k-ranked cases, root coverability, leaf
coverability, and reachability are all interreducible (using complement counters).

Since k-bounded MLIGs can be converted into CFGs (Lemma 8), emptiness and
membership problems are decidable, albeit at the expense of an exponential blowup.
We know from the Petri net literature that coverability and reachability problems
are PSpace-complete for k-bounded right linear MLIGs (Jones et al., 1977) by
a reduction from linear bounded automaton (LBA) membership. We obtain the
following for k-bounded MLIGs, using a similar reduction from membership in
polynomially space bounded alternating Turing machines (Chandra et al., 1981,
ATM):

Theorem 20. Reachability for k-bounded MLIGs is ExpTime-complete, even for
fixed k ≥ 1.

The lower bound is obtained through an encoding of an instance of the mem-
bership problem for ATMs working in polynomial space into an instance of the leaf
coverability problem for 1-bounded MLIGs. The upper bound is a direct applica-
tion of Lemma 8, reachability being reducible to the emptiness problem for a CFG
of exponential size. Theorem 20 also shows the ExpTime-hardness of emptiness
and membership in minimalist grammars with SMC.

Corollary 21. Let k ≥ 1; k-boundedness for MLIGs is ExpTime-complete.

Proof. For the lower bound, consider an instance 〈G, F 〉 of leaf coverability for a
1-bounded MLIG G, which is ExpTime-hard according to Theorem 20. Add to the
MLIG G a fresh nonterminal E and the productions

{(A, x)→ (E, x) | (A, x) ∈ F}
∪ {(E, 0)→ (E, ei) | 0 < i ≤ n} ,

which make it non k-bounded iff the coverability instance was positive.
For the upper bound, apply Lemma 8 with k′ = k + 1 to construct an O(|G| ·

2n
2 log2(k′+1))-sized CFG, reduce it in polynomial time, and check whether a non-

terminal (A, x) with x(i) = k′ for some 0 < i ≤ n occurs in the reduced grammar.
Note that the choice of the encoding of k is irrelevant, as k = 1 is enough for

the lower bound, and k only logarithmically influences the exponent for the upper
bound. �

Corollary 21 also implies the ExpTime-completeness of k-rankedness, k encoded
in unary, if k can take arbitrary values. On the other hand, if k is known to be small,
for instance logarithmic in the size of G, then k-rankedness becomes polynomial by
Lemma 6.

Observe finally that k-rankedness provides the only tractable class of MLIGs for
uniform membership, using again Lemma 6 to obtain a CFG of polynomial size—
actually exponential in k, but k is assumed to be fixed for this problem. An obvious
lower bound is that of membership in CFGs, which is PTime-complete (Jones and
Laaser, 1976).

4.4. Lexicalized Case

Unlike the high complexity lower bounds of the previous two sections, NPTime-
hardness results for uniform membership have been proved for a number of for-
malisms related to MLIGs, from the commutative CFG viewpoint Huynh (1983);
Barton (1985); Esparza (1995), or from more specialized models (Søgaard et al.,
2007; Champollion, 2007; Koller and Rambow, 2007). We focus here on this last
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proof, which reduces from the normal dominance graph (with closed leaves) config-
urability problem (Althaus et al., 2003), as it allows to derive NPTime-hardness
even in highly restricted grammars.

Theorem 22 (Koller and Rambow, 2007). Uniform membership of 〈G, w〉 for G
a 1-bounded, lexicalized, UVG-dl with finite language is NPTime-hard, even for
|w| = 1.

Proof sketch. Set S as start symbol and add a production S → aA to the sole
vector of the grammar G constructed by Koller and Rambow (2007) from a normal
dominance graph, with dominance links to all the other productions. Then G
becomes strict, lexicalized, with finite language {a} or ∅, and 1-bounded, such that
a belongs to L(G) iff the normal dominance graph is configurable. �

The fact that uniform membership is in NPTime in the lexicalized case is clear,
as we only need to guess nondeterministically a derivation of size linear in |w| and
check its correctness.

The weakness of lexicalized grammars is however that their emptiness problem is
not any easier to solve! The effect of lexicalization is indeed to break the reduction
from emptiness to membership in Proposition 17, but emptiness is as hard as ever,
which means that static checks on the grammar might even be undecidable.

5. Conclusion

Grammatical formalisms with dominance links, introduced in particular to model
scrambling phenomena in computational linguistics, have deep connections with
several open questions in an unexpected variety of fields in computer science. We
hope this survey to foster cross-fertilizing exchanges; for instance, is there a relation
between Conjecture 11 and the decidability of reachability in MLIGs? A similar
question, whether the language Lpal of even 2-letters palindromes was a Petri net
language, was indeed solved using the decidability of reachability in Petri nets
(Jantzen, 1979), and shown to be strongly related to the latter (Lambert, 1992).

A conclusion with a more immediate linguistic value is that MLIGs and UVG-
dls hardly qualify as formalisms for mildly context-sensitive languages, claimed by
Joshi (1985) to be adequate for modeling natural languages, and “roughly” defined
as the extensions of context-free languages that display

(1) support for limited cross-serial dependencies: seems doubtful, see Conjec-
ture 11,

(2) constant growth, a requisite nowadays replaced by semilinearity : does not
hold, as seen with Proposition 14, and

(3) polynomial recognition algorithms: holds only for restricted classes of gram-
mars, as seen in Section 4.

Nevertheless, variants such as k-ranked V-TAGs are easily seen to fulfill all the
three points above.
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Thanks to Pierre Chambart, Stéphane Demri, and Alain Finkel for helpful discus-
sions, and to Sylvain Salvati for pointing out the relation with minimalist gram-
mars.

References

Althaus, E., Duchier, D., Koller, A., Mehlhorn, K., Niehren, J., and Thiel, S., 2003.
An efficient graph algorithm for dominance constraints. Journal of Algorithms,
48(1):194–219. doi:10.1016/S0196-6774(03)00050-6.

http://dx.doi.org/10.1016/S0196-6774(03)00050-6


THE COMPLEXITY OF DOMINANCE LINKS 13

Bar-Hillel, Y., Perles, M., and Shamir, E., 1961. On formal properties of simple
phrase structure grammars. Zeitschrift für Phonetik, Sprachwissenschaft und
Kommunikationsforschung, 14:143–172.

Barton, G.E., 1985. The computational difficulty of ID/LP parsing. In ACL’85 ,
pages 76–81. ACL Press. doi:10.3115/981210.981220.

Becker, T., Joshi, A.K., and Rambow, O., 1991. Long-distance scrambling and
tree adjoining grammars. In EACL’91 , pages 21–26. ACL Press. doi:10.3115/
977180.977185.
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boundedness problems for branching vector addition systems. Journal of Com-
puter and System Sciences, 79(1):23–38. doi:10.1016/j.jcss.2012.04.002.

Dufourd, C. and Finkel, A., 1999. A polynomial λ-bisimilar normalization for
reset Petri nets. Theoretical Computer Science, 222(1–2):187–194. doi:10.1016/
S0304-3975(98)00351-X.

Esparza, J., 1995. Petri nets, commutative context-free grammars, and basic par-
allel processes. In Reichel, H., editor, FCT’95 , volume 965 of Lecture Notes in
Computer Science, pages 221–232. Springer. doi:10.1007/3-540-60249-6 54.

Guillaume, B. and Perrier, G., 2010. Interaction grammars. Research on Language
and Computation. doi:10.1007/s11168-010-9066-x. To appear.

Haddad, S. and Poitrenaud, D., 2007. Recursive Petri nets. Acta Informatica, 44
(7–8):463–508. doi:10.1007/s00236-007-0055-y.

Hopcroft, J. and Pansiot, J.J., 1979. On the reachability problem for 5-dimensional
vector addition systems. Theoretical Computer Science, 8(2):135–159. doi:
10.1016/0304-3975(79)90041-0.

Huynh, D.T., 1983. Commutative grammars: the complexity of uniform word prob-
lems. Information and Control, 57(1):21–39. doi:10.1016/S0019-9958(83)80022-9.

Jantzen, M., 1979. On the hierarchy of Petri net languages. RAIRO Theoretical
Informatics and Applications, 13(1):19–30.

Jones, N.D. and Laaser, W.T., 1976. Complete problems for deterministic
polynomial time. Theoretical Computer Science, 3(1):105–117. doi:10.1016/
0304-3975(76)90068-2.

Jones, N.D., Landweber, L.H., and Lien, Y.E., 1977. Complexity of some prob-
lems in Petri nets. Theoretical Computer Science, 4(3):277–299. doi:10.1016/

http://dx.doi.org/10.3115/981210.981220
http://dx.doi.org/10.3115/977180.977185
http://dx.doi.org/10.3115/977180.977185
http://dx.doi.org/10.1145/1516512.1516515
http://dx.doi.org/10.1145/1516512.1516515
http://dx.doi.org/10.1145/800113.803630
http://dx.doi.org/10.1145/322234.322243
http://dx.doi.org/10.1016/S0022-0000(74)80053-X
http://dx.doi.org/10.1109/LICS.2004.51
http://dx.doi.org/10.1109/LICS.2004.51
http://dx.doi.org/10.1016/j.jcss.2012.04.002
http://dx.doi.org/10.1016/S0304-3975(98)00351-X
http://dx.doi.org/10.1016/S0304-3975(98)00351-X
http://dx.doi.org/10.1007/3-540-60249-6_54
http://dx.doi.org/10.1007/s11168-010-9066-x
http://dx.doi.org/10.1007/s00236-007-0055-y
http://dx.doi.org/10.1016/0304-3975(79)90041-0
http://dx.doi.org/10.1016/0304-3975(79)90041-0
http://dx.doi.org/10.1016/S0019-9958(83)80022-9
http://dx.doi.org/10.1016/0304-3975(76)90068-2
http://dx.doi.org/10.1016/0304-3975(76)90068-2
http://dx.doi.org/10.1016/0304-3975(77)90014-7


14 S. SCHMITZ

0304-3975(77)90014-7.
Joshi, A.K., 1985. Tree-adjoining grammars: How much context sensitivity is re-

quired to provide reasonable structural descriptions? In Dowty, D.R., Karttunen,
L., and Zwicky, A.M., editors, Natural Language Parsing: Psychological, Com-
putational, and Theoretical Perspectives, chapter 6, pages 206–250. Cambridge
University Press.

Joshi, A.K., Becker, T., and Rambow, O., 2000. Complexity of scrambling: A
new twist to the competence-performance distinction. In Abeillé, A. and Ram-
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Lazić, R. and Schmitz, S., 2014. Non-elementary complexities for branching VASS,
MELL, and extensions. arXiv:1401.6785[cs.LO]. Manuscript.

Lichte, T., 2007. An MCTAG with tuples for coherent constructions in German.
In FG 2007 .

Lipton, R., 1976. The reachability problem requires exponential space. Technical
Report 62, Yale University.

Maclachlan, A. and Rambow, O., 2002. Cross-serial dependencies in Tagalog. In
TAG+6, pages 100–107.

Marcus, M.P., Hindle, D., and Fleck, M.M., 1983. D-theory: talking about talking
about trees. In ACL’83 , pages 129–136. ACL Press. doi:10.3115/981311.981337.

Mayr, E.W., 1981. An algorithm for the general Petri net reachability problem. In
STOC’81 , pages 238–246. ACM Press. doi:10.1145/800076.802477.

Mayr, R., 1999. Process rewrite systems. Information and Computation, 156(1–2):
264–286. doi:10.1006/inco.1999.2826.

Papadimitriou, C.H., 1994. Computational Complexity. Addison-Wesley. ISBN
0-201-530821.

Parikh, R.J., 1966. On context-free languages. Journal of the ACM, 13(4):570–581.
doi:10.1145/321356.321364.

Peterson, J.L., 1981. Petri Net Theory and the Modeling of Systems. Prentice Hall.
Petri, C.A., 1962. Kommunikation mit Automaten. PhD thesis, University of Bonn.

http://dx.doi.org/10.1016/0304-3975(77)90014-7
http://dx.doi.org/10.1016/0304-3975(77)90014-7
http://dx.doi.org/10.1023/A:1011431526022
http://dx.doi.org/10.1007/978-3-540-88282-4_25
http://dx.doi.org/10.1016/S0022-0000(69)80011-5
http://dx.doi.org/10.1145/800070.802201
http://dx.doi.org/10.1016/0304-3975(92)90173-D
http://dx.doi.org/10.1111/j.1467-8640.1994.tb00011.x
http://dx.doi.org/10.1016/j.ipl.2010.06.008
http://arxiv.org/abs/1401.6785
http://dx.doi.org/10.3115/981311.981337
http://dx.doi.org/10.1145/800076.802477
http://dx.doi.org/10.1006/inco.1999.2826
http://dx.doi.org/10.1145/321356.321364


THE COMPLEXITY OF DOMINANCE LINKS 15

Rackoff, C., 1978. The covering and boundedness problems for vector ad-
dition systems. Theoretical Computer Science, 6(2):223–231. doi:10.1016/
0304-3975(78)90036-1.

Rambow, O., 1994a. Formal and Computational Aspects of Natural Language Syn-
tax. PhD thesis, University of Pennsylvania.

Rambow, O., 1994b. Multiset-valued linear index grammars: imposing dominance
constraints on derivations. In ACL’94 , pages 263–270. ACL Press. doi:10.3115/
981732.981768.

Rambow, O., Vijay-Shanker, K., and Weir, D., 1995. D-tree grammars. In ACL’95 ,
pages 151–158. ACL Press. doi:10.3115/981658.981679.

Rambow, O., Weir, D., and Vijay-Shanker, K., 2001. D-tree substitution grammars.
Computational Linguistics, 27(1):89–121. doi:10.1162/089120101300346813.

Salvati, S., 2011. Minimalist grammars in the light of logic. In Pogodalla,
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Appendix A. Complements to Section 2

This section details the proof of the following proposition, which was omitted
from the main text:

Proposition 3. For any MLIG, one can construct an equivalent MLIG in RINF
in logarithmic space.

As explained in Section 2, the difficulty lies in avoiding an exponential blowup
when constructing the MLIG in RINF. The idea is to proceed in two steps, first by
constructing a grammar in ordinary form (OF) (Lemma 24), and then by translat-
ing this grammar in OF into a grammar in RINF (Lemma 25). This construction
is akin to the normalization presented by Dufourd and Finkel (1999) for reset Petri
nets.

Definition 23. A MLIG is in ordinary form if, for any production of form (?) in
P , for any vector y in {x0}∪{x}∪{xj | 1 ≤ j ≤ m} that appears in the start symbol
or in this production, and for any index 0 < i ≤ n, y(i) ≤ 1.

Lemma 24. For any MLIG, one can construct an equivalent MLIG in OF in
logarithmic space.

Proof. Let us fix a MLIG G = 〈N,Σ, P, (S, x0)〉. We first define the maximal vector
value of G as the minimum integer maxG such that, for any production of form (?)
in P , for any vector y in {x0} ∪ {x} ∪ {xj | 1 ≤ j ≤ m} that appears in the start
symbol or in this production, and for any index 0 < i ≤ n, y(i) ≤ maxG . Thus a
MLIG in OF is one where maxG ≤ 1.

Let n′ = |maxG | (thus of logarithmic size); the idea in the following is to increase
the dimension to n(n′ + 1) and use the additional indices to encode vector values
in binary.

Let us fix some notation: each index 0 < i ≤ n of G is associated with n′ + 1
indices in the constructed grammar G′. The index (i, j) denotes the jth such index,
0 ≤ j ≤ n′, with the convention (i, 0) = i. For every nonterminal A of N , and every
0 < i ≤ n, and every 0 < j ≤ n′, we add the nonterminals Ai,j and A′i,j : let

N ′ = N ∪ {Ai,j | 0 < i ≤ n, 0 < j ≤ n′}
∪ {A′i,j | 0 < i ≤ n, 0 < j ≤ n′} .

These nonterminals will handle the conversions to and from binary: we define the
productions

PA,i = {(A, ei,0)→ (Ai,1, 0)}
∪ {(Ai,j , ei,j)→ (Ai,j+1, 0) | 0 < j ≤ n′}
∪ {(Ai,j , 0)→ (A, ei,j) | 0 < j ≤ n′}

P ′A,i = {(A, ei,j)→ (A′i,j , 0) | 0 < j ≤ n′}
∪ {(A′i,j , 0)→ (A′i,j−1, ei,j−1) | 1 < j ≤ n′}
∪ {(A′i,1, 0)→ (A, ei,0)}

for all A in N and 0 < i ≤ n. We want to prove that this set of productions
performs a binary encoding of the contents of the ith index, i.e. that

(6) y(i, 0) +

n′∑
j=1

y(i, j)2j−1 = y′(i, 0) +

n′∑
j=1

y′(i, j)2j−1

holds whenever (A, y)⇒∗ (A, y′) using productions from PA,i ∪ P ′A,i.

Claim 24.1. If (A, y) ⇒p (A, y′), for some p ≥ 0 and using only productions from
PA,i ∪ P ′A,i, then (6) holds.
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We prove the claim by induction on p, using productions from PA,i solely; the
case of P ′A,i is symmetric—and there is no possible interference between the two
sets of productions.

The claim holds vacuously for p = 0. For p > 0, we can split the derivation into

(A, y)⇒p−1 (Ai,j , yp−1)⇒ (A, y′)
with yp−1(i, j) + 1 = y′(i, j)

for some 0 < j ≤ n′—using the last ruleset of PA,i—, and we can distinguish two
cases:

(1) (A, y)⇒p−2 (A, yp−2)⇒ (Ai,j , yp−1), which enforces j = 1, and then

yp−2(i, 0) = yp−1(i, 0) + 1

= y′(i, 0) + 1 and

yp−2(i, 1) + 1 = yp−1(i, 1) + 1

= y′(i, 1) ,

thus (6) holds between y′ and yp−2, and using the induction hypothesis on

derivation (A, y)⇒p−2 (A, yp−2), it also holds for the entire derivation.

(2) (A, y) ⇒p−2 (Ai,j−1, yp−2) ⇒ (Ai,j , yp−1) with yp−2(i, j − 1) = yp−1(i, j −
1) + 1, then (A, y)⇒p−2 (Ai,j−1, yp−2)⇒ (A, y′′) with yp−2(i, j − 1) + 1 =

y′′(i, j − 1) when applying the last ruleset of PA,i to (Ai,j−1, yp−2), thus

yp−1(i, j − 1) + 2 = y′′(i, j − 1)

= y′(i, j − 1) + 2

yp−1(i, j) + 1 = y′′(i, j) + 1

= y′(i, j) ,

and therefore (6) holds between y′ and y′′. Applying the induction hypoth-
esis to (A, y)⇒p−2 (Ai,j−1, yp−2)⇒ (A, y′′) yields the claim.

It remains to modify the productions of P in order to use the new indices. Let
x be a vector of Nn: its binary encoding is the vector bx in Nn(n′+1) such that, for
all 0 < i ≤ n,

x(i) =

n′∑
j=1

bx(i, j)2j−1,

bx(i, 0) = 0, and

bx(i, j) ≤ 1 for all 0 < j ≤ n′ ,
the point being that |bx| is polynomial in |x|. We construct a new set of productions
accordingly, with a production

(A, bx)→ u0(B1, bx1)u1 · · ·um(Bm, bxm)um+1

for each production of form (?) in P . Let us dub P ′ the set of productions that
gathers these binary encodings and the productions of PA,i ∪ P ′A.i for each A in N
and 0 < i ≤ n.

Claim 24.2. The (n(n′ + 1))-dimensional MLIG G′ = 〈N ′,Σ, P ′, (S, bx0)〉 is in OF
and equivalent to G.

The fact that G′ is in OF is immediate by definition of the binary encoding bx
and of the productions of P ′. The equivalence of G and G′ stems from Claim 24.1
and the properties of bx.

We can conclude by noting that, indeed, G′ can be constructed from G in loga-
rithmic space. �
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{([q, i], 〈Z, i〉1 + 〈Z, i〉2 + 〈Zj , i〉1 + 〈Zj , i〉2)→

([qj , i + dj ], 〈Z, i〉1 + 〈Z, i〉2 + 〈Zj , i〉1 + 〈Zj , i〉2) | i ≤ p(|w|), j ∈ {1, 2}}

Figure 5. The productions encoding a transition δ(q, Z) =
(q1, Z1, d1) ∨ (q2, Z2, d2).

Lemma 25. For any MLIG in OF, one can construct an equivalent MLIG in RINF
in logarithmic space.

Proof. The construction presented by Rambow (1994a, Theorem 3) fits in the OF
case. �

Appendix B. Complements to Section 4

This section contains the proof of the following result:

Theorem 20. Reachability for k-bounded MLIGs is ExpTime-complete, even for
fixed k ≥ 1.

B.1. Lower Bound

We reduce the membership problem for an alternating Turing machine operating in
polynomial space to the coverability problem for a 1-bounded MLIG, which yields
its ExpTime-hardness (Chandra et al., 1981).

Formally, we are given an ATM M = 〈Q,Σ,Γ, δ, q0, F 〉, an input string w in
Σ∗, and the insurance that M will never visit more than p(|w|) cells of its tape.
Wlog., we consider δ(q, Z) for a state q in Q and a tape content Z in Γ to be
(q1, Z1, d1) op (q2, Z2, d2) with q1, q2 in Q, Z1 6= Z and Z2 6= Z in Γ, d1, d2 in
{−1,+1} (standing for a move to the left or to the right), and op in {∨,∧} (standing
for disjunction or conjunction).

B.1.1. Encoding ATM Configurations. The total number of different tape contents
ofM is bounded by |Γ|p(|w|), which we cannot afford to represent explicitly. Instead,
we store the current tape contents of M as a vector of dimension c = |Γ| · p(|w|),
and maintain it throughout the simulation by our MLIG. A difficulty arises with
conjunctive transitions δ(q, Z) = (q1, Z1, d1)∧ (q2, Z2, d2), which cannot be directly
simulated by MLIG derivations of form (A, y) ⇒ (B1, y1)(B2, y2) with (A, y) en-
coding the configuration matched by (q, Z), and each (Bj , yj) encoding the new
configuration corresponding to the (qj , Zj , dj) action. Vector values from y, encod-
ing the current tape configuration, are scattered nondeterministically between y1

and y2. The solution is to construct a 1-bounded MLIG with enough redundancy to
recover “clean” tape configurations after the simulation of a conjunctive transition.

Accordingly, we set our dimension as n = 6c: each (Z, i) pair in Γ×{1, . . . , p(|w|)}
is associated with a left and a right coordinate (whose unit vectors are denoted as

〈Z, i〉1 and 〈Z, i〉2), their complements (denoted as 〈Z, i〉1 and 〈Z, i〉2), and two

counts (denoted as 〈Z, i〉c and 〈Z, i〉c).
We also define our set of nonterminals as

N =
⋃

q∈Q,i≤p(|w|)

{[q, i], [q, i]1, [q, i]2} ,

recording the current state and current head position on the tape. Hence a pair in
N × Nn represents the current configuration of M.
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{([q, i], 〈Z, i〉1 + 〈Z, i〉2 + 〈Z1, i〉1 + 〈Z2, i〉2)→

⊙
j∈{1,2}

[qj , i + dj ]j , 〈Z, i〉j + 〈Zj , i〉j +
∑

Z′∈Γ,m≤p(|w|)

〈Z′,m〉c

 | i ≤ p(|w|)}

∪ {([q, i]j , 〈Z, i〉j + 〈Z, i〉c)→ ([q, i]j , 〈Z, i〉j + 〈Z, i〉3−j + 〈Z, i〉c | q ∈ Q, i ≤ p(|w|), j ∈ {1, 2}}

∪ {([q, i]j , 〈Z, i〉j + 〈Z, i〉c)→ ([q, i]j , 〈Z, i〉j + 〈Z, i〉3−j + 〈Z, i〉c | q ∈ Q, i ≤ p(|w|), j ∈ {1, 2}}

∪ {([q, i]j ,
∑

Z∈Γ,i≤p(|w|)

〈Z, i〉c)→ ([q, i], 0̄) | q ∈ Q, i ≤ p(|w|), j ∈ {1, 2}}

Figure 6. The productions encoding a transition δ(q, Z) =
(q1, Z1, d1) ∧ (q2, Z2, d2).

B.1.2. Encoding Disjunctive Transitions. The translation of a disjunctive rule δ(q, Z) =
(q1, Z1, d1)∨ (q2, Z2, d2) is a set of productions shown in Figure 5. The productions
check that the current configuration allows to apply the rule, and update the con-
figuration accordingly. Nothing in these productions requires more than c as a
dimension (the other coordinates are either redundant or unused).

B.1.3. Encoding Conjunctive Transitions. We exploit the extra indices for conjunc-
tive rules δ(q, Z) = (q1, Z1, d1) ∧ (q2, Z2, d2), see Figure 6. The effect of the first
set of productions is to update the left and right configurations with the new con-
figurations for each of the two conjuncts. The next three sets ensure that the
nondeterministic splitting between left and right was correct, and copy back the
configuration in the left part into the right one and vice versa. Once this copy step
is completed, and only then—which enforces a verification at the same time—, the
last production set switches back to a normal nonterminal, thereby allowing the
application of more rules.

B.1.4. Start Symbol and Covering Set. Define S = ([q0, 1]) as start symbol, while
the initial vector encodes the initial tape contents γ0 = w#p(|w|)−|w| (where #
denotes the blank tape symbol):

x0 =
∑

Z∈Γ,i≤p(|w|),j∈{1,2}

{
〈Z, i〉j if γ0(i) 6= Z

〈Z, i〉j otherwise.

Our covering set C is the union of all pairs ([qf , i], 0) for qf an accepting state
of M and i ≤ p(|w|) a tape position.

B.2. Upper Bound

By Proposition 17, coverability and reachability can be reduced to language non
emptiness. By Lemma 8, a k-bounded MLIG can be converted into an equivalent
CFG in exponential time (and thus of exponential size). Emptiness in CFGs can
be checked in polynomial time, and we have overall an exponential time algorithm
for coverability and reachability in k-bounded MLIGs.
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