
Decomposable regular languages

and the shuffle operator

Ph. Schnoebelen ∗

This note summarizes what I know and do not know about a class of regular language we
call decomposable languages. Today a conjecture is that they coincide with union-products of
commutative regular languages.

Decomposable languages have been used recently for the analysis of a concurrency model [LS98].
I am not a language-theory expert, and several of the results given below have been submitted
by colleagues to whom I mentioned the problem. I hope that submitting these open questions
to the EATCS community will prompt some readers to tackle them, and hopefully solve them.
Any comment, suggestion, . . . , is welcome. Write to phs@lsv.ens-cachan.fr.

Notations

Σ = {a, b, . . .} is a finite alphabet and L,L′,M, . . . denote languages over Σ, i.e. subsets of Σ∗.
ε denotes the empty word. L.M is the concatenation of two languages. Recall that the shuffle
wttw′ of two finite words is the set of all words one can obtain by interleaving w and w′ in an
arbitary way. E.g. abcttd = {abcd, abdc, adbc, dabc}.

1 Sequential and parallel decompositions of a language

Our starting point is

Definition 1.1. [LS98] We say
• {(L1, L

′
1), . . . , (Lm, L′m)} is a (finite) sequential decomposition of L iff for all u, v ∈ Σ∗ we

have
u.v ∈ L iff (for some 1 ≤ i ≤ m,u ∈ Li and v ∈ L′i).

• {(L1, L
′
2), . . . , (Lm, L′m)} is a (finite) parallel decomposition of L iff for all u, v ∈ Σ∗ we have

L ∩ (uttv) 6= ∅ iff (for some 1 ≤ i ≤ m,u ∈ Li and v ∈ L′i).

Some remarks may help understand Definition 1.1. Observe that a sequential decomposition
{(Li, L

′
i) | i = . . .} of L must apply to all possible ways of splitting a word in L. It even applies

to a decomposition u.v with u = ε (or v = ε), hence one of the Li’s (and one of the L′i’s) contains
ε.

Sequential and parallel decompositions look similar, but wttw′ usually contains several ele-
ments: when w ∈ L can be decomposed as a shuffle of some u and some v, there must be a

∗Lab. Spécification & Vérification, ENS de Cachan & CNRS UMR 8643, 61, av. Pdt. Wilson, 94235 Cachan
Cedex France, email: phs@lsv.ens-cachan.fr.

1

(Li, L
′
i) for (u, v). Reciprocally, when u ∈ Li and v ∈ L′i, there must be some way of shuffling

them into some w ∈ L.
Hence, while we have Li.L

′
i ⊆ L in sequential decompositions, we don’t ask for (LittL

′
i) ⊆ L

in parallel decompositions, and in general it does not hold.

Example 1.2. Write LE (resp. LO) for the language of all words with even length (resp. odd
length). Then LE admits a finite decomposition into {(LE , LE), (LO, LO)}. This is both a
sequential and a parallel decomposition.

Example 1.3. A sequential decomposition of Σ+ is {(Σ+,Σ+), (Σ+, {ε}), ({ε},Σ+)}. This is
also a parallel decomposition.

Example 1.4. Consider the language L = {abc}. It contains only one word. A sequential
decomposition is

{({ε}, {abc}), ({a}, {bc}), ({ab}, {c}), ({abc}, {ε})}.

A parallel decomposition of L needs more pairs:

{({ε}, {abc}), ({a}, {bc}), ({ab}, {c}), ({abc}, {ε}), ({b}, {ac}), ({ac}, {b})}.

Not all L ⊆ Σ∗ admit finite decompositions, even in the regular case.

Example 1.5. L = (ab)∗ is not decomposable.

Proof. Assume {(L1, L
′
1), . . . , (Lm, L′m)} is a parallel decomposition of L. Then for every k ∈ N,

there is a shuffling of ak and bk in L. Hence there must be a ik s.t. ak ∈ Lik and bk ∈ L′ik . Now,
because the ik’s can only take a finite number of distinct values, there must be some ik = ik′

with k 6= k′, and then there must exist a shuffling of ak and bk
′
in L, contradicting L = (ab)∗.

2 Finite decomposition systems

In [LS98] we use finite decompositions in a recursive way. Given some L, we decompose it into
some (Li, L

′
i)’s, but then we also want to decompose the Li’s and the L′i’s, and so on. Hence

the following

Definition 2.1. [LS98] Consider a finite family L = {L1, . . . , Ln} of languages over Σ.
- L is a sequential decomposition system iff every L ∈ L admits a sequential decomposition only
using Li’s from L,
- L is a parallel decomposition system iff every L ∈ L admits a parallel decomposition only
using Li’s from L,
- L is a finite decomposition system iff it is both a sequential and a parallel decomposition system.

This ensures that it is possible to only use a finite number of different languages, and still
decompose recursively ad infinitum.

We are interested into the languages that appear into such finite decomposition systems. We
call them decomposable languages.

Open problem: Which languages are decomposable ?

2

Some partial results are known (we prove them in the following sections):

1. all decomposable languages are regular but not all regular languages are decomposable.

2. finite languages, cofinite languages and commutative regular languages are decomposable.

3. the family of decomposable languages is closed by union, concatenation, shuffle.

4. it is not closed by complementation or Kleene star.

5. the commutative closure of a decomposable language is decomposable (hence regular).

Some open questions/conjectures can be useful starting points:

1. Is the class of decomposable languages closed by intersection ?

2. Are decomposable languages closed under some family of (inverse-) morphisms ?

3. Do decomposable languages coincide with union-products of commutative regular lan-
guages ?

3 Basic necessary and sufficient conditions

To begin with, simply being a sequential decomposition system entails regularity. Recall that
the syntactic congruence ≡L associated to a language L ⊆ Σ∗ is given by

w1 ≡L w2
def⇔ for all u, v ∈ Σ∗, uw1v ∈ L iff uw2v ∈ L.

A standard result states that L is regular iff ≡L has finite index.

Lemma 3.1. (Indicated by O. Carton) All decomposable languages are regular.

Proof. Assume L is a sequential decomposition system and write u ≡L v when for any Li ∈ L,
u ∈ Li ⇔ v ∈ Li. Clearly, ≡L is an equivalence with finite index.

Now assume u ≡L v. Then, for any w and any L ∈ L, uw ∈ L implies vw ∈ L as a consequence
of the existence of a sequential decomposition of L. Hence u ≡L v implies uw ≡L vw for all w
(and, by a similar argument, wu ≡L wv).

Hence ≡L coincides with
⋂

L∈L ≡L. The corollary is that the syntactic congruences of the
Li’s in L all have finite index. Hence all Li’s are regular.

We already saw that not all regular languages are decomposable (e.g. (ab)∗ is not). Still, we
can display families of decomposable languages.

Two words u and v are commutatively equivalent (also, Parikh equivalent), written u ∼P v, if

v is a permutation of u. E.g. abcd ∼P bdca. We write c(u) for {v | u ∼P v} and c(L)
def
=
⋃

u∈L c(u)
for the commutative closure of L. We say a language is commutative if it is closed w.r.t.
commutative equivalence, i.e. if L = c(L).

Lemma 3.2. If {(Li, L
′
i) | i = . . .} is a parallel decomposition of some L then {(c(Li), c(L

′
i)) |

i = . . .} is a sequential decomposition of c(L).

3

Proof. First observe that c(uv) = c(u)ttc(v). Then uv ∈ c(L) iff c(uv)∩L 6= ∅ iff c(u)ttc(v)∩L 6=
∅ iff ∃u′ ∈ c(u), v′ ∈ c(v) s.t. u′ttv′∩L 6= ∅ iff ∃u′ ∈ c(u), v′ ∈ c(v) s.t. for some i, u′ ∈ Li, v

′ ∈ L′i,
iff for some i, u ∈ c(Li), v ∈ c(L′i).

Proposition 3.3. All commutative regular languages are decomposable.

Proof. Assume L is a regular language. ≡L, its syntactic congruence, partitions Σ∗ into a finite
number of languages: Σ∗ = L1 + · · ·+Lk and L (and any Lj) admits a sequential decomposition

using only these Li’s so that L def
= {L,L1, . . . , Lk} is a sequential decomposition system.

Now we only have to notice (1) that if L is commutative, then ≡L contains ∼P , so that
the Li’s are commutative too, and (2) that a sequential decomposition system containing only
commutative languages is also a parallel decomposition system (lemma 3.2).

LE and LO from example 1.2 are commutative regular languages. Their definitions rely on
lengths of words so that closure w.r.t. ∼P is guaranteed.

More generally, commutative regular languages have simple “letter-counting” definitions:
Presburger formulas over their Parikh image. Indeed, assume |Σ| = k and associate to any
w ∈ Σ∗ its Parikh’s vector P (w), a k-tuple of integers recording how many a1’s occur in w, how
many a2’s, up to how many ak. E.g. P (a1a2a3a2a2a5) = 〈1, 3, 1, 0, 1〉. For a language L, P (L)
is a subset of Nk. A classic result is

Proposition 3.4. L is a commutative regular language iff it can be written as P−1(K) for some
semi-linear subset K of Nk.

However, begin a commutative regular language is not a necessary condition for decompos-
ability. Our example 1.4 is not commutative. More generally

Proposition 3.5. All finite languages are decomposable.

4 Closure properties

The family of decomposable languages enjoys some closure properties:

Proposition 4.1. If L and M are decomposable then L ∪M is.

Proof. This is quite easy. A sequential (resp. parallel) decomposition of L ∪M is obtained by
taking the union of a sequential (resp. parallel) decomposition of L and one of M . Hence if L
belongs to a finite decomposition system L, and M belongs to some M, L ∪M ∪ {L ∪M} is a
finite decomposition system.

Proposition 4.2. If L and M are decomposable then L.M is.

Proof. Assume L belongs to the finite decomposition system L, and M belongs to M. Define

L⊗M def
= L ∪M ∪ {Li.Mj | Li ∈ L,Mj ∈M}

This is a finite decomposition system (containing L.M). We let the reader check that if some
L ∈ L (resp. some M ∈ M) has a parallel decomposition of the form {(Li, L

′
i) | i = . . .} (resp.

{(Mj ,M
′
j) | j = . . .}) then a parallel decomposition of L.M is simply {(Li.Mj , L

′
i.M

′
j) | i =

. . . , j = . . .}.

4

Sequential decompositions are more involved. From {(Li, L
′
i) | i = . . .} (resp. {(Mj ,M

′
j) |

j = . . .}) for L and M , we take {(Li, L
′
i.M) | i = . . .} ∪ {(L.Mj ,M

′
j) | j = . . .} as the sequential

decomposition of L.M in L⊗M.

We can now see that
L

def
= b.Σ∗ ∪ Σ∗.a ∪ Σ∗.(aa + bb).Σ∗

is decomposable since it is a union of concatenations of finite or commutative regular languages.
L is (essentially) the complement of (ab)∗ hence

Proposition 4.3. Decomposable languages are not closed under complementation, or Kleene
star.

Another application of the closure properties is

Proposition 4.4. All cofinite languages are decomposable.

Proof. L = Σ∗\{u1, . . . , un} can be written as a1.(Σ
∗\{v11, . . . , v

k1
1 })+· · ·+am.(Σ∗\{v1m, . . . , vkmm })

where the vkj ’s are all residuals of the ui’s by letter aj . Hence an inductive construction of L
can be given, using unions, concatenations and singletons. The base of the induction requires
Σ∗ and Σ+, which are decomposable (example 1.3).

A morphism ϕ associates a language La to every a ∈ Σ. ϕ(L) is defined in the obvious way.
Decomposable languages are not closed under morphisms associating a decomposable La: a∗

and La
def
= b1b2 are decomposable but (b1b2)

∗ is not. When we further assume that La is com-

mutative, a counter-example is given by La
def
= b1b2 + b2b1. Then ϕ(a∗) is (b1b2 + b2b1)

∗ which is
not decomposable (a corollary of Proposition 5.5).

It is not known whether decomposable languages are closed under intersection. Assume
L = {Li | i} and M = {Mj | j} are decomposition systems. In general {Li ∩Mj | i, j} needs
not be a decomposition system. The crucial point here is in the “⇐” direction of the parallel
decomposition case. Assume u ∈ Li, v ∈ L′i entails (uttv) ∩ L 6= ∅ and u ∈ Mj , v ∈ M ′j entails
(uttv)∩M 6= ∅. This means that L contains some shuffling w of u and v, and M contains some
possibly distinct shuffling w′. Hence we cannot conclude that L ∩M contains a shuffling of u
and v.

However, if M is commutative, then containing one shuffling means containing all of them.
Hence if M only contains commutative languages, {Li ∩Mj | i, j} is a decomposition system.
Thus we have

Proposition 4.5. (Indicated by A. Arnold) The intersection of a decomposable language and a
commutative regular language is decomposable.

5 Decomposability and commutativity

(All the results in this section have been submitted by A. Arnold who answered some of our
earlier conjectures.)

Lemma 5.1. If {(Li, L
′
i) | i = . . .} and {(Mj ,M

′
j) | j = . . .} are sequential (resp. parallel)

decompositions of L and M , then {(LittMj , L
′
ittM

′
j) | i, j = . . .} is a sequential (resp. parallel)

decomposition of LttM .

5

Proof. Consider x ∈ L and y ∈ M . For the sequential case, we relies on uv ∈ xtty iff x =
x′x′′, y = y′y′′, u ∈ x′tty′, v ∈ x′′tty′′.

For the parallel case (uttv) ∩ (xtty) 6= ∅ iff there are some w1, w2, w3, w4 s.t. x ∈ w1ttw2, y ∈
w3ttw4, u ∈ w1ttw3, v ∈ w2ttw4.

Proposition 5.2. (A. Arnold) If L and M are decomposable, then their shuffle LttM is.

Proof. Lemma 5.1 entails that if L = {Li | i = . . .} and M = {Mj | j = . . .} are two decomposi-

tion systems, then LttM def
= {LittMj | i, j = . . .} is one.

Lemma 5.3. If L is commutative then {(Li, L
′
i) | i = . . .} is a parallel decomposition of L iff it

is a sequential decomposition of L.

Proof. If L is commutative, then for all u, v we have uv ∈ L iff (uttv) ∩ L 6= ∅.

Corollary 5.4. If L = {Li | i = . . .} is a parallel decomposition system, then c(L)
def
= {c(Li) |

i = . . .} is a finite decomposition system.

since every c(L) ∈ c(L) has a sequential decomposition in c(L) (Lemma 5.3) and this is also
a parallel decomposition (Lemma 3.2).

This entails

Proposition 5.5. (A. Arnold) If L is decomposable then c(L) is.

This last result can be used to prove

Example 5.6. L = (ab)∗(a∗ + b∗) is not decomposable.

Proof. Assume L belongs to a system L = {Li | i = . . .}. Then all c(Li) are decomposable
(Prop. 5.5) and hence regular.

Since all (ab)na are in L, there is a pair (L′, L′′) in the decomposition of L s.t. L′ contains
an infinite number of (ab)n’s (and a ∈ L′′). Because a ∈ L′′, L′ is a subset of (ab)∗. But an
infinite subset of (ab)∗ does not have a regular commutative closure, contradicting our earlier
observation that c(L′) must be regular.

Since c((ab)∗(a∗+ b∗)) = (ab)∗, this last example shows that for a regular L, having a regular
c(L) does not entail decomposability.

6 Union-products of commutative regular languages

An union-product of commutative regular languages, shortly a upc, is any language finitely
obtained from commutative regular languages using only union and concatenation (“product”).
Thanks to distributivity, they can be written as

⋃
iC

1
i . . . C

ki
i where all Cj

i ’s are commutative
regular.

Because a singleton letter {a} is a commutative regular language, finite languages are upc’s.
All upc’s are decomposable and we have no example of a decomposable L that is not a upc.
Hence the following

Conjecture 6.1. Decomposable languages are exactly the upc languages.

6

Notice that

Proposition 6.2. (Indicated by A. Arnold) Upc’s are closed by intersection.

Proof. It is sufficient to consider the case of the intersection of two products (C1 . . . Cn) ∩
(Di . . . Dm) where the Ci and Dj ’s are commutative. The proof is by induction on n + m.
Assume n,m > 1 and a sequential decomposition of C1 leads to C1 =

⋃
i Li.L

′
i. Note that the

Li’s and the L′i’s are commutative. Then

(C1 . . . Cn) ∩ (D1 . . . Dm) =
⋃
i

(Li ∩D1).
(
(L′i.C2 . . . Cn) ∩ (D2 . . . Dm)

)
where we can see the right-hand side is a upc thanks to the induction hypothesis.

References

[LS98] D. Lugiez and Ph. Schnoebelen. The regular viewpoint on PA-processes. In Proc. 9th
Int. Conf. Concurrency Theory (CONCUR’98), Nice, France, Sep. 1998, volume 1466
of Lecture Notes in Computer Science, pages 50–66. Springer, 1998.

7

