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1 Introduction

Temporal logic. Logical formalisms for reasoning about time and the
timing of events appear in several fields: physics, philosophy, linguistics,
etc. Not surprisingly, they also appear in computer science, a field where
logic is ubiquitous. Here temporal logics are used in automated reasoning, in
planning, in semantics of programming languages, in artificial intelligence,
etc.

There is one area of computer science where temporal logic has been
unusually successful: the specification and verification of programs and sys-
tems, an area we shall just call “programming” for simplicity. In today’s
curricula, thousands of programmers first learn about temporal logic in a
course on model checking!

Temporal logic and programming. Twenty five years ago, Pnueli iden-
tified temporal logic as a very convenient formal language in which to state,
and reason about, the behavioral properties of parallel programs and more
generally reactive systems [Pnu77, Pnu81]. Indeed, correctness for these sys-
tems typically involves reasoning upon related events at different moments
of a system execution [OL82]. Furthermore, when it comes to liveness prop-
erties, the expected behavior of reactive systems cannot be stated as a static
property, or as an invariant one. Finally, temporal logic is well suited to ex-
pressing the whole variety of fairness properties that play such a prominent
role in distributed systems [Fra86].

For these applications, one usually restricts oneself to propositional tem-
poral logic: on the one hand, this does not appear to be a severe limi-
tation in practice, and on the other hand, this restriction allows decision
procedures for validity and entailment, so that, at least in principle, the
above-mentioned reasoning can be automated.

Model checking. Generally speaking, model checking is the algorithmic
verification that a given logic formula holds in a given structure (the model
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that one checks). This concept is meaningful for most logics and classes of
models but, historically, it was developed in the context of temporal logic
formulae for finite Kripke structures, called “temporal logic model checking”
in this survey. Temporal logic model checking has been a very active field
of research for the last two decades because of its important applications in
verification (see e.g. [CW96]).

A huge effort has been, and is being, devoted to the development of
smarter and better model checking software tools, known as model checkers,
that can verify ever larger models and deal with a wide variety of extended
frameworks (real-time systems, stochastic systems, open systems, etc.). We
refer to [Hol91, Kur95, CGP99, BBF+01] for more details on the practical
aspects of model checking.

Model checking for modal logicians. Temporal logic can be seen as
some brand of modal logic, but it seems fair to say that model checking
is not a popular problem in the modal logic community: for example it is
not mentioned in standard textbooks such as [Ben85, HC96, BRV01]. This
is probably because model checking is too trivial a problem for the stan-
dard modal logics based on immediate successors (it is easy even for PDL,
see [CS93]) and only becomes interesting when richer temporal logics are
considered. However, standard texts on temporal logic aimed at logicians
(e.g. [Ben89, Sti92, GRF00]) just briefly mention that model checking is
possible and do not really deal with the computational issues involved. A
recent exception is [BS01] where a few pages are devoted to model checking
for µ-calculi since, quoting [BS01, p. 315]:

Decidability and axiomatization are standard questions for logi-
cians; but for the practitioner, the important question is model-
checking.

The complexity of model checking. Once decidability has been proved,
the next basic problem in the theory of model checking is measuring its
complexity 1.

The point is that, when the precise complexity of some computational
problem has been established, it can be said that the optimal algorithm
for the problem has been identified and proved optimal. Here “optimal”
has a precise meaning: one only considers what computing resources are
asymptotically necessary and sufficient for solving all instances, including
the hardest ones (i.e., in the worst case). These simplifications and abstrac-
tions about the cost of algorithms lead to a surprisingly powerful theory

1We assume the reader has some basic knowledge of the theoretical framework of
computational complexity, and refer him to standard texts like [Sto87, Joh90, Pap94] for
more motivations and details.
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that has been applied successfully in a huge number of fields.
In the field of temporal logic model checking, this research program led

to a clearer understanding of why model checking works so well (or does not
work). It also added a new dimension on which to compare different logical
formalisms (alongside the more classical dimensions of expressive power and
complexity of validity).

The goals of this survey. We present the main results on the complex-
ity of model checking and the underlying algorithmic ideas. This covers
the main temporal logics encountered in the programming literature: LTL
(from [GPSS80]), CTL (from [CE81]), CTL∗ (from [EH86]), their fragments,
and their extensions with past-time modalities 2. The presentation is mainly
focused on complexity results, not on the usefulness, or elegance, or expres-
sive power, of the temporal logics we consider 3. However, when complexity
of model checking is concerned, we (try to) explain the ideas behind the
algorithms and hardness proofs, in the hope that these techniques can be
useful in other subfields of modal logic.

Outline of the paper. We start with the basic concepts and definitions
(temporal logics, their models, the model checking problem) in Section 2.
Then Section 3 gives the main results on model checking for our three
logics, before we consider fragments (in Section 4) and past-time extensions
(in Section 5). Finally, we discuss more advanced questions (parameterized
view of complexity in Section 6, and complexity of symbolic model checking
in Section 7) that help bridge the gap between complexity theory and actual
practice.

2 Basic notions

2.1 Temporal modalities

Temporal logic [Pri67] is a brand of modal logic tailored to temporal reason-
ing, i.e. reasoning with modalities like “sometimes”, “now”, “often”, “later”,
“while”, “always”, “inevitably”, etc.

Temporal logics are usually interpreted in modal structures where the
nodes (the modal worlds) are positions in time, often called instants. These
need not be just points but can be, for example, time intervals (periods).

Usually, the modal relation relates two positions when the second lies in

2We decided to omit mentioning µ-calculi because, even though they are popular in the
programming community, we think they are less temporal logics than languages in which
one can define temporal logics (much like monadic second-order logics). The interested
reader may consult [AN01].

3We refer the reader to standard texts, like [Eme90, MP92], for motivation and ex-
amples.
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the future of the first. This provides a model for qualitative aspects of time,
dealing with “before and after”. More elaborate notions like, for example,
metrics on time (durations) could be modeled as well but this survey limits
itself to the simpler frameworks.

Thus a time frame is usually taken to be an ordered set 〈T,≤T 〉, with
t ≤T t′ denoting that instant t ∈ T precedes instant t′ ∈ T in time.

2.2 Linear-time and branching-time

A major distinction between temporal logics is whether they see time as
linear or branching 4. This is reflected in the classes of time frames they
consider: linear orderings or trees.

In linear-time logics, all instants are linearly ordered from past to future
and there is only one possible future: future is determined. In programming,
this viewpoint is convenient for deterministic programs. For nondetermin-
istic programs, the linear-time viewpoint applies to the runs of the system:
any given run determines a single future. The nondeterminism of the system
is taken into account at a different level, by considering all the runs.

In branching-time logics, the future is not determined and any given
instant may have several distinct immediate successors 5, hence the tree-
like structure of the frame. This viewpoint is probably the more appropriate
when it comes to nondeterministic systems [Mil89, Gla01] but linear-time is
often preferred for its simplicity, both notational (see below) and conceptual.

2.3 Kripke structures

A feature of model checking that explains its successes is that it mostly
deals with finite structures displaying infinite behaviors: the finiteness of
the structures entails the (efficient) decidability of model checking, while
the non-finiteness of the behaviors allows one to model interesting situa-
tions.

Here it is crucial to distinguish between the computational structure and
the behavioral structure.

The computational structure is a model of the program at hand, describ-
ing its possible configurations and the possible steps between them. Even
if one only considers finite computational structures, it is still possible to
model interesting programming problems 6, as the last twenty years of model

4Not all structures for time fall into the linear or the branching category (see
e.g. [Wol89]) but these certainly are the two most often used in the programming lit-
erature.

5All through this survey we assume time is discrete.
6This is the case of protocols, where several small finite state machines interact in
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checking have demonstrated.

The behavioral structure is a model of the behavior of the system mod-
eled by a computational structure. It is usually infinite (systems are not
supposed to terminate) but displays some regularity since it is obtained
from the computational structure by some kind of traversal or unfolding.

Temporal logic is used to reason about the behavioral structure, where
there is a clear notion of before and after along the runs of the system, in
particular between different instants that correspond to a same, recurring,
configuration. In summary, the temporal structure for our temporal log-
ics is the behavioral structure, and the computational structure is just a
finite-state model of the internal architecture of the system, from which the
behavioral structure is derived by some kind of operational semantics.

With this in mind, it is unfortunate, and confusing for modal logicians,
that computational structures are called Kripke structures in the model
checking community! 7 This usage is so widespread that we follow it in
the rest of this survey, and hope that the previous paragraph is sufficient
warning against possible misunderstandings.

Formally, given a set AP = {P1, P2, . . .} of atomic propositions, a Kripke
structure over AP is a tuple S = 〈Q,R, l, I〉 where

• Q = {q, r, s, . . .} is a set of states (the configurations of the system).

• R ⊆ Q × Q is a transition relation (the possible steps). For simplifi-
cation purposes, we require that R is total, i.e. for any q ∈ Q there is
at least one q′ s.t. q R q′.

• l : Q→ 2AP is a labeling of states with propositions. P ∈ l(q) encodes
the fact that P holds in state q.

• I ⊆ Q is a non-empty set of initial configurations. Often I is a single-
ton and we just write qI for the initial state.

We say S is a finite Kripke structure when Q is finite.

tricky combinatorial ways, of reactive systems where the system under study reacts to
the stimuli of its environment and where temporal logic can state assumptions about
the environment, of hardware circuits where finite-state gates are combined, and even
of arbitrary programs after some abstraction (usually on their variables) has made them
finite-state.

7Admittedly, it can be argued that Kripke structures are bona fide temporal struc-
tures for state-based branching-time pure-future logics like CTL. We do not favor this
viewpoint since it leads to allow cycles in time.
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2.4 Behaviors

A path through S is a sequence q0, q1, q2, . . . of states s.t. qiRqi+1 for i =
0, 1, . . . A path may be finite or infinite. A fullpath is a maximal path and
a run of S is a fullpath that starts from an initial state.

We use π, π′, etc. to denote fullpaths and write ΠS(q), or just Π(q), for

the set of fullpaths that start from some q ∈ Q. Then Π(S)
def
=
⋃

q∈I Π(q) is
the set of runs of S. A run is a possible behavior of the Kripke structure,
and Π(S) is the “linear-time behavior” of S. Note that, since we only al-
lowed Kripke structures with a total R, all fullpaths are infinite (which is a
welcome simplification).

For a state q ∈ Q of S, the tree rooted at q ∈ Q is the infinite tree TS(q),
often simply denoted T (q), obtained by unfolding S from q (formally, the
nodes of T (q) are the finite paths starting from q ordered by the prefix re-

lation). Then T (S)
def
= {T (q) | q ∈ I} is the set of computation trees of S.

A tree T (q) gives the full branching structure of the behaviors issued from
q, and T (S) is the “branching-time behavior” of S.

Figure 1 displays an example of a simple Kripke structure Sexm with its
runs Π(Sexm) and its computation trees T (Sexm). In this figure, time flows
from left to right along the runs and the computation trees.

The example uses a set AP = {a, b, c, d, e} of atomic propositions. Sexm

has Q = {q1, q2, q3, q4}, I = {q1, q2} (indicated by the incoming arrows)
and l given by l(q1) = {a}, l(q2) = ∅, l(q3) = {b, e}, and l(q4) = {c}. The
transitions in R are all the directed edges between states.

The runs and computation trees of a Kripke structure S are structures
collecting states of S. This definition is convenient for algorithms (as we
see later). However, from a semantical viewpoint, runs and computation
trees are considered up-to isomorphism: what particular state of S appears
at some position is irrelevant, only the labeling with propositions from AP
and the ordering relation between positions are meaningful. This is the
reason why Figure 1 does not carry state names in T (Sexm) and Π(Sexm).

Remark 2.1 The dashed arrow in Figure 1 emphasizes the fact that the set
Π(S) of can be derived from T (S). Since state names have been forgotten,
it is not possible in general to reconstruct T (S) from Π(S): the branching-
time semantics of a system provides more information about its behavior
than the linear-time semantics does [Gla01]. �
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Figure 1. Branching-time and linear-time behaviors of Sexm

2.5 Three temporal logics: LTL, CTL∗, and CTL

2.5.1 LTL

LTL, for Linear Temporal Logic, is the temporal logic with Until and Next
interpreted over runs, i.e. over any linearly ordered structure of type ω.

Syntax. Assuming a set AP = {P1, P2, . . .} of atomic propositions, the set
of LTL formulae is given by the following abstract grammar:

ϕ, ψ ::= ϕ U ψ | X ϕ | ϕ ∧ ψ | ¬ϕ | P1 | P2 | · · · (LTL syntax)

Other Boolean connectives >, ⊥, ϕ ∨ ψ, ϕ ⇒ ψ and ϕ ⇔ ψ are defined
via the usual abbreviations. A formula like X rain reads “it will rain (just
next)”, while happy U rain reads “(I) will be happy until it (eventually)
rains”. The classical temporal modalities F (“sometimes in the future”)
and G (“always in the future”) are obtained by

Fϕ ≡ > U ϕ, Gϕ ≡ ¬F¬ϕ. (1)
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Semantics. Formally, a run π is an ω-sequence σπ = s0, s1, s2, . . . of states
with a labeling lπ : {s0, s1, . . .} → 2AP with propositions from AP . One
defines when an LTL formula ϕ holds at position i of π, written π, i |= ϕ,
by induction over the structure of ϕ:

π, i |= ϕ U ψ
def
⇔ ∃j ≥ i s.t.







π, j |= ψ

and
π, k |= ϕ for all i ≤ k < j,

(S1)

π, i |= X ϕ
def
⇔ π, i+ 1 |= ϕ, (S2)

π, i |= ϕ ∧ ψ
def
⇔ π, i |= ϕ and π, i |= ψ, (S3)

π, i |= ¬ϕ
def
⇔ π, i 6|= ϕ, (S4)

π, i |= P
def
⇔ P ∈ lπ(si) (for P ∈ AP). (S5)

Observe that LTL is a future-only logic, i.e. a logic where whether π, i |= ϕ

only depends on the future si, si+1, si+2, . . . of the current situation.

Remark 2.2 Our definition assumes a reflexive U (and F), where the present
is part of the future. This is standard in programming, but some works in
temporal logic consider a strict, irreflexive, Uirr (that would be equivalent
to our X U) [Kam68]. The irreflexive Uirr strives for minimality: it is a
smart way of encoding both U and X in a single modality. The reflexive
U is easier to use when writing real formulae, and allows considering the
stutter-insensitive fragment of LTL formulae that do not use X [Lam83]. �

Remark 2.3 LTL being future-only, one often finds in the literature an
equivalent definition for its semantics, where the pair π, i is replaced by the
i-th suffix of π (seen as word).

There are two reasons why we did not follow that style of definitions
and notations in this survey. Firstly, we preferred be as close as possible
to the standard semantics of modal logics, where formulae are evaluated at
a position in a structure, and where modalities refer to other positions in
the same structure. Secondly, we want our definitions to be easily adapted
when we consider logics with past-time modalities in Section 5. �

Remark 2.4 LTL being future-only, one often finds in the literature an
equivalent definition for its semantics, where the pair π, i is replaced by the
i-th suffix of π (seen as word).

There are two reasons why we did not follow that style of definitions
and notations in this survey. Firstly, we preferred be as close as possible
to the standard semantics of modal logics, where formulae are evaluated at
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a position in a structure, and where modalities refer to other positions in
the same structure. Secondly, we want our definitions to be easily adapted
when we consider logics with past-time modalities in Section 5. �

The fundamental semantical definition leads to derived notions: we say that
a run π satisfies ϕ, written π |= ϕ, when π, 0 |= ϕ. Furthermore, and since
runs often come from a Kripke structure S, we say that S satisfies ϕ, written
S |= ϕ, when π |= ϕ for all π ∈ Π(S), i.e. when ϕ holds in all runs issued
from initial states of S. Finally, for a state q ∈ Q, we write q |= ϕ when
ϕ holds in the structure S{I←q} obtained from S by assuming that q is the
initial state.

Remark 2.5 These notions of satisfaction “in a run” and “in a Kripke
structure” consider that temporal specifications apply to the initial states.
This viewpoint, sometimes called the “anchored viewpoint” [MP89], is the
most natural for programming. A possible alternative, more natural for
logicians, is to consider that ϕ holds in π when it holds at all positions along
π (the “floating viewpoint”). It is easy to translate the floating viewpoint
into the anchored viewpoint (with a G) and the anchored viewpoint into the
floating viewpoint (with some extra labeling for the initial state, or with one
of the past-time modalities we define in Section 5). �

Other LTL-like logics. There is a convenient way of denoting linear-time
temporal logics like LTL: we write L(H1, . . .) for the logic with H1, . . . as
modalities. For example, LTL is L(U,X). This notation assumes that the
His are equipped with a semantical definition like (S1) and (S2) above.

2.5.2 CTL∗

CTL∗ extends LTL with quantification over runs. It is interpreted over
computation trees, i.e. well-founded trees where the branches are ω-type
runs.

Syntax. The set of CTL∗ formulae is given by the following abstract gram-
mar:

ϕ, ψ ::= Eϕ | ϕ U ψ | X ϕ | ϕ ∧ ψ | ¬ϕ | P1 | P2 | · · · (CTL∗ syntax)

where we underlined the extension of LTL.
E is the existential path quantifier (see semantical definition below) and

the universal quantifier is defined as usual as an abbreviation: Aϕ ≡ ¬E¬ϕ.

Semantics. We omit the formal definition of what is a computation tree
T in general and assume that T is a tree T (q) ∈ T (S). The branches of T
are runs π ∈ Π(q), called “runs in T”. Below we let π[0, . . . , i] denote the
sequence s0, . . . , si of the first i+ 1 states of π.
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One defines when a CTL∗ formula ϕ holds at position i of run π in
computation tree T , written T, π, i |= ϕ (or π, i |= ϕ when T is clear from
the context), by induction over the structure of ϕ: clauses (S1–S5) apply
unchanged (thanks to our notational choices), and we add

π, i |= Eϕ
def
⇔ π′, i |= ϕ for some π′ in T s.t. π[0, . . . , i] = π′[0, . . . , i]. (S6)

Then come the usual derived notions of satisfaction: a CTL∗ formula ϕ
holds in a tree T , written T |= ϕ, when T, π, 0 |= ϕ for all runs π in T .
We further say that ϕ holds in a Kripke structure S, written S |= ϕ, when
T |= ϕ for all T ∈ T (S).

Remark 2.6 Any LTL formula ϕ is also a CTL∗ formula. The semantical
definitions are coherent since

S |=LTL ϕ iff S |=∗CTL A ϕ iff S |=∗CTL ϕ

holds for any S. �

Like LTL, CTL∗ is a future-only logic. Therefore, it is possible to read
Eϕ as “there exists a branch starting from the current situation, and where
ϕ holds”.

CTL∗ is more expressive than LTL. The possibility of referring to the
alternative runs that branch off from the current state is used e.g. in a
formula like

A
[
(G life) ⇒ (G E X death)

]
(ϕbr)

stating that along all runs (“A”) with eternal life (“G life”) it is always
(“G”) possible (“E”) to meet death at the next moment (“Xdeath”). Obvi-
ously, this possible death assumes that we branch off and follow a different
path!

Lamport [Lam80] showed that a formula like ϕbr has no LTL equivalent,
that is, there is no LTL formula ψ such that S |= ϕbr iff S |= ψ for all
Kripke structures S. Here is why: consider the Kripke structures S1 and
S2 from Figure 2. Compared to S1, S2 has additional runs with eternal life
and no escape to death, thus S1 |= ϕbr while S2 6|= ϕbr. However, since the
two structures have isomorphic sets of runs (see Remark 2.1), S1 |= ψ iff
S2 |= ψ for any linear-time formula ψ.

Other CTL∗-like logics. Emerson and Halpern introduced a convenient
notation, “B(L)”, for branching-time logics like CTL∗ that extend a linear-
time logic L with quantification over branches. For example, CTL∗ is
B(LTL), and we introduce other instances in the rest of this survey. The
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life

death

S1:
life

death

life

S2:

Figure 2. Two Kripke structures with Π(S1) = Π(S2) and T (S1) 6= T (S2)

B(L) notation assumes L was interpreted over runs, adds a “E” path quan-
tifier, and interpret the resulting formulae over computation trees with the
semantical clause (S6) above.

2.5.3 CTL

CTL is the fragment of CTL∗ where every temporal modality (U or X) must
be under the immediate scope of a path quantifier (E or A). The semantics
is inherited from CTL∗.

An alternative view. While we have just completely defined CTL with
the above paragraph, we should mention that this does not adopt the stan-
dard way of presenting CTL. For one thing, and as the names indicate,
CTL was introduced before CTL∗, not as a fragment of it.

Requiring that temporal modalities be immediately under a path quan-
tifier entails that they appear in pairs. Thus CTL can be defined with four
modalities: EU, AU, EX and AX.

ϕ, ψ ::= E(ϕ U ψ) | A(ϕ U ψ) | EX ϕ | AX ϕ

| ϕ ∧ ψ | ¬ϕ | P1 | P2 | · · ·
(CTL syntax)

Additional modalities like EF, AF, EG and AG are defined as abbreviations.

All CTL formulae are state formulae: whether ϕ holds in some T, π, i only
depends on the current state, si, and not the future that is being considered,
i.e. π. Consequently, we often simply write T, si |= ϕ, or si |= ϕ when T is
clear.

Remark 2.7 In programming, temporal logic first considered linear runs.
There F, the classical modality for “eventually” or “sometimes in the fu-
ture”, had the obvious definition. When tree-like structures were considered,
it was not clear what “eventually” should mean, as pointed out by [Lam80].
One possibility, perhaps the simplest, was to equate F with “in some fu-
ture”. The other possibility was to read F more as “eventually”, i.e. as
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“inevitably”, or “at some point in all futures”. No single choice was expres-
sive enough, and branching-time logics offer the two options, with EF for
possibility, and AF for inevitability [BPM83]. Applied to Until, this line of
thought leads to CTL. (On the quirkiness of CTL combinators, see [RM01].)
�

EX and AX are dual modalities, and any one of them can be defined from
the other. Observe that EF and AF are not dual modalities. The dual
of EF is AG, a modality for “at all points in all futures”, that could be
rendered by “permanently” (“always” is possible but more ambiguous). The
dual of AF is EG, a modality for “at all points along one future”, which
is hard to render in English (but perhaps “possibly always” is a decent
attempt?). {EU,AF,EX} is a minimal complete set of modalities for CTL,
while {AU,EF,EX} is not complete [Lar95].

Other CTL-like logics. When H1,. . . are linear-time modalities, we write
B(H1, . . .) to denote the branching-time logic where the modalities are EH1,
AH1, . . . Hence B(H1, . . .) is the fragment of B(L(H1, . . .)) where every
modality must appear under the immediate scope of a path quantifier. For
example, CTL is B(U,X) while CTL∗ is B(L(U,X)), i.e. B(LTL).

2.6 The model checking problem

The standard model checking problem for a temporal logic L is the decision
problem associated with the language (set)

MC(L)
def
= {〈S, ϕ〉 | ϕ ∈ L and S |= ϕ}

where S ranges over all finite Kripke structures. Less formally, MC(L) is
the problem of deciding, for any inputs S and ϕ ∈ L, whether S |= ϕ or
not.

There exists many possible variants (checking that some state of a given
S satisfies a given ϕ, . . . ) and/or restrictions (to acyclic structures, . . . )
motivated by practical or by theoretical considerations: all these problems
can be called “model checking problems” and can often be addressed with
the techniques we survey below.

For the huge majority of (propositional) temporal logics L found in the
programming literature, MC(L) is decidable.

It is not fair to say that “decidability is obvious since the Kripke struc-
tures are finite” 8: while S is finite, the models in which L is interpreted,

8It is fair to say that model checking of first-order formulae over finite first-order
structures is obviously decidable (and can be done in polynomial-space). Over finite
structures, decidability for higher-order formulae is equally obvious.
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Π(S) or T (S), are not! However, Π(S) and T (S) are ω-regular objects (in
the automata-theoretic sense, see [Tho90]) that admit general decidability
results for monadic second-order logics in which our temporal logics are eas-
ily defined [Rab69, GS85].

Once the model checking problem for some temporal logic L is seen to be
decidable, the next question is to find actual algorithms solving the problem,
to evaluate their cost (essentially, their running time), and to try to prove
that no better algorithm exists.

As we explained in the introduction, computational complexity provides a
powerful framework for proving optimality of algorithms, at the cost of some
simplifying abstractions (asymptotic measures, comparing performance on
the worst cases, up-to polynomial transformations).

The cost of algorithms deciding whether S |= ϕ for some Kripke structure
S and temporal formula ϕ is given in terms of the sizes |S| and |ϕ| of the
inputs.

In practice we assume that |ϕ| is the number of symbols in ϕ seen as a
string, and |S| is the size of the underlying graph, that is, the sum |Q|+ |R|
of the number of nodes and the number of edges 9.

2.7 Model checking vs. validity

Before we start explaining optimal algorithms for model checking, let us ob-
serve that model checking is usually easier than validity or satisfiability, and
is almost never harder. The underlying reason is that, for many temporal
logics, model checking reduces to validity since it is possible to describe a
finite Kripke structure with a succinct temporal formula.

Formally, with a Kripke structure S = 〈Q,R, l, I〉 we associate a temporal
formula ϕS that describe the runs of S. If the set of states is Q = {r, s, . . .},
ϕS will use fresh propositions Pr, Ps, . . ., one for each state of S, and is
given by:

∨

q∈I

Pq ∧ G

(
∨

q∈Q

Pq ∧
∧

q 6=q′∈Q

(¬Pq ∨ ¬Pq′)

)

∧
∧

q∈Q

G

(

Pq ⇒
(

X

∨

q′∈R(q)

Pq′

)

∧
∧

P∈l(q)

P ∧
∧

P 6∈l(q)

¬P

) (ϕS)

9These definitions could be discussed (e.g. why not also consider the size of the node
labeling when defining |S|?). Let us just claim authoritatively that they assume the right
level of abstraction for the kind of complexity results we give in the rest of this survey.



14 Ph. Schnoebelen

Now, for any LTL formula ψ

S |= ψ iff ϕS ⇒ ψ is valid.

This provides a logspace reduction from LTL model checking to LTL valid-
ity. Similar reductions exist for CTL∗ (left as an exercise) and other logics.

For linear-time logics, validity can be reduced to model checking by con-
sidering a Kripke structure where all possible valuations are represented and
connected. This construction helps one to understand why model checking
and validity are so similar in linear-time logics. It does not prove they are
equivalent since the Kripke structure has size exponential in the number
of propositions we use. For branching-time logics, there is no such easy
reduction, and validity is often much more complex than model checking.

3 Model checking for the main temporal logics

3.1 Upper bounds

We start with upper bounds, i.e. results stating that there exists some al-
gorithm running inside the required complexity bounds.

3.1.1 CTL

The early model checkers from [QS82, CES86] could only be implemented
and successfully tackle non-trivial problems because they considered tem-
poral logics with a polynomial-time model checking problem:

Theorem 3.1 [CES86, AC88] The model checking problem for CTL can
be solved in time O(|S|.|ϕ|).

An O(|S|.|ϕ|) algorithm was published in [CES86] and is reproduced
in [CG87, CGP99, CS01]. It can be seen as a dynamic programming algo-
rithm where one computes (and records in some array) whether q |= ψ for
all states q of S and all subformulae ψ of ϕ. The bilinear time is achieved
since, using standard graph algorithms for reachability and strongly con-
nected components, and treating the subformulae of ψ as mere additional
propositions, one can decide whether q |= ψ in linear-time.

Later, Arnold and Crubillé gave a more elegant algorithm for model
checking CTL and more generally the alternation-free fragment of the bran-
ching-time µ-calculus [AC88, CS93]: see [BBF+01, § 3.1] for an exposition
geared towards CTL.

3.1.2 LTL

Model checking linear-time formulae is more difficult and this explains why
LTL model checkers were not available immediately. It is interesting to note



The Complexity of Temporal Logic Model Checking 15

that decidability was proved as early as [Pnu77] 10 since at that time model
checking was certainly not yet widely recognized as a worthy problem.

Theorem 3.2 [SC85] The model checking problem for LTL is in PSPACE.

Sistla and Clarke show that satisfiability of LTL formulae is in PSPACE,
and then obtain Theorem 3.2 via the reduction from model checking to
satisfiability.

Their algorithm for satisfiability relies on a small model theorem: they
show that a satisfiable LTL formula ϕ has an ultimately periodic model of
size 2O(|ϕ|). Their nondeterministic algorithm is simply to guess the model
(a path) and check it step by step: one starts by guessing what subformulae
of ϕ hold in the initial state. This set can be stored in polynomial-space.
Then (the valuation of) the next state and the set of subformulae it satisfies
are guessed. A local consistency check allows one to forget the subformulae
of the previous set and go on to the next state. At some point, the algorithm
guesses that the current state will be the one where we loop back to in the
ultimately periodic path, and simply records it before going on with the next
state. Eventually, the next state turns out to be what has been recorded: the
loop is closed and ϕ has been proved satisfiable. The small-model theorem
is important for unsatisfiable formulae: the algorithm needs some criterion
to eventually terminate on negative instances without missing positive ones.
A polynomial-space counter is enough for visiting at most 2O(|ϕ|) states.

This gives an algorithm in NPSPACE, one concludes using NPSPACE =
PSPACE.

The above algorithm is not practical: it is nondeterministic and (more
importantly) it reduces model checking to satisfiability. This would lead to

a deterministic algorithm running in time 2(|ϕ|+|S|)O(1)

.
A better method was needed:

Theorem 3.3 [LP85, VW86] The model checking problem for LTL can
be solved in time 2O(|ϕ|)O(|S|).

The first practical algorithm for LTL model checking was given in [LP85]
and had the 2O(|ϕ|)O(|S|) running time. Vardi and Wolper then described
how their Büchi automata approach for modal logics could provide the same
running time but with a clearer and conceptually simpler algorithm [VW86].

This approach is now well-known: one associates with any LTL formula
ϕ a Büchi automaton Aϕ that accepts exactly the models of ϕ (seen as

10The result was given for the L(F) fragment (the logic used in [Pnu77]) and relied on
the now standard reduction to inclusion between ω-languages (“does L(ϕ) ⊆ L(S)?”).



16 Ph. Schnoebelen

infinite words of valuations). One can then use Aϕ to check for satisfiability
of ϕ or for the existence of a run satisfying ϕ in some Kripke structure S.
The size of Aϕ is 2O(|ϕ|), hence Theorem 3.3. See [Var96, Wol01] for more
details.

There now exists even more direct approaches based on alternating au-
tomata [Var95] but the algorithms implemented in popular LTL model
checkers (such as Spin [Hol97]) are based on standard nondeterministic au-
tomata.

3.2.3 CTL∗

In principle, model checking CTL∗ is an easy adaptation of the model check-
ing algorithms for LTL, as was observed by Emerson and Lei:

Theorem 3.4 [EL87, CES86] For any linear-time future-only logic L,
there is a polynomial-time Turing reduction from model checking B(L) to
model checking L.

Hence if L has model checking in some complexity class C, then B(L) has
model checking in PC .

This applies to CTL∗ since CTL∗ is B(LTL): we only need to remember
that LTL has PSPACE-complete model checking.

Corollary 3.5 [EL87, CES86] The model checking problem for CTL∗ is
in PPSPACE, that is, in PSPACE.

The algorithm underlying Theorem 3.4 is quite simple: one uses a dy-
namic programming approach à la CTL and first computes in which states
the subformulae are satisfied before dealing with the superformula. For a
formula of the form Eϕl where ϕl is a linear-time formula, it is enough to
use an LTL model checking algorithm.

We illustrate this on a simple example: imagine ϕ is AFG E[(P1 ⇒
XP2)UP3]. We replace the subformulae starting with a universal path quan-
tifier by fresh propositions (a form of renaming). Here ϕ is rewritten as
AFG¬P where P stands for A¬[(P1 ⇒ XP2)UP3]. Then an LTL model
checking algorithm computes which states satisfies A¬[(P1 ⇒ XP2)UP3]
and label them with the new proposition P . We then reuse the LTL model
checker on the modified Kripke structure, checking where AFG¬P holds. Fi-
nally, one can perform CTL∗ model checking with O(|S| × |ϕ|) invocations
of an LTL model checker on subformulae of ϕ:

Corollary 3.6 The model checking problem for CTL∗ can be solved in time
2O(|ϕ|)O(|S|2).
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The 2O(|ϕ|)O(|S|2) bound assume that we invoke the LTL model checker
for all subformulae and all states of S. But the automata-theoretic method
underlying Theorem 3.3 easily gives us all the states in S where a same
subformula holds in just one invocation.

Corollary 3.7 [EL87, KVW00] The model checking problem for CTL∗

can be solved in time 2O(|ϕ|)O(|S|).

Hence model checking for CTL∗ is really no harder than for LTL.

It is surprising that no real CTL∗ model checker has yet been made
available (but see [VB00]). The underlying reasons probably have to do
with the hiatus between the pronouncements of theoretical complexity and
what is observed in practice. Another factor is that, for non-specialists,
branching-time logics are less natural than linear-time ones: witness the
AX AF P 6≡ AF AX P conundrum [Var01].

3.2 Lower bounds

Lower bounds on the complexity of a computational problem state that
solving this problem requires at least a given amount of computing power.
Such lower bounds are used to prove that a problem is inherently difficult,
or that a known algorithm is “optimal” and cannot be improved (made
more efficient) in an essential way.

3.2.1 CTL

Polynomial-time algorithms for model checking CTL are “optimal” since
the problem is P-complete:

Theorem 3.8 The model checking problem for CTL is P-hard.

While this result is not unknown in the model checking community, we
failed to find any mention of it in the early literature.

In fact, model checking is already P-hard for the B(X) and B(F) frag-
ments of CTL. A direct proof is by reduction from CIRCUIT-VALUE,
well-known to be P-complete even when restricted to monotone (no nega-
tion) synchronized (connections between gates respect layers) circuits with
proper alternation [GHR95]. We illustrate the reduction on an example:
Consider the circuit C from Fig. 3. C can be seen as a Kripke structure SC

where the initial state qI is at the top and where transitions go downward.
Then

C evaluates to 1 iff SC |=

ϕC

︷ ︸︸ ︷

AX EX AX EX 1.

Observe that, in this construction, the B(X) formula ϕC depends on (the
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∨ ∨ ∨
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layer 3:

layer 4:

Figure 3. C, an instance of CIRCUIT-VALUE.

depth of) C 11.

According to standard opinion in complexity theory, proving that model
checking for CTL is P-hard means that, very probably,12 it cannot be solved
using only polylogarithmic space and does not admit efficient parallel algo-
rithms: the problem is inherently sequential and requires storing a polyno-
mial number of intermediary results.

3.2.2 LTL

Polynomial-space algorithms for model checking of LTL are “optimal” since
the problem is PSPACE-complete:

Theorem 3.9 [SC85] The model checking problem for LTL is PSPACE-
hard.

We give a proof based on reduction from a tiling problem. This was in-
spired by Harel’s proof (see [Har85]) that satisfiability of LTL formulae is
PSPACE-hard (a result due to [HR83]): as is common with linear-time tem-
poral logics, model checking and satisfiability are closely related problems,
and proofs can often be transfered from one problem to the other.

11This is inescapable in view of Theorem 6.3.2 below. A reduction using always the
same formula is possible with the alternation-free fragment of the branching-time µ-
calculus, an extension of CTL for which Theorem 6.3.2 does not apply.

12“Very probably” because it has not yet been proved that POLYLOG − SPACE or
NC do not coincide with P (even though most researchers believe this is the case) [Joh90,
Pap94]. The situation here is like with the P 6= NP? question.
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Assume C = {c1, c2, . . . , cl} is a set of colors and D ⊆ C4 is a set of tile
types : d ∈ D has the form d = 〈cup, cright, cdown, cleft〉. A tiling of some
region R ⊆ Z

2 is a mapping t : R → D s.t. neighboring tiles have matching
colors on shared edges. The PSPACE-complete problem we reduce from is:
given some D of size n and two colors c0, c1 ∈ C, is there some m ∈ N and
a tiling of the n×m grid s.t. the bottom edge of the grid is colored with c0
and the top edge with c1.

With an instance D = {d1, . . . , dn} of the problem we associate the
Kripke structure SD depicted in Fig. 4. The states are labeled with tile

l lim

d1

d2

dn

d1

d2

dn

d1

d2

dn

r lim

end

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

x = 1 x = 2 x = n

Figure 4. The Kripke structure SD associated with a tiling problem D

types from D and with additional propositions like “x = k” (depending on
position) or “up = c” (depending on tile type). A path π through SD lists
the tiles on the first row, then loops back to the leftmost state and lists
the tiles on the second row, etc., until it perhaps decides to stop and loop
forever in the end state. It remains to state that such a path is indeed a
tiling:
1. The lower edge and the upper edge (exist and) have colors c0 and c1:

n∧

k=1

X
k(down = c0)

∧

F

(

l lim ∧
n∧

k=1

X
k(up = c1) ∧ X

n+2end

)

(ϕ1)

2. and neighboring tiles have matching edges:

G

∧

c∈C

(

right = c ⇒ X (r lim ∨ left = c)

∧ up = c ⇒ Xn+2 (end ∨ down = c)

)

(ϕ2)
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We now have the required reduction since obviously

D is not solvable iff SD |= ¬(ϕ1 ∧ ϕ2).

3.2.3 CTL∗

Since LTL is a fragment of CTL∗, Theorem 3.9 entails:

Corollary 3.10 The model checking problem for CTL∗ is PSPACE-hard.

3.3 Completeness results

When lower bounds and upper bounds coincide we obtain completeness in
a given complexity class. This is indeed the case with the three model
checking problems we considered in Section 3, as summarized in Table 1.

CTL P-complete
LTL PSPACE-complete
CTL∗ PSPACE-complete

Table 1. Model checking the main temporal logics

The table shows a big contrast between CTL and LTL! In the early days
of model checking, such results were used to argue that branching-time
logics are preferable to linear-time logics.

In reality, the situation is not so clear-cut, as we see in Sections 6 and 7.

4 Model checking fragments of temporal logic

Once the cost of model checking the main temporal logics has been precisely
measured, it is natural, for the theoretician and the practitioner alike, to
look at fragments, i.e. sublanguages defined in some way or other. The goal
is to better understand what makes model checking difficult or easy, and to
ascertain the scope of the results we presented in the previous sections. For
the practitioner, it is useful to identify fragments for which the complexity
is reduced: if these fragments occur naturally in practice, the corresponding
specialized algorithms may be worth implementing.

Remark 4.1 Clearly, similar motivations exist for considering extensions.
For the practitioner, it is useful to know that an implemented algorithm
can in fact be used for a richer and more expressive logic. Indeed there
exists many proposals for logics that extend LTL (sometimes greatly) with-
out being essentially more difficult for model checking. Four well-known
examples are CTL∗ (as seen in Section 3.2), LTL extended with (essen-
tially) Büchi automata [Wol83], LTL with existential quantification over
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propositions [SVW87], and LTL+Past that we consider in Section 5 below.
�

4.1 Fragments of LTL

4.1.1 Restricted set of modalities

Some fragments of LTL are obtained by restricting the allowed modalities.
E.g. L(U) is LTL where U is the only allowed modality (X is not allowed
but F is since it can be expressed with U). Thus LTL is L(U,X) and L(F)
is a fragment of L(U) that coincides with L(G) (since F and G are dual
modalities).

Theorem 4.2 [SC85] The model checking problem for L(F,X) is PSPACE-
complete.

Indeed our proof of Theorem 3.2 only used L(F,X) formulae!

Theorem 4.3 [SC85] The model checking problem for L(U) is PSPACE-
complete.

One just has to show that the lower bound still applies. For this we
modify the reduction from Theorem 3.2 so that it uses L(U) formulae:

(l lim ∨ down=c0) U r lim

∧ F

(

l lim ∧ (l lim ∨ up=c1 ∨ r lim) U end

)
(ϕ′1)

G

n−1∧

k=1

x=k ⇒
∧

c∈C




up=c ⇒ x=k U

[

x 6=k U

[
end ∨
x=k ∧ down=c

]]

∧ right=c ⇒ x=k U left=c



 (ϕ′2)

With Theorems 4.2 and 4.3 we have two instances of situations where
considering strict fragments 13 of LTL does not simplify the model checking
problem in an essential way. But further restricting the set of allowed
modalities decreases the complexity of model checking, as the next two
results show:

Theorem 4.4 [SC85] The model checking problem for L(F) is coNP-com-
plete.

Membership in coNP is a consequence of a small model theorem: a satisfi-
able L(F) formula ϕ has an ultimately periodic model of size O(|ϕ|) [ON80,
SC85]. The reduction from model checking to satisfiability (section 2.6)

13That L(F, X) and L(U) are less expressive than LTL is well-known. See [EVW02,
KS02] for recent results on these issues.
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translates this as: if S 6|= ϕ then S has an ultimately periodic path of
polynomial-size that does not satisfy ϕ. It is enough to guess this counter-
example path and check it.

Hardness for coNP can be explained by reduction from the validity prob-
lem for Boolean formulae in clausal form: assume θ is a 3SAT instance with
variables amongXn = {x1, . . . , xn}, e.g. θ is “

(
x1∧x2∧x4

)
∨
(
x1∧· · ·

)
∨· · · ”.

Consider the structure Sn from Fig. 5. There is a one-to-one correspondence
between runs in Sn and valuations for Xn. Thus

θ is valid iff Sn |=
(
Fx1 ∧ Fx2 ∧ Fx4

)
∨
(
Fx1 ∧ · · ·

)
∨ · · · ,

providing the required reduction.

x1

x1

x2

x2

x3

x3

. . .

xn

xn

Figure 5. Sn, a structure for picking Boolean valuations of {x1, . . . , xn}

Theorem 4.5 [DS02] The model checking problem for L(X) is coNP-com-
plete.

Here the small model theorem is trivial: if ϕ has temporal depth k then
only the k first states of a linear-time model for ϕ are relevant. For coNP-
hardness, we proceed as we just did:

θ is valid iff Sn |=
(
X

1x1 ∧ X
2x2 ∧ X

4x4

)
∨
(
X

1x1 ∧ · · ·
)
∨ · · ·

It is possible to consider further natural “subsets” of temporal modalities
among {X,F,U}:

L(
∞

F) is the fragment of L(F ) where F can only be used in the form
∞

F (that
is, GF). This fragment is useful for stating fairness properties and it
does not have the full power of L(F) (e.g., ordering constraints cannot
be stated).

We leave the reader to adapt the proof of Theorem 4.4 and show that

the model checking problem for L(
∞

F) is coNP-complete [EL87].

L(U−) is the fragment of L(U) where only “flat Until” is allowed. Flat Until
is Until where only propositional formulae (no temporal modality) is
allowed in the left-hand side. E.g. aU(bUc) uses flat Until but (aUb)Uc
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does not. In expressive power, flat Until lies strictly between F and
U [Dam99].

Since the proof of Theorem 4.3 only uses L(U−) formulae, we conclude
that model checking for L(U−) is PSPACE-complete [DS02].

The results of this section are summarized in Table 2.

LTL PSPACE-complete

L(U)
L(U−) PSPACE-complete
L(F,X)

L(F)

L(
∞

F) coNP-complete
L(X)

Table 2. Model checking fragments of LTL (= L(U,X))

4.1.2 Restricted temporal depth

Let H1, . . . be some temporal modalities. For k ∈ N, we write Lk(H1, . . .) for
the fragment of L(H1, . . .) where only formulae of temporal depth at most
k are allowed.

It is natural to ask whether enforcing such a depth restriction can make
model checking easier. For example, for many modal logics considered
in [Hal95], satisfiability becomes polynomial-time when the modal depth
is bounded.

The situation is different with LTL: for modalities like U and F, (satis-
fiability and) model checking is already at its hardest with a low temporal
depth 14, as stated by the next two results.

Theorem 4.6 [DS02] The model checking problem for L2(U) is PSPACE-
complete.

The proof of Theorem 4.3 uses ϕ′1, ϕ
′
2 ∈ L3(U), so we already know

PSPACE-hardness for L3(U)! We let the reader adapt this and prove
PSPACE-hardness for L2(U) as well (or even for L2(U−)).

Theorem 4.7 [DS02] The model checking problem for L1(F) is coNP-
complete.

14By contrast, expressive power always increases with temporal depth [EVW02, KS02].
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Indeed the proof of Theorems 4.4 shows hardness for the L1(F) fragment.

This also applies to L1(
∞

F).

Below these thresholds, complexity is decreased:

Theorem 4.8 The model checking problem for L1(U,
∞

F,X) is coNP-complete.

This result is important since, as we see in Section 4.2 below, it has ap-
plications for branching-time logics like CTL and CTL+, where path quan-
tification only allows path formulae without nesting of temporal modalities,
i.e. path formulae in some L1(H1, . . .).

The ideas behind Theorem 4.8 are easy to summarize. Hardness was
proved with Theorem 4.4. Membership in coNP comes from a small model

theorem: a satisfiable L1(U,
∞

F,X) is satisfiable in a linear-sized model (which
lets us proceed as in the proof of Theorem 4.4). For the L1(U,X) frag-
ment, the small model theorem is proved in [DS02, Section 7]. As shown

in [LMS01, Section 6], this can further be extended to the L1(U,X,
∞

F) frag-
ment, and in fact to any fragment that can be translated efficiently in
FO2(<), the two-variables fragment of the first-order logic of linear or-
derings [RS00].

Theorem 4.9 [DS02] For any k ∈ N, the model checking problem for
Lk(X) can be done in polynomial time.

This result does not have much practical use. A possible polynomial-
time (in fact, logspace) algorithm is simply to look at all tuples of k + 1

consecutive states in the Kripke structure. This runs in time O(|S|k+1×|ϕ|)
which, for fixed k, is polynomial-time.

4.1.3 Other fragments of LTL

Other restrictions have been investigated but they do not seem as inter-
esting as far as model checking is concerned. These may have to do with
bounding the number of atomic propositions allowed in temporal formu-
lae, or restricting the use of negations, or forbidding that a given modality
occurs in the scope of another given modality (most notably, forbidding
future-time modalities to appear under the scope of past-time modalities).
Examples of such investigations are reported in [SC85, DS02, Mar02].
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4.2 Fragments of CTL∗

There does not seem to be much to say about model checking 15 fragments
of CTL: they cannot be harder than CTL itself and the P-hardness proof of
Theorem 3.8 only needs EX and one proposition, or EF and two propositions!

Much more interesting are the fragments of CTL∗. In fact, a good deal
of effort has been spent trying to extend CTL (because it lacks expres-
sive power, most notably for fairness properties) without losing the efficient
model checking algorithms that CTL permits 16.

4.2.1 A selection of branching-time logics

Several natural fragments of CTL∗ have been identified and named [ES89,
Eme90]. Below we consider:

CTL+: an extension of CTL, introduced in [EH86], and where Boolean
combinations (not nesting) of temporal modalities are allowed un-
der the scope of a path quantifier. E.g. CTL+ allows formulae like
A(aUb ⇒ cUd). There exists a translation from CTL+ to CTL [EH85]
(hence the two logics have the same expressive power) but such a
translation must produce exponential-size formulae [Wil99b, AI01].

CTL+ is B(U,X,∧,¬) in the notation of [EH86], but we prefer to see
it as B(L1(U,X)).

ECTL: an extension of CTL, introduced in [EH86], where the E
∞

F and A
∞

F

modalities are allowed, providing some expressive power for fairness

properties 17. Thus ECTL is B(U,X,
∞

F) in the notation of [EH86,
Eme90]. Emerson and Halpern showed that ECTL is not sufficiently
expressive for typical situations where fairness issues appear, as when

one needs to write A((
∞

Fa1 ∧
∞

Fa2 ∧ . . . ∧
∞

Fan) ⇒ F end).

ECTL+: was introduced in [EH86] and is B(U,X,
∞

F,∧,¬) in Emerson’s no-

tation, or equivalently B(L1(U,X,
∞

F)). It allows one to relativize CTL
formulae with any kind of fairness properties.

15The situation is more interesting for the satisfiability problem. It is EXPTIME-
complete for CTL [EH85] and this leaves much room for fragments that could be less
intractable, see [ESS92] for example.

16The choice of what are the CTL modalities is mostly a historical accident (see Re-
mark 2.7) and it is possible to define more expressive logics for which essentially the
same model checking algorithm still applies. Examples are ECTL (see below), or the
logic from [KG96].

17Only E
∞

F is a real addition to CTL since A
∞

F can be defined as AG AF.



26 Ph. Schnoebelen

BT ∗: is B(L(F)), i.e. a fragment of CTL∗ where F is the only allowed modal-
ity. Thus BT ∗ combines full branching-time power à la CTL∗ but only
based on Eventually, the classical temporal modality, instead of Until
and Next. The name BT ∗ is from [CES86].

BX ∗: is B(L(X)), i.e. a fragment of CTL∗ where X is the only allowed
modality. It is even more basic than BT ∗ and, to the best of our
knowledge, had not been identified in the literature.

4.2.2 Model checking fragments of CTL∗

As far as model checking is concerned, ECTL behaves like CTL:

Theorem 4.10 The model checking problem for ECTL is P-complete, and
can be solved in time O(|S| × |ϕ|).

This is because the standard CTL model checking algorithm is easily

extended to deal with the E
∞

Fϕ subformulae: one simply has to find the
strongly connected components in the Kripke structure, select those where
at least one node satisfies ϕ, and gather all states from which these con-
nected components can be reached [CES86].

In fact, the O(|S| × |ϕ|) time can be achieved for any B(H1,H2, . . . ,Hk)
logic based on a finite set of “existential path modalities” (see [RM01,
Rab02]).

When it comes to the other branching-time logics in our selection, the
situation is not so simple. They all have the form B(L(. . .)) for a linear-
time temporal logic L(. . .) with a coNP-complete model checking problem:
(see Theorem 4.8 for CTL+, and ECTL+, Theorem 4.4 for BT ∗, and Theo-
rem 4.5 for BX ∗). Thus Theorem 3.4 applies and gives a PcoNP, or equiva-
lently PNP, model checking procedure for these logics. Of course the coNP
lower bound still applies. Hence

Corollary 4.11 The model checking problem for CTL+, ECTL+, BT ∗ and
BX ∗ is NP-hard, coNP-hard and can be solved in PNP, i.e. in ∆p

2.

∆p
2 is one of the levels in Stockmeyer’s polynomial-time hierarchy [Sto76].

Formally, a problem is in PNP if it can be solved by a deterministic polyno-
mial-time Turing machine making (adaptive) queries to an NP-complete set,
e.g. to an oracle for satisfiability 18. That model checking CTL+ and BT ∗ is

18Observe that the number of queries and their lengths are polynomially bounded since
the algorithm has to produce them in polynomial-time. By “adaptive queries” we mean
that the queries are produced and answered sequentially, so that the formulation of any
query may depend on the answers that were received for the previous queries.
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in ∆p
2 was already observed in [CES86, Theorem 6.2]. It is widely believed

that ∆p
2 is strictly below PSPACE (inside which the whole polynomial-time

hierarchy resides) so that temporal logics like ECTL+ or BT ∗ are believed
to have easier model checking problems than LTL or CTL∗.

The gap between the lower bound (NP-hard and coNP-hard) and the
upper bound (in ∆p

2) has only been recently closed:

Theorem 4.12 [LMS01] The model checking problem for CTL+, ECTL+

and BT ∗ is ∆p
2-complete.

In fact the hardness proofs in [LMS01] even apply to B(L1(F)) and

B(L1(
∞

F)). Theorem 4.12 is mainly interesting for complexity theorists:
there exist very few problems known to be complete for ∆p

2 (see [Wag87,
Kre88]), in particular none from temporal logic model checking 19, and
any addition from a new field helps understand the class. The techniques
from [LMS01] also have more general relevance: they have been used to
show ∆p

2-completeness of model checking for some temporal logics featuring
quantitative informations about time durations [LMS02a].

In the case of BX ∗, the ∆p
2 upper bound can be improved:

Theorem 4.13 [Sch03] Model checking for BX ∗ is PNP[O(log2 n)]-complete.

Here PNP[O(log2 n)], from [CS96], is the class of problems that can be
solved by a deterministic polynomial-time Turing machine that only makes
O(log2 n) queries to an NP-complete set (where n is the size of the input).
It should be noted that, to the best of our knowledge, this is the first ex-
ample of a problem complete for this class!

The results of Section 4.2 are summarized in Table 3. This does not
provide the good compromise between expressive power and low model
checking complexity we were looking for: ECTL suffers from essentially
the same expressivity limitations that plague CTL (the same is true of the
alternation-free fragment of the branching-time µ-calculus).

5 Temporal logic with past

The temporal logics we have considered until now only had future-time
modalities, dealing with future events. In fact, in most of programming,
temporal logic, i.e. “logic of time”, means “logic of the future”.

19But recently some model checking problems for propositional default logics have been
found ∆p

2
-complete [BG02].
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CTL∗ = B(L(U,X)) PSPACE-complete

ECTL+ = B(L1(U,X,
∞

F)) ∆p
2-complete

CTL+ = B(L1(U,X)) ∆p
2-complete

BT ∗ = B(L(F)) ∆p
2-complete

BX ∗ = B(L(X)) PNP[O(log2 n)]-complete

ECTL = B(U,X,
∞

F) P-complete
CTL = B(U,X) P-complete

Table 3. Model checking fragments of CTL∗

At first sight, this situation seems a bit strange. For logicians and philoso-
phers, temporal logic deals with both past and future, often treating them
symmetrically. Furthermore, it is easy to observe that natural languages
have a richer set of constructs (tenses, adverbs, . . . ) dealing with past than
with future, and that our own sentences, in everyday speech or mathemat-
ical papers, use more past than future.

There are two explanations usually put forward when it comes to ex-
plaining this apparently slanted view from programming. Firstly, computer
scientists deal with dynamical systems (e.g. Turing machines) that move
forward in time, and the questions they are interested in concern what will
happen in the future (e.g. will the Turing machines halt?). Secondly, a fa-
mous result by Gabbay states that past can be dispensed with, in a way
that we make completely precise below, after the necessary definitions.

5.1 Past-time modalities

The past-time modalities most commonly used in programming are S (“Since”),
F−1, G−1 and X−1, i.e. they are the past-time counterparts of U, F, G and
X 20.

Syntactically, one defines PLTL 21, or LTL + Past , with the following
grammar:

ϕ, ψ ::= ϕ U ψ | ϕ S ψ | X ϕ | X
−1 ϕ | ϕ ∧ ψ | ¬ϕ | P1 | · · ·

(PLTL syntax)

where we underlined what has been added to the LTL syntax from Sec-

20Sometimes the names P (“Past”) and Y (“Yesterday”) are used instead of F−1 and
X−1 but we prefer the emphasis on symmetry. Admittedly, we would have been more
consistent if we had used U−1 instead of S.

21Naming conventions are not yet 100% stable, and some works can be found where
PLTL stands for “Propositional Linear temporal Logic”, which is just plain LTL.
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tion 2.5. One then defines F−1 and G−1 as abbreviations:

F
−1 ϕ ≡ > S ϕ G

−1 ϕ ≡ ¬F
−1¬ϕ (2)

Semantically, PLTL formulae are still interpreted at positions along linear
runs, and we complement (S1–5) from Section 2.5 with the following:

π, i |= ϕ S ψ
def
⇔ ∃j ∈ {0, 1, . . . , i} s.t.







π, j |= ψ

and
π, k |= ϕ for all j < k ≤ i,

(S7)

π, i |= X
−1ϕ

def
⇔ i > 0 and π, i− 1 |= ϕ. (S8)

Thus S and X−1 behaves as mirror images of U and X, so that sad S rain

reads “(I) have been sad since it rained”, X−1 rain reads “it rained (just pre-
viously)”, F−1 rain reads “it rained (sometimes in the past)”, and G−1 rain

reads “it has always rained”.
A pure-past formula (resp. pure-future) is a formula that only uses the

past-time modalities X−1 and S (resp. the future-time X and U). Hence LTL
is the pure-future fragment if LTL + Past .

Remark 5.1 The only asymmetry between past and future is that, since
the models are ω-words, there is a definite starting point (past is finite)
and no end point (future is forever). This difference is imposed by the
applications in programming, but it is unimportant for the main theoretical
results. �

5.2 The expressive power of LTL + Past

Certainly, as was observed in [LPZ85], some natural language statements
are easier to translate in LTL + Past than in LTL. For example, while a
specification like “any fault eventually raises the alarm” is translated as the
LTL formula

G (fault ⇒ F alarm), (ϕ→)

we would naturally translate “any alarm is due to some (earlier) fault” as

G (alarm ⇒ F
−1 fault), (ϕ←)

an LTL + Past formula.
Observe that both formulae start with a G because our informal “any

fault” and “any alarm” mean a fault at any time and an alarm at any time,
and more precisely at any time along the runs (the future) of the system.
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There is an equivalent way of stating the second property with only
future-time constructs:

¬
[
(¬fault)U(alarm ∧ ¬fault)

]
, (ϕ′←)

which could be read “one never sees an alarm after no fault”. This equiv-
alent formula is only equivalent at the start of the system:

Definition 5.2 (Global vs. initial equivalence)
1. Two PLTL formulae are (globally) equivalent, written ϕ ≡ ψ, when
π, i |= ϕ iff π, i |= ψ for all linear-time models π, and positions i ∈ N.
2. Two PLTL formulae are initially equivalent, written ϕ ≡i ψ, when π, 0 |=
ϕ iff π, 0 |= ψ for all linear-time models π.

Clearly global equivalence entails initial equivalence but the converse is
not true: e.g. F−1 a ≡i a but F−1 a 6≡ a. In our earlier example ϕ← ≡i ϕ

′
←

but the two formulae are not globally equivalent. Since ϕ ≡i ψ entails
(S |= ϕ iff S |= ψ) for any S, initial equivalence is enough for comparing
model checking specifications. Of course, for the future-only LTL logic, ini-
tial and global equivalence coincide.

Now Gabbay’s Theorem compares PLTL and LTL with initial equiva-
lence:

Theorem 5.3 [Gab89, GPSS80] Any PLTL formula is globally equiva-
lent to a separated PLTL formula, i.e. a Boolean combination of pure-past
and pure-future formulae.

Corollary 5.4 (Gabbay’s Theorem) Any PLTL formula is initially equiv-
alent to an LTL formula.

As was alluded to in the introduction of Section 5, Gabbay’s Theorem is
one more explanation of why computer scientists often neglect past-time
modalities in their temporal logics.

It turns out that there are good reasons to rehabilitate past-time modal-
ities: not only does it make formulae easier to write (compare ϕ← with
the indirect ϕ′←), but it also gives added expressive power when one takes
succinctness into account:

Theorem 5.5 [LMS02b] PLTL can be exponentially more succinct than
LTL.



The Complexity of Temporal Logic Model Checking 31

More precisely, [LMS02b] considers the following sequence (ψn)n=1,2,... of
formulae:

G

[[ n∧

i=1

(
Pi ⇔ F

−1(Pi ∧ ¬X
−1>)

)]

⇒
(
P0 ⇔ F

−1(P0 ∧ ¬X
−1>)

)
]

. (ψn)

ψn states that every future state that agrees with the initial state on propo-
sitions P1, . . . , Pn also agree on P0. The colloquialism F−1(. . . ∧ ¬X−1>) is
used to talk about the initial state, the only state where X−1> does not
hold. Then, using results from [EVW02], it can be shown that any LTL
formulae initially equivalent to the ψns have size in Ω(2n).

At the moment, it is not known if PLTL formulae can be translated into
LTL formulae with a single exponential blowup, or if the gap in Theorem 5.5
can be further widened 22.

Remark 5.6 The succinctness gap between LTL + Past and LTL is im-
portant for model checking but not for validity. There exists a succinct
satisfiability-preserving reduction from LTL + Past to LTL (left as an ex-
ercise), using fresh propositions that we call “history variables” in the
programming community. However, introducing polynomially-many fresh
propositions leads to an exponential blowup when we look at the size of
Kripke structures, so that this translation is not practical for model check-
ing. �

5.3 CTL + Past and CTL∗ + Past

Past-time modalities can be added to branching-time logics too. Here we
concentrate on proposals where future is branching but past is linear. While
this may seem like just one more arbitrary (and awkward) choice, it is
actually the one more consistent with the view that a Kripke structure
actually describes a computation tree, and that temporal logic is a logic for
describing properties of this tree.

In classical temporal logic, this is referred to as “unpreventability of the
past” and leads to so-called Ockhamist temporal logics [Pri67, Bur84]. Log-
ics with a branching past do not adhere to this view and really talk about
something other than the behavior, most often the internal structure of the
system 23.

22Gabbay’s effective procedure is not known to be elementary, however an elementary
upper bound on formula size can be obtained by combining the standard translation
from PLTL to counter-free Büchi automata and the elementary translation from these
automata to LTL using results from [Wil99a].

23The interested, or unconvinced, reader will find a longer argumentation in [LS00a].
Proposals with branching past can be found e.g. in [Rei89, Wol89, Sti92, Kam94, KP95].
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Syntactically, one defines PCTL∗, or CTL∗ + Past , with the following
grammar:

ϕ, ψ ::= ϕ S ψ | X
−1 ϕ | · · · usual CTL∗ syntax · · · (PCTL∗ syntax)

The defining abbreviations for F−1 and G−1 (2) still apply. The semantics
is just obtained by combining clauses (S7) and (S8) from Section 5.1 with
(S1–6), the semantics of CTL∗. PCTL is the fragment of PCTL∗ where
every future-time modality (U or X) is immediately under the scope of path
quantifier (A or E) 24.

As far as expressive power is concerned, and comparing logics with the
same initial equivalence criterion we used in Section 5.2, the following results
are proved in [LS95]:

• PCTL∗ can be translated to CTL∗,

• PCTL is strictly more expressive than CTL,

• the CTL + F−1 fragment of PCTL can be translated to CTL.

The translations are not succinct: CTL + F−1 can be exponentially more
succinct than CTL (a consequence of [Wil99a]) and PCTL∗ can be expo-
nentially more succinct than CTL∗ (a consequence of Theorem 5.5).

5.4 Model checking LTL + Past

While LTL + Past is more succinctly expressive than LTL, this does not
entail obviously harder model checking problems.

Theorem 5.7 [SC85] The model checking problem for PLTL is PSPACE-
complete.

In fact [SC85] directly gave their small model theorem for PLTL, and the
proof of Theorem 3.2 can be extended to PLTL.

The automata-theoretic approach of Vardi and Wolper extends as well,
and with a PLTL formula ϕ, one can associate a Büchi automaton with
2O(|ϕ|) states (see [LPZ85, VW86]), so that PLTL model checking can be
done in time 2O(|ϕ|)O(|S|) as for LTL and CTL∗.

An empirical observation is that, in most cases, linear-time logic with
past is not more difficult than its pure-future fragment. For example, The-
orem 4.4 can be extended to:

24These definitions for PCTL and PCTL∗ are from [LS95]. These logics are equivalent
to the CTLlp and CTL∗lp (lp for “linear past”) from [KP95]. Our PCTL∗ further coincides

with the OCL logic from [ZC93]. The PCTL∗ from [HT87] differs from our PCTL∗ since
its path quantifiers always forget the past (see [LS95, LS00a] for a formalism allowing
both cumulative and forgettable past).
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Theorem 5.8 [Mar02] The model checking problem for L(F,F−1) is coNP-
complete.

Here too the coNP algorithm given in [Mar02] relies on a small model the-
orem: satisfiable L(F,F−1) formulae admit a linear-sized ultimately periodic
model.

5.5 Model checking CTL + Past and CTL∗ + Past

“Very probably” CTL+Past does not allow polynomial-time model checking
algorithms:

Theorem 5.9 [LS00a] The model checking problem for PCTL is PSPACE-
hard.

This can be shown via a direct reduction from QBF (a.k.a. Quantified
Boolean Formula, a well-known PSPACE-complete problem). We illustrate
this on an example: consider a QBF formula θ of the form

∃x1∀x2∃x3∀x4 · · · ∃xn

[(
x1 ∧ x2 ∧ x4

)
∨
(
x1 ∧ · · ·

)
∨ · · ·

]

(θ)

Then obviously θ is valid iff

Sn |= EX AX EX AX · · ·EX

[(
F

−1x1 ∧ F
−1x2 ∧ F

−1x4

)
∨
(
F

−1x1 ∧ · · ·
)
∨ · · ·

]

in the structure Sn (see Figure 5) we used in Section 4.1. The reduction
applies to restricted fragments of PCTL: one future-time modality and one
past-time modality is enough.

At the other end of the spectrum, model checking for CTL∗ + Past is in
PSPACE:

Theorem 5.10 [KPV98] Model checking for PCTL∗ is PSPACE-complete.

As a corollary, we obtain PSPACE-completeness for PCTL too.

The results of Section 5 are summarized in Table 4.

LTL PSPACE-complete LTL + Past PSPACE-complete
CTL P-complete CTL + Past PSPACE-complete
CTL∗ PSPACE-complete CTL∗ + Past PSPACE-complete

Table 4. Model checking temporal logics with past
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6 The two parameters of model checking

Table 1 that concludes Section 3.3 shows that model checking CTL formulae
is much easier than model checking LTL formulae, so that it seems CTL is
perhaps the better choice when it comes to picking a temporal logic in which
to state behavioral properties. Indeed this line of argument was widespread
in the early days of model checking.

However, complexity results like the ones we surveyed in previous sections
are not the most relevant for assessing the cost of model checking in practical
situations. For these situations, it is sensible to distinguish between how
much each of the two parameters contribute separately to the complexity of
model checking. These two parameters are the Kripke structure S and the
temporal formula ϕ. In practical situations, |S| is usually quite large and
|ϕ| is often small, so that what matters most is the impact |S| has on the
overall cost.

When Lichtenstein and Pnueli published their LTL model checking al-
gorithm that runs in time 2O(|ϕ|)O(|S|) [LP85], they explained that the
algorithm is linear-time w.r.t. the Kripke structure, so that it is compara-
ble to CTL model checking. They further said that the 2O(|ϕ|) factor is
not so important in practice, most formulae being short anyway, and this
is validated by current practice showing that LTL model checking is very
feasible.

6.1 Program-complexity and formula-complexity

These considerations can be stated and studied in the complexity-theoretic
framework. The program-complexity of a model checking problem MC(L)
is its computational complexity measured as a function of the Kripke struc-
ture S (the program) only, with the temporal formula being fixed. The
formula-complexity of MC(L) is its computational complexity measured as
a function of ϕ only, with S fixed. For model checking, these notions were
introduced in [VW86], inspired from similar ideas from database query-
ing [Var82].

Characterizing the program- and the formula-complexity of model check-
ing allows one to measure the impact each input must have on the overall
cost. In such investigations, it is natural to look for specialized algorithms
that are asymptotically optimal in their handling of one parameter, perhaps
to the detriment of the other parameter.

As an illustration, let us mention the following two results based on
algorithms that try to reduce the space required for CTL model checking:
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Theorem 6.1 [KVW00] The model checking problem for CTL can be
solved in space O

(
|ϕ| × log2(|ϕ| × |S|)

)
.

Theorem 6.2 [Sch01] The model checking problem for CTL can be solved
in space O(|S| × log|ϕ|).

6.2 A new view of the cost of model checking

The main results on the program-complexity and the formula-complexity of
model checking are listed in the following theorem:

Theorem 6.3 (See Table 5)
1. The program-complexity of LTL model checking is NLOGSPACE-complete,
its formula-complexity is PSPACE-complete.
2. The program-complexity of CTL model checking is NLOGSPACE-complete,
its formula-complexity is in time O(|ϕ|) and in space O(log|ϕ|).
3. The program-complexity of CTL∗ model checking is NLOGSPACE-complete,
its formula-complexity is PSPACE-complete.

program-complexity formula-complexity (overall complexity)

LTL NLOGSPACE-complete PSPACE-complete PSPACE-complete
CTL NLOGSPACE-complete LOGSPACE P-complete

CTL∗ NLOGSPACE-complete PSPACE-complete PSPACE-complete

Table 5. Three measures for the complexity of model checking

Remark 6.4 Saying that the program- (or formula-) complexity is C-complete
means that:

1. for any formula ϕ (resp. structure S) the problem of deciding whether
S |= ϕ, a problem where S (resp. ϕ) is the only input, belongs to C;

2. there exist formulae (resp. structures) for which the problem is C-hard.
�

Thus the overall complexity can be higher than the maximum of the program-
complexity and the formula-complexity.

We now briefly explain how the results in Theorem 6.3 can be obtained:

Lower bound for program-complexity: In all three logics one can write
a fixed formula stating that a given state is reachable (or is not reach-
able, in the case of LTL). This reachability problem is well-known to
be NLOGSPACE-complete [Jon75].
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Upper bound for program-complexity: For a fixed LTL formula ϕ,
telling whether some Kripke structure S satisfies ϕ reduces to a reach-
ability problem in the product of S and the (fixed) Büchi automaton
for ¬ϕ, a question that can be solved in NLOGSPACE.

For CTL∗ and CTL, the same kind of reasoning applies [KVW00]
but one now reduces to an emptiness test for hesitating alternating
tree-automata on a one-letter alphabet.

Formula-complexity for CTL: TheO(|ϕ|) time comes from Theorem 3.1,
the O(log|ϕ|) space is from Theorem 6.2.

Formula-complexity for LTL and CTL∗: If we fix a finite set AP of
atomic propositions, there exists a fixed Kripke structure SAP where
all possible AP -labeled runs can be found: if AP has k propositions,
then SAP is a clique with 2k states, one for each Boolean valuation on
AP . Now, checking whether SAP |= ϕ for an LTL formula ϕ amounts
to deciding whether ϕ is valid, which is a PSPACE-hard problem.

Note that this uses the fact that LTL validity is PSPACE-hard even
when AP is finite [DS02].

As a conclusion, the program-complexity of model checking is NLOGSPACE-
complete, and this does not depend on whether we consider LTL, CTL or
CTL∗ formulae. There is a parallel here with the results from Section 3.1
where we saw that model checking for these three logics can be done in time
that linearly depends on |S|. Finally, Table 1 is not a fair comparison of
the relative merits of CTL and LTL 25.

7 The complexity of symbolic model checking

We already observed that, in practical situations, model checking mostly
has to deal with large Kripke structures and small temporal formulae.

Kripke structures are frequently used to model the configurations of sys-
tems where several components interact, leading to a combinatorial explo-
sion of the number of possible configurations. By components, we mean
agents in a protocol, or logic gates in a circuit, or simply variables in a pro-
gram (among many other possibilities). Each component can be identified
and easily understood independently of the others, but the combination of
their interacting behaviors makes the whole system hard to analyze without
the help of a model checker.

25Even in terms of computational complexity, LTL behaves better than CTL on many
verification problems (see [Var98, Var01]) and it seems that model checking is the only
place where CTL can hold its ground.
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Most model checkers let the user define his Kripke structures in a com-
positional way. But when n components interact together, and assuming
that each of them only has a finite number of possible states, the resulting
system has 2O(n) possible configurations. It quickly becomes impossible to
build it (e.g., to store its transitions) and one faces what is now called the
state explosion problem.

There exist several ways to tackle the state explosion problem in model
checking: the most prominent ones today are compositional reasoning, ab-
straction methods, on the fly model checking, and symbolic model check-
ing [CGP99, BBF+01]. In the best approaches, all these methods are com-
bined.

7.1 Symbolic model checking

By “symbolic model checking”, we mean any model checking algorithm
where the Kripke structure is not described in extension (by a description
having size |S|, as in enumerative methods) but is rather handled via more
succinct data structures, most often some kind of restricted logical formulae
for which efficient constraint-solving techniques apply 26.

Symbolic algorithms can often verify systems that defy enumerative meth-
ods (see [BCM+92, McM93]). But there are also systems on which they do
not perform better than the naive non-symbolic approach (an approach that
can be defined as “build the structure enumeratively and then use the best
model checking algorithm at hand”.)

7.2 A complexity-theoretic viewpoint

From a complexity-theoretic viewpoint, there is no reason why symbolic
model checking could not be solved more efficiently, even in the “worst
cases”, than with the naive non-symbolic approach (that always builds the
resulting structure). Indeed, symbolic model checkers only deal with a very
special kind of huge structures, those that have a succinct representation as
a combination of small components, while the naive non-symbolic approach
is not so specific and, in particular, is tuned to perform as well as possible on
all huge structures. (Observe that very few huge structures have a succinct
representation, as a simple cardinality argument shows).

A possible formalization of this issue is as follows: given a sequence
S1, . . . , Sk of Kripke structures, we define their composition S = S1 ⊗ · · · ⊗
Sk via some combining mechanism denoted ⊗. In practice, some kind of

26The most famous example is of course the OBDD’s (Ordered Binary Decision Dia-
grams) that made symbolic model checking so popular [BCM+92]. There had been earlier
attempts at symbolic model checking but their choice of data structure and constraint-
solving system was less successful.
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parallel combination with prescribed synchronization rules can be used: this
mechanism is powerful enough to represent other ways of combining systems,
like refinements à la Statecharts, or program with Boolean variables à la
SMV. For the purposes of this survey, it is enough to know that in all these
cases |S| is in O(

∏k

i=1|Si|), and S can be constructed in PSPACE.
Then, the symbolic model checking problem for a temporal logic L is the

decision problem associated with the language

MCsymb(L)
def
= {〈S1, . . . , Sk, ϕ〉 | k ∈ N, ϕ ∈ L and (S1 ⊗ · · · ⊗ Sk) |= ϕ}.

The cost of algorithms solving MCsymb(L) must be evaluated in terms of
the size n of its inputs, i.e. n = |ϕ| +

∑

i|Si|.

Since |
⊗

i Si| is in 2O(
�

i
|Si|), the naive non-symbolic approach (Theo-

rems 3.1, 3.3, and Corollary 3.7) provides upper bounds of time 2O(n) for
symbolic model checking of CTL, LTL, and CTL∗.

Theorem 6.1 further provides a non-symbolic algorithm running in poly-
nomial-space for CTL symbolic model checking, and this approach extends
to CTL and CTL∗ as well.

It can be proved that this upper bound is optimal:

Theorem 7.1 [KVW00] For LTL, CTL and CTL∗, symbolic model check-
ing is PSPACE-complete, and its program complexity is PSPACE-complete.

Remark 7.2 Let us note that PSPACE-completeness is not the universal
measure for symbolic model checking: for the branching-time µ-calculus,
symbolic model checking is EXPTIME-complete [Rab00].

What seems to be universal is that, given our simplifying assumptions on
the cost of algorithms, non-symbolic methods perform optimally on verifi-
cation problems. Indeed, this has been observed in many instances, ranging
from reachability problems to equivalence problems, and can now be called
an empirical fact (see [LS00b, DLS02] and the references therein). In other
words, Kripke structures that admit a succinct representation are not sim-
pler for model checking purposes than arbitrary Kripke structures. �

Table 6 contrasts the cost of model checking with that of symbolic model
checking. It provides one more argument against the view that model check-
ing is easier for CTL than for LTL.

8 Concluding remarks

So what does complexity theory have to say about model checking? A lot!
For one thing, it helps identify barriers to the efficiency of model checking
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model checking symbolic model checking

LTL PSPACE-complete PSPACE-complete
CTL P-complete PSPACE-complete

CTL∗ PSPACE-complete PSPACE-complete

Table 6. Contrasting symbolic and non-symbolic model checking

algorithms (e.g., symbolic model checking inherently requires the full power
of PSPACE). It also helps compare different temporal logics (e.g., while
much more expressive than LTL, LTL + Past or CTL∗ are not essentially
harder for model checking). Finally, it provides explanations of why there
is no real difference in practice between the costs of LTL and CTL model
checking: program-complexity is the important parameter! This argument
applies equally to the enumerative, old-style, and the symbolic, new-style,
approaches.

When does complexity theory miss the point? Many users (and most de-
velopers :–) of model checkers claim that computational complexity is only
an abstract theory that bears little relationship with the actual difficulty of
problems in practice. We see two situations where this criticism applies: (1)
when costs must be measured precisely (i.e., when polynomial transforma-
tions are too brutal), and (2) when instances met in practice are nowhere
like the hardest cases.

A fair answer to these objections is that, in principle, complexity theory is
equipped with the concepts that are required in such situations (as we partly
illustrated with our developments on program-complexity and complexity of
symbolic model checking). The obstacles here are practical, not conceptual:
fine-grained complexity and average complexity, are extremely difficult to
measure.
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