
A A WQO T

S. Schmitz and Ph. Schnoebelen
LSV, ENS Cachan & CNRS, France

Lecture Notes

Work supported in part by ANR ReacHard.

http://www.lsv.ens-cachan.fr/Projects/anr-reachard

FOREWORD

Well-quasi-orderings (wqos) (Kruskal, 1972) are a fundamental tool in logic and
computer science. ey provide termination arguments in a large number of de-
cidability (or finiteness, regularity, …) results. In constraint solving, automated
deduction, program analysis, and many more fields, wqo’s usually appear under
the guise of specific tools, like Dickson’s Lemma (for tuples of integers), Higman’s
Lemma (for words and their subwords), Kruskal’s Tree eorem and its variants
(for finite trees with embeddings), and recently the Robertson-Seymour eorem
(for graphs and their minors). What is not very well known is that wqo-based
proofs have an algorithmic content.

e purpose of these notes is to provide an introduction to the complexity-
theoretical aspects of wqos, to cover both upper bounds and lower bounds tech-
niques, and provide several applications in logics (e.g. data logics, relevance logic),
verification (prominently for well-structured transition systems), and rewriting.
Because wqos are in such wide use, we believe this topic to be of relevance to a
broad community with interests in complexity theory and decision procedures for
logical theories. Our presentation is largely based on recent works that simplify
previous results for upper bounds (Figueira et al., 2011; Schmitz and Schnoebe-
len, 2011) and lower bounds (Schnoebelen, 2010a; Haddad et al., 2012), but also
contains some original material.

ese lecture notes originate from an advanced course taught at the 24th
European Summer School in Logic, Language and Information (ESSLLI 2012) on
August 6–10, 2012 in Opole, Poland, and also provide background material for
Course 2.9.1 on themathematical foundations of infinite transition systems taught
at the Parisian Master of Research in Computer Science (MPRI). ey follow their
own logic rather than the ordering of these courses, and focus on subproblems
that are treated in-depth:

• Chapter 1 presents how wqos can be used in algorithms,

• Chapter 2 proves complexity upper bounds for the use of Dickson’s Lemma
—this chapter is adapted chiefly from (Schmitz and Schnoebelen, 2011)—,
and

• Chapter 3 details how to derive Ackermannian lower bounds on decision
problems, drawing heavily on (Schnoebelen, 2010a).

http://www.esslli2012.pl/
http://www.esslli2012.pl/
https://wikimpri.dptinfo.ens-cachan.fr/doku.php?id=cours:c-2-9-1
https://wikimpri.dptinfo.ens-cachan.fr/

iv

Additionally, Appendix A proves many results on subrecursive hierarchies, which
are typically skipped in papers and presentations, but needed for aworking under-
standing of the results in chapters 2 and 3, and Appendix B lists known problems
of enormous complexities.

CONTENTS

1 Basics of WQOs and Applications 1
1.1 Well asi Orderings . 1

1.1.1 Alternative Definitions . 1
1.1.2 Upward-closed Subsets of wqos 2
1.1.3 Constructing wqos . 3

1.2 Well-Structured Transition Systems . 4
1.2.1 Termination . 5
1.2.2 Coverability . 5

1.3 Examples of Applications . 7
1.3.1 Program Termination . 7
1.3.2 Relevance Logic . 9
1.3.3 Karp & Miller Trees . 12

Exercises . 14
Bibliographic Notes . 20

2 Complexity Upper Bounds 23
2.1 e Length of Controlled Bad Sequences 25

2.1.1 Controlled Sequences . 25
2.1.2 Polynomial s . 26
2.1.3 Subrecursive Functions . 28
2.1.4 Upper Bounds for Dickson’s Lemma 29

2.2 Applications . 30
2.2.1 Termination Algorithm . 30
2.2.2 Coverability Algorithm . 31

2.3 Bounding the Length Function . 31
2.3.1 Residual s and a Descent Equation 32
2.3.2 Reflecting s . 34
2.3.3 A Bounding Function . 36

2.4 Classification in the Grzegorczyk Hierarchy 38
2.4.1 Maximal Order Types . 38
2.4.2 e Cichoń Hierarchy . 40
2.4.3 Monotonicity . 42
2.4.4 Wrapping Up . 44

Exercises . 46
Bibliographic Notes . 49

vi Contents

3 Complexity Lower Bounds 51
3.1 Counter Machines . 52

3.1.1 Extended Counter Machines . 52
3.1.2 Operational Semantics . 52
3.1.3 Lossy Counter Machines . 53
3.1.4 Behavioral Problems on Counter Machines 54

3.2 Hardy Computations . 54
3.2.1 Encoding Hardy Computations 56
3.2.2 Implementing Hardy Computations with Counter Machines . . . 56

3.3 Minsky Machines on a Budget . 57
3.4 Ackermann-Hardness for Lossy Counter Machines 59
3.5 Handling Reset Petri Nets . 61

3.5.1 Replacing Zero-Tests with Resets 61
3.5.2 From Extended to Minsky Machines 62

3.6 Hardness for Termination . 64
Exercises . 65
Bibliographic Notes . 66

A Subrecursive Functions 67
A.1 Ordinal Terms . 67
A.2 Fundamental Sequences and Predecessors 68
A.3 Pointwise Ordering and Lean Ordinals 69
A.4 Ordinal Indexed Functions . 72
A.5 Pointwise Ordering and Monotonicity . 75
A.6 Different Fundamental Sequences . 76
A.7 Different Control Functions . 77
A.8 Classes of Subrecursive Functions . 79

B Problems of Enormous Complexity 83
B.1 Fast-Growing Complexities . 83
B.2 Fω-Complete Problems . 88
B.3 Fωω -Complete Problems . 90
B.4 Fωωω -Complete Problems . 93

References 95

Index 101

1

BASICS OF WQOS AND APPLICATIONS

1.1 Wellasi Orderings 1
1.2 Well-Structured Transition Systems 4
1.3 Examples of Applications 7

1.1 W O

A relation≤ over a setA is a quasi ordering (qo) iff it is reflexive and transitive. A quasi ordering

quasi-ordering is a partial ordering (po) iff it also antisymmetric (x ≤ y and y ≤ x partial ordering

imply x = y). Any qo induces an equivalence relation ≡ def
= ≤∩≥, and gives rise

to a canonical partial ordering between the equivalence classes, and to a strict
ordering <

def
= ≤∖≥ = ≤∖≡ between non-equivalent comparable elements. A strict ordering

qo is linear (aka total) iff any two elements are comparable (≤ ∪ ≥ = A2). e linear ordering

total orderingmain object of interest in this course is the following:

Definition 1.1 (wqo.1). A well quasi ordering (wqo) ≤ over a set A is a qo such well quasi ordering

that every infinite sequence x0, x1, x2, . . . over A contains an increasing pair : increasing pair

∃i < j s.t. xi ≤ xj .

A well partial ordering is an antisymmetric wqo. By extension, a set along well partial ordering

with an ordering (A,≤) is a quasi order (also noted qo) if ≤ is a quasi ordering
over A (and similarly with po, wqo, etc.).

Example 1.2 (Basic WQOs). e set of nonnegative integers (N,≤) is a wqo.
Note that it is linear and partial. Given a set A, (A,=) is always a po; it is a wqo
iff A is finite.

See Exercise 1.1 for examples of qos and wqos.

1.1.1 A D

Definition 1.1 will be our main working definition for wqos, or rather its conse-
quence that any sequence x0, x1, . . . overAwith xi ̸≤ xj for all i < j is necessar-
ily finite. Nevertheless, wqos can be found under many guises, and enjoy several
equivalent characterizations, e.g.

2 Chapter 1. Basics of WQOs and Applications

Definition 1.3 (wqo.2). Aqo (A,≤) is a wqo iff every infinite sequence x0, x1, . . .
over A contains an infinite increasing subsequence: ∃i0 < i1 < i2 < · · · s.t.
xi1 ≤ xi1 ≤ xi2 ≤ · · · .

Definition 1.4 (wqo.3). A qo (A,≤) is a wqo iff

1. there are no infinite strictly decreasing sequences x0 > x1 > x2 > · · · in
A—i.e., (A,≤) is well founded—, andwell-founded ordering

2. there are no infinite sets {x0, x1, x2, . . .} of mutually incomparable ele-
ments in A—i.e., (A,≤) has no infinite antichains.antichain

e equivalence between these characterizations is quite useful; see Exer-
cise 1.2 and the following:

Example 1.5. eqos (Z,≤) and (Q,≤) are not well-founded. e set of positive
natural numbers N+ ordered by divisibility “|” has infinite antichains, e.g. the set
of primes. e set of finite sequences Σ∗ ordered lexicographically is not well-
founded. None of these examples is wqo.

Regarding the equivalence of (wqo.1), (wqo.2, and (wqo.3), it is clear that
(wqo.2) implies (wqo.1), which in turn implies (wqo.3). In order to prove that
(wqo.3) implies (wqo.2), we use the Infinite Ramsey eorem. Assume (xi)i∈N isRamsey Theorem

an infinite sequence over (A,≤), which is a wqo according to (wqo.3). We con-
sider the complete graph over N and color every edge {i, j} (where i < j) with
one of three colors. e edge is red when xi ≤ xj (up), it is blue when xi > xj
(strictly down), and it is green when xi ̸≤ xj ̸≤ xi (incomparable). e Infinite
Ramsey eorem shows that there exists an infinite subset I ⊆ N of indexes such
that every edge {i, j} over I has the same color. In effect, I yields an infinite
subsequence (xi)i∈I of (xi)i∈N. If the subsequence has all its edges green, then
we have exhibited an infinite antichain. If it has all edges blues, then we have
exhibited an infinite strictly decreasing sequence. Since these are not allowed
by (wqo.3), the single color for the edges of I must be red. Hence the original
sequence has a infinite increasing subsequence: (A,≤) satisfies (wqo.2).

1.1.2 U S

Let (A,≤) be a quasi-ordering. e upward-closure ↑B of someB ⊆ A is definedupward-closure

as {x ∈ A | x ≥ y for some y ∈ B}. When B = ↑B, we say that B is upward-
closed; the downward-closure ↓B ofB and the notion of downward-closed sets areupward-closed

downward-closure

downward-closed
defined symmetrically.

Definition 1.6 (wqo.4). A qo (A,≤) is a wqo iff any increasing sequence U0 ⊆
U1 ⊆ U2 ⊆ · · · of upward-closed subsets of A eventually stabilize, i.e.,

∪
i∈N Ui

is Uk = Uk+1 = Uk+2 = . . . for some k.

http://en.wikipedia.org/wiki/Ramsey's_theorem

1.1. Well asi Orderings 3

is characterization is sometimes expressed by saying that upward-closed sets
satisfy the Ascending Chain Condition. See Exercise 1.3 for the equivalence of ascending chain

condition|defpageidx
(wqo.4) with the other characterizations.

Upward- and downward-closed sets are important algorithmic tools: they are
subsets of A that can be finitely represented and handled. e simplest generic
representation is by minimal elements:

Lemma 1.7. Let (A,≤) be a wqo. Any upward-closed U ⊆ A can be wrien under
the form U = ↑{x1, . . . , xn}.

(See Exercise 1.4 for a proof.) One can see how, using this representation, the
comparisons of possibly infinite (but upward-closed) sets can be reduced to com-
paring finitely many elements.

e complement of a downward-closed setD is upward-closed. Hence down-
ward-closed subsets of a wqo can be characterized by so-called excluded minors. excluded minor

at is, every downward-closedD is associatedwith a finite set {x1, . . . , xn} such
that x ∈ D iff x1 ̸≤ x ∧ · · · ∧ xn ̸≤ x. Here the xis are the excluded minors and
D is “everything that does not have one of them as a minor.”

1.1.3 C

ere are several well-known ways of building new wqos out of simpler ones.
We already mention how the product

∏
i= 1m(Ai,≤i) of finitely many wqos

is a wqo (see Exercise 1.2).

Lemma 1.8 (Dickson’s Lemma). Let (A,≤A) and (B,≤B) be two wqos. en Dickson’s
Lemma|defpageidx

(A×B,≤A×B) is a wqo.

ere is a more general way of relating tuples of different lengths, which are
then beer understood as finite sequences overA. ese can be well-quasi-ordered
thanks to a fundamental result by G. Higman:

Lemma 1.9 (Higman’s Lemma). Let (A,≤) be a wqo. en (A∗,≤∗) is a wqo. Higman’s
Lemma|defpageidx

See Exercise 1.7 for a proof; here the sequence extension A∗ is the set of all finite sequence extension

sequences over A, and these sequences are ordered via the subword embedding: subword embedding

(a1 · · · an) ≤∗ (b1 · · · bm)
def⇔
{

∃1 ≤ i1 < i2 < · · · < in ≤ m
s.t. ai ≤ bi1 ∧ · · · ∧ an ≤ bin .

(1.1)

Example 1.10 (Subword ordering). Weuse ε to denote the empty sequence. Over
(Σ,=), where Σ = {a, b, c} is a 3-leer alphabet and where different leers are
incomparable, theword abb is a subword of cabcab, as witnessed by the underlined
leers, and wrien abb ≤∗ cabcab. On the other hand bba ̸≤∗ cabcab. Over
(N,≤), examples are ε ≤∗ 4·1·3 ≤∗ 1·5·0·3·3·0·0 and 4·1·3 ̸≤∗ 1·5·0·3·0·0. Over
(N2,≤×), one checks that

(0
1
)
·
(2
0
)
·
(0
2
)
̸≤∗

(2
0
)
·
(0
2
)
·
(0
2
)
·
(2
2
)
·
(2
0
)
·
(0
1
)
·
(1
0
)
.

http://en.wikipedia.org/wiki/Ascending_chain_condition
http://en.wikipedia.org/wiki/Graham_Higman

4 Chapter 1. Basics of WQOs and Applications

It is also possible to order finite and infinite subsets of a wqo, see Exercise 1.9.
Higman’s original lemma was actually more general and handled homeomor-

phisms between finite trees with fixed arities, but this was extended by Kruskal
to finite trees with variadic labels:

eorem 1.11 (Kruskal’s Treeeorem). e set T (A) of finite trees node-labeledKruskal’s Tree
Theorem|defpageidx

from a wqo (A,≤) and partially ordered by homeomorphic embeddings is a wqo.

(See Exercise 1.10 for the definition of homeomorphic embeddings and a proof of
Kruskal’s eorem.)

Finally, a further generalization of Kruskal’s Tree eorem exists for graphs:

eorem 1.12 (Robertson and Seymour’s Graph-Minor eorem). e set of (fi-Graph Minor
Theorem|defpageidx

nite undirected) graphs node-labeled from a wqo (A,≤) and ordered by the graph-
minor relation is a wqo.

1.2 WS T S

In the field of algorithmic verification of program correctness, wqos figure promi-
nently in well-structured transition systems (WSTS). ese are transition systemwell-structured transition

system

transition system ⟨S,−→⟩, where S is a set of states and −→ ⊆ S × S is a transition relation, further
endowed with a wqo ≤ ⊆ S × S that satisfies a compatibility condition:compatibility

s −→ s′ ∧ s ≤ t implies ∃t′ ≥ s′, t −→ t′ . (compatibility)

Put together, this defines a WSTS S = ⟨S,−→,≤⟩. In other words, the states
of S are well quasi ordered in a way such that “larger” states can simulate the
behaviour of “smaller” states.

Several variants of the basicWSTS notion exist (backward compatibility, strict
compatibility, …) and we shall mention some of them in exercises 1.11 to 1.13.

Example 1.13. A d-dimensional vector addition system with states (VASS) is avector addition system with
states

finite-state system that manipulates d counters with only increment and decre-
ment operations. Formally, it is a tuple V = ⟨Q, δ, q0,x0⟩ where Q is a finite set
of states, δ ⊆ Q× Zd ×Q is a finite set of translations, q0 in Q is an initial state,
and x0 in Nd describes the initial counter contents.

e semantics of a VASS define a transition system ⟨Q× Nd,−→⟩where a tran-
sition −→ holds between two configurations (q,x) and (q′,x′) if and only if there
exists a translation (q, a, q′) in δ with x′ = x+a; note that this transition requires
x+ a non negative.

We can check that this transition system is a WSTS for the product ordering
≤ over Q × Nd, i.e. for (q,x) ≤ (q′,x′) iff q = q′ and x(j) = x′(j) for all
j = 1, . . . , d. Indeed, whenever (q,x) −→ (q′,x′) and x ≤ y, then there exists
(q, a, q′) in δ s.t. x′ = x+ a, and y′ = y+ a ≥ x+ a ≥ 0, thus (q, y) −→ (q′,y′).

http://en.wikipedia.org/wiki/Robertson%E2%80%93Seymour_theorem

1.2. Well-Structured Transition Systems 5

1.2.1 T

A transition system ⟨S,−→⟩ terminates from some state s0 in S, if every transition termination

sequence s0 −→ s1 −→ · · · is finite. is gives rise to the following, generally
undecidable, problem:

[Term] Termination
instance: A transition system ⟨S,−→⟩ and a state s0 in S.
question: Does ⟨S,−→⟩ terminate from s0?

In a WSTS, non-termination can be witnessed by increasing pairs in a finite run:

Lemma 1.14. Let S = ⟨S,−→,≤⟩ be a WSTS and s0 be a state in S. en S has an
infinite run starting from s0 iff S has a run s0 −→ s1 −→ · · · −→ sj with si ≤ sj for
some 0 ≤ i < j.

Proof. edirect implication follows from (wqo.1) applied to the infinite run s0 −→
s1 −→ · · · . e converse implication follows from repeated applications of the
compatibility condition to build an infinite run: first there exists sj+1 ≥ si+1 s.t.
sj −→ sj+1, and so on and so forth.

ere is therefore a simple procedure to decide [Term], pending some effec-
tiveness conditions: in a transition system ⟨S,−→⟩, define the successor set successor set

Post(s) def
= {s′ ∈ S | s −→ s′} (1.2)

of any s in S. A transition system is image-finite if Post(s) is finite for all s in S. image-finite

It is Post-effective if these elements can effectively be computed from s. Post-effective

Proposition 1.15 (Decidability of Termination forWSTSs). LetS = ⟨S,−→,≤⟩ be
a WSTS and s0 be a state in S. If S is image-finite, Post-effective, and≤ is decidable,
then termination of S from s0 is also decidable.

Proof. e algorithm consists of two semi-algorithms. e first one aempts to
prove termination and builds a reachability tree starting from s0; if S terminates reachability tree

from s0, then every branch of this tree will be finite, and since S is image-finite
this tree is also finitely branching, hence finite overall by Kőnig’s Lemma. e
second one aempts to prove non-termination, and looks nondeterministically
for a finite witness matching Lemma 1.14.

1.2.2 C

e second decision problem we consider on WSTSs is also of great importance,
as it encodes safety checking: can an error situation occur in the system?

[Cover] Coverability coverability|defpageidx

instance: A transition system ⟨S,−→⟩, a qo (S,≤), and two states s, t in S.
question: Is t coverable from s, i.e. is there a run s = s0 −→ s1 −→ · · · −→ sn ≥ t?

6 Chapter 1. Basics of WQOs and Applications

In the particular case of a WSTS over state space Q × A for some finite set
of control states Q and some wqo domain (A,≤A), the Control-state Reachabil-
ity Problem asks whether some input state q can be reached, regardless of thecontrol-state

reachability|defpageidx
associated data value. is immediately reduces to coverability of the finitely
many minimal elements of {q} × A for the product ordering over Q × A, i.e.
(q, x) ≤ (q′, x′) iff q = q′ and x ≤A x′.

e decidability of [Cover] for WSTS uses a set-saturation method, whose ter-
mination relies on (wqo.4). is particular algorithm is called the backward cover-
ability algorithm, because it essentially computes all the states s′ s.t. s′ −→∗ t′ ≥ t.backward coverability

For a set of states I ⊆ S, define its predecessor setpredecessor set

Pre(I) def
= {s ∈ S | ∃s′ ∈ I, s −→ s′} . (1.3)

e backward analysis computes the limit Pre∗(I) of the sequence

I = I0 ⊆ I1 ⊆ · · · where In+1
def
= In ∪ Pre(In) . (1.4)

ere is no reason for (1.4) to converge in general, but for WSTSs, this can be
solved when I is upward-closed:

Lemma 1.16. If I ⊆ S is an upward-closed set of states, then Pre(I) is upward-
closed.

Proof. Assume s ∈ Pre(I). en s −→ t for some t ∈ I . By compatibility of S , if
s′ ≥ s, then s′ −→ t′ for some t′ ≥ t. us t′ ∈ I and s′ ∈ Pre(I).

A corollary is that sequence (1.4) stabilizes to Pre∗(I) aer a finite amount of
time thanks to (wqo.4). e missing ingredient is an effectiveness one: a WSTS
has effective pred-basis if there exists an algorithm accepting any state s ∈ S andeffective pred-basis

returning pb(s), a finite basis of ↑Pre(↑{s}).1

Proposition 1.17 (Decidability of Coverability for WSTSs). Let S = ⟨S,−→,≤⟩
be a WSTS and s, t be two states in S. If S has effective pred-basis and decidable ≤,
then coverability of t from s in S is also decidable.

Proof. Compute a finite basis B for Pre∗(↑{t}) using sequence (1.4) and calls to
pb, and test whether s ≥ b for some b in B.

Exercises 1.12 and 1.13 present variants of this algorithm for different notions of
compatibility.

1is definition is slightly more demanding than required, in order to accommodate for weaker
notions of compatibility.

1.3. Examples of Applications 7

 (a,b)
c←− 1
while a > 0 ∧ b > 0

l : ⟨a,b,c⟩ ←− ⟨a− 1,b, 2c⟩
or

r : ⟨a,b,c⟩ ←− ⟨2c,b− 1, 1⟩
end

Figure 1.1: : A nondeterministic while program.

1.3 E A

Let us present three applications of wqos in three different areas: one is quite
generic and is concerned with proving program termination (Section 1.3.1). e
other two are more specialized: we present applications to relevance logic (Sec-
tion 1.3.2) and vector addition systems (Section 1.3.3).

1.3.1 P T

B S T. Recall from Definition 1.1 that one of the
characterizations for (A,≤) to be a wqo is that every infinite sequence a0, a1, . . .
over A contains an increasing pair ai1 ≤ ai2 for some i1 < i2. We say that (finite
or infinite) sequences with an increasing pair ai1 ≤ ai2 are good sequences, and good sequence

call bad a sequence where no such increasing pair can be found. erefore every bad sequence

infinite sequence over the wqo A is good, i.e., bad sequences over A are finite.
In order to see how bad sequences are related to termination, consider the

 program presented in Figure 2.1. We can check that every run of
terminates, this for any choice of initial values ⟨a0, b0⟩ of a and b. Indeed, we can
consider any sequence

⟨a0, b0, c0⟩, . . . , ⟨aj , bj , cj⟩, . . . (1.5)

of successive configurations of , project away its third component, yielding
a sequence

⟨a0, b0⟩, . . . , ⟨aj , bj⟩, . . . , (1.6)

and look at any factor ⟨ai1 , bi1⟩, . . . , ⟨ai2 , bi2⟩ inside it:

• either only the first transition l is ever fired between steps i1 and i2, in
which case ai2 < ai1 ,

• or the second transition r was fired at least once, in which case bi2 < bi1 .

us ⟨ai1 , bi1⟩ ̸≤ ⟨ai2 , bi2⟩, which means that (1.6) is a bad sequence over (N2,≤),
and is therefore a finite sequence. Consequently, (1.5) is also finite, which means
that always terminates.

8 Chapter 1. Basics of WQOs and Applications

R F. Program termination proofs essentially establish that the
program’s transition relation R is well-founded (aka Noetherian), i.e. that therewell-founded relation

Noetherian relation does not exist an infinite sequence of program configurations x0Rx1Rx2R · · · .
In the case of the integer program , this relation is included in Z3×Z3 and
can be easily read from the program:

⟨a, b, c⟩R ⟨a′, b′, c′⟩ iff a > 0 ∧ b > 0 ∧ ((a′ = a− 1 ∧ b′ = b ∧ c′ = 2c) (1.7)

∨ (a′ = 2c ∧ b′ = b− 1 ∧ c′ = 1)) .

e classical, “monolithic” way of proving well-foundedness is to exhibit a
ranking function ρ from the set of program configurations x0, x1, . . . into a well-ranking function

founded order (O,≤) such that

R ⊆ {(xi, xj) | ρ(xi) > ρ(xj)} . (1.8)

en R is well-founded, otherwise we could exhibit an infinite decreasing se-
quence in (O,≤).

is is roughly what we did in (1.6), by projecting away the third component
and using N2 as codomain; this does not satisfy (1.8) for the product ordering
(N2,≤), but it does satisfy it for the lexicographic ordering (N2,≤lex). Equiva-
lently, one could define ρ:Z3 → ω2 by ρ(a, b, c) = ω · b + a if a, b ≥ 0 and
ρ(a, b, c) = 0 otherwise.

However our argument with (1.6) was rather to use bad sequences: we rather
require ρ to have a wqo (A,≤) as co-domain, and check that the transitive closure
R+ of R verifies

R+ ⊆ {(xi, xj) | ρ(xi) ̸≤ ρ(xj)} (1.9)

instead of (1.8). Again, (1.9) proves R to be well-founded, as otherwise we could
exhibit an infinite bad sequence in (A,≤).

Proving termination with these methods is done in two steps: first find a rank-
ing function, then check that it yields termination through (1.8) for well-founded
orders or (1.9) for wqos. As it turns out that finding an adequate ranking function
is oen the hardest part, this second option might be preferable.

T I. A generalization of these schemes with a simpler search
for ranking functions is provided by disjunctive termination arguments: in orderdisjunctive termination

argument
to prove that R is well-founded, one rather exhibits a finite set of well-founded
relations T1, . . . , Tk and prove that

R+ ⊆ T1 ∪ · · · ∪ Tk . (1.10)

Each of the Tj , 1 ≤ j ≤ k, is proved well-founded through a ranking function
ρj , but these functions might be considerably simpler than a single, monolithic
ranking function for R. In the case of , choosing

T1 = {(⟨a, b, c⟩, ⟨a′, b′, c′⟩) | a > 0 ∧ a′ < a} (1.11)

T2 = {(⟨a, b, c⟩, ⟨a′, b′, c′⟩) | b > 0 ∧ b′ < b} (1.12)

1.3. Examples of Applications 9

fits, their well-foundedness being immediate by projecting on the first (resp. sec-
ond) component.

Let us prove the well-foundedness of R when each of the Tj is proven well-
founded thanks to a ranking function ρj into somewqo (Aj ,≤j) (see Exercise 1.15
for a generic proof that only requires each Tj to be well-founded). en with a
sequence

x0, x1, . . . (1.13)

of program configurations one can associate the sequence of tuples

⟨ρ1(x0), . . . , ρk(x0)⟩, ⟨ρ1(x1), . . . , ρk(x1)⟩, . . . (1.14)

in A1 × · · · × Ak, the laer being a wqo for the product ordering by Dickson’s
Lemma. Since for any indices i1 < i2, (xi1 , xi2) ∈ R+ is in some Tj for some
1 ≤ j ≤ k, we have ρj(xi1) ̸≤j ρj(xi2) by definition of a ranking function.
erefore the sequence of tuples is bad for the product ordering and thus finite,
and the program terminates.

Different strategies can be used in practice to find a disjunctive termination
invariant of the form (1.10). One that works well in the example of is to
use the structure of the program relation R: if R can be decomposed as a union
R1∪· · ·∪Rk, then applying rank function synthesis to eachRj , thereby obtaining
a well-founded overapproximation wf(Rj) ⊇ Rj , provides an initial candidate
termination argument

wf(R1) ∪ · · · ∪wf(Rk) . (1.15)

Applying this idea to , we see that R in (1.7) is the union of

R1 = {(⟨a, b, c⟩, ⟨a′, b′, c′⟩) | a > 0 ∧ b > 0 ∧ a′ = a− 1 ∧ b′ = b ∧ c′ = 2c}
(1.16)

R2 = {(⟨a, b, c⟩, ⟨a′, b′, c′⟩) | a > 0 ∧ b > 0 ∧ a′ = 2c ∧ b′ = b− 1 ∧ c′ = 1} ,
(1.17)

which can be overapproximated by T1 and T2 in (1.11) and (1.12).
It remains to check that (1.10) holds. If it does not, we can iterate the previous

approximation technique, computing an overapproximation wf(wf(Rj1) #Rj2) of
the composition ofRj1 withRj2 , then wf(wf(wf(Rj1) #Rj2) #Rj3) etc. until their
union reaches a fixpoint or proves termination.

1.3.2 R L

Relevance logics provide different semantics of implication, where a factB is said
to follow from A, wrien “A ⊃ B”, only if A is actually relevant in the deduction
of B. is excludes for instance A ⊃ (B ⊃ A), (A ∧ ¬A) ⊃ B, etc.

We focus here on the implicative fragment R⊃ of relevance logic, which can
be defined through a substructural sequent calculus in Gentzen’s style. We use

10 Chapter 1. Basics of WQOs and Applications

upper-case leers A,B,C, . . . for formulæ and α, β, γ, . . . for possibly empty
sequences of formulæ; a sequent is an expression α ⊢ A. e rules for R⊃ are:

A ⊢ A
(Ax)

α ⊢ A βA ⊢ B

αβ ⊢ B
(Cut)

αABβ ⊢ C

αBAα ⊢ C
(Ex)

αAA ⊢ B

αA ⊢ B
(Con)

α ⊢ A βB ⊢ C

αβ(A ⊃ B) ⊢ C
(⊃L)

αA ⊢ B

α ⊢ A ⊃ B
(⊃R)

where (Ex) and (Con) are the structural rules of exchange and contraction. Noteexchange

contraction that the weakening rule (W) of propositional calculus is missing: otherwise we
weakening would have for instance the undesired derivation

(Ax)
A ⊢ A (W)
AB ⊢ A (⊃R)

A ⊢ B ⊃ A
(⊃R)⊢ A ⊃ (B ⊃ A)

ere are two important simplifications possible in this system: the first one
is to redefine α, β, . . . to bemultisets of formulæ, which renders (Ex) useless; thus
juxtaposition in (Ax–⊃R) should be interpreted as multiset union.

e second one is cut elimination, i.e. any sequent derivable inR⊃ has a deriva-cut elimination

tion that does not use (Cut). is can be seen by the usual arguments, where cuts
are progressively applied to “smaller” formulæ, thanks to a case analysis. For
instance,

...
γA ⊢ B

(⊃R)
γ ⊢ A ⊃ B

...
α ⊢ A

...
βB ⊢ C

(⊃L)
αβ(A ⊃ B) ⊢ C

(Cut)
αβγ ⊢ C

can be rewrien into

...
γA ⊢ B

...
α ⊢ A

(Cut)
αγ ⊢ B

...
βB ⊢ C

(Cut)
αβγ ⊢ C

A consequence of cut elimination is that R⊃ enjoys the subformula property:subformula property

Lemma 1.18 (Subformula Property). If α ⊢ A is a derivable sequent in R⊃, then
there is a cut-free derivation ofα ⊢ Awhere every formula appearing in any sequent
is a subformula of some formula of αA.

1.3. Examples of Applications 11

T D P we are interested in solving is whether a formula A is a
theorem of R⊃; it is readily generalized to whether a sequent α ⊢ A is derivable
using (Ax–⊃R).

[RI] Relevant Implication relevant
implication|defpageidx

instance: A formula A of R⊃.
question: Can the sequent ⊢ A be derived in R⊃?

A natural idea to pursue for deciding [RI] is to build a proof search tree with
nodes labeled by sequents, and reversing rule applications from the root ⊢ A until
only axioms are found as leaves. An issue with this idea is that the tree grows to
an unbounded size, due in particular to contractions. See Exercise 1.18 for an
algorithm that builds on this idea.

We reduce here [RI] to a WSTS coverability problem. Given A, we want to
construct a WSTS S = ⟨S,→,≤⟩, a target state t of S, and an initial state s in S
s.t. t can be covered in S from s if and only if A is a theorem of R⊃.

Write Sub(A) for its finite set of subformulæ. en, by the Subformula Prop-
erty, any sequent α ⊢ B that derives A in a cut-free proof can be seen as an
element of Seq(A) def

= NSub(A) × Sub(A); we let

S
def
= Pf (Seq(A)) (1.18)

be the set of finite subsets of Seq(A).
Given a finite set s′ of sequents, we say that

s′ → s′ ∪ {α ⊢ B} (1.19)

if some rule among (Ax–⊃R) ((Cut) excepted) can employ some premise(s) in s′

to derive the sequent α ⊢ B.
For a multiset α, define its multiset support σ(α) as its underlying set of ele- multiset support

ments σ(α) = {B | α(B) > 0}. We define the contraction qo≪ over sequents by contraction ordering

α ⊢ B ≪ α′ ⊢ B′ iff α ⊢ B can be obtained from α′ ⊢ B′ by some finite, possibly
null, number of contractions. Over Seq(A), this is equivalent to having α ≤ α′

(for the product ordering over NSub(A)), σ(α) = σ(α′), and B = B′: ≪ over
Seq(A) is thus defined as a product ordering between the three wqos (NSub(A),≤),
(P(Sub(A)),=), and (Sub(A),=), and therefore by Dickson’s Lemma:

Lemma 1.19 (Kripke’s Lemma). e qo (Seq(A),≪) is a wqo.

en, by Exercise 1.9, the qo (S,≤), where ≤ is Hoare’s ordering applied to
≪, is a wqo, and we easily see that S = ⟨S,→,≤⟩ is a WSTS with effective pred-
basis and a decidable ordering (see Exercise 1.17), thus the coverability problem
for

s
def
= {B ⊢ B | B ∈ Sub(A)} t

def
= {⊢ A} (1.20)

is decidable by Proposition 1.17.

12 Chapter 1. Basics of WQOs and Applications

It remains to check that coverability of ⟨S, s, t⟩ is indeed equivalent to deriv-
ability of ⊢ A. Clearly, if s = s0 → s1 → · · · → sn, then any sequent appearing
in any si along this run is derivable in R⊃, and if t ≤ sn—which is equivalent to
the existence of a sequent α ⊢ B in sn, s.t. ⊢ A ≪ α ⊢ B, which by definition
of≪ is equivalent to σ(α) = ∅ and A = B, i.e. to ⊢ A being in sn—, then A is
indeed a theorem ofR⊃. Conversely, if ⊢ A is derivable by a cut-free proof inR⊃,
then we can reconstruct a run in S by a breadth-first visit starting from the leaves
of the proof tree, which starts from the set s0 ⊆ s of leaves of the proof tree,
applies→ along the rules (Ax–⊃R) of the proof tree, and ends at the root of the
proof tree with a set s′ of sequents that includes ⊢ A. Finally, by compatibility of
S , since s0 ≤ s, there exists a run s→ · · · → s′′ such that t = {⊢ A} ⊆ s′ ≤ s′′,
proving that t is indeed coverable from s in S .

1.3.3 K M T

V A S (VAS) are systems where d counters evolve by non-vector addition
system|defpageidx

deterministically applying d-dimensional translations from a fixed set, i.e. they
are single-state VASSs. ey can be seen as an abstract presentation of Petri nets,
and are thus widely used to model concurrent systems, reactive systems with re-
sources, etc. ey also provide an example of systems for whichWSTS algorithms
work especially well.

Formally, a d-dimensional VAS is a pair V = ⟨x0,A⟩ where x0 is an initial
configuration inNd andA is a finite set of translations in Zd. A translation a inA
can be applied to a configuration x in Nd if x′ = x+ a is in Nd, i.e. non-negative.
e resulting configuration is then x′, and we write x a−→V x′. A d-dimensional
VAS V clearly defines a WSTS ⟨Nd,→,≤⟩ where → def

=
∪

a∈A
a−→V and ≤ is the

product ordering overNd. A configuration x is reachable, denoted x ∈ Reach(V),
if there exists a sequence

x0
a1−→ x1

a2−→ x2
a3−→ · · · an−→ xn = x . (1.21)

at reachability is decidable for VASs is a major result of computer science but
we are concerned here with computing a covering of the reachability set.

C. In order to define what is a “covering”, we consider the completion
Nω

def
= N∪{ω} ofN and equip it with the obvious ordering. Tuples y ∈ Nd

ω , called
ω-markings, are ordered with the product ordering. Note that Nω is a wqo, and
thus Nd

ω as well by Dickson’s Lemma.
Whileω-markings are not proper configurations, it is convenient to extend the

notion of steps and write y a−→ y′ when y′ = y+a (assuming n+ω = ω+n = ω
for all n).

Definition 1.20 (Covering). Let V be a d-dimensional VAS. A set C ⊆ Nd
ω of

ω-markings is a covering for V ifcovering

1.3. Examples of Applications 13

..⟨1, 0, 1⟩.

⟨2, 1, 0⟩

.

⟨0, 0, 2⟩

.

⟨2, 0, 0⟩

.

⟨1, ω, 1⟩

.

⟨1, ω, 1⟩

.

⟨2, ω, 0⟩

.

⟨0, ω, 2⟩

.

⟨2, ω, 0⟩

.

⟨0, ω, 2⟩

.
a

.
b

.

c

.

b

.

a

.

a

.

b

.

a

.

b

Figure 1.2: A Karp & Miller tree constructed for the VAS ⟨{a, b, c}, ⟨1, 0, 1⟩⟩ with
translations a = ⟨1, 1,−1⟩, b = ⟨−1, 0, 1⟩, and c = ⟨0,−1, 0⟩.

1. for any x ∈ Reach(V), C contains some y with x ≤ y, and

2. any y ∈ C is in the adherence of the reachability set, i.e. y = limi=1,2,... xi
for some infinite sequence of configurations x1,x2, . . . in Reach(V).

Hence a covering is a rather precise approximation of the reachability set (pre-
cisely, the adherence of its downward-closure). A fundamental result is that finite
coverings always exist and are computable. is entails several decidability re-
sults, e.g. whether a counter value remains bounded throughout all the possible
runs.

T K M T constructs a particular covering of V . Formally, this Karp & Miller tree

tree has nodes labeled with ω-markings inNd
ω and edges labeled with translations

in A. e root s0 is labeled with x0 and the tree is grown in the following way:
Assume a node s of the tree is labeled with some y and let y0,y1, . . . ,yn be

the sequence of labels on the path from the root s0 to s, with x0 = y0 and yn = y.
For any translation a ∈ A such that there is a step y a−→ y′, we consider whether
to grow the tree by adding a child node s′ to s with a a-labeled edge from s to s′:

1. If y′ ≤ yi for one of the yi’s on the path from s0 to s, we do not add s′ (the
branch ends).

2. Otherwise, if y′ > yi for some i = 0, . . . , n, we build y′′ from y′ by seing,
for all j = 1, . . . , d,

y′′(j) def
=

{
ω if y′(j) > yi(j)
y′(j) otherwise.

(1.22)

Formally, y′′ can be thought as “yi+ω · (y′−yi).” We add s′, the edge from
s to s′, and we label s′ with y′′.

3. Otherwise, y′ is not comparable with any yi: we simply add the edge and
label s′ with y′.

14 Chapter 1. Basics of WQOs and Applications

See Figure 1.2 for an example of tree constructed by this procedure.

eorem 1.21. e above algorithm terminates and the set of labels in the Karp &
Miller tree is a covering for V .

Proof of termination. First observe that the tree is finitely branching (a node has
at most |A| children), thus by Kőnig’s Lemma the tree can only be infinite by
having an infinite branch. Assume, for the sake of contradiction, that there is
such an infinite branch labeled by some y0,y1, . . . By (wqo.2) applied to Nd

ω , we
can exhibit an infinite subsequence yi0 ≤ yi1 ≤ · · · with i0 < i1 < · · · . Any
successive pair yik ≤ yik+1

requires yik+1
to be inserted at step 2 of the algorithm,

hence yik+1
has more ω-components than yik . Finally, since an ω-marking has

at most d ω-components, this extracted sequence is of length at most d + 1 and
cannot be infinite.

We leave the second part of the proof as Exercise 1.20.

E

Exercise 1.1 (Examples of qos). Among the following quasi orders, which ones are partial
orders? Are they total? Well-founded? Wqo?

(1) the natural numbers (N,≤), the integers (Z,≤), the positive reals (R+,≤);

(2) the natural numbers (N, |) where a | b means that a divides b;

(3) given a linearly ordered finite alphabet Σ, the set of finite sequences Σ∗ with prefix
ordering ≤pref or lexicographic ordering ≤lex;prefix ordering

lexicographic ordering
(4) (P(N),⊆) the subsets of N ordered with inclusion;

(5) (P(N),⊑S) where we use Smyth’s ordering: U ⊑S V
def⇔ ∀m ∈ V, ∃n ∈ U, n ≤ m;Smyth’s ordering

(6) (Pf (N),⊆) and (Pf (N),⊑S) where we restrict to finite subsets.

Exercise 1.2 (Generalized Dickson’s Lemma). If (Ai,≤i)i=1,...,m are m quasi-orderings,
their product is

∏m
=1(Ai,≤i) = (A,≤×) given by A = A1 × · · · ×Am, and

⟨x1, . . . , xm⟩ ≤× ⟨x′
1, . . . , x

′
m⟩

def⇔ x1 ≤1 x′
1 ∧ · · · ∧ xm ≤m x′

m .

(1) Show that
∏m

=1(Ai,≤i) is well-founded when each (Ai,≤i) is.

(2) Show that
∏m

=1(Ai,≤i) is a wqo when each (Ai,≤i) is.

(3) Show that the set ofmonomials xa1
1 ·x

a2
2 · · ·x

ad

d over the set of variables {x1, . . . , xd}monomial

where the ai’s are natural numbers is well quasi ordered by the divisibility ordering.

Exercise 1.3 (Ascending Chain Condition). Show that (wqo.4) is equivalent with the
other definition(s) of wqos.

Exercises 15

Exercise 1.4 (Finite Basis Property).

(1) Prove Lemma 1.7: any upward-closed subset U of a wqo (A,≤) can be wrien under
the form U = ↑{x1, . . . , xn}.

(2) (wqo.5) Prove that a qo (A,≤) is a wqo iff every non-empty subset U of A contains
at least one, and at most finitely many (up to equivalence), minimal elements.

Exercise 1.5 (Linear WQOs).

(1) Prove that a linear ordering is a wqo iff it is well-founded.

(2) (wqo.6) Prove that a qo is a wqo iff all its linearizations are well-founded, where a
linearization of (A,≤) is any linear qo (A,⪯) with same support and such that x ≤ y linearization

implies x ⪯ y.

Exercise 1.6 (Zk,≤sparse). Weconsider the sparser-than ordering. Assume a = (a1, . . . , ak) sparser-than ordering

and b = (b1, . . . , bk) are two tuples in Zk , then

a ≤sparse b
def⇔ ∀i, j ∈ {1, . . . , k} :

(
ai ≤ aj iff bi ≤ bj

)
and

(
|ai − aj | ≤ |bi − bj |

)
.

Show that (Zk,≤sparse) is a wqo.

Exercise 1.7 (Higman’s Lemma). Recall that for a qo (A,≤), the setA∗ of finite sequences ⋆
(“words”) over A can be ordered by the subword embedding ≤∗ defined with (1.1). We
shall prove Higman’s Lemma: (A∗,≤∗) is wqo iff (A,≤) is.

(1) Show that (A∗,≤∗) is well-founded if (A,≤) is.

(2) Assume, by way of contradiction, that (A,≤) is wqo but (A∗,≤∗) is not. en there
exist some infinite bad sequences over A∗, i.e., sequences of the form w0, w1, w2, . . .
where wi ̸≤∗ wj for all i, j ∈ N s.t. i < j.

Consider all words that can start such an infinite bad sequence, pick a shortest one
among them, and call it v0. Consider now all infinite bad sequences that start with v0
and, among all words that can appear aer the initial v0, pick a shortest one and call
it v1. Repeat the process and at stage k pick vk as one among the shortest words that
can appear aer v0, . . . , vk−1 inside an infinite bad sequence. Show that this process
can be continued forever and that is generates an infinite sequence S = v0, v1, . . .

(3) Show that S itself is a bad sequence.

(4) We now write every vi under the form vi = aiui where ai ∈ A is the first “let-
ter” of vi and ui is the first strict suffix (this is possible since an infinite bad sequence
cannot contain the empty word). We now pick an infinite increasing sequence ak0 ≤
ak1 ≤ ak2 ≤ · · · from (ai)i∈N (possible since A is wqo) and we write S′ for the se-
quence uk0 , uk1 , . . . of corresponding suffixes. Show that if S′ is good—i.e., contains
an increasing pair—, then S is good too.

(5) We deduce that S′ must be an infinite bad sequence over A∗. Use this to derive a
contradiction (hint: recall the definition of vi0).

16 Chapter 1. Basics of WQOs and Applications

At this point we conclude that our assumption “A is wqo butA∗ is not” was contradictory,
proving Higman’s Lemma.

Exercise 1.8 (Higman’s Lemma for ω-sequences?). Let (A,≤) be a wqo. For two infinite
words v = (xi)i∈N and w = (yi)i∈N in Aω , we let

v ≤ω w
def⇔
{

there are some indexes n0 < n1 < n2 < · · ·
s.t. xi ≤ yni for all i ∈ N.

Show that (Aω,≤ω) is a wqo when (A,≤) is a linear wqo.2

Exercise 1.9 (Ordering Powersets). Recall from Exercise 1.1 the definition of Smyth’s or-
dering on the powerset P(A): if (A,≤) is a qo and U, V ⊆ A we let:Hoare ordering

Egli-Milner ordering

U ⊑S V
def⇔ ∀m ∈ V, ∃n ∈ U, n ≤ m . (∗)

ere also exists the (more natural) Hoare ordering (also called Egli-Milner ordering):

U ⊑H V
def⇔ ∀n ∈ U, ∃m ∈ V, n ≤ m . (†)

(1) What are the equivalences generated by ⊑S and by ⊑H?

(2) Express ⊑S in terms of ⊑H (and reciprocally), using set-theoretic operations like
upward-closure, intersection, etc.

(3) Prove the following characterization of wqo’s:

A qo (A,≤) is wqo if, and only if, (P(A),⊑H) is well-founded. (wqo.7)

(4) Further show that (Pf (A),⊑H) is wqo iff (A,≤) is wqo—recall that Pf (A) only con-
tains the finite subsets of A.

Exercise 1.10 (Kruskal’s Tree eorem). For a qo (A,≤), we write T (A) for the set of
finite trees node-labeled by A. Formally, T (A) = {t, u, v, . . .} is the smallest set such
that if a ∈ A, m ∈ N and t1, . . . , tm ∈ T (A) then the tree with root labeled by a and
subtrees t1, . . . , tm, denoted a(t1, . . . , tm), is in T (A). We order T (A) with ≤T , the
homeomorphic embedding that extends ≤. e definition of u ≤T t is by induction on
the structure of t, with

a(u1, . . . , um) ≤T b(t1, . . . , tk)
def⇔
{
a ≤ b and (u1, . . . , um) ≤T,∗ (t1, . . . , tk)
or ∃i ∈ {1, . . . , k} : a(u1, . . . , um) ≤T ti .

(‡)

Here ≤T,∗ denotes the sequence extension of ≤T .

(1) We now assume that (A,≤) is a wqo and prove that (T (A),≤T) is a wqo too. For
this we assume, by way of contradiction, that (T (A),≤T) is not wqo. We proceed as
in the proof of Higman’s Lemma (Exercise 1.7) and construct a “minimal infinite bad

2is does not extend to arbitrary wqos, see (Rado, 1954) or (Jančar, 1999) for a characterization
of the qos A with (Aω,≤ω) wqo.

Exercises 17

sequence” S = t0, t1, t2, . . . where t0 is a smallest tree that can be used to start an
infinite bad sequence, and at stage k, tk is a smallest tree that can continue an infinite
bad sequence starting with t0, . . . , tk−1. By construction S is infinite and is bad.

Let us now write every ti in S under the form ti = ai(ui,1, . . . , ui,mi) and collect all
the immediate subtrees in U

def
= {ti,j | i ∈ N ∧ 1 ≤ j ≤ mi}. Show that (U,≤T) is

wqo.

(2) Derive a contradiction (hint: use Higman’s Lemma on U).

At this point we conclude that our assumptions “A is wqo but T (A) is not” was contra-
dictory, proving Kruskal’s eorem.

W S T S

Exercise 1.11 (Transitive Compatibility). We relax in this exercise (compatibility) to a
weaker notion of compatibility, but show that [Term] remains decidable in this seing.
Consider the following replacement for (compatibility): transitive compatibility

s −→ s′ ∧ s ≥ t implies s′ ≥ t ∨ ∃t′ ≤ s′, t −→+ t′ , (tc)

where −→+ is the transitive closure of −→.
Show that, if S = ⟨S,−→,≤⟩ is a WSTS for (tc), which is image-finite and Post-

effective and has decidable≤, then one can decide whether S terminates from some state
s0 in S.

Exercise 1.12 (Reflexive Transitive Compatibility). Let us relax (compatibility) to: reflexive transitive
compatibility

s −→ s′ ∧ s ≥ t implies s′ ≥ t ∨ ∃t′ ≤ s′, t −→∗ t′ , (rtc)

where −→∗ is the reflexive transitive closure of −→. We assume throughout this exercise
that S = ⟨S,−→,≤⟩ is a WSTS under (rtc).

(1) Show that, if I is upward-closed, then Pre∗(I) is also upward-closed. Does Lemma 1.16
still hold?

(2) Let K0 be a finite basis of I . Li pb to operate on finite sets. e sequence

K0 ⊆ K1 ⊆ · · · where Kn+1
def
= Kn ∪ pb(Kn) (§)

converges by (wqo.4) aer finitely many steps to some finite set K . Show that ↑K =
↑
∪

i∈N Ki.

(3) Show that ↑K = Pre∗(I).

(4) Conclude that [Cover] is decidable for WSTS with (rtc), effective pred-basis, and de-
cidable ≤.

Exercise 1.13 (Downward WSTSs). Let ⟨S,−→⟩ be a transition system and (S,≤) be a
wqo. e definition of compatibility is also known as “upward-compatibility”, by contrast
with its dual reflexive downward compatibility : reflexive downward

compatibility

18 Chapter 1. Basics of WQOs and Applications

s −→ s′ ∧ s ≥ t implies s′ ≥ t ∨ ∃t′ ≤ s′, t −→ t′ . (rdc)

that defines a downward WSTS S = ⟨S,−→,≤⟩.downward WSTS

Show that the following problem is decidable for image-finite, Post-effective down-
ward WSTSs with decidable ≤:
[SCover] Sub-Coverability
instance: A transition system ⟨S,−→⟩, a qo (S,≤), and two states s, t in S.
question: Is there a run s = s0 −→ s1 −→ · · · −→ sn ≤ t?

P T

Exercise 1.14. Show that the weaker condition

R ⊆ T1 ∪ · · · ∪ Tk (¶)

with each Tj is well-founded does not imply R well-founded.

Exercise 1.15 (Disjunctive Termination Arguments). Assume that a binary relation R
verifies (1.10) on page 8, where each Tj is well-founded. Prove using the Infinite Ramsey
eorem that R is well-founded.

R L

Exercise 1.16 (Cut Elimination & Subformula Property). Prove Lemma 1.18.

Exercise 1.17 (AWSTS forRelevant Implication). Prove thatS defined by equations (1.18)
and (1.19) is a WSTS with effective pred-basis and decidable ordering.

Exercise 1.18 (Proof Search for Relevant Implication). e purpose of this exercise is to⋆
find an alternative algorithm for [RI]. e key idea in this algorithm is to remove (Con)
from R⊃ and apply contractions only when needed, i.e. modify the rules (⊃L) and (⊃R)
to contract their conclusion, but only inassomuch as could not be obtained by first con-
tracting their premises. Doing so we define an alternative proof system R′

⊃ that includes
the unmodified (Ax) and (⊃R), and a modified version of (⊃L):

α ⊢ A βB ⊢ C

γ ⊢ C
(⊃′

L)

where γ ⊢ C ≪ αβ(A ⊃ B) ⊢ C is such that, for all formulæ D, γ(D) ≥ α(D) +
β(D)− 1.

(1) Show how any derivation of a sequent α ⊢ B in R⊃ ∪R′
⊃ can be transformed into a

derivation in R′
⊃ of no larger height.

(2) Deduce that R′
⊃ and R⊃ derive the same sequents.

(3) Deduce that, if α ⊢ B ≪ α′ ⊢ B′ and α′ ⊢ B′ has a derivation of height n in R′
⊃,

then α ⊢ B has a derivation of height at most n in R′
⊃.

http://en.wikipedia.org/wiki/Ramsey's_theorem
http://en.wikipedia.org/wiki/Ramsey's_theorem

Exercises 19

(4) We work now in the modified calculus R′
⊃. We say that a derivation in R′

⊃ is irre-
dundant if, by following any branch starting from the root to the leaves, we never first
meet α ⊢ B and later α′ ⊢ B′ with α ⊢ B ≪ α′ ⊢ B′. Show that [RI] is decidable by
proof search using Kőnig’s Lemma and Kripke’s Lemma.

K M T

Exercise 1.19. Show that Nω is a wqo.

Exercise 1.20 (Covering). e aim of this exercise is to complete the proof of eo- ⋆⋆
rem 1.21 and show that the set of labels C ⊆ Nd

ω of the Karp & Miller tree T forms a
covering according to Definition 1.20.

(1) Let neg(a) be the vector in Nd defined by

neg(a)(j) =

{
−a(j) if a(j) ≤ 0

0 otherwise
(∥)

for a in Zd and j in {1, . . . , d}. e threshold Θ(u) of a transition sequence u in A∗
threshold

is the minimal configuration x in Nd s.t. u is enabled from x, i.e. there exists x′ s.t.
x u−→V x′. Show how to compute Θ(u). Show that Θ(uv) ≤ Θ(u) + Θ(v) for all u, v
in A∗.

(2) In order to prove thatC satisfies Definition 1.20.1, we will prove a stronger statement.
For an ω-marking y in Nd

ω , first define

Ω(y) def
= {j = 1, . . . , d | y(j) = ω} (∗∗)

the set of ω-components of y, and

Ω(y) def
= {1, . . . , d}∖ Ω(y) (††)

its set of finite components. We introduce for this question a variant of the construction
found in the main text, which results in a Karp & Miller graph G instead of a tree: in Karp & Miller graph

step 1 we rather add an edge s
a−→G si. Observe that this does not change C nor the

termination of the algorithm.

Show that, if x0
u−→V x for some translation sequence u in A∗, then there exists a node

s in G labeled by y such that x(j) = y(j) for all j in Ω(y) and s0
u−→G s is a path in

the graph.

(3) Let us prove that C satisfies Definition 1.20.2. e idea is that we can find reachable
configurations of V that agree with y on its finite components, and that can be made
arbitrarily high on its ω-components. For this, we focus on the graph nodes where new
ω values are introduced by step 2, which we call ω-nodes. ω-node

Prove that, if s0
u−→T s labeled y for some u in A∗ in the tree and z in NΩ(y) is a partial

configuration on the components of Ω(y), then there are

• n in N,

20 Chapter 1. Basics of WQOs and Applications

• a decomposition u = u1u2 · · ·un+1 with each ui in A∗ where the nodes si
reached by s0

u1···ui−−−−→T si for i ≤ n are ω-nodes,

• sequences w1, …, wn in A+,

• numbers k1, …, kn in N,

such that x0
u1w

k1
1 u2···unw

kn
n un+1−−−−−−−−−−−−−−−→V x with x(j) = y(j) for all j in Ω(y) and x(j) ≥

z(j) for all j in Ω(y). Conclude.

B N

W O are “a frequently discovered concept”, to quote the title of a survey
by Kruskal (1972). Nevertheless, much of the theory appears in Higman (1952), although
Dickson’s Lemma already appeared (in a rather different form) in (Dickson, 1913). e
reader will find more information in the survey of Milner (1985), which also covers bet-
ter quasi orders (bqo), which allow to handle the problematic powerset constructions ofbeer quasi order

Exercise 1.9—see (Marcone, 1994) for a good reference, and (Rado, 1954) or (Jančar, 1999)
for a characterization of the wqos for which (P(A),⊑S) and/or (Aω,≤ω) is also a wqo.
See Lovász (2006) for an exposition of Robertson and Seymour’s Graph-Minor eorem,
its underlying ideas, and its consequences in graph theory.

W S T S have been developed in different directions by
Finkel (1987, 1990) and Abdulla et al. (1996), before a unifying theory finally emerged in
the works of Abdulla et al. (2000) and Finkel and Schnoebelen (2001)—the laer being our
main source for this chapter and exercises 1.11 to 1.13. More recent developments are
concerned with the algorithmics of downward-closed sets (Finkel and Goubault-Larrecq,
2009, 2012) and of games (Abdulla et al., 2008; Bertrand and Schnoebelen, 2012).

P T. Proving termination thanks to a ranking function into a well-
founded ordering can be traced back at least to Turing (1949). e presentation in these
notes rather follows Cook et al. (2011) and emphasizes the interest of transition invariants;
see Podelski and Rybalchenko (2004) and the discussion of related work by Blass and
Gurevich (2008).

R L.e reader will find a good general exposition on relevance logic in the
chapter of Dunn and Restall (2002), and in particular a discussion of decidability issues
in their Section 4, from which Exercise 1.18 is taken (credited to Kripke, 1959). Both the
approach in the exercise and that of the main text scale to larger fragments like the con-
junctive implicative fragment R⊃,∧, but Urquhart (1984) proved the undecidability of the
full relevance logic R and its variants the entailment logic E and ticket logic T. is is still
an active area of research: although Urquhart (1999) proved R⊃,∧ to be Ackermannian
(see [CRI] on page 89), the complexity of [RI] is still unknown; similarily the decidabil-
ity of implicative ticket logic T⊃ was only recently proven by Padovani (2012), and its
complexity is also unknown.

Bibliographic Notes 21

K M T and vector addition systems were first defined by Karp and Miller
(1969). Coverability trees are used in a large number of algorithms and decision pro-
cedures on VAS, although their worst-case size can be Ackermannian in the size of the
input VAS (Cardoza et al., 1976). ite a few of these problems, including termination
and coverability, can actually be solved in ES instead (Rackoff, 1978; Blockelet and
Schmitz, 2011), but finite equivalences are an exception (Mayr and Meyer, 1981; Jančar,
2001); see [FCP] on page 88. e notion of covering can be generalized to completeWSTS,
but they are in general not finite as in the VAS case (Finkel and Goubault-Larrecq, 2012).

22 Chapter 1. Basics of WQOs and Applications

2

COMPLEXITY UPPER BOUNDS

2.1 e Length of Controlled Bad Sequences 25
2.2 Applications 30
2.3 Bounding the Length Function 31
2.4 Classification in the Grzegorczyk Hierarchy 38

As seen in Chapter 1, many algorithms rely on well quasi orderings to prove the
termination. Although it is true that the classical proofs of Dickson’s Lemma, Hig-
man’s Lemma, and other wqos, are infinistic in nature, the way they are typically
applied in algorithms lends itself to constructive proofs, from which complexity
upper bounds can be extracted and applied to evaluate algorithmic complexities.

We present in this chapter how one can derive complexity upper bounds for
these algorithms as a side-product of the use of Dickson’s Lemma over tuples
of integers. e techniques are however quite generic and also apply to more
complex wqos; see the Bibliographic Notes at the end of the chapter.

B S T. Recall from Definition 1.1 that one of the
characterizations for (A,≤) to be a wqo is that every infinite sequence a0, a1, . . .
over A contains an increasing pair ai1 ≤ ai2 for some i1 < i2. We say that (finite
or infinite) sequences with an increasing pair ai1 ≤ ai2 are good sequences, and
call bad a sequence where no such increasing pair can be found. erefore every
infinite sequence over the wqo A is good, i.e., bad sequences over A are finite.

 (a,b)
c←− 1
while a > 0 ∧ b > 0

l : ⟨a,b,c⟩ ←− ⟨a− 1,b, 2c⟩
or

r : ⟨a,b,c⟩ ←− ⟨2c,b− 1, 1⟩
end

Figure 2.1: : A simple while program, repeated from Figure 1.1.

Recall the program from Figure 1.1 on page 7, repeated here in Fig-
ure 2.1. We argued on page 7 that, in any run, the sequence of values taken by a

24 Chapter 2. Complexity Upper Bounds

.

.
.

.
.

.
F0 = F1

. (linear).

F2

.

(elementary)

.

F3

.

∪
k Fk

.

(primitive-recursive)

.

⊊

.

⊊

.

· · ·

Figure 2.2: e Grzegorczyk hierarchy of primitive-recursive functions.

and b
⟨a0, b0⟩, . . . , ⟨aj , bj⟩, . . . , (2.1)

is a bad sequence over (N2,≤), and by Dickson’s Lemma, it is finite, which means
that always terminates.

In this chapter, we are going to see that the very fact that we applied Dickson’s
Lemma yields more that just the termination of : it also yields an upper
bound on the number of times its main loop can be unrolled as a function of its
initial input ⟨a0, b0⟩, i.e. a bound on the length of the bad sequence (2.1). Beer,
the upper bounds we will prove are highly generic, in that we only need to find
out the complexity of the operations (i.e. only linear operations in) and the
dimension we are working with (i.e. in dimension 2 in (2.1)), to provide an upper
bound.

A L B. Before we investigate these upper bounds, let us have a look at
how long can run: for instance, for ⟨a0, b0⟩ = ⟨2, 3⟩, we find the following
run

⟨2, 3, 20⟩ l−→ ⟨1, 3, 21⟩ r−→ ⟨22, 2, 20⟩ l2
2−1r−−−−→ ⟨222 , 1, 1⟩ l2

22−1r−−−−→ ⟨0, 1, 222
2

⟩ ,

of length
2 + 22 + 22

2
, (2.2)

which is non-elementary in the size of the initial values. is is instructive: linear
operations and dimension 2 constitute the simplest case we care about, and the
complexities we find are already beyond the elementary hierarchies, where the
distinctions time vs. space resources, or deterministic vs. nondeterministic com-
putations, become irrelevant. Hierarchies for non-elementary complexities are
maybe not so well-known, so we will introduce one such hierarchy, the Grzegor-
czyk hierarchy (Fk)k∈N of classes of functions (see Figure 2.2).

As we will see, in the case of S, we can show there exists a function
bounding the length of all runs and residing in F3, which is the lowest level to

2.1. e Length of Controlled Bad Sequences 25

contain non-elementary functions. Chapter 3 will be devoted to further matching
complexity lower bounds for decision problems on monotonic counter systems.

O.e upcoming Section 2.1 surveys all the notions (controlled sequences,
polynomial normed wqos, and the Grzegorczyk hierarchy) needed in order to
state the Length Function eorem, and later apply it to several algorithms in
Section 2.2. e proof of the theorem is delayed until Section 2.3, which ends with
the definition of a bounding functionM on the length of controlled bad sequences,
and Section 2.4 that classifies this function inside the Grzegorczyk hierarchy.

2.1 T L C B S

As seen with the example of S, wqo-based termination arguments rely on
the finiteness of bad sequences. In order to further provide a complexity analysis,
our goal is thus to bound the length of bad sequences.

2.1.1 C S

Our first issue with our program is that one can construct arbitrarily long bad
sequences, even when starting from a fixed first element. Consider N2 and fix
x0 = ⟨0, 1⟩. en the following

⟨0, 1⟩, ⟨L, 0⟩, ⟨L− 1, 0⟩, ⟨L− 2, 0⟩, . . . , ⟨2, 0⟩, ⟨1, 0⟩ (2.3)

is a bad sequence of length L + 1. What makes such examples possible is the
“uncontrolled” jump from an element like x0 to an arbitrarily large next element,
here x1 = ⟨L, 0⟩. Indeed, when one only considers bad sequences displaying
some controlled behaviour (in essence, bad sequences of bounded complexity, as
with the linear operations of S), upper bounds on their lengths certainly
exist.

N C. In order to control the growth of the values in a sequence
a0, a1, a2, . . . over some wqo (A,≤), we introduce two main ingredients:

1. the first is a norm |.|A:A → N on the elements to represent their size. We
always assume A<n

def
= {a ∈ A | |a|A < n} to be finite for every n; we call

the resulting structure (A,≤, |.|A) a normed wqo (nwqo). For instance, for normed wqo

N2 we will use the infinite norm |⟨m,n⟩|N2
def
= max(m,n);

2. the second is a control function g:N → N used to bound the growth of control function

elements as we iterate through the sequence. We always assume g to be
strictly increasing: g(x+ 1) ≥ 1 + g(x) for all x.

26 Chapter 2. Complexity Upper Bounds

Mixing these together, we say that a sequence a0, a1, a2, . . . over A is (g, n)-
controlled for some initial norm n ∈ N def⇔controlled sequence

∀i = 0, 1, 2, . . . : |ai|A < gi(n)
def
=

i times︷ ︸︸ ︷
g(g(· · · g(n))) . (2.4)

In particular, |a0|A < n, hence the name “initial norm” for n. For instance, the
bad sequence (2.1) over N2 extracted from the runs of is (g, n)-controlled
for g(x) = 2x and n = max(a0, b0) + 1. Observe that the empty sequence is
always a controlled sequence.

Definition 2.1 (Basic nwqos). We note [k] the nwqo ({0, . . . , k − 1},≤, |.|[k])
defined over the initial segment of the natural numbers, where |j|[k]

def
= j for all

0 ≤ j < k, and Γk the generic k-elements nwqo ({a0, . . . , ak−1},=, |.|Γk
) where

|aj |Γk

def
= 0 for all 0 ≤ j < k.

L F. e outcome of these definitions is that, unlike in the un-
controlled case, there is a longest (g, n)-controlled bad sequence over any nwqo
(A,≤A, |.|A): indeed, we can organize such sequences in a tree by sharing com-
mon prefixes; this tree has

• finite branching degree, bounded by the cardinal of A<gi(n) for a node at
depth i, and

• finite depth thanks to the wqo property.

By Kőnig’s Lemma, this tree of bad sequences is therefore finite, of some height
Lg,n,A representing the length of the maximal (g, n)-controlled bad sequence(s)
overA. In the following, sincewe aremostly interested in this length as a function
of the initial norm, we will see this as a length function Lg,A(n); our purpose willlength function

then be to obtain complexity bounds on Lg,A.

Remark 2.2 (Monotonicity of L). It is easy to see that Lg,A(n) is monotone in
the initial norm n (because g is increasing), but also in the choice of the control
function: if h(x) ≥ g(x) for all x, then a (g, n)-controlled bad sequence is also an
(h, n)-controlled one, thus Lg,A(n) ≤ Lh,A(n).

2.1.2 P

Before we go any further in our investigation of the length function, let us first
restrict the scope of our analysis.

I. For one thing, we will work up to isomorphism: we write A ≡
B when the two nwqo’s A and B are isomorphic structures. For all practicalnwqo isomorphism

purposes, isomorphic nwqos can be identified. Let us stress that, in particular,
norm functions must be preserved by nwqo isomorphisms. Obviously, the length
functions Lg,A and Lg,B are the same for isomorphic nwqos.

2.1. e Length of Controlled Bad Sequences 27

Example 2.3 (Isomorphisms). On the positive side, [0] ≡ Γ0 and also [1] ≡ Γ1

since |a0|Γ1 = 0 = |0|[1].
However, [2] ̸≡ Γ2: not only these two have non-isomorphic orderings, but

they also have different norm functions. is can be witnessed by their associated
length functions: one can see for instance that “a1, a0” is a (g, 1)-controlled bad
sequence over Γ2, but that the longest (g, 1)-controlled bad sequence over [2] is
the sequence “0” of length 1.

P . We are now ready to define the class of normed wqos we
are interested in. We will need the empty nwqo Γ0 = ∅, and a singleton nwqo empty nwqo

singleton nwqoΓ1 containing a single element with norm 0, and using equality as ordering as
in Example 2.3. e exact element found in this singleton is usually irrelevant; it
could be for instance a leer in an alphabet, or a state in a finite state set.

e disjoint sum of two nwqos (A1,≤A1 , |.|A1) and (A2,≤A2 , |.|A2) is the disjoint sum

nwqo (A1 +A2,≤A1+A2 , |.|A1+A2) defined by
A1 +A2

def
= {⟨i, a⟩ | i ∈ {1, 2} and a ∈ Ai} , (2.5)

⟨i, a⟩ ≤A1+A2 ⟨j, b⟩
def⇔ i = j and a ≤Ai b , (2.6)

|⟨i, a⟩|A1+A2

def
= |a|Ai . (2.7)

We writeA ·k for

k times︷ ︸︸ ︷
A+ · · ·+A; then, any finite nwqo Γk can be defined as a k-ary

disjoint sum Γk
def
= Γ1 · k.

e cartesian product of two nwqos (A1,≤A1 , |.|A1) and (A2,≤A2 , |.|A2) is cartesian product

the nwqo (A1 ×A2,≤A1×A2 , |.|A1×A2) defined by
A1 ×A2

def
= {⟨a1, a2⟩ | a1 ∈ A1, a2 ∈ A2} , (2.8)

⟨a1, a2⟩ ≤A1×A2 ⟨b1, b2⟩
def⇔ a1 ≤A1 b1 and a2 ≤A2 b2 , (2.9)

|⟨a1, a2⟩|A1×A2

def
= max

i∈{1,2}
|ai|Ai . (2.10)

e fact thatA1×A2 is indeed a wqo is known as Dickson’s Lemma. We note the
d-fold cartesian product of a nwqo A with itself Ad def

= A× · · · ×A︸ ︷︷ ︸
d times

; in particular

A0 ≡ Γ1 is a singleton set containing only the empty tuple, of size 0 by (2.10).
Last, as we will be working on natural numbers, we also need the naturals

nwqo N along with its usual ordering and the norm |k|N
def
= k for all k in N. naturals nwqo

Definition 2.4. e set of polynomial nwqos is the smallest set of nwqos contain- polynomial nwqo

ing Γ0, Γ1, and N and closed under the + and × operations.

Example 2.5 (VASS Configurations). One can see that the set of configurations
Conf of a d-dimensional VASS over a set of states Q with |Q| = p, along with its
ordering, is isomorphic to the polynomial nwqo Nd × Γp.

Remark 2.6 (nwqo Semiring). Observe that the definitions are such that all the
expected identities of + and × hold: the class of all nwqos when considered up

28 Chapter 2. Complexity Upper Bounds

to isomorphism forms a commutative semiring: Γ0 is neutral for+ and absorbing
for ×:

Γ0 +A ≡ A+ Γ0 ≡ A Γ0 ×A ≡ A× Γ0 ≡ Γ0 , (2.11)

Γ1 is neutral for ×:
Γ1 ×A ≡ A× Γ1 ≡ A , (2.12)

+ is associative and commutative:

A+ (B + C) ≡ (A+B) + C A+B ≡ B +A , (2.13)

× is associative and commutative:

A× (B × C) ≡ (A×B)× C A×B ≡ B ×A , (2.14)

and × distributes over +:

(A+B)× C ≡ (A× C) + (B × C) . (2.15)

Remark 2.7 (Normal Form for Polynomial nwqos). An easy consequence of the
identities from Remark 2.6 for polynomial nwqos is that any polynomial nwqo A
can be put in a polynomial normal form (PNF)polynomial normal form

A ≡ Nd1 + · · ·+ Ndm (2.16)

for m, d1, · · · , dm ≥ 0. In particular, we denote the PNF of Γ0 by “0.” In Sec-
tion 2.3.3 and later sections we will deal exclusively with nwqos in PNF; since
A ≡ A′ implies Lg,A = Lg,A′ this will be at no loss of generality.

2.1.3 S F

We already witnessed with that the complexity of some programs imple-
mentable as monotone counter systems can be quite high—more than a tower of

exponentials 22
. .

.2}
b times for (2, b) in Equation (2.2) on page 24, which is a

non-elementary function of b. However there is a vast space of functions that
are non-elementary but recursive—and even primitive recursive, which will be
enough for our considerations.

T G H (Fk)k<ω is a hierarchy of classes of primitive-
recursive functions f with argument(s) and images in N. eir union is exactly
the set of primitive-recursive functions:∪

k<ω

Fk = FPR . (2.17)

e lower levels correspond to reasonable classes, F0 = F1 being the class of
linear functions, and F2 that of elementary functions. Starting at level 1, the
hierarchy is strict in that Fk ⊊ Fk+1 for k > 0 (see Figure 2.2 on page 24).

At the heart of each Fk lies the kth fast-growing function Fk:N→ N, whichfast-growing function

2.1. e Length of Controlled Bad Sequences 29

is defined for finite k by

F0(x)
def
= x+ 1 , Fk+1(x)

def
= F x

k (x) =

x times︷ ︸︸ ︷
Fk(Fk(· · ·Fk(x))) . (2.18)

is hierarchy of functions continues with ordinal indices, e.g.

Fω(x)
def
= Fx(x) . (2.19)

Observe that

F1(x) = 2x , F2(x) = 2xx , (2.20)

F3(x) > 22
. .

.2}
x times etc. (2.21)

For k ≥ 2, each level of the Grzegorczyk hierarchy can be characterized as

Fk = {f | ∃i, f is computed in time/space ≤ F i
k} , (2.22)

the choice between deterministic and nondeterministic or between time-bounded
and space-bounded computations being irrelevant because F2 is already a func-
tion of exponential growth.

On the one hand, because the fast-growing functions are honest, i.e. can be honest function

computed in time elementary in their result, Fk ∈ Fk for all k. On the other hand,
every function f in Fk is eventually bounded by Fk+1, i.e. there exists a rank xf
s.t. for all x1, . . . , xn, if maxi xi ≥ xf , then f(x1, . . . , xn) ≤ Fk+1(maxi xi).
However, for all k > 0,

Fk+1 ̸∈ Fk . (2.23)

In particular, Fω is (akin to) the diagonal Ackermann function: it is not primitive- Ackermann function

recursive and eventually bounds every primitive recursive function.
We delay more formal details on (Fk)k until Section 2.4 on page 38 and Ex-

ercise 2.3 on page 46 and turn instead to the main theorem of the chapter.

2.1.4 U B D’ L

Length Function Theoremeorem 2.8 (Length Function eorem). Let g be a control function bounded by
some function in Fγ for some γ ≥ 1 and d, p ≥ 0. en Lg,Nd×Γp

is bounded by a
function in Fγ+d.

e Length Function eorem is especially tailored to give upper bounds for
VASS configurations (recall Example 2.5 on page 27), but can also be used for VASS
extensions. For instance, the runs of can be described by bad sequences
in N2, of form described by Equation (2.1) on page 24. As these sequences are
controlled by the linear function g(x) = 2x in F1, the Length Function eorem
with p = γ = 1 entails the existence of a bounding function in F3 on the length
of any run of , which matches the non-elementary length of the example
run we provided in (2.2).

30 Chapter 2. Complexity Upper Bounds

2.2 A

Besides providing complexity upper bounds for various problems, the results pre-
sented in this chapter also yield new “combinatorial” algorithms: we can now
employ an algorithm that looks for a witness of bounded size. We apply this tech-
nique in this section to the two WSTS algorithms presented in Section 1.2.

Exercise 2.4 investigates the application of the Length Function eorem to
the program termination proofs of Section 1.3.1, and Exercise 2.14 to the Karp &
Miller trees of Section 1.3.3. ese applications remain quite generic, thus to make
maers more concrete beforehand, let us mention that, in the case of vector addi-
tion systems with states (Example 1.13), lossy counter machines (Section 3.1), re-
set machines (Section 3.5), or other examples of well-structured counter machines
with transitions controlled by g(x) = x + b for some b—which is a function in
F1—, with d counters, and with p states, the Length Function eorem yields an
upper bound in Fd+1 on the length of controlled bad sequences. is is improved
to Fd by Corollary 2.35 on page 45. When b or p is part of the input, this rises
to Fd+1, and when d is part of the input, to Fω , which asymptotically dominates
every primitive-recursive function.

2.2.1 T A

Let us consider the Termination problem of Section 1.2.1. Let S = ⟨S,−→,≤⟩
be a WSTS over a normed wqo (S,≤, |.|) where the norm |.| is also the size for
a concrete representation of elements in S, let s0 be an initial state in S with
n = |s0|+ 1, and let g(|s|) be an upper bound on the space required to compute
some s′ from s verifying s −→ s′. We can reasonably expect g to be increasing
and honest, and use it as a control over sequences of states: we compute an upper
bound

f(n) ≥ Lg,S(n) . (2.24)

As the Length Function eorem and all the related results allow to derive honest
upper bounds, this value can be computed in space elementary-recursive in f .

Because any run of S of length ℓ
def
= f(n) + 1 is necessarily good, we can

replace the algorithm in the proof of Proposition 1.15 by an algorithm that looks
for a finite witness of non-termination of form

s0 −→ s1 −→ · · · −→ sℓ . (2.25)

is algorithm requires space at most gℓ(n) at any point i to compute some si+1,
which yields a nondeterministic algorithm working in space elementary in gℓ(n).
is falls in the same class as f(n) itself in our seing—see Exercise 2.13 for an
analysis of gℓ.

2.3. Bounding the Length Function 31

2.2.2 C A

Recall that the algorithm of Section 1.2.2 for WSTS coverability of t from s, relied
on the saturation of a sequence (1.4) on page 6 of subsets ofS. In order to derive an
upper complexity bound on this problem, we look instead at how long we might
have to wait until this sequence proves coverability, i.e. consider the length of

↑{t} = I0 ⊊ I1 ⊊ · · · ⊊ Iℓ, where s ∈ Iℓ but s ̸∈ Ii for any i < ℓ . (2.26)

For each i = 1, . . . , ℓ, let si be a minimal element in the non-empty set Ii ∖ Ii−1;
then there must be one such sℓ ≤ s that does not appear in any of the Ii for i < ℓ,
and we consider a particular sequence

s1, s2, . . . , sℓ ≤ s . (2.27)

Note that sj ̸≥ si for j > i, since sj ̸∈ Ii and the sequence s1, s2, . . . in (2.27) is
bad—this also proves the termination of the (Ii)i sequence in (2.26).

We now need to know how the sequence in (2.27) is controlled. Note that in
general si ̸→ si+1, thus we really need to consider the sets of minimal elements
in (2.26) and bound more generally the length of any sequence of si’s where each
si is a minimal element of Ii∖ Ii−1. Assume again that S = ⟨S,−→,≤⟩ is a WSTS
over a normed wqo (S,≤, |.|) where the norm |.| is also the size for a concrete
representation of states in S. Also assume that s′ ≤ s can be tested in space
elementary in |s′| + |s|, and that elements of pb(s) can be computed in space
g(|s|) for a honest increasing g: then ℓ ≤ Lg,S(|t|+ 1).

ere is therefore a sequence

t = s′0, s
′
1, . . . , s

′
ℓ = sℓ ≤ s where s′i+1 ∈ pb(s′i) (2.28)

of minimal elements in (Ii)i that eventually yields sℓ ≤ s. We derive again a non-
deterministic algorithm that looks for a witness (2.28) of bounded length. Further-
more, each s′i verifies |s′i| ≤ gℓ(|t| + 1), which means that this algorithm works
in nondeterministic space elementary in gℓ(|t|+ 1) + |s|.

2.3 B L F

is section and the next together provide a proof for the Length Function e-
orem. e first part of this proof investigates the properties of bad controlled
sequences and derives by induction over polynomial nwqos a bounding function
Mg,A(n) on the length of (g, n)-controlled bad sequences over A (see Proposi-
tion 2.20 on page 38). e second part, detailed in Section 2.4, studies the prop-
erties of theMg,A functions, culminating with their classification in the Grzegor-
czyk hierarchy.

32 Chapter 2. Complexity Upper Bounds

2.3.1 R D E

Returning to the length function, let us consider a very simple case, namely the
case of sequences over N: one can easily see that

Lg,N(n) = n (2.29)

because the longest (g, n)-controlled bad sequence over N is simply

n− 1, n− 2, . . . , 1, 0 (2.30)

of length n.
Formally, (2.30) proves that Lg,N(n) ≥ n; an argument for the converse in-

equality could use roughly the following lines: in any (g, n)-controlled bad se-
quence of natural integers k, l,m, . . . over N, once the first element k < n has
been fixed, the remaining elements l,m, . . . have to be chosen inside a finite set
{0, . . . , k − 1} of cardinal k—or the sequence would be good. us this suffix,
which itself has to be bad, is of length at most

Lg,Γk
(n) =

{
0 if n = 0

k otherwise
(2.31)

by the pigeonhole principle. Choosing k = n− 1 maximizes the length of the bad
sequence in (2.31), which shows that Lg,N(n) ≤ n.

is argument is still a bit blurry (and will soon be cleared out), but it already
contains an important insight: in a (g, n)-controlled bad sequence a0, a1, a2, . . .
over some nwqoA, we can distinguish between the first element a0, which verifies
|a0|A < n, and the suffix sequence a1, a2, . . . , which

1. verifies a0 ̸≤ ai for all i > 0,

2. is itself a bad sequence—otherwise the full sequence a0, a1, a2, . . . would
be good,

3. is controlled by (g, g(n))—otherwise the full sequence a0, a1, a2, . . . would
not be (g, n)-controlled.

Item 1 motivates the following definition:

Definition 2.9 (Residuals). For a nwqo A and an element a ∈ A, the residual
nwqo A/a is the substructure (a nwqo) induced by the subset A/a

def
= {a′ ∈ A |residual nwqo

a ̸≤ a′} of elements that are not above a.

Example 2.10 (Residuals). For all l < k and i ∈ {1, . . . , k}:

N/l = [k]/l = [l] , Γk/ai ≡ Γk−1 . (2.32)

2.3. Bounding the Length Function 33

e conditions 1–3 on the suffix sequence a1, a2, . . . show that it is a (g, g(n))-
controlled bad sequence over A/a0. us by choosing an a′0 ∈ A<n that maxi-
mizes Lg,A/a′0

(g(n)) through some suffix sequence a′1, a
′
2, . . . , we can construct a

(g, n)-controlled bad sequence a′0, a
′
1, a

′
2, . . . of length 1 +Lg,A/a′0

(g(n)), which
shows

Lg,A(n) ≥ max
a∈A<n

{
1 + Lg,A/a(g(n))

}
. (2.33)

e converse inequality is easy to check: consider a maximal (g, n)-controlled
bad sequence a′′0, a

′′
1, . . . over A, thus of length Lg,A(n). If this sequence is not

empty, i.e. if Lg,A(n) > 0, then a′′0 ∈ A<n and its suffix a′′1, a
′′
2, . . . is of length

Lg,A/a′′0
(g(n))—or we could substitute a longer suffix. Hence:

Proposition 2.11 (Descent Equation). Descent Equation

Lg,A(n) = max
a∈A<n

{
1 + Lg,A/a(g(n))

}
. (2.34)

is reduces the Lg,A function to a finite combination of Lg,Ai ’s where the
Ai’s are residuals of A, hence “smaller” sets. Residuation is well-founded for
nwqos: a sequence of successive residuals A ⊋ A/a0 ⊋ A/a0/a1 ⊋ · · · is
necessarily finite since a0, a1, . . .must be a bad sequence. Hence the recursion in
the Descent Equation is well-founded and can be used to evaluate Lg,A(n). is
is our starting point for analyzing the behaviour of length functions.

Example 2.12. Let us consider the case of Lg,[k](n) for k < n: by induction on
k, we can see that

Lg,[k](n) = k . (2.35)

Indeed, this holds trivially for [0] = ∅, and for the induction step, it also holds for
k + 1 < n since [k + 1]<n = [k + 1] and thus by the Descent Equation

Lg,[k+1](n) = max
l∈[k+1]

{
1 + Lg,[k+1]/l(g(n))

}
= max

l∈[k+1]

{
1 + Lg,[l](g(n))

}
= max

l∈[k+1]
{1 + l}

= 1 + k

using (2.32) and the induction hypothesis on l ≤ k < n ≤ g(n).

Example 2.13. Let us consider again the case of Lg,N: by the Descent Equation,

Lg,N(n) = max
k∈N<n

{
1 + Lg,N/k(g(n))

}
= max

k∈N<n

{
1 + Lg,[k](g(n))}

= max
k∈N<n

{1 + k}

= n

34 Chapter 2. Complexity Upper Bounds

thanks to (2.32) and (2.35) on k < n.

2.3.2 R

e reader might have noticed that Example 2.13 does not quite follow the rea-
soning that led to (2.29) on page 32: although we started by decomposing bad
sequences into a first element and a suffix as in the Descent Equation, we rather
used (2.31) to treat the suffix by seeing it as a bad sequence over Γn−1 and deduce
Lg,N(n). However, as already mentioned in Example 2.3 on page 27, Γn−1 ̸≡
[n− 1] in general.

We can reconcile the analyses made for (2.29) on page 32 and in Example 2.13
by noticing that bad sequences are never shorter in Γn−1 than in [n− 1]. We
will prove this formally using reflections, which let us simplify instances of the
Descent Equation by replacing all A/a for a ∈ A<n by a single (or a few) A′ that
is larger than any of the considered A/a’s—but still reasonably small compared
to A, so that a well-founded inductive reasoning remains possible.

Definition 2.14. A nwqo reflection is a mapping h:A → B between two nwqosnwqo reflection

that satisfies the two following properties:

∀a, a′ ∈ A : h(a) ≤B h(a′) implies a ≤A a′ , (2.36)

∀a ∈ A : |h(a)|B ≤ |a|A . (2.37)

In otherwords, a nwqo reflection is an order reflection that is also norm-decreasing
(not necessarily strictly).

We write h:A ↪→ B when h is a nwqo reflection and say that B reflects A.
is induces a relation between nwqos, wrien A ↪→ B.

Reflection is transitive since h:A ↪→ B and h′:B ↪→ C entails h′ ◦h:A ↪→ C .
It is also reflexive, hence reflection is a quasi-ordering. Any nwqo reflects its
induced substructures since Id:X ↪→ A when X is a substructure of A. us
Γ0 ↪→ A for any A, and Γ1 ↪→ A for any non-empty A.

Example 2.15 (Reflections). Among the basic nwqos from Example 2.3, we note
the following relations (or absences thereo). For any k ∈ N, [k] ↪→ Γk, while
Γk ̸↪→ [k] when k ≥ 2. e reflection of induced substructures yields [k] ↪→ N
and Γk ↪→ Γk+1. Obviously, N ̸↪→ [k] and Γk+1 ̸↪→ Γk.

Reflections preserve controlled bad sequences. Let h:A ↪→ B, consider a
sequence s = a0, a1, . . . over A, and write h(s) for h(a0), h(a1), . . ., a sequence
over B. en by (2.36), h(s) is bad when s is, and by (2.37), it is (g, n)-controlled
when s is. Hence we can complete the picture of the monotonicity properties of
L started in Remark 2.2 on page 26:

Proposition 2.16 (Monotonicity of L in A).

A ↪→ B implies Lg,A(n) ≤ Lg,B(n) for all g, n . (2.38)

2.3. Bounding the Length Function 35

..

⟨3, 2⟩

. N × (N/2).

(N/3) × N

Figure 2.3: e elements of the bad sequence (2.42) and the two regions for the
decomposition of N2/⟨3, 2⟩.

is is the last missing piece for deducing (2.29) from (2.31): since [k] ↪→ Γk,
Lg,[k](n) ≤ Lg,Γk

(n) by Proposition 2.16—the converse inequality holds for k <
n, as seen with (2.31) and (2.35), but not for k ≥ n > 1 as seen in Example 2.3.

Remark 2.17 (Reflection is a Preconguence). Reflections are compatible with prod-
uct and sum:

A ↪→ A′ and B ↪→ B′ imply A+B ↪→ A′ +B′ and A×B ↪→ A′ ×B′ .
(2.39)

I R C. We may now tackle our first main problem:
computing residualsA/a. e Descent Equation, though it offers a powerful way
of computing the length function, can very quickly lead to complex expressions, as
the nwqos A/a0/a1/ · · · /an become “unstructured”, i.e. have no nice definition
in terms of + and ×. Residuation allows us to approximate these sets s.t. the
computation can be carried out without leaving the realm of polynomial nwqos,
leading to an inductive computation of A/a over the structure of the polynomial
nwqo A.

e base cases of this induction were already provided as (2.32) for finite sets
Γk, and

N/k ↪→ Γk (2.40)

for the naturalsN—becauseN/k = [k] by (2.32), and then [k] ↪→ Γk as seen in Ex-
ample 2.15—, which was implicit in the computation of Lg,N in (2.29). Regarding
disjoint sums A+B, it is plain that

(A+B)/⟨1, a⟩ = (A/a) +B , (A+B)/⟨2, b⟩ = A+ (B/b) , (2.41)

and reflections are not required.
e case of cartesian productsA×B is different: Let g(x) = 2x and consider

the following (g, 4)-controlled bad sequence over N2

⟨3, 2⟩, ⟨5, 1⟩, ⟨0, 4⟩, ⟨17, 0⟩, ⟨1, 1⟩, ⟨16, 0⟩, ⟨0, 3⟩ . (2.42)

Our purpose is to reflect N2/⟨3, 2⟩ into a simpler polynomial nwqo. e main
intuition is that, for each tuple ⟨a, b⟩ in the suffix, ⟨3, 2⟩ ̸≤ ⟨a, b⟩ entails that

36 Chapter 2. Complexity Upper Bounds

3 ̸≤ a or 2 ̸≤ b. us we can partition the elements of this suffix into two groups:
the pairs where the first coordinate is in N/3, and the pairs where the second
coordinate is in N/2—an element might fulfill both conditions, in which case we
choose an arbitrary group for it. us the elements of the suffix can be either from
(N/3) × N or from N × (N/2), and the whole suffix can be reflected into their
disjoint sum (N/3)× N+ N× (N/2).

For our example (2.42), we obtain the decomposition (see also Figure 2.3)

⟨3, 2⟩,
{
⟨5, 1⟩, . ⟨17, 0⟩,⟨1, 1⟩,⟨16, 0⟩, . ∈ N× (N/2)

. ⟨0, 4⟩, . . . ⟨0, 3⟩ ∈ (N/3)× N (2.43)

We could have put ⟨1, 1⟩ in either N × (N/2) or (N/3) × N but we had no
choice for the other elements of the suffix. Observe that the two subsequences
⟨0, 4⟩⟨0, 3⟩ and ⟨5, 1⟩, ⟨17, 0⟩, ⟨1, 1⟩, ⟨16, 0⟩ are indeed bad, but not necessarily
(g, g(4))-controlled: |⟨17, 0⟩| = 17 ≥ 16 = g(g(4)). However, we do not see
them as independent sequences but consider their disjoint sum instead, so that
their elements inherit their positions from the original sequence, and indeed the
suffix sequence in (2.43) is (g, g(4))-controlled.

By a straightforward generalization of the argument:

(A×B)/⟨a, b⟩ ↪→
(
(A/a)×B

)
+
(
A× (B/b)

)
. (2.44)

Since it provides reflections instead of isomorphisms, (2.44) is not meant to sup-
port exact computations of A/a by induction over the structure of A (see Exer-
cise 2.5). More to the point, it yields over-approximations that are sufficiently
precise for our purposes while bringing important simplifications when we have
to reflect the A/a for all a ∈ A<n.

2.3.3 A B F

It is time to wrap up our analysis of L. We first combine the inductive residuation
and reflection operations into derivation relations ∂n: intuitively, the relationA ∂nnwqo derivation

A′ is included in the relation “A/a ↪→ A′ for some a ∈ A<n” (see Lemma 2.19
for the formal statement). More to the point, the derivation relation captures
a particular way of reflecting residuals, which enjoys some good properties: for
every n, givenA a nwqo in polynomial normal form (recall Remark 2.7 on page 28),
∂nA is a finite set of polynomial nwqos also in PNF, defined inductively by

∂n0
def
= ∅ , (2.45)

∂nN0 def
= {0} , (2.46)

∂nNd def
= {Nd−1 · (n− 1)d} , (2.47)

∂n(A+B)
def
=
(
(∂nA) +B

)
∪
(
A+ (∂nB)

)
, (2.48)

2.3. Bounding the Length Function 37

for d > 0 and A,B in PNF; in these definitions the + operations are lied to act
upon nwqo sets S by A+ S

def
= {A+ A′ | A′ ∈ S} and symmetrically. Note that

(2.46) can be seen as a particular case of (2.47) if we ignore the undefined N0−1

and focus on its coefficient 0.
An important fact that will become apparent in the next section is

Fact 2.18 (Well-Foundedness). e relation ∂
def
=
∪

n ∂n is well-founded.

e definition of ∂n verifies:

Lemma 2.19. Let A be a polynomial nwqo in PNF and a ∈ A<n for some n. en
there exists A′ in ∂nA s.t. A/a ↪→ A′.

Proof. Let A ≡ Nd1 + · · · + Ndm in PNF and let a ∈ A<n for some n; note that
the existence of a rules out the case of m = 0 (i.e. A ≡ Γ0), thus (2.45) vacuously
verifies the lemma.

We proceed by induction on m > 0: the base case is m = 1, i.e. A ≡ Nd, and
perform a nested induction on d: if d = 0, thenA ≡ Γ1, thusA/a ≡ Γ0 by (2.32):
this is in accordance with (2.46), and the lemma holds. If d = 1, i.e. A ≡ N, then
A/a ↪→ Γa by (2.40), and then Γa ↪→ Γn−1 ≡ N0 · (n−1) as seen in Example 2.15
since a < n, thus (2.47) verifies the lemma. For the induction step on d > 1,

A ≡ Nd = N× Nd−1

and thus a = ⟨k, b⟩ for some k ∈ N<n and b ∈ Nd−1
<n . By (2.44),

A/a ↪→
(
(N/k)× Nd−1

)
+
(
N× (Nd−1/b)

)
.

Using the ind. hyp. on N/k along with Remark 2.17,

↪→
(
(N0 · (n− 1))× Nd−1

)
+
(
N× (Nd−1/b)

)
≡ (Nd−1 · (n− 1)) +

(
N× (Nd−1/b)

)
.

Using the ind. hyp. on Nd−1/b along with Remark 2.17,

↪→ (Nd−1 · (n− 1)) +
(
N× (Nd−2 · (d− 1)(n− 1))

)
≡ Nd−1 · d(n− 1) ,

in accordance with (2.47).
For the induction step on m > 1, i.e. if A ≡ B + C , then wlog. a = ⟨1, b⟩ for

some b ∈ B<n and thus by (2.41) A/a = (B/b) + C . By ind. hyp., there exists
B′ ∈ ∂nB s.t. B/b ↪→ B′, thus A/a ↪→ B′ + C by Remark 2.17, the laer nwqo
being in ∂nA according to (2.48).

e computation of derivatives can be simplified by replacing (2.45) and (2.48)
by a single equation (see Exercise 2.6):

∂nA = {B + ∂nNd | A ≡ B + Nd, d ≥ 0} . (2.49)

38 Chapter 2. Complexity Upper Bounds

T B F Mg,A for A a polynomial nwqo in PNF is defined bybounding function

Mg,A(n)
def
= max

A′∈∂nA

{
1 +Mg,A′(g(n))

}
. (2.50)

is functionM is well-defined as a consequence of Fact 2.18 and of the finiteness
of ∂nA for all n and A; its main property is

Proposition 2.20. For any polynomial nwqoA in PNF, any control function g, and
any initial control n,

Lg,A(n) ≤Mg,A(n) . (2.51)

Proof. Either A<n is empty and then Lg,A(n) = 0 ≤ Mg,A(n), or there exists
some a ∈ A<n that maximizes Lg,A/a(g(n)) in the Descent Equation, i.e.

Lg,A(n) = 1 + Lg,A/a(g(n)) .

By Lemma 2.19 there exists A′ ∈ ∂nA s.t. A/a ↪→ A′, thus by Proposition 2.16

Lg,A(n) ≤ 1 + Lg,A′(g(n)) .

By well-founded induction on A′ ∈ ∂nA, Lg,A′(g(n)) ≤Mg,A′(g(n)), thus

Lg,A(n) ≤ 1 +Mg,A′(g(n)) ≤Mg,A(n)

by definition of M .

2.4 ⋆ C G H

Now equipped with a suitable bound Mg,A(n) on the length of (g, n)-controlled
bad sequences overA, the only remaining issue is its classification inside theGrze-
gorczyk hierarchy. We first exhibit a very nice isomorphism between polynomial
nwqos (seen up to isomorphism) and theirmaximal order types, which are ordinals
below ωω .

2.4.1 M O T

Consider a wqo (A,≤): it defines an associated strict ordering <
def
= {(a, a′) ∈

A2 | a ≤ a′ and a′ ̸≤ a}. ere are many possible linearizations≺ of<, i.e. linear
orders with< ⊆ ≺, obtained by equating equivalent elements and “orienting” the
pairs of incomparable elements (a, a′) of (A,≤). Each of these linearizations is
a well-ordering and is thus isomorphic to some ordinal, called its order type, thatorder type

intuitively captures its “length.” emaximal order type of (A,≤) is then definedmaximal order type

as the maximal such order type over all the possible linearizations; it provides a
measure of the complexity of the (n)wqo.

Example 2.21 (Maximal Order Types). In a finite set Γk, the strict ordering is
empty and the k! different linear orders overΓk are all of order type k. In an initial

2.4. Classification in the Grzegorczyk Hierarchy 39

segment of the naturals [k] (respectively in the naturals N), the only linearization
is the natural ordering < itself, which is of order type k (respectively ω):

o(Γk) = o([k]) = k , o(N) = ω . (2.52)

Remark 2.22. By definition of the maximal order type of a nwqo A, if A ≡ A′

then o(A) = o(A′).

As seenwith our example, themaximal order type of a polynomial nwqo is not
necessarily finite, which prompts us to recall a few elements of ordinal notations.

O T. Let ε0 be the smallest solution of the equation ωx = x. It is well-
known that ordinals below ε0 can be wrien down in a canonical way as ordinal
terms in Cantor Normal Form (CNF), i.e. sums Cantor Normal Form

α = ωβ1 + · · ·+ ωβm =
m∑
i=1

ωβi (2.53)

with β1 ≥ · · · ≥ βm ≥ 0 and each βi itself a term in CNF. We write 1 for ω0

and α · n for
n times︷ ︸︸ ︷

α+ · · ·+ α. Recall that the direct sum operator + is associative
((α + β) + γ = α + (β + γ)) and idempotent (α + 0 = α = 0 + α) but not
commutative (e.g. 1+ω = ω ̸= ω+1). An ordinal term α of form γ +1 is called
a successor ordinal. Otherwise, if not 0, it is a limit ordinal, usually denoted λ. We successor ordinal

limit ordinalwrite CNF(α) for the set of ordinal terms α′ < α in CNF (which is in bijection
with the ordinal α, and we use ordinal terms in CNF and set-theoretic ordinals
interchangeably).

When working with terms in CNF, the ordinal ordering <, which is a well ordinal ordering

ordering over ordinals, has a syntactic characterization akin to a lexicographic
ordering:

m∑
i=1

ωβi <

n∑
i=1

ωβ′
i ⇔

{
m < n and ∀1 ≤ i ≤ m,βi = β′

i, or

∃1 ≤ j ≤ min(m,n), βj < β′
j and ∀1 ≤ i < j, βi = β′

i .

(2.54)
Also recall the definitions of the natural sum α⊕α′ and natural product α⊗α′

natural sum

natural productof two terms in CNF:

m∑
i=1

ωβi ⊕
n∑

j=1

ωβ′
j

def
=

m+n∑
k=1

ωγk ,
m∑
i=1

ωβi ⊗
n∑

j=1

ωβ′
j

def
=

m⊕
i=1

n⊕
j=1

ωβi⊕β′
j , (2.55)

where γ1 ≥ · · · ≥ γm+n is a reordering of β1, . . . , βm, β′
1, . . . , β

′
n.

40 Chapter 2. Complexity Upper Bounds

M O T. We map polynomial nwqos (A,≤, |.|A) to ordinals in ωω

using themaximal order type o(A) of the underlying wqo (A,≤). Formally, o(A)
can be computed inductively using (2.52) and the following characterization:

Fact 2.23. For any wqos A and B

o(A+B) = o(A)⊕ o(B) , o(A×B) = o(A)⊗ o(B) . (2.56)

Example 2.24. Given a polynomial nwqo in PNF A ≡
∑m

i=1Ndi , its associated
maximal order type is o(A) =

⊕m
i=1 ω

di , which is in ωω . It turns out that o is a
bijection between polynomial nwqos and ωω (see Exercise 2.7).

It is more convenient to reason with ordinal arithmetic rather than with poly-
nomial nwqos, and we li the definitions of ∂ and M to ordinals in ωω . Define
for all α in ωω and all d, n in N

∂nω
d def
=

{
0 if d = 0

ωd−1 · (d(n− 1)) otherwise
(2.57)

∂nα
def
=
{
γ ⊕ ∂nω

d | α = γ ⊕ ωd
}

(2.58)

Mg,α(n)
def
= max

α′∈∂nα

{
1 +Mg,α′(g(n))

}
. (2.59)

Equation (2.57) restates (2.46) and (2.47) using maximal order types, while (2.58)
and (2.59) mirror respectively (2.49) and (2.50) but work in ωω ; one easily obtains
the following slight variation of Proposition 2.20:

Corollary 2.25. For any polynomial nwqoA, any control function g, and any initial
control n,

Lg,A(n) ≤Mg,o(A)(n) . (2.60)

A benefit of ordinal notations is that the well-foundedness of ∂ announced in
Fact 2.18 is now an immediate consequence of < being a well ordering: one can
check that for any n, α′ ∈ ∂nα implies α′ < α (see Exercise 2.8).

Example 2.26. One can check that

Mg,k(n) = k Mg,ω(n) = n . (2.61)

(Note that if n > 0 this matches Lg,Γk
(n) exactly by (2.31)). is follows from

∂nk =

{
∅ if k = 0

{k − 1} otherwise.
(2.62)

2.4.2 T C H

A second benefit of working with ordinal indices is that we can exercise a richer
theory of subrecursive hierarchies, for which many results are known. Let us first
introduce the basic concepts.

2.4. Classification in the Grzegorczyk Hierarchy 41

F S. Subrecursive hierarchies are defined through assign-
ments of fundamental sequences (λx)x<ω for limit ordinal terms λ, verifying λx < fundamental sequence

λ for all x and λ = supx λx. e usual way to obtain families of fundamental se-
quences is to fix a particular sequence ωx for ω and to define on ordinal terms in
CNF

(γ + ωβ+1)x
def
= γ + ωβ · ωx , (γ + ωλ)x

def
= γ + ωλx . (2.63)

We always assume the standard assignment ωx
def
= x in the remainder of the chap-

ter.

P. Given an assignment of fundamental sequences, one defines the
(x-indexed) predecessor Px(α) < α of an ordinal α ̸= 0 as ordinal predecessor

Px(α+ 1)
def
= α , Px(λ)

def
= Px(λx) . (2.64)

us in all cases Px(α) < α since λx < λ. One can check that for all α > 0 and
x (see Exercise 2.9)

Px(γ + α) = γ + Px(α) . (2.65)

Observe that predecessors of ordinals in ωω are very similar to our derivatives:
for d = 0, Pn(ω

d) = 0 and otherwise Pn(ω
d) = ωd−1 ·(n−1)+Pn(ω

d−1), which
is somewhat similar to (2.57), and more generally (2.65) is reminiscent of (2.58) but
chooses a particular strategy: always derive the ωd summand with the smallest d.
e relationship will be made more precise in Section 2.4.3 on the following page.

T C H. Fix a unary function h:N → N. We define the Cichoń
hierarchy (hα)α∈ε0 by Cichoń hierarchy

h0(x)
def
= 0, hα+1(x)

def
= 1 + hα

(
h(x)

)
, hλ(x)

def
= hλx(x). (2.66)

In the initial segment ωω , this hierarchy is closely related to (Mg,α)α∈ωω : indeed,
we already noted the similarities between Pn(α) and ∂nα, and furthermore

Lemma 2.27. For all α > 0 in ε0 and x,

hα(x) = 1 + hPx(α)

(
h(x)

)
. (2.67)

Proof. By transfinite induction over α > 0. For a successor ordinal α′ + 1,
hα′+1(x) = 1+hα′

(
h(x)

)
= 1+hPx(α′+1)

(
h(x)

)
. For a limit ordinal λ, hλ(x) =

hλx(x) is equal to 1+hPx(λx)

(
h(x)

)
by ind. hyp. since λx < λ, which is the same

as 1 + hPx(λ)

(
h(x)

)
by definition of Px(λ).

Example 2.28 (Cichoń Hierarchy). First note that hk(x) = k for all k < ω, x,
and h. is can be shown by induction on k: it holds for the base case k = 0 by
definition, and also for the induction step as hk+1(x) = 1+hk(h(x)) = 1+ k by

42 Chapter 2. Complexity Upper Bounds

induction hypothesis. erefore hω(x) = hx(x) = x regardless of the choice of
h.

For ordinals greater than ω, the choice of h becomes significant. Seing
H(x)

def
= x+ 1, we obtain a particular hierarchy (Hα)α that verifies for instance

Hω·2(x) = Hω+x(x) = Hω(2x) + x = 3x , (2.68)

Hω2(x) = 2xx− x . (2.69)

e functions in the Cichoń hierarchy enjoy many more properties, of which
we will use the following two:

Fact 2.29 (Argument Monotonicity). If h is monotone, then each hα function is
also monotone in its argument: if x ≤ x′ then hα(x) ≤ hα(x

′).

Fact 2.30 (Classification in the Grzegorczyk Hierarchy). Let 0 < γ < ω. If h is
bounded by a function in Fγ and α < ωd+1, then hα is bounded by a function in
Fγ+d.

2.4.3 M

One obstacle subsists before we can finally prove the Length Function eorem:
the functions Mg,α and hα are not monotone in the parameter α. Indeed, α′ < α
does not imply Mg,α′(n) ≤ Mg,α(n) for all n: witness the case α = ω and α′ =
n+1: Mg,ω(n) = 1+Mg,n−1(g(n)) = n butMg,n+1(n) = n+1 by Example 2.26.
Similarly with hα, as seen with Example 2.28, hx+1(x) = x + 1 > x = hω(x),
although x+ 1 < ω.

In our case a rather simple ordering is sufficient: we define a structural order-
ing ⊑ for ordinals in ωω bystructural ordering

ωd1 + · · ·+ ωdm ⊑ ωd′1 + · · ·+ ωd′n def⇔ m ≤ n and ∀1 ≤ i ≤ m, di ≤ d′i
(2.70)

for ordinal terms in CNF(ωω), i.e. ω > d1 ≥ · · · ≥ dm ≥ 0 and ω > d′1 ≥
· · · ≥ d′n ≥ 0. A useful observation is that ⊑ is a precongruence for ⊕ (see
Exercise 2.10):

α ⊑ α′ and γ ⊑ γ′ imply α⊕ γ ⊑ α′ ⊕ γ′ . (2.71)

e structural ordering rules out the previous examples, as x + 1 ̸⊑ ω for
all x. is refined ordering yields the desired monotonicity property for M—see
Lemma 2.31 next (it can also be proven for h; see Exercise 2.11)—but let us first
introduce some notation: we write α′ = ∂d,nα if α = γ⊕ωd and α′ = γ⊕ ∂nω

d.
en (2.59) can be rewrien as

Mg,α(n) = max
α=γ⊕ωd

{
1 +Mg,∂d,nα (g(n))

}
. (2.72)

2.4. Classification in the Grzegorczyk Hierarchy 43

Lemma 2.31 (Structural Monotonicity). Let α, α′ be in ωω and x > 0. If α ⊑ α′,
thenMg,α(x) ≤Mg,α′(x).

Proof. Let us proceed by induction. If α = 0, then Mg,α(x) = 0 and the lemma
holds vacuously. Otherwise, for the induction step, write α =

∑m
i=1 ω

di and
α′ =

∑n
j=1 ω

dj ; there is some maximizing index 1 ≤ i ≤ m ≤ n such that

Mg,α(x) = 1 +Mg,∂di,xα
(g(x)) .

As i ≤ n and di ≤ d′i, observe that ∂di,xα ⊑ ∂d′i,xα
′, and by Fact 2.18, we can

apply the induction hypothesis:

Mg,α(x) ≤ 1 +Mg,∂d′
i
,xα

′ (g(x))

≤Mg,α′(x) .

An important consequence of Lemma 2.31 is that there is a maximizing strat-
egy for M , which is to always derive along the smallest term:

Lemma 2.32 (Maximizing Strategy). If α = γ + ωd for some d ≥ 0, then

Mg,α(n) = 1 +Mg,γ+∂nωd (g(n)) . (2.73)

Proof. Let α = γ ⊕ ωd′ ⊕ ωd. We claim that if d ≤ d′ and n ≤ n′, then

∂d,n′∂d′,nα ⊑ ∂d′,n′∂d,nα . (2.74)

e lemma follows immediately from the claim, Lemma 2.31, and the fact that g
is increasing.

e claim itself is easy to check using (2.71): abusing notations for the cases
of d = 0 or d′ = 0,

∂d,n′∂d′,nα = γ ⊕
(
ωd′−1 · (d′(n− 1)) + ωd−1 · (d(n′ − 1))

)
∂d′,n′∂d,nα = γ ⊕

(
ωd′−1 · (d′(n′ − 1)) + ωd−1 · (d(n− 1))

)
.

Observe that d′(n− 1) + d(n′ − 1) ≤ d′(n′ − 1) + d(n− 1), i.e. that the second
line has at least as many terms as the first line, and thus fulfills the first condition
of the structural ordering in (2.70). Furthermore, it has at least as many wd′−1

terms, thus fulfilling the second condition of (2.70).

Let us conclude with a comparison between derivatives and predecessors: de-
fine for d ≥ 0 the function

fd(x)
def
= dx− d+ 1 , (2.75)

then we have the following relationship:

44 Chapter 2. Complexity Upper Bounds

Corollary 2.33. If 0 < α < ωd+1, then Mg,α(n) ≤ 1 +Mg,Pfd(n)(α) (g(n)).

Proof. Since 0 < α < ωd+1, it can be wrien in CNF as α = γ + ωd′ for some
γ < α and d′ ≤ d. By Lemma 2.32, Mg,α(n) = 1 +Mg,γ+∂nωd′ (g(n)). If d′ = 0,
i.e. α = γ + 1, then

γ + ∂n1 = Pfd(n)(α) = γ

and the statement holds. Otherwise, by (2.71)

γ + ∂nω
d = γ + ωd′−1 · d′(n− 1)

⊑ γ + ωd−1 · d(n− 1) + Pfd(n)(ω
d−1)

= Pfd(n)(α) ,

from which we deduce the result by Lemma 2.31.

2.4.4 W U

We have now all the required ingredients for a proof of the Length Function e-
orem. Let us start with a uniform upper bound on Mg,α:

eorem 2.34 (Uniform Upper Bound). Let d > 0, g be a control function and
select a monotone function h such that h(fd(x)) ≥ fd(g(x)) for all x. If α < ωd+1,
then

Mg,α(n) ≤ hα(fd(n)) . (2.76)

Proof. We proceed by induction on α: if α = 0, then Mg,α(n) = 0 ≤ hα(fd(n))
for all n. Otherwise, by Corollary 2.33,

Mg,α(n) ≤ 1 +Mg,Pfd(n)(α) (g(x)) .

Because Pfd(n)(α) < α, we can apply the induction hypothesis:

Mg,α(n) ≤ 1 + hPfd(n)(α) (fd(g(n)))

≤ 1 + hPfd(n)(α) (h(fd(n)))

since h(fd(n)) ≥ fd(g(n)) and hPfd(n)(α) is monotone by Fact 2.29. Finally, by
Lemma 2.27,

Mg,α(n) ≤ hα(fd(n)) .

2.4. Classification in the Grzegorczyk Hierarchy 45

For instance, for α = ω (and thus fd(x) = x), eorem 2.34 yields that

Mg,ω(n) ≤ hω(n) = n , (2.77)

which is optimal (recall examples 2.26 and 2.28). Other examples are g(x) = 2x,
g(x) = x2, g(x) = 2x, where seing h(x) = g(x) fits:

If g(x) is 2x, x2, or 2x, then Mg,α(n) ≤ gα(fd(n)) . (2.78)

In a d-dimensional VASS with p states, sequences of configurations are con-
trolled by g(x) = x+b for somemaximal increment b > 0, and then h(x) = x+db
is also a suitable choice, which verifies

Lg,Nd×Γp
(n) ≤Mg,ωd·p(n) ≤ hωd·p(fd(n)) ≤ F dbp

d (fd(n))− fd(n) , (2.79)

the laer being a function in Fd when d, b, p are fixed:

Corollary 2.35. Let g(x) = x+ b for some b > 0, and fix d, p ≥ 0. en Lg,Nd×Γp

is bounded by a function in Fd.

Finally, we can choose a generic h(x) = d(g(x+d)−2)+1, as in the following
proof of the Length Function eorem:

eorem 2.8 (Length Function eorem). Let g be a control function bounded by
some function in Fγ for some γ ≥ 1 and d, p ≥ 0. en Lg,Nd×Γp

is bounded by a
function in Fγ+d.

Proof. Let A ≡ Nd × Γp. e case of d = 0 is handled through (2.31), which
shows that Lg,A is a constant function in Fγ .

For d > 0 we first use Corollary 2.25:

Lg,A(n) ≤Mg,o(A)(n) . (2.80)

Observe that o(A) < ωd+1, thus by eorem 2.34,

Lg,A(n) ≤ ho(A)(fd(n)) , (2.81)

where h(x) = d · (g(x + d) − 2) + 1 verifies h(fd(x)) = h(d(x − 1) + 1) =
d(g(dx+1)−2)+1 ≥ d(g(dx)−1)+1 ≥ d(g(x)−1)+1 = fd(g(x)) since g is
strictly monotone and d > 0. Because h is defined from g using linear operations,
for all γ ≥ 1, g is bounded in Fγ if and only if h is bounded in Fγ , and thus by
Fact 2.30, Lg,A is bounded in Fγ+d.

Remark 2.36. Note that the proof ofeorem 2.34 carries more generally for func-
tions f with f(x) ≥ fd(x): if h(f(x)) ≥ f(g(x)), then Mg,α(n) ≤ hα(f(n)).
Because proving h(fd(x)) ≥ fd(g(x)) can be problematic, a simpler choice for f
can ease the analysis.

One such example is f(x) = dx + 1: then, h(x) = g(x) fits if g is super-
homogeneous, i.e. if it verifies g(dx) ≥ d·g(x) for all d, x ≥ 1, and thus g(dx+1) ≥ super-homogeneous

function
g(dx) + 1 ≥ d · g(x) + 1 since g is assumed to be strictly increasing:

If g is super-homogeneous, then Mg,α(n) ≤ gα(dn+ 1) . (2.82)

46 Chapter 2. Complexity Upper Bounds

How good are these upper bounds? We already noted that they were optimal
for N in (2.77), and the sequence (2.1) extracted from the successive configura-
tions of was an example of a bad sequence with length function in F3.
Exercise 2.15 generalizes to arbitrary dimensions d and control functions
g and shows that a length gωd(n) can be reached using the lexicographic order-
ing; this is very close to the upper bounds found for instance in equations (2.77),
(2.78), and (2.82). e next chapter will be devoted to complexity lower bounds,
showing that for many decision problems, the enormous generic upper bounds
we proved here are actually unavoidable.

E

Exercise 2.1 (Disjoint Sums). Let (A1,≤A1) and (A2,≤A2) be two nwqos. Prove that
(A1 +A2,≤A1+A2) is a nwqo (see (2.5–2.7)).

Exercise 2.2 (Fast-Growing Functions).⋆

(1) Show that F1(x) = 2x and F2(x) = 2xx (stated in (2.20)). What are the values of
Fk(0) depending on k?

(2) Show that each fast-growing function is strictly expansive, i.e. that Fk(x) > x for all
k and x > 0.

(3) Show that each fast-growing function is strictly monotone in its argument, i.e. that
for all k and x′ > x, Fk(x

′) > Fk(x).

(4) Show that the fast-growing functions are monotone in the parameter k, more pre-
cisely that Fk+1(x) ≥ Fk(x) for all k and x > 0.

Exercise 2.3 (Grzegorczyk Hierarchy). Each class Fk of the Grzegorczyk hierarchy is⋆
Grzegorczyk hierarchy formally defined as the closure of the constant zero function 0 and one function 1, the sum

zero function

one function
function +:x1, x2 7→ x1 + x2, the projections πn

i :x1, . . . , xn 7→ xi for all 0 < i ≤ n, and

sum function

projection function

the fast-growing function Fk , under two basic operations:

substitution: if h0, h1, . . . , hp belong to the class, then so does f if
substitution

f(x1, . . . , xn) = h0(h1(x1, . . . , xn), . . . , hp(x1, . . . , xn)) ,

limited primitive recursion: if h1, h2, and h3 belong to the class, then so does f iflimited primitive recursion

f(0, x1, . . . , xn) = h1(x1, . . . , xn) ,

f(y + 1, x1, . . . , xn) = h2(y, x1, . . . , xn, f(y, x1, . . . , xn)) ,

f(y, x1, . . . , xn) ≤ h3(y, x1, . . . , xn) .

Observe that primitive recursion is defined by ignoring the last limitedness condition inprimitive recursion

the previous definition.

Exercises 47

(1) Define cut-off subtraction x ´ y as x − y if x ≥ y and 0 otherwise. Show that the cut-off subtraction

following functions are in F0:

predecessor : x 7→ x ´ 1,

cut-off subtraction : x, y 7→ x ´ y,

odd: x 7→ xmod 2.

(2) Show that Fj ∈ Fk for all j ≤ k.

(3) Show that, if a function f(x1, . . . , xn) is linear, then it belongs to F0. Deduce that
F0 = F1.

(4) Show that if a function f(x1, . . . , xn) belongs to Fk for k > 0, then there exists a
constant c in N s.t. for all x1, . . . , xn, f(x1, . . . , xn) < F c

k (maxi xi + 1). Why does
that fail for k = 0?

(5) Deduce that Fk+1 does not belong to Fk for k > 0.

Exercise 2.4 (Complexity of while Programs). Consider a program like that con-
sists of a loop with variables ranging over Z and updates of linear complexity. Assume
we obtain a k-ary disjunctive termination argument like (1.10) on page 8, where we syn-
thetized linear ranking functions ρj into N for each Tj .

What can be told on the complexity of the program itsel?

Exercise 2.5 (Residuals of Cartesian Products). For a nwqo A and an element a ∈ A,
define the nwqo ↑A a (a substructure of A) by ↑A a

def
= {a′ ∈ A | a ≤ a′}. us

A/a = A∖ (↑A a). Prove the following:

A×B/⟨a, b⟩ ̸≡ (A/a+ ↑B b) + (A/a×B/b) + (↑A a×B/b) , (∗)
A×B/⟨a, b⟩ ̸≡ (A/a×B) + (A×B/b) . (†)

Exercise 2.6 (Derivatives). Prove Equation (2.49): ∂nA = {B + ∂nNd | A ≡ B + Nd}.

Exercise 2.7 (Maximal Order Types). e mapping from nwqos to their maximal order
types is in general not a bijection (recall o(Γk) = o([k]) = k in Example 2.21). Prove that,
if we restrict our aention to polynomial nwqos, then o is a bijection from polynomial
nwqos (up to isomorphism) to CNF(ωω).

Exercise 2.8 (Well Foundedness of ∂). Prove Fact 2.18: e relation ∂
def
=
∪

n ∂n is well-
founded.

Exercise 2.9 (Predecessors). Prove Equation (2.65): For allα > 0, Px(γ+α) = γ+Px(α).

Exercise 2.10 (Structural Ordering). Prove Equation (2.71): ⊑ is a precongruence for ⊕.

Exercise 2.11 (Structural Monotonicity). Let α, α′ be in ωω , h be a strictly monotone ⋆
unary function, and x > 0. Prove that, if α ⊑ α′, then hα(x) ≤ hα′(x).

48 Chapter 2. Complexity Upper Bounds

Exercise 2.12 (r-Bad Sequences). We consider in this exercise a generalization of good⋆
sequences: a sequence a0, a1, . . . over a qo (A,≤) is r-good if we can extract an in-r-good sequence

creasing subsequence of length r + 1, i.e. if there exist r + 1 indices i0 < · · · < ir s.t.
ai0 ≤ · · · ≤ air . A sequence is r-bad if it is not r-good. us “good” and “bad” stand forr-bad sequence

“1-good” and “1-bad” respectively.
By wqo.2 (stated on page 2), r-bad sequences over a wqo A are always finite, and

using the same arguments as in Section 2.1.1, r-bad (g, n)-controlled sequences over a
nwqo A have a maximal length Lg,r,A(n). Our purpose is to show that questions about
the length of r-bad sequences reduce to questions about bad sequences:

Lg,r,A(n) = Lg,A×Γr (n) . (‡)

(1) Show that such a maximal (g, n)-controlled r-bad sequence is (r − 1)-good.

(2) Given a sequence a0, a1, . . . , aℓ over a nwqo (A,≤A, |.|A), an index i is p-good if it
starts an increasing subsequence of length p + 1, i.e. if there exist indices i = i0 <
· · · < ip s.t. ai0 ≤ · · · ≤ aip . e goodness γ(i) of an index i is the largest p s.t. i is
p-good. Show that Lg,r,A(n) ≤ Lg,A×Γr (n).

(3) Show the converse, i.e. that Lg,r,A(n) ≥ Lg,A×Γr (n).

Exercise 2.13 (Hardy Hierarchy). A well-known variant of the Cichoń hierarchy is the⋆
Hardy hierarchy (hα)α defined using a unary function h:N→ N by

h0(x)
def
= x , hα+1(x)

def
= hα

(
h(x)

)
, hλ(x)

def
= hλx(x) .

Observe that hα is intuitively the αth (transfinite) iterate of the function h. As with the
Cichoń hierarchy, one case is of particular interest: that of (Hα)α forH(x)

def
= x+1. e

Hardy hierarchy will be used in the following exercises and, quite crucially, in Chapter 3.

(1) Show that Hα(x) = Hα(x) − x for all α, x. What about hα(x) and hα(x) − x if
h(x) > x?

(2) Show that hγ+α(x) = hγ
(
hα(x)

)
for all h, γ, α, x with γ + α in CNF.

(3) Extend the fast-growing hierarchy to (Fα)α by Fα+1(x)
def
= Fωx

α (x) and Fλ(x)
def
=

Fλx(x). Show that Hωα

(x) = Fα(x) for all α, x.

(4) Show that hγ+α(x) = hγ

(
hα(x)

)
+ hα(x) for all h, γ, α, x with γ + α in CNF.

(5) Show that hα measures the finite length of the iteration in hα, i.e. that hα(x) =
hhα(x)(x) for all h, α, x—which explains why the Cichoń hierarchy is also called the
length hierarchy.

Exercise 2.14 (Finite Values in Coverability Trees). Consider the Karp &Miller coverabil-
ity tree of a d-dimensional VAS ⟨A,x0⟩ with maximal increment b = max a ∈ A|a|, and
maximal initial counter value n = |x0|. Show using Exercise 2.13 that the finite values in
this tree are bounded by hωd·d(fd(n)) for h(x) = x+ db.

Exercise 2.15 (Bad Lexicographic Sequences). Weconsider in this exercise bad sequences⋆⋆
overNd for the lexicographic ordering ≤lex (with most significant element last) defined bylexicographic ordering

Bibliographic Notes 49

x <lex y
def⇔ x(d) < y(d) or (x(d) = y(d)

and ⟨x(1), . . . ,x(d− 1)⟩ <lex ⟨y(1), . . . ,y(d− 1)⟩) .

is is a linearization of the product ordering over Nd; writing Nd
lex for the associated

nwqo (Nd,≤lex, |.|), we see that

Lg,Nd
lex
(n) ≤ Lg,Nd(n)

for all control functions g and initial norms n.
Since ≤lex is linear, there is a unique maximal (g, n)-controlled bad sequence over

Nd
lex, which will be easy to measure. Our purpose is to prove that for all n,

Lg,Nd
lex
(n) = gωd(n) . (§)

(1) Set g(x) = x+ 2. Show that Lg,N2
lex
(2) = 8 = gω2(2).

(2) Show that Lg,N2(2) > 8 with the same g(x) = x+ 2.

(3) Let n > 0, and write a program d(g, n) with d counters x(1), . . . ,x(d) whose
configurations encode the d coordinates of the maximal (g, n)-controlled bad sequence
over Nd

lex, along with an additional counter c holding the current value of the control.
e run of d(g, n) should be a sequence (x1,c1), (x2,c2), . . . , (xℓ,cℓ) of pairs
(xi,ci) composed of a vector xi in Nd and of a counter ci. For instance, with g(x) =
x+ 2, the run of 2(g, 2) should be

(⟨1, 1⟩, 4), (⟨0, 1⟩, 6), (⟨5, 0⟩, 8), (⟨4, 0⟩, 10), (⟨3, 0⟩, 12), (⟨2, 0⟩, 14), (⟨1, 0⟩, 16), (⟨0, 0⟩, 18) .

(4) Let (x1,c1), (x2,c2), . . . , (xℓ,cℓ) be the unique run of d(g, n) for n > 0. Define

α(x) = ωd−1 · x(d) + · · ·+ ω0 · x(1) (¶)
for any vector x in Nd. Show that, for each i > 0,

gωd(n) = i+ gα(xi)
(
ci

)
. (∥)

(5) Deduce (§).

(6) Show that, if (x1,c1), (x2,c2), . . . , (xℓ,cℓ) is the run of d(g, n) for n > 0, then
cℓ = gω

d

(n).

B N

is chapter is based mostly on (Figueira et al., 2011; Schmitz and Schnoebelen, 2011).
e reader will find earlier analyses of Dickson’s Lemma in the works of McAloon (1984)
and Clote (1986), who employ large intervals in a sequence and their associated Ramsey
theory (Ketonen and Solovay, 1981), showing that large enough intervals would result
in good sequences. Different combinatorial arguments are provided by Friedman (2001,
eorem 6.2) for bad sequences over Nd, and Howell et al. (1986) for sequences of VASS
configurations—where even tighter upper bounds are obtained for Exercise 2.14.

Complexity upper bounds have also been obtained forwqos beyondDickson’s Lemma:
Schmitz and Schnoebelen (2011), from which the general framework of normed wqos and

50 Chapter 2. Complexity Upper Bounds

derivations is borrowed, tackle Higman’s Lemma, and so do Cichoń and Tahhan Biar
(1998) and Weiermann (1994); furthermore the laer provides upper bounds for the more
general Tree eorem of Kruskal.

e hierarchy (Fk)k≥2 described as the Grzegorczyk hierarchy in Section 2.1.3 and
Section 2.4 is actually due to Löb and Wainer (1970); its relationship with the original
Grzegorczyk hierarchy (E k)k (Grzegorczyk, 1953) is that Fk = E k+1 for all k ≥ 2. ere
are actually some difference between our definition of (Fk)k and that of Löb and Wainer
(1970), but it only impacts low indices k < 2, and our definition follows contemporary
presentations. Maximal order types were defined by de Jongh and Parikh (1977), where
the reader will find a proof of Fact 2.23. e Cichoń hierarchy was first published in
(Cichoń and Tahhan Biar, 1998), where it was called the length hierarchy. More material
on subrecursive hierarchies can be found in textbooks (Rose, 1984; Fairtlough andWainer,
1998; Odifreddi, 1999) and in Appendix A. Fact 2.29 is proven there as Equation (A.25),
and Fact 2.30 is a consequence of lemmas A.6, A.9, and A.16.

3

COMPLEXITY LOWER BOUNDS

3.1 Counter Machines 52
3.2 Hardy Computations 54
3.3 Minsky Machines on a Budget 57
3.4 Ackermann-Hardness for Lossy Counter Machines 59
3.5 Handling Reset Petri Nets 61
3.6 Hardness for Termination 64

e previous chapter has established some very high complexity upper bounds
on algorithms that rely on Dickson’s Lemma over d-tuples of natural numbers
for termination. e Length Function eorem shows that these bounds can be
found in every level of the Grzegorczyk hierarchy when d varies, which means
that these bounds are Ackermannian when d is part of the input.

Given how large these bounds are, one should wonder whether they are useful
at all, i.e. whether there exist natural decision problems that require Ackerman-
nian resources for their resolution. It turns out that such Ackermann complexities
pop up regularly with counter systems and Dickson’s Lemma—see Section B.2 for
more examples. We consider in this chapter the case of lossy counter machines.

Lossy counter machines and Reset Petri nets are two computational models
that can be seen as weakened versions of Minsky counter machines. is weak-
ness explains why some problems (e.g. termination) are decidable for these two
models, while they are undecidable for the Turing-powerful Minsky machines.

While these positive results have been used in the literature, there also ex-
ists a negative side that has had much more impact. Indeed, decidable verifica-
tion problems for lossy counter machines are Ackermann-hard and hence cannot
be answered in primitive-recursive time or space. e construction can also be
adapted to Reset Petri nets, incrementing counter machines, etc.

eorem 3.1 (Hardness eorem). Reachability, termination and coverability for Hardness
Theorem|defpageidx

lossy counter machines are Ackermann-hard.
Termination and coverability for Reset Petri nets are Ackermann-hard.

ese hardness results turn out to be relevant in several other areas; see the
Bibliographic Notes at the end of the chapter.

52 Chapter 3. Complexity Lower Bounds

O. Section 3.1 defines countermachines, both reliable and lossy. Section 3.2
builds counter machines that compute Ackermann’s function. Section 3.3 puts
Minsky machines on a budget, a gadget that is essential in Section 3.4 where the
main reduction is given and the hardness of reachability and coverability for lossy
counter machines is proved. We then show how to deal with reset nets in Sec-
tion 3.5 and how to prove hardness of termination in Section 3.6.

3.1 C M

Counter machines are a model of computation where a finite-state control actscounter machine

upon a finite number of counters, i.e. storage locations that hold a natural num-
ber. e computation steps are usually restricted to simple tests and updates.
For Minsky machines, the tests are zero-tests and the updates are increments andMinky machine

decrements.
For our purposes, it will be convenient to use a slightly extended model that

allows more concise constructions, and that will let us handle reset nets smoothly.

3.1.1 E C M

Formally, an extended counter machine with n counters, oen just called a counter
machine (CM), is a tuple M = (Loc, C,∆) where Loc = {ℓ1, . . . , ℓp} is a finite
set of locations, C = {c1, . . . ,cn} is a finite set of counters, and ∆ ⊆ Loc ×
OP(C)× Loc is a finite set of transition rules. e transition rules are depicted as
directed edges (see figs. 3.1 to 3.3 below) between control locations labeled with an
instruction op ∈ OP(C) that is either a guard (a condition on the current contents
of the counters for the rule to be firable), or an update (a method that modifies the
contents of the counters), or both. For CMs, the instruction set OP(C) is given by
the following abstract grammar:

OP(C) ∋ op ::= c=0? /* zero test */ | c:=0 /* reset */

| c>0? c-- /* decrement */ | c=c′? /* equality test */

| c++ /* increment */ | c:=c′ /* copy */

where c,c′ are any two counters in C . (We also allow a no_op instruction that
does not test or modify the counters.)

AMinskymachine is a CM that only uses instructions among zero tests, decre-
ments and increments (the first three types). Petri nets and Vector Addition Sys-
temswith States (VASS) can be seen as countermachines that only use decrements
and increments (i.e. Minsky machines without zero-tests).

3.1.2 O S

e operational semantics of a CM M = (Loc, C,∆) is given under the form of
transitions between its configurations. Formally, a configuration (wrien σ, θ, . . .)

3.1. Counter Machines 53

ofM is a tuple (ℓ, a)with ℓ ∈ Loc representing the “current” control location, and
a ∈ NC , aC-indexed vector of natural numbers representing the current contents
of the counters. If C is some {c1, . . . ,cn}, we oen write (ℓ, a) under the form
(ℓ, a1, . . . , an). Also, we sometimes use labels in vectors of values to make them
more readable, writing e.g. a = (0, . . . , 0,ck:1, 0, . . . , 0).

Regarding the behavior induced by the rules from ∆, there is a transition
(also called a step) σ δ−→std σ′ if, and only if, σ is some (ℓ, a1, . . . , an), σ′ is some
(ℓ′, a′1, . . . , a

′
n), ∆ ∋ δ = (ℓ, op, ℓ′) and either:

op is ck=0? (zero test): ak = 0, and a′i = ai for all i = 1, . . . , n, or

op is ck>0? ck-- (decrement): a′k = ak − 1, and a′i = ai for all i ̸= k, or

op is ck++ (increment): a′k = ak + 1, and a′i = ai for all i ̸= k, or

op is ck:=0 (reset): a′k = 0, and a′i = ai for all i ̸= k, or

op is ck=cp? (equality test): ak = ap, and a′i = ai for all i = 1, . . . , n, or

op is ck:=cp (copy): a′k = ap, and a′i = ai for all i ̸= k.

(e steps carry a “std” subscript to emphasize that we are considering the usual,
standard, operational semantics of counter machines, where the behavior is reli-
able.)

As usual, we write σ
∆−→std σ′, or just σ −→std σ′, when σ

δ−→std σ′ for some
δ ∈ ∆. Chains σ0 −→std σ1 −→std · · · −→std σm of consecutive steps, also called
runs, are denoted σ0 −→∗

std σm, and also σ0 −→+
std σm when m > 0. Steps may also

be wrien more precisely under the form M ⊢ σ −→std σ′ when several counter
machines are at hand and we want to be explicit about where the steps take place.

For a vector a = (a1, . . . , an), or a configuration σ = (ℓ, a), we let |a| = |σ| =∑n
i=1 ai denote its size. For N ∈ N, we say that a run σ0 −→ σ1 −→ · · · −→ σm is

N -bounded if |σi| ≤ N for all i = 0, . . . , n.

3.1.3 L C M

Lossy counter machines (LCM) are counter machines where the contents of the lossy counter machine

counters can decrease non-deterministically (the machine can “leak”, or “lose
data”).

Technically, it is more convenient to see lossy machines as counter machines
with a different operational semantics (and not as a special class of machines):
thus it is possible to use simultaneously the two semantics and relate them. Incre-
menting errors too are handled by introducing a different operational semantics,
see Exercise 3.3.

54 Chapter 3. Complexity Lower Bounds

Formally, this is defined via the introduction of a partial ordering between the
configurations of M :

(ℓ, a1, ..., an) ≤ (ℓ′, a′1, ..., a
′
n)

def⇔ ℓ = ℓ′ ∧ a1 ≤ a′1 ∧ · · · ∧ an ≤ a′n. (3.1)

σ ≤ σ′ can be read as “σ is σ′ aer some losses (possibly none).”

Now “lossy” steps, denoted M ⊢ σ
δ−→lossy σ′, are given by the following

definition:

σ
δ−→lossy σ

′ def⇔ ∃θ, θ′, (σ ≥ θ ∧ θ
δ−→std θ

′ ∧ θ′ ≥ σ′). (3.2)

Note that reliable steps are a special case of lossy steps:

M ⊢ σ −→std σ
′ implies M ⊢ σ −→lossy σ

′. (3.3)

3.1.4 B P C M

We consider the following decision problems:

Reachability: given a CM M and two configurations σini and σgoal, is there a run
M ⊢ σini −→∗ σgoal?

Coverability: given a CM M and two configurations σini and σgoal, is there a run
M ⊢ σini −→∗ σ for some configuration σ ≥ σgoal that covers σgoal?

(Non-)Termination: given a CM M and a configuration σini, is there an infinite
run M ⊢ σini −→ σ1 −→ · · · −→ σn −→ · · · ?

ese problems are parameterized by the class of counter machines we consider
and, more importantly, by the operational semantics that is assumed. Reacha-
bility and termination are decidable for lossy counter machines, i.e. counter ma-
chines assuming lossy steps, because they are well-structured. Observe that, for
lossy machines, reachability and coverability coincide (except for runs of length
0). Coverability is oen used to check whether a control location is reachable
from some σini. For the standard semantics, the same problems are undecidable
for Minsky machines but become decidable for VASS and, except for reachability,
for Reset nets (see Section 3.5).

3.2 H C

e Hardy hierarchy (Hα:N → N)α<ε0 is a hierarchy of ordinal-indexed func-Hardy hierarchy

tions, much like the Cichoń hierarchy introduced in Section 2.4.2. Its definition
and properties are the object of Exercise 2.13 on page 48, but let us recall the
following:

H0(n)
def
= n, Hα+1(n)

def
= Hα(n+ 1), Hλ(n)

def
= Hλn(n). (3.4)

3.2. Hardy Computations 55

Observe that H1 is the successor function, and more generally Hα is the αth
iterate of the successor function, using diagonalisation to treat limit ordinals. Its
relation with the fast growing hierarchy (Fα)α<ε0 is that

Hωα
(n) = Fα(n) (3.5)

while its relation with the Cichoń hierarchy (Hα)α<ε0 is that

Hα(n) = Hα(n) + n . (3.6)

usHω(n) = Hn(n) = 2n,Hω2
(n) = 2nn is exponential,Hω3

non-elementary,
and Hωω

Ackermannian; in fact we set in this chapter

Ack(n) def
= Fω(n) = Hωω

(n) = Hωn
(n). (3.7)

Two facts that we will need later can be deduced from (3.6) and the corre-
sponding properties for the functions in the Cichoń hierarchy: Hardy functions
are monotone in their argument:

Fact 3.2 (see Fact 2.29). If n ≤ n′ then Hα(n) ≤ Hα(n′) for all α < ε0.

ey are also monotone in their parameter relatively to the structural ordering
defined in Section 2.4.3 on page 42:

Fact 3.3 (see Exercise 2.11). If α ⊑ α′, then Hα(n) ≤ Hα′
(n) for all n.

e (Fα)α hierarchy provides a more abstract packaging of the main stops of
the (extended)Grzegorczyk hierarchy and requires lighter notation than theHardy
hierarchy (Hα)α. However, with its tail-recursive definition, the Hardy hierarchy
is easier to implement as a while-program or as a counter machine. Below we
weakly implement Hardy computations with CMs. Formally, a (forward) Hardy
computation is a sequence Hardy computation

α0;n0 −→ α1;n1 −→ α2;n2 −→ · · · −→ αℓ;nℓ (3.8)

of evaluation steps implementing the equations in (3.4) seen as le-to-right rewrite
rules. It guarantees α0 > α1 > α2 > · · · and n0 ≤ n1 ≤ n2 ≤ · · · and keeps
Hαi(ni) invariant. We say it is complete when αℓ = 0 and then nℓ = Hα0(n0)
(we also consider incomplete computations). A backward Hardy computation is
obtained by using (3.4) as right-to-le rules. For instance,

ωω;m→ ωm;m→ ωm−1 ·m;m (3.9)

constitute the first three steps of the forward Hardy computation starting from
ωω;m if m > 0.

56 Chapter 3. Complexity Lower Bounds

3.2.1 E H C

Ordinals below ωm+1 are easily encoded as vectors in Nm+1: given a vector a =
(am, . . . , a0) ∈ Nm+1, we define its associated ordinal in ωm+1 as

α(a) def
= ωm · am + ωm−1 · am−1 + · · ·+ ω0 · a0 . (3.10)

Observe that ordinals below ωm+1 and vectors in Nm+1 are in bijection through
α.

We can then expressHardy computations for ordinals belowωm+1 as a rewrite

system H−→ over pairs ⟨a;n⟩ of vectors in Nm+1 and natural numbers:

⟨am, . . . , a0 + 1;n⟩ → ⟨am, . . . , a0;n+ 1⟩ , (D1)

⟨am, . . . , ak + 1,

k>0 zeroes︷ ︸︸ ︷
0, . . . , 0 ;n⟩ → ⟨am, . . . , ak, n,

k−1 zeroes︷ ︸︸ ︷
0, . . . , 0 ;n⟩ . (D2)

e two rules (D1) and (D2) correspond to the successor and limit case of (3.4),
respectively. Computations with these rules keep Hα(a)(n) invariant.

A key property of this encoding is that it is robust in presence of “losses.” In-
deed, if a ≤ a′, then α(a) ⊑ α(a′) and Fact 3.3 shows thatHα(a)(n) ≤ Hα(a′)(n).
More generally, adding Fact 3.2 to the mix,

Lemma 3.4 (Robustness). If a ≤ a′ and n ≤ n′ then Hα(a)(n) ≤ Hα(a′)(n′).

Now, H−→ terminates since ⟨a;n⟩ H−→ ⟨a′;n′⟩ implies α(a) > α(a′). Further-
more, if a ̸= 0, one of the rules among (D1) and (D2) can be applied to ⟨a;n⟩.
Hence for all a and n there exists some n′ such that ⟨a;n⟩ H−→ ∗⟨0;n′⟩, and then

n′ = Hα(a)(n). e reverse relation H−→ −1 terminates as well since, in a step

⟨a′;n′⟩ H−→−1⟨a;n⟩, either n′ is decreased, or it stays constant and the number of
zeroes in a′ is increased.

3.2.2 I H C C M

Being tail-recursive, Hardy computations can be evaluated via a simplewhile-loop

that implements the H−→ rewriting. Fix a level m ∈ N: we need m + 2 counters,
one for the n argument, and m+ 1 for the a ∈ Nm+1 argument.

We define a counter machineMH(m) = (LocH, C,∆H), orMH for short, with
C = {a0,a1, ...,am,n}. Its rules are defined pictorially in Figure 3.1: they im-

plement H−→ as a loop around a central location ℓH, as captured by the following
lemma, which relies crucially on Lemma 3.4:

Lemma 3.5 (Behavior of MH). For all a, a′ ∈ Nm+1 and n, n′ ∈ N:

1. If ⟨a;n⟩ H−→ ⟨a′;n′⟩ then MH ⊢ (ℓH, a, n) −→∗
std (ℓH, a′, n′).

3.3. Minsky Machines on a Budget 57

ℓH ℓ1 ℓ
′

1 ℓ
′′

1

ℓ2 ℓ
′

2 ℓ
′′

2

· · · · · ·

ℓm ℓ
′

m ℓ
′′

m

r

a0>0?

a0--
n++

am=0?

a0=0?

a1=0?

a2=0?

am−1=0?

a1>0?a1-- a0:=n

a2>0?a2-- a1:=n

am>0?am-- am−1:=n

...

n

a0

a1

am

Figure 3.1: MH(m), a counter machine that implements H−→.

2. If MH ⊢ (ℓH, a, n) −→∗
std (ℓH, a′, n′) then Hα(a)(n) = Hα(a′)(n′).

3. If MH ⊢ (ℓH, a, n) −→∗
lossy (ℓH, a′, n′) then Hα(a)(n) ≥ Hα(a′)(n′).

e rules (D1–D2) can also be used from right to le. Used this way, they
implement backwardHardy computations, i.e. they invertH . is is implemented
by another counter machine, MH−1(m) = (LocH−1 , C,∆H−1), or MH−1 for short,
defined pictorially in Figure 3.2.

MH−1 implements H−→−1 as a loop around a central location ℓH−1 , as captured
by Lemma 3.6. Note that MH−1 may deadlock if it makes the wrong guess as
whether ai contains n+ 1, but this is not a problem with the construction.

Lemma 3.6 (Behavior of MH−1). For all a, a′ ∈ Nm+1 and n, n′ ∈ N:

1. If ⟨a;n⟩ H−→ ⟨a′;n′⟩ thenMH−1 ⊢ (ℓH−1 , a′, n′) −→∗
std (ℓH−1 , a, n).

2. If MH−1 ⊢ (ℓH−1 , a, n) −→∗
std (ℓH−1 , a′, n′) then Hα(a)(n) = Hα(a′)(n′).

3. If MH−1 ⊢ (ℓH−1 , a, n) −→∗
lossy (ℓH−1 , a′, n′) then Hα(a)(n) ≥ Hα(a′)(n′).

3.3 M M B

With a Minsky machine M = (Loc, C,∆) we associate a Minsky machine M b =
(Locb, Cb,∆b). (Note that we are only considering Minsky machines here, and
not the extended counter machines from earlier sections.)

M b is obtained by adding to M an extra “budget” counter B and by adapting
the rules of ∆ so that any increment (resp. decrement) in the original counters is
balanced by a corresponding decrement (resp. increment) on the new counter B,

58 Chapter 3. Complexity Lower Bounds

...

n

a0

a1

am
· · ·

· · ·

· · ·

ℓH−1
n>0?

n--

a0++ a1++ a2++ am++

a0:=0 a1:=0 am−1:=0

a0=n? a1=n? am−1=n?

a0=0? ∧m−2
i=1 ai=0?

a0=0?

Figure 3.2: MH−1(m), a counter machine that implements H−→−1.

M

ℓ0

ℓ1

ℓ2 ℓ3

c3=0?

c1++

c2>0?c2--

4

3

0

c1

c2

c3 ⇒

Mb (=on budget)

ℓ0

ℓ1

ℓ2 ℓ3

c3=0?

B>0?B--

c1++

c2>0?c2-- B++

4

3

0

93 c1

c2

c3

B

Figure 3.3: From M to M b (schematically).

so that the sum of the counters remains constant. is is a classic idea in Petri
nets. e construction is described on a schematic example (Figure 3.3) that is
clearer than a formal definition. Observe that extra intermediary locations (in
gray) are used, and that a rule in M that increments some ci will be forbidden in
M b when the budget is exhausted.

We now collect the properties of this construction that will be used later. e
fact that M b faithfully simulates M is stated in lemmas 3.8 and 3.9. ere and at
other places, the restriction to “ℓ, ℓ′ ∈ Loc” ensures that we only relate behavior
anchored at the original locations in M (locations that also exist in M b) and not
at one of the new intermediary locations introduced in M b.

First, the sum of the counters in M b is a numerical invariant (that is only
temporarily disrupted while in the new intermediary locations).

Lemma 3.7. If M b ⊢ (ℓ, B, a) −→∗
std (ℓ′, B′, a′) and ℓ, ℓ′ ∈ Loc, then B + |a| =

B′ + |a′|.

3.4. Ackermann-Hardness for Lossy Counter Machines 59

Observe that M b can only do what M would do:

Lemma 3.8. If M b ⊢ (ℓ, B, a) −→∗
std (ℓ′, B′, a′) and ℓ, ℓ′ ∈ Loc then M ⊢

(ℓ, a) −→∗
std (ℓ

′, a′).

Reciprocally, everything done by M can be mirrored by M b provided that a
large enough budget is allowed. More precisely:

Lemma 3.9. If M ⊢ (ℓ, a) −→∗
std (ℓ′, a′) is an N -bounded run of M , then M b

has an N -bounded run M b ⊢ (ℓ, B, a) −→∗
std (ℓ′, B′, a′) for B def

= N − |a| and
B′ def

= N − |a′|.

Now, the point of the construction is that M b can distinguish between lossy
and non-lossy runs in ways that M cannot. More precisely:

Lemma 3.10. Let M b ⊢ (ℓ, B, a) −→∗
lossy (ℓ′, B′, a′) with ℓ, ℓ′ ∈ Loc. en M b ⊢

(ℓ, B, a) −→∗
std (ℓ

′, B′, a′) if, and only if, B + |a| = B′ + |a′|.

Proof Idea. e “(⇐)” direction is an immediate consequence of (3.3).
For the “(⇒)” direction, we consider the hypothesized run M b ⊢ (ℓ, B, a) =

σ0 −→lossy σ1 −→lossy · · · −→lossy σn = (ℓ′, B′, a′). Coming back to (3.2), these lossy
steps require, for i = 1, . . . , n, some reliable steps θi−1 −→std θ

′
i with σi−1 ≥ θi−1

and θ′i ≥ σi, and hence |θ′i| ≥ |θi| for i < n. Combining with |θi−1| = |θ′i| (by
Lemma 3.7), and |σ0| = |σn| (from the assumption that B + |a| = B′ + |a′|),
proves that all these configurations have same size. Hence θ′i = σi = θi and the
lossy steps are also reliable steps.

Corollary 3.11. AssumeM b ⊢ (ℓ, B, 0) −→∗
lossy (ℓ

′, B′, a) with ℓ, ℓ′ ∈ Loc. en:

1. B ≥ B′ + |a|, and

2. M ⊢ (ℓ, 0) −→∗
std (ℓ′, a) if, and only if, B = B′ + |a|. Furthermore, this

reliable run of M is B-bounded.

3.4 AH L C M

We now collect the ingredients that have been developed in the previous sections.
Let M be a Minsky machine with two fixed “initial” and “final” locations ℓini

and ℓfin. With M and a level m ∈ N we associate a counter machine M(m)
obtained by stringing together MH(m), M b, and MH−1(m) and fusing the ex-
tra budget counter B from M b with the accumulator n of MH(m) and MH−1(m)
(these two share their counters). e construction is depicted in Figure 3.4.

Proposition 3.12. e following are equivalent:

1. M(m) has a lossy run (ℓH,am:1, 0,n:m, 0) −→∗
lossy θ for some θ no smaller

than (ℓH−1 , 1, 0,m, 0).

60 Chapter 3. Complexity Lower Bounds

MH

MH−1

Mb (=on budget)

ℓini

ℓfin

m

0

0

0

0
...

...

01

n

a0

a1

am

B

c1

c2

ck

ℓH

ℓH−1

∆H

∆H−1

no op

no op

Figure 3.4: Constructing M(m) from M b, MH and MH−1 .

2. M b has a lossy run (ℓini,B:Ack(m), 0) −→∗
lossy (ℓfin,Ack(m), 0).

3. M b has a reliable run (ℓini,Ack(m), 0) −→∗
std (ℓfin,Ack(m), 0).

4. M(m) has a reliable run (ℓH, 1, 0,m, 0) −→∗
std (ℓH−1 , 1, 0,m, 0).

5. M has a reliable run (ℓini, 0) −→∗
std (ℓfin, 0) that is Ack(m)-bounded.

Proof Sketch.

• For “1⇒ 2”, and because coverability implies reachability by (3.2), we may
assume that M(m) has a run (ℓH, 1, 0,m, 0) −→∗

lossy (ℓH−1 , 1, 0,m, 0). is
run must go through M b and be in three parts of the following form:

(ℓH, 1, 0,m, 0) ∆H−→
∗
lossy (ℓH, a,n:x, 0) (starts in MH)

−→lossy (ℓini, . . . , B, 0) ∆b−→
∗
lossy (ℓfin, . . . , B

′, c) (goes through M b)

−→lossy (ℓH−1 , a′, x′, . . .)
∆H−1−−→

∗

lossy (ℓH−1 , 1, 0,m, 0). (ends in MH−1)

e first part yieldsHα(1,0)(m) ≥ Hα(a)(x) (by Lemma 3.5.3), the third part
Hα(a′)(x′) ≥ Hα(1,0)(m) (by Lemma 3.6.3), and the middle part B ≥ B′ +
|c| (by Corollary 3.11.1). Lossiness further implies x ≥ B, B′ ≥ x′ and a ≥
a′. Now, the only way to reconcile Hα(a)(x) ≤ Hα(1,0)(m) = Ack(m) ≤
Hα(a′)(x′), a′ ≤ a, x′ ≤ x, and the monotonicity of F (Lemma 3.4) is by
concluding x = B = B′ = x′ = Ack(m) and c = 0. en the middle part
of the run witnesses M b ⊢ (ℓini,Ack(m), 0) −→∗

lossy (ℓfin,Ack(m), 0).

• “2⇒ 5” is Corollary 3.11.2.

• “5⇒ 3” is given by Lemma 3.9.

• “3 ⇒ 4” is obtained by stringing together reliable runs of the components,
relying on lemmas 3.5.1 and 3.6.1 for the reliable runs of MH and MH−1 .

3.5. Handling Reset Petri Nets 61

• Finally “3⇒ 2” and “4⇒ 1” are immediate from (3.3).

With Proposition 3.12, we have a proof of the Hardness eorem for reacha-
bility and coverability in lossy counter machines: Recall that, for a Minsky ma-
chineM , the existence of a run between two given configurations is undecidable,
and the existence of a run bounded by Ack(m) is decidable but not primitive-
recursive when m is part of the input. erefore, Proposition 3.12, and in par-
ticular the equivalence between its points 1 and 5, states that our construction
reduces a nonprimitive-recursive problem to the reachability problem for lossy
counter machines.

3.5 H R P N

Reset nets are Petri nets extended with special reset arcs that empty a place when
a transition is fired. ey can equally be seen as special counter machines, called
reset machines, where actions are restricted to decrements, increments, and re- reset machine

sets—note that zero-tests are not allowed in reset machines.
It is known that termination and coverability are decidable for reset machines

while other properties like reachability of a given configuration, finiteness of the
reachability set, or recurrent reachability, are undecidable.

Our purpose is to prove the Ackermann-hardness of termination and cover-
ability for reset machines. We start with coverability and refer to Section 3.6 for
termination.

3.5.1 R ZT R

For a counter machine M , we let R(M) be the counter machine obtained by re-
placing every zero-test instruction c=0?with a corresponding reset c:=0. Note
that R(M) is a reset machine when M is a Minsky machine.

Clearly, the behavior of M and R(M) are related in the following way:

Lemma 3.13.

1. M ⊢ σ −→std σ
′ implies R(M) ⊢ σ −→std σ

′.

2. R(M) ⊢ σ −→std σ
′ implies M ⊢ σ −→lossy σ

′.

In other words, the reliable behavior of R(M) contains the reliable behavior of
M and is contained in the lossy behavior of M .

We now consider the counter machineM(m) defined in Section 3.4 and build
R(M(m)).

Proposition 3.14. e following are equivalent:

1. R(M(m)) has a reliable run (ℓH,am:1, 0,n:m, 0) −→∗
std (ℓH−1 , 1, 0,m, 0).

62 Chapter 3. Complexity Lower Bounds

2. R(M(m)) has a reliable run (ℓH, 1, 0,m, 0) −→∗
std θ ≥ (ℓH−1 , 1, 0,m, 0).

3. M has a reliable run (ℓini, 0) −→∗
std (ℓfin, 0) that is Ack(m)-bounded.

Proof. For 1 ⇒ 3: e reliable run in R(M(m)) gives a lossy run in M(m)
(Lemma 3.13.2), and we conclude using “1⇒5” in Proposition 3.12.

For 3 ⇒ 2: We obtain a reliable run in M(m) (“5⇒4” in Proposition 3.12)
which gives a reliable run in R(M(m)) (Lemma 3.13.1), which in particular wit-
nesses coverability.

For 2 ⇒ 1: e covering run in R(M(m)) gives a lossy covering run in
M(m) (Lemma 3.13.2), hence also a lossy run in M(m) that reaches exactly
(ℓH−1 , 1, 0,m, 0) (e.g. by losing whatever is required at the last step). From there
we obtain a reliable run in M(m) (“1⇒4” in Proposition 3.12) and then a reliable
run in R(M(m)) (Lemma 3.13.1).

We have thus reduced an Ackermann-hard problem (point 3 above) to a cov-
erability question (point 2 above).

is almost proves the Hardness eorem for coverability in reset machines,
except for one small ingredient: R(M(m)) is not a reset machine properly be-
cause M(m) is an extended counter machine, not a Minsky machine. I.e., we
proved hardness for “extended” reset machines. Before tackling this issue, we
want to point out that something as easy as the proof of Proposition 3.14 will
prove Ackermann-hardness of reset machines by reusing the hardness of lossy
counter machines.

In order to conclude the proof of the Hardness eorem for reset machines,
we only need to provide versions of MH and MH−1 in the form of Minsky ma-
chines (M and M b already are Minsky machines) and plug these in Figure 3.4
and Proposition 3.12.

3.5.2 F E M M

ere are two reasons why we did not provide MH and MH−1 directly under the
form of Minsky machines in Section 3.2. Firstly, this would have made the con-
struction cumbersome: Figure 3.2 is already bordering on the inelegant. Secondly,
andmore importantly, this would have made the proof of lemmas 3.5 and 3.6 more
painful than necessary.

Rather than designing new versions of MH and MH−1 , we rely on a generic
way of transforming extended counter machines into Minsky machines that pre-
serves both the reliable behavior and the lossy behavior in a sense that is compat-
ible with the proof of Proposition 3.12.

Formally, we associate with any extended counter machine M = (Loc, C,∆)
a new machine M ′ = (Loc′, C ′,∆′) such that:

1. Loc′ is Loc plus some extra “auxiliary” locations,

3.5. Handling Reset Petri Nets 63

M

ℓ0 ℓ1
c=c′?

c

c
′

⇒

M′

ℓ0 l l′ ℓ1no op

c>0?

c--

aux++

c
′>0?

c
′--

c=0? c
′=0?

aux>0?

aux--

c++

c
′++

aux=0?

0 aux

c

c
′

Figure 3.5: From M to M ′: eliminating equality tests.

2. C ′ = C + {aux} is C extended with one extra counter,

3. M ′ only uses zero-tests, increments and decrements, hence it is a Minsky
machine,

4. For any ℓ, ℓ′ ∈ Loc and vectors c, c′ ∈ NC , the following holds:

M ⊢ (ℓ, c) −→∗
std (ℓ

′, c′) iff M ′ ⊢ (ℓ, c, 0) −→∗
std (ℓ

′, c′, 0), (3.11)

M ⊢ (ℓ, c) −→∗
lossy (ℓ

′, c′) iff M ′ ⊢ (ℓ, c, 0) −→∗
lossy (ℓ

′, c′, 0). (3.12)

e construction of M ′ from M contains no surprise. We replace equality
tests, resets and copies by gadgets simulating them and only using the restricted
instruction set of Minsky machines. One auxiliary counter aux is used for tem-
porary storage, and several additional locations are introduced each time one ex-
tended instruction is replaced.

We show here how to eliminate equality tests and leave the elimination of
resets and copies as Exercise 3.1. Figure 3.5 shows, on a schematic example, how
the transformation is defined.

It is clear (and completely classic) that this transformation satisfies (3.11). e
trickier half is the “⇐” direction. Its proof is done with the help of the following
observations:

• c− c′ is a numerical invariant in l, and also in l′,

• c+ aux is a numerical invariant in l, and also in l′,

• when M ′ moves from ℓ0 to l, aux contains 0; when it moves from l to l′,
both c and c′ contain 0; when it moves from l′ to ℓ1, aux contains 0.

64 Chapter 3. Complexity Lower Bounds

MH

MH−1

Mb

add “T>0?T--” to
each simulation
of a step ofM

ℓini

ℓfin

0

m

0

0

0

0
...

...

01

n

a0

a1

am

B

T

c1

c2

ck

ℓH

ℓH−1

ℓω
n>0?
n-- am>0?

am--

m times
︷ ︸︸ ︷

∆H

∆H−1

T:=n

no op

Figure 3.6: Hardness for termination: A new version of M(m).

en we also need the less standard notion of correctness from (3.12) for this
transformation. e “⇐” direction is proved with the help of the following ob-
servations:

• c− c′ can only decrease during successive visits of l, and also of l′,

• c+ aux can only decrease during successive visits of l, and also of l′,

• when M ′ moves from ℓ0 to l, aux contains 0; when it moves from l to l′,
both c and c′ contain 0; when it moves from l′ to ℓ1, aux contains 0.

Gathering these observations, we can conclude that a runM ′ ⊢ (ℓ0, c, c
′, 0) −→∗

lossy
(ℓ1, d, d

′, 0) implies d, d′ ≤ min(c, c′). In such a case, M obviously has a lossy
step M ⊢ (ℓ0, c, c

′) −→lossy (ℓ1, d, d
′).

3.6 H T

We can prove hardness for termination by a minor adaptation of the proof for
coverability. is adaptation, sketched in Figure 3.6, applies to both lossy counter
machines and reset machines.

Basically, M b now uses two copies of the initial budget. One copy in B works
as before: its purpose is to ensure that losses will be detected by a budget imbalance
as in Lemma 3.10. e other copy, in a new counter T, is a time limit that is
initialized with n and is decremented with every simulated step ofM : its purpose
is to ensure that the newM b always terminates. SinceMH andMH−1 cannot run

forever (because H−→ and H−→ −1 terminate, see Section 3.2), we now have a new
M(m) that always terminate when started in ℓH and that satisfies the following
variant of propositions 3.12 and 3.14:

Proposition 3.15. e following are equivalent:

Exercises 65

1. M(m) has a lossy run (ℓH, 1, 0,n:m, 0) −→∗
lossy θ ≥ (ℓH−1 , 1, 0,m, 0).

2. R(M(m)) has a lossy run (ℓH, 1, 0,n:m, 0) −→∗
lossy θ ≥ (ℓH−1 , 1, 0,m, 0).

3. M has a reliable run (ℓini, 0) −→∗
std (ℓfin, 0) of length at most Ack(m).

Finally, we add a series of m + 1 transitions that leave from ℓH−1 , and check
that σgoal

def
= (ℓH−1 , 1, 0,m, 0) is covered, i.e., that am contains at least 1 and n

at least m. If this succeeds, one reaches a new location ℓω , the only place where
infinite looping is allowed unconditionally. is yields a machine M(m) that has
an infinite lossy run if, and only if, it can reach a configuration that covers σgoal,
i.e., if, and only if, M has a reliable run of length at most Ack(m), which is an
Ackermann-hard problem.

E

Exercise 3.1 (From Extended to Minsky Machines). Complete the translation from ex-
tended counter machines to Minsky machines given in Section 3.5.2: provide gadgets for
equality tests and resets.

Exercise 3.2 (TransferMachines). Transfer machines are extended counter machines with transfer machine

instruction set reduced to increments, decrements, and transfers

c1+=c2;c2:=0. /* transfer c2 to c1 */

Show that transfer machines can simulate reset machines as far as coverability and
termination are concerned. Deduce that the Hardness eorem also applies to transfer
machines.

Exercise 3.3 (Incrementing Counter Machines). Incrementing counter machines are Min- incrementing counter
machinesky machines with incrementation errors: rather than leaking, the counters may increase

nondeterministically, by arbitrary large amounts. is is captured by introducing a new
operations semantics for counter machines, with steps denoted M ⊢ σ −→inc σ′, and
defined by:

σ
δ−→inc σ

′ def⇔ ∃θ, θ′, (σ ≤ θ ∧ θ
δ−→std θ

′ ∧ θ′ ≤ σ′). (∗)

Incrementation errors are thus the symmetrical mirror of losses.
Show that, for a Minksy machine M , one can construct another Minsky machine

M−1 with

M ⊢ σ1 −→std σ2 iff M−1 ⊢ σ2 −→std σ1. (†)

What does it entail for lossy runs of M and incrementing runs of M−1? Conclude that
reachability for incrementing counter machines is Ackermannian.

66 Chapter 3. Complexity Lower Bounds

B N

is chapter is a slight revision of (Schnoebelen, 2010a), with some changes to use Hardy
computations instead of fast-growing ones. Previous proofs of Ackermann-hardness for
lossy counter machines or related models were published independently by Urquhart
(1999) and Schnoebelen (2002).

We refer the reader to (Mayr, 2000; Schnoebelen, 2010b) for decidability issues for
lossy counter machines. Reset nets (Araki and Kasami, 1976; Ciardo, 1994) are Petri nets
extended with reset arcs that empty a place when the relevant transition is fired. Transfer
nets (Ciardo, 1994) are instead extended with transfer arcs that move all the tokens from
a place to another upon transition firing. Decidability issues for Transfer nets and Reset
nets are investigated by Dufourd et al. (1999); interestingly, some problems are harder for
Reset nets than for Transfer nets, although there exists an easy reduction from one to the
others as far as the Hardness eorem is concerned (see Exercise 3.2).

Using lossy counter machines, hardness results relying on the first half of the Hard-
ness eorem have been derived for a variety of logics and automata dealing with data
words or data trees (Demri, 2006; Demri and Lazić, 2009; Jurdziński and Lazić, 2007;
Figueira and Segoufin, 2009; Tan, 2010). Actually, these used reductions from counter
machines with incrementation errors (see Exercise 3.3); although reachability for incre-
menting countermachines is Ackermann-hard, this does not hold for termination (Bouyer
et al., 2012).

Ackermann-hardness has also been shown by reductions from Reset and Transfer
nets, relying on the second half of the Hardness eorem (e.g. Amadio and Meyssonnier,
2002; Bresolin et al., 2012).

e techniques presented in this chapter have been extended to considerably higher
complexities for lossy channel systems (Chambart and Schnoebelen, 2008b) and enriched
nets (Haddad et al., 2012).

A

SUBRECURSIVE FUNCTIONS

A.1 Ordinal Terms 67
A.2 Fundamental Sequences and Predecessors 68
A.3 Pointwise Ordering and Lean Ordinals 69
A.4 Ordinal Indexed Functions 72
A.5 Pointwise Ordering and Monotonicity 75
A.6 Different Fundamental Sequences 76
A.7 Different Control Functions 77
A.8 Classes of Subrecursive Functions 79

Although the interested reader can easily find comprehensive accounts on subre-
cursive hierarchies (Rose, 1984; Fairtlough andWainer, 1998; Odifreddi, 1999), we
found it convenient to gather in this self-contained appendix many simple proofs
and technical results, many too trivial to warrant being published in full, but still
useful in the day-to-day work with hierarchies. We also include some results of
Cichoń andWainer (1983) and Cichoń and Tahhan Biar (1998), which are harder
to find in the literature, and the definition of lean ordinal terms.

emain thrust behind subrecursive functions is to obtain hierarchies of com-
putable functions that lie strictly within the class of all recursive functions. An
instance is the extended Grzegorczyk hierarchy (Fα)α. Such hierarchies are typ-
ically defined by generator functions and closure operators (e.g. primitive recur-
sion, and more generally ordinal recursion), and used to draw connections with
proof theory, computability, speed of growth, etc.

Our interest however lies mostly in the properties of particular functions in
this theory, like the fast-growing functions (Fα)α or the Hardy functions (Hα)α,
which we use as tools for the study of the length of bad sequences.

A.1 O T

e reader is certainly familiar with the notion of Cantor normal form (CNF) for
ordinals below ε0, which allows towrite any ordinal as an ordinal termα following
the abstract syntax

α ::= 0 | ωα | α+ α .

68 Appendix A. Subrecursive Functions

We take here a reversed viewpoint: our interest lies not in the “set-theoretic” or-
dinals, but in the set Ω of all ordinal terms. Each ordinal term α is a syntactic
object, and denotes a unique ordinal ord(α) by interpretation into ordinal arith-
metic, with + denoting direct sum. Using this interpretation, we can define a
well-founded ordering on terms by α′ ≤ α if ord(α′) ≤ ord(α). Note that the
mapping of terms to ordinals is not injective, so the ordering on terms is not an-
tisymmetric.

In this reversed viewpoint, ordinal terms might be in CNF, i.e. sums

α = ωβ1 + · · ·+ ωβm

with α > β1 ≥ · · · ≥ βm ≥ 0 with each βi in CNF itself. We also use at times
the strict form

α = ωβ1 · c1 + · · ·+ ωβm · cm
where α > β1 > · · · > βm ≥ 0 and ω > c1, . . . , cm > 0 and each βi in strict
form—we call the ci’s coefficients. Terms α in CNF are in bijection with their
denoted ordinals ord(α). We write CNF(α) for the set of ordinal terms α′ < α
in CNF; thus CNF(ε0) is a subset of Ω in our view. Having a richer set Ω will be
useful later in Section A.8.1

We write 1 for ω0 and α · n for
n times︷ ︸︸ ︷

α+ · · ·+ α. We work modulo associativity
((α + β) + γ = α + (β + γ)) and idempotence (α + 0 = α = 0 + α) of +. An
ordinal term α of form γ + 1 is called a successor ordinal term. Otherwise, if not
0, it is a limit ordinal term, usually denoted λ. Note that a ord(0) = 0, ord(α+1)
is a successor ordinal, and ord(λ) is a limit ordinal if λ is a limit ordinal term.

A.2 F S P

F S. Subrecursive functions are defined through assign-
ments of fundamental sequences (λx)x<ω for limit ordinal terms λ in Ω, verify-
ing λx < λ for all x in N and λ = supx λx, i.e. we are interested in a particular
sequence of terms of which λ is a limit.

A standard way of obtaining fundamental sequences with good properties for
every limit ordinal term λ is to fix a particular sequence (ωx)x<ω for ω and to
define

(γ + ωβ+1)x
def
= γ + ωβ · ωx , (γ + ωλ)x

def
= γ + ωλx . (A.1)

We assume ωx to be the value in x of some monotone and expansive function s,
typically s(x) = x—which we will hold as the standard one—or s(x) = x + 1.
We will see in Section A.6 how different choices for ωx influence the hierarchies
of functions built from them, in a simple case.

1Richer ordinal notations can be designed, notably the structured ordinals of Dennis-Jones and
Wainer (1984); Fairtlough and Wainer (1992) below ε0, and of course richer notations are required
in order to go beyond ε0.

A.3. Pointwise Ordering and Lean Ordinals 69

P. Given an assignment of fundamental sequences and x in N, one
defines the (x-indexed) predecessor Px(α) < α of an ordinal α ̸= 0 in Ω as

Px(α+ 1)
def
= α , Px(λ)

def
= Px(λx) . (A.2)

Lemma A.1. Assume α > 0 in Ω. en for all x in N

Px(γ + α) = γ + Px(α) , (A.3)

if ωx > 0 then Px(ω
α) = ωPx(α) · (ωx − 1) + Px(ω

Px(α)) . (A.4)

Proof of (A.3). By induction over α. For the successor case α = β + 1, this goes

Px(γ + β + 1)
(A.2)
= γ + β

(A.2)
= γ + Px(β + 1) .

For the limit case α = λ, this goes

Px(γ + λ)
(A.2)
= Px((γ + λ)x)

(A.1)
= Px(γ + λx)

ih
= γ + Px(λx)

(A.2)
= γ + Px(λ) .

Proof of (A.4). By induction over α. For the successor case α = β + 1, this goes

Px(ω
β+1)

(A.2)
= Px((ω

β+1)x)
(A.1)
= Px(ω

β · ωx)
(A.3)
= ωβ · (ωx − 1) + Px(ω

β)

(A.2)
= ωPx(β+1) · (ωx − 1) + Px(ω

Px(β+1)) .

For the limit case α = λ, this goes

Px(ω
λ)

(A.2)
= Px((ω

λ)x)
(A.1)
= Px(ω

λx)
ih
= ωPx(λx) · (ωx − 1) + Px(ω

Px(λx))

(A.2)
= ωPx(λ) · (ωx − 1) + Px(ω

Px(λ)) .

A.3 P O L O

P . An issue with ordinal-indexed hierarchies is that they are
typically not monotonic in their ordinal index. A way to circumvent this problem
is to refine the ordinal ordering; an especially useful refinement is≺x defined for
x ∈ N as the smallest transitive relation satisfying (see Dennis-Jones and Wainer
(1984); Fairtlough and Wainer (1992); Cichoń and Tahhan Biar (1998)):

α ≺x α+ 1 , λx ≺x λ . (A.5)

In particular, using induction on α, one immediately sees that

0 ≼x α , (A.6)

Px(α) ≺x α . (A.7)

e inductive definition of ≺x implies

α′ ≺x α iff
{

α = β + 1 is a successor and α′ ≼x β, or
α = λ is a limit and α′ ≼x λx.

(A.8)

70 Appendix A. Subrecursive Functions

Obviously≺x is a restriction of<, the strict linear quasi-ordering over ordinal
terms. For example, ωx ≺x ω but ωx + 1 ̸≺x ω, although ord(ωx + 1) is by
definition a finite ordinal, smaller than ord(ω).

e ≺x relations are linearly ordered themselves

≺0 ⊆ · · · ⊆ ≺x ⊆ ≺x+1 ⊆ · · · (A.9)

and, over terms in CNF, < can be recovered by(∪
x∈N
≺x

)
= < . (A.10)

We will soon prove these results in Corollary A.4 and Lemma A.5, but we need
first some basic properties of ≺x.

Lemma A.2. For all α, α′, γ in Ω and all x in N

α′ ≺x α implies γ + α′ ≺x γ + α , (A.11)

ωx > 0 and α′ ≺x α imply ωα′ ≺x ωα . (A.12)

Proof. All proofs are by induction over α (NB: the case α = 0 is impossible).
(A.11): For the successor case α = β + 1, this goes through

α′ ≺x β + 1 implies α′ ≼x β (by (A.8))

implies γ + α′ ≼x γ + β
(A.5)
≺x γ + β + 1 . (by ind. hyp.)

For the limit case α = λ, this goes through

α′ ≺x λ implies α′ ≼x λx (by (A.8))

implies γ + α′ ≼x γ + λx
(A.1)
= (γ + λ)x

(A.5)
≺x γ + λ . (by ind. hyp.)

(A.12): For the successor case α = β + 1, we go through

α′ ≺x β + 1 implies α′ ≼x β (by (A.8))

implies ωα′ ≼x ωβ = ωβ + 0 (by ind. hyp.)

implies ωα′ ≼x ωβ + ωβ · (ωx − 1)
(by equations (A.6) and (A.11))

implies ωα′ ≼x ωβ · ωx = (ωβ+1)x
(A.5)
≺x ωβ+1 .

For the limit case α = λ, this goes through

α′ ≺x λ implies α′ ≼x λx (by (A.8))

implies ωα′ ≼x ωλx
(A.1)
= (ωλ)x

(A.5)
≺x ωλ . (by ind. hyp.)

A.3. Pointwise Ordering and Lean Ordinals 71

Lemma A.2 shows that ≺x is le congruent for + and congruent for ω-exponen-
tiation. One can observe that it is not right congruent for+; consider for instance
the terms ωx+1 and ω+1: one can see that ωx+1 ̸≺x ω+1. Indeed, from ω+1
the only way of descending through ≻x is ω + 1 ≻x ω ≻x ωx, but ωx ̸≻x ωx + 1
since ≺x ⊆ < for terms in CNF(ε0).

Lemma A.3. Let λ be a limit ordinal in Ω and x < y in N. en λx ≼y λy , and if
furthermore ωx > 0, then λx ≼x λy .

Proof. By induction over λ. Write ωy = ωx + z for some z ≥ 0 by monotonicity
of s (recall that ωx and ωy are in N) and λ = γ + ωα with 0 < α.

If α = β + 1 is a successor, then λx = γ + ωβ · ωx ≼y γ + ωβ · ωx + ωβ · z
by (A.11) since 0 ≼y ωβ · z. We conclude by noting that λy = γ + ωβ · (ωx + z);
the same arguments also show λx ≼x λy .

If α is a limit ordinal, then αx ≼y αy by ind. hyp., hence λx = γ + ωαx ≼y

γ + ωαy = λy by (A.12) (applicable since ωy ≥ y > x ≥ 0) and (A.11). If ωx > 0,
then the same arguments show λx ≼x λy .

Now, using (A.8) together with Lemma A.3, we see

Corollary A.4. Let α, β in Ω and x, y in N. If x ≤ y then α ≺x β implies α ≺y β.

In other words, ≺x ⊆ ≺x+1 ⊆ ≺x+2 ⊆ · · · as claimed in (A.9).
If s is strictly increasing, i.e. if ωx < ωx+1 for all x, then the statement of

LemmaA.3 can be strengthened to λx ≺y λy and λy ≺x λy whenωx > 0, and this
hierarchy becomes strict at every level x: indeed, ωx+1 ≺x+1 ω but ωx+1 ≺x ω
would imply ωx+1 ≼x ωx, contradicting ≺x ⊆ <.

L O. Let k be in N. We say that an ordinal α in CNF(ε0) is k-lean if it
only uses coefficients ≤ k, or, more formally, when it is wrien under the strict
form α = ωβ1 · c1 + · · ·+ ωβm · cm with ci ≤ k and, inductively, with k-lean βi,
this for all i = 1, ...,m. Observe that only 0 is 0-lean, and that any term in CNF
is k-lean for some k.

A value k of particular importance for lean ordinal terms is k = ωx − 1: ob-
serve that this is the coefficient value introduced when we compute a predecessor
ordinal at x. Stated differently, (ωx − 1)-leanness is an invariant of predecessor
computations: if α is (ωx − 1)-lean, then Px(α) is also (ωx − 1)-lean.

Leanness also provides a very useful characterization of the ≺x relation in
terms of the ordinal ordering over terms in CNF:

Lemma A.5. Let x be in N, and α in CNF(ε0) be (ωx − 1)-lean. en:

α < γ iff α ≺x γ iff α ≼x Px(γ) iff α ≤ Px(γ) . (A.13)

72 Appendix A. Subrecursive Functions

One sees
(∪

x∈N ≺x

)
= < over terms in CNF(ε0) as a result of Lemma A.5.

e proof relies on the syntactic characterization of the ordinal ordering over
terms in CNF(ε0) by

α < α′ ⇔

α = 0 and α′ ̸= 0, or

α = ωβ + γ, α′ = ωβ′
+ γ′ and

{
β < β′, or
β = β′ and γ < γ′.

(A.14)

Since α ≼x Px(γ) directly entails all the other statements of Lemma A.5, it is
enough to prove:

Claim A.5.1. Let α, γ in CNF(ε0) and x in N. If α is (ωx − 1)-lean, then

α < γ implies α ≼x Px(γ) .

Proof. If α = 0, we are done so we assume α > 0 and hence ωx > 1, thus
α =

∑m
i=1 ω

βi · ci with m > 0. Working with terms in CNF allows us to employ
the syntactic characterization of < given in (A.14).

We prove the claim by induction on γ, considering two cases:

1. if γ = γ′ + 1 is a successor then α < γ implies α ≤ γ′, hence α
ih
≼x γ′

(A.2)
=

Px(γ).

2. if γ is a limit, we claim thatα < γx, fromwhichwe deduceα
ih
≼x Px(γx)

(A.2)
=

Px(γ). We consider three subcases for the claim:

(a) if γ = ωλ with λ a limit, then α =
∑m

i=1 ω
βi · ci < γ implies β1 < λ,

hence β1
ih
≼x Px(λ) = Px(λx) < λx, since β1 is (ωx − 1)-lean. us

α < ωλx = (ωλ)x = γx.

(b) if γ = ωβ+1 then α < γ implies β1 < β + 1, hence β1 ≤ β. Now
c1 ≤ ωx − 1 since α is (ωx − 1)-lean, hence α < ωβ1 · (c1 + 1) ≤
ωβ1 · ωx ≤ ωβ · ωx = (ωβ+1)x = γx.

(c) if γ = γ′ + ωβ with 0 < γ′, β, then either α ≤ γ′, hence α < γ′ +
(ωβ)x = γx, or α > γ′, and then α can be wrien as α = γ′+α′ with

α′ < ωβ . In that case α′ ih
≼x Px(ω

β)
(A.2)
= Px((ω

β)x) < (ωβ)x, hence

α = γ′ + α′ (A.14)
< γ′ + (ωβ)x

(A.1)
= (γ′ + ωβ)x = γx.

A.4 O I F

Let us recall several classical hierarchies from (Cichoń and Wainer, 1983; Cichoń
and Tahhan Biar, 1998). All the functions we define are over natural numbers.
We introduce “relativized” versions of the hierarchies, which employ a unary con-
trol function h : N→ N; the “standard” hierarchies then correspond to the special
case where the successor function h(x) = x + 1 is picked. We will see later in
Section A.7 how hierarchies with different control functions can be related.

A.4. Ordinal Indexed Functions 73

H F. We define the functions (hα)α∈Ω, each hα:N → N, by inner
iteration:

h0(x)
def
= x, hα+1(x)

def
= hα(h(x)), hλ(x)

def
= hλx(x). (A.15)

An example of inner iteration hierarchy is theHardy hierarchy (Hα)α∈Ω obtained
from (A.15) in the special case of h(x) = x+ 1:

H0(x)
def
= x, Hα+1(x)

def
= Hα(x+ 1), Hλ(x)

def
= Hλx(x). (A.16)

C F. Again for a unary h, we can define a variant (hα)α∈Ω of the
Hardy functions called the length hierarchy by Cichoń and Tahhan Biar (1998)
and defined by inner and outer iteration:

h0(x)
def
= 0, hα+1(x)

def
= 1 + hα(h(x)), hλ(x)

def
= hλx(x). (A.17)

As before, in the case where h(x) = x+ 1 is the successor function, this yields

H0(x)
def
= 0, Hα+1(x)

def
= 1 +Hα(x+ 1), Hλ(x)

def
= Hλx(x). (A.18)

ose hierarchies are the most closely related to the hierarchies of functions we
define for the length of bad sequences.

F G F. Last of all, the fast growing functions (fα)α∈Ω are de-
fined through

f0(x)
def
= h(x), fα+1(x)

def
= fωx

α (x), fλ
def
= fλx(x), (A.19)

while its standard version (for h(x) = x+ 1) is defined by

F0(x)
def
= x+ 1, Fα+1(x)

def
= Fωx

α (x), Fλ(x)
def
= Fλx(x). (A.20)

Several properties of these functions can be proved by rather simple induction
arguments.

Lemma A.5. For all α > 0 in Ω and x in N,

hα(x) = 1 + hPx(α)(h(x)) , (A.21)

hα(x) = hPx(α)(h(x)) = hPx(α)+1(x) , (A.22)

fα(x) = fωx

Px(α)
(x) = fPx(α)+1(x) . (A.23)

Proof. We only prove (A.21); (A.22) and (A.23) can be proven similarly.
By transfinite induction over α. For a successor ordinal α + 1, hα+1(x) =

1 + hα(h(x)) = 1 + hPx(α+1)(h(x)). For a limit ordinal λ, hλ(x) = hλx(x)
ih
=

1 + hPx(λx)(h(x))
(A.2)
= 1 + hPx(λ)(h(x)), where the ind. hyp. can applied since

λx < λ.

74 Appendix A. Subrecursive Functions

Lemma A.6. Let h(x) > x for all x. en for all α in Ω and x in N,

hα(x) ≤ hα(x)− x .

Proof. By induction over α. For α = 0, h0(x) = 0 = x − x = h0(x) − x. For
α > 0,

hα(x) = 1 + hPx(α)(h(x)) (by Lemma A.5)

≤ 1 + hPx(α)(h(x))− h(x) (by ind. hyp. since Px(α) < α)

≤ hPx(α)(h(x))− x (since h(x) > x)

= hα(x)− x . (by (A.22))

Using the same argument, one can check that in particular for h(x) = x+ 1,

Hα(x) = Hα(x)− x . (A.24)

Lemma A.7. For all α, γ in Ω, and x,

hγ+α(x) = hγ(hα(x)) .

Proof. By transfinite induction on α. For α = 0, hγ+0(x) = hγ(x) = hγ(h0(x)).

For a successor ordinal α + 1, hγ+α+1(x) = hγ+α(h(x))
ih
= hγ(hα(h(x))) =

hγ
(
hα+1(x)

)
. For a limit ordinal λ, hγ+λ(x) = h(γ+λ)x(x) = hγ+λx(x)

ih
=

hγ
(
hλx(x)

)
= hγ

(
hλ(x)

)
.

Remark A.8. Some care should be taken with Lemma A.7: γ+α is not necessarily
a term in CNF. See Remark A.14 on page 78 for a related discussion.

Lemma A.9. For all β in Ω, and r, x in N,

hω
β ·r(x) = f r

β(x) .

Proof. In view of Lemma A.7 and h0 = f0 = IdN, it is enough to prove hω
β
= fβ ,

i.e., the r = 1 case. We proceed by induction over β.

For the base case. hω
0
(x) = h1(x)

(A.19)
= f0(x).

For a successor β + 1. hω
β+1

(x)
(A.15)
= h(ω

β+1)x(x) = hω
β ·ωx(x)

ih
= fωx

β (x)
(A.19)
=

fβ+1(x).

For a limit λ. hω
λ
(x)

(A.15)
= hω

λx
(x)

ih
= fλx(x)

(A.19)
= fλ(x).

A.5. Pointwise Ordering and Monotonicity 75

A.5 P O M

We set to prove in this section the main monotonicity and expansiveness proper-
ties of our various hierarchies.

Lemma A.10 (Cichoń and Tahhan Biar, 1998). Let h be an expansive monotone
function. en, for all α, α′ in Ω and x, y in N,

x < y implies hα(x) ≤ hα(y) , (A.25)

α′ ≺x α implies hα′(x) ≤ hα(x) . (A.26)

Proof. Let us first deal with α′ = 0 for (A.26). en h0(x) = 0 ≤ hα(x) for all α
and x.

Assuming α′ > 0, the proof now proceeds by simultaneous transfinite induc-
tion over α.

For 0. en h0(x) = 0 = h0(y) and (A.26) holds vacuously since α′ ≺x α is
impossible.

For a successor α+ 1. For (A.25), hα+1(x) = 1+hα(h(x))
ih(A.25)
≤ 1+hα(h(y)) =

hα+1(y) where the ind. hyp. on (A.25) can be applied since h is monotone.

For (A.26), we have α′ ≼x α ≺x α + 1, hence hα′(x)
ih(A.26)
≤ hα(x)

ih(A.25)
≤

hα(h(x))
(A.17)
= hα+1(x) where the ind. hyp. on (A.25) can be applied since

h(x) ≥ x.

For a limit λ. For (A.25), hλ(x) = hλx(x)
ih(A.25)
≤ hλx(y)

ih(A.26)
≤ hλy(y) = hλ(y)

where the ind. hyp. on (A.26) can be applied since λx ≺y λy by Lemma A.3.

For (A.26), we have α′ ≼x λx ≺x λ with hα′(x)
ih(A.26)
≤ hλx(x) = hλ(x).

Essentially the same proof can be carried out to prove the same monotonicity
properties for hα and fα. As the monotonicity properties of fα will be handy in
the remainder of the section, we prove them now:

Lemma A.11 (Löb and Wainer, 1970). Let h be a function with h(x) ≥ x. en,
for all α, α′ in Ω, x, y in N with ωx > 0,

fα(x) ≥ h(x) ≥ x . (A.27)

α′ ≺x α implies fα′(x) ≤ fα(x) , (A.28)

x < y and h monotone imply fα(x) ≤ fα(y) . (A.29)

76 Appendix A. Subrecursive Functions

Proof of (A.27). By transfinite induction on α. For the base case, f0(x) = h(x) ≥
x by hypothesis. For the successor case, assuming fα(x) ≥ h(x), then by induc-
tion on n > 0, fn

α (x) ≥ h(x): for n = 1 it holds since fα(x) ≥ h(x), and for n+1
since fn+1

α (x) = fα(f
n
α (x)) ≥ fα(x) by ind. hyp. on n. erefore fα+1(x) =

fωx
α (x) ≥ x since ωx > 0. Finally, for the limit case, fλ(x) = fλx(x) ≥ x by ind.

hyp.

Proof of (A.28). Let us first deal with α′ = 0. en f0(x) = h(x) ≤ fα(x) for all
x > 0 and all α by (A.27).

Assuming α′ > 0, the proof proceeds by transfinite induction over α. e
case α = 0 is impossible. For the successor case, α′ ≼x α ≺x α + 1 with

fα+1(x) = fωx−1
α (fα(x))

(A.27)
≥ fα(x)

ih
≥ fα′(x). For the limit case, we have

α′ ≼x λx ≺x λ with fα′(x)
ih
≤ fλx(x) = fλ(x).

Proof of (A.29). By transfinite induction overα. For the base case, f0(x) = h(x) ≤

h(y) = f0(y) sinceh ismonotone. For the successor case, fα+1(x) = fωx
α (x)

(A.27)
≤

f
ωy
α (x)

ih
≤ f

ωy
α (y) = fα+1(y) using ωx ≤ ωy . For the limit case, fλ(x) =

fλx(x)
ih
≤ fλx(y)

(A.28)
≤ fλy(y) = fλ(y), where (A.28) can be applied thanks to

Lemma A.3.

A.6 D F S

eway we employ ordinal-indexed hierarchies is as standard ways of classifying
the growth of functions, allowing to derive meaningful complexity bounds for
algorithms relying on wqos for termination. It is therefore quite important to use
a standard assignment of fundamental sequences in order to be able to compare
results from different sources. e definition provided in (A.1) is standard, and
the two choices ωx = x and ωx = x + 1 can be deemed as “equally standard” in
the literature. We employed ωx = x in the rest of the notes, but the reader might
desire to compare this to bounds using e.g. ωx = x+ 1—as seen in Lemma A.12,
this is possible for strictly increasing h.

A bit of extra notation is needed: we want to compare the Cichoń hierarchies
(hs,α)α∈Ω for different choices of s. Recall that s is assumed to be monotone and
expansive, which is true of the identity function id.

LemmaA.12. Letα inΩ. If s(h(x)) ≤ h(s(x)) for allx, thenhs,α(x) ≤ hid,α(s(x))
for all x.

Proof. By induction on α. For 0, hs,0(x) = 0 = hid,0(s(x)). For a successor

ordinal α + 1, hs,α+1(x) = 1 + hs,α(h(x))
ih
≤ 1 + hid,α(s(h(x)))

(A.25)
≤ 1 +

hid,α(h(s(x))) = hid,α+1(s(x)) since s(h(x)) ≤ h(s(x)). For a limit ordinal

A.7. Different Control Functions 77

λ, hs,λ(x) = hs,λx(x)
ih
≤ hid,λx(s(x))

(A.26)
≤ hid,λs(x)

(s(x)) = hid,λ(s(x)) where
s(x) ≥ x implies λx ≺s(x) λs(x) by Lemma A.3 and allows to apply (A.26).

A simple corollary of Lemma A.12 for s(x) = x + 1 is that, if h is strictly
monotone, then h(x + 1) ≥ 1 + h(x), and thus hs,α(x) ≤ hid,α(x + 1), i.e. the
Cichoń functions for the two classical assignments of fundamental sequences are
tightly related and will always fall in the same classes of subrecursive functions.
is also justifies not giving too much importance to the choice of s—within rea-
sonable limits.

A.7 D C F

As in Section A.6, if we are to obtain bounds in terms of a standard hierarchy of
functions, we ought to provide bounds for h(x) = x+ 1 as control. We are now
in position to prove a statement of Cichoń and Wainer (1983):

Lemma A.13. For all γ and α in Ω, if h is monotone eventually dominated by Fγ ,
then fα is eventually dominated by Fγ+α.

Proof. By hypothesis, there exists x0 (which we can assume wlog. verifies x0 >
0) s.t. for all x ≥ x0, h(x) ≤ Fγ(x). We keep this x0 constant and show by
transfinite induction on α that for all x ≥ x0, fα(x) ≤ Fγ+α(x), which proves
the lemma. Note that ωx ≥ x ≥ x0 > 0 and thus that we can apply Lemma A.11.

For the base case 0: for all x ≥ x0, f0(x) = h(x) ≤ Fγ(x) by hypothesis.

For a successor ordinal α+ 1: we first prove that for all n and all x ≥ x0,

fn
α (x) ≤ Fn

γ+α(x) . (A.30)

Indeed, by induction on n, for all x ≥ x0,

f0
α(x) = x = F 0

γ+α(x)

fn+1
α (x) = fα(f

n
α (x))

≤ fα
(
Fn
γ+α(x)

)
(by (A.29) on fα and the ind. hyp. on n)

≤ Fγ+α

(
Fn
γ+α(x)

)
(since by (A.27) Fγ+α(x) ≥ x ≥ x0 and by ind. hyp. on α)

= Fn+1
γ+α(x) .

erefore

fα+1(x) = fx
α(x)

≤ F x
γ+α(x) (by (A.30) for n = x)

= Fγ+α+1(x) .

78 Appendix A. Subrecursive Functions

For a limit ordinal λ: for allx ≥ x0, fλ(x) = fλx(x)
ih
≤ Fγ+λx(x) = F(γ+λ)x(x) =

Fγ+λ(x).

Remark A.14. Observe that the statement of Lemma A.13 is one of the few in-
stances in this appendix where ordinal term notations maer. Indeed, nothing
forces γ + α to be an ordinal term in CNF. Note that, with the exception of
Lemma A.5, all the definitions and proofs given in this appendix are compati-
ble with arbitrary ordinal terms in Ω, and not just terms in CNF, so this is not a
formal issue.

e issue lies in the intuitive understanding the reader might have of a term
“γ + α”, by interpreting + as the direct sum in ordinal arithmetic. is would
be a mistake: in a situation where two different terms α and α′ denote the same
ordinal ord(α) = ord(α′), we do not necessarily have Fα(x) = Fα′(x): for
instance, α = ωω0

and α′ = ω0 + ωω0
denote the same ordinal ω, but Fα(2) =

F2(2) = 22 · 2 = 23 and Fα′(2) = F3(2) = 22
2·2 · 22 · 2 = 211. erefore,

the results on ordinal-indexed hierarchies in this appendix should be understood
syntactically on ordinal terms, and not semantically on their ordinal denotations.

e natural question at this point is: how do these new fast growing functions
compare to the functions indexed by terms in CNF? Indeed, we should check that
e.g. Fγ+ωp with γ < ωω is multiply-recursive if our results are to be of any use.
e most interesting case is the one where γ is finite but α infinite (which will be
used in the proof of Lemma A.16):

Lemma A.15. Let α ≥ ω and 0 < γ < ω be in CNF(ε0), and ωx
def
= x. en, for

all x, Fγ+α(x) ≤ Fα(x+ γ).

Proof. We first show by induction on α ≥ ω that

Claim A.15.1. Let s(x) def
= x+ γ. en for all x, Fid,γ+α(x) ≤ Fs,α(x).

base case for ω: Fid,γ+ω(x) = Fid,γ+x(x) = Fs,ω(x),

successor case α+ 1: with α ≥ ω, an induction on n shows that Fn
id,γ+α(x) ≤

Fn
s,α(x) for all n and x using the ind. hyp. on α, thus Fid,γ+α+1(x) =

F x
id,γ+α(x)

(A.27)
≤ F x+γ

id,γ+α(x) ≤ F x+γ
s,α (x) = Fs,α+1(x),

limit case λ > ω: Fid,γ+λ(x) = Fid,γ+λx(x)
ih
≤ Fs,λx(x)

(A.28)
≤ Fs,λx+γ(x) =

Fs,λ(x) where (A.28) can be applied since λx ≼x λx+γ by Lemma A.3 (ap-
plicable since s(x) = x+ γ > 0).

Returning to the main proof, note that s(x + 1) = x + 1 + γ = s(x) + 1,

A.8. Classes of Subrecursive Functions 79

allowing to apply Lemma A.12, thus for all x,

Fid,γ+α(x) ≤ Fs,α(x) (by the previous claim)

= Hωα

s (x) (by Lemma A.9)

≤ Hωα

id (s(x)) (by Lemma A.12 and (A.24))

= Fid,α(s(x)) . (by Lemma A.9)

A.8 C S F

We finally consider how some natural classes of recursive functions can be char-
acterized by closure operations on subrecursive hierarchies. e best-known of
these classes is the extended Grzegorczyk hierarchy (Fα)α∈CNF(ε0) defined by Löb

andWainer (1970) on top of the fast-growing hierarchy (Fα)α∈CNF(ε0) for ωx
def
= x.

Let us first provide some background on the definition and properties of Fα.
e class of functions Fα is the closure of the constant, addition, projection (in-
cluding identity), and Fα functions, under the operations of

substitution: if h0, h1, . . . , hn belong to the class, then so does the function f de-
fined by

f(x1, . . . , xn) = h0(h1(x1, . . . , xn), . . . , hn(x1, . . . , xn)) ,

limited primitive recursion: if h1, h2, and h3 belong to the class, then so does the
function f defined by

f(0, x1, . . . , xn) = h1(x1, . . . , xn) ,

f(y + 1, x1, . . . , xn) = h2(y, x1, . . . , xn, f(y, x1, . . . , xn)) ,

f(y, x1, . . . , xn) ≤ h3(y, x1, . . . , xn) .

ehierarchy is strict forα > 0, i.e.Fα′ ⊊ Fα ifα′ < α, because in particular
Fα′ /∈ Fα. For small finite values of α, the hierarchy characterizes some well-
known classes of functions:

• F0 = F1 contains all the linear functions, like λx.x + 3 or λx.2x, along
withmany simple ones like cut-off subtraction: λxy.x´y, which yields x−y
if x ≥ y and 0 otherwise,2 or simple predicates like odd: λx.x mod 2,3

• F2 is exactly the set of elementary functions, like λx.22
x
,

2By limited primitive recursion; first define λx.x ´ 1 by 0 ´ 1 = 0 and (y + 1) ´ 1 = y; then
x ´ 0 = x and x ´ (y + 1) = (x ´ y) ´ 1.

3By limited primitive recursion: 0 mod 2 = 0 and (y + 1) mod 2 = 1 ´ (y mod 2).

80 Appendix A. Subrecursive Functions

• F3 contains all the tetration functions, like λx. 22
. .

.2︸︷︷︸
x times

, etc.

e union
∪

α<ω Fα is the set of primitive-recursive functions, while Fω is an
Ackermann-like non primitive-recursive function. Similarly,

∪
α<ωω Fα is the set

of multiply-recursive functions with Fωω a non multiply-recursive function.
e following properties (resp. eorem 2.10 and eorem 2.11 in (Löb and

Wainer, 1970)) are useful: for all α, unary f in Fα, and x,

α > 0 implies ∃p, f(x) ≤ F p
α(x+ 1) , (A.31)

∃p, ∀x ≥ p, f(x) ≤ Fα+1(x) . (A.32)

Also note that by (A.31), if a unary function g is dominated by some function g′

in Fα with α > 0, then there exists p s.t. for all x, g(x) ≤ g′(x) ≤ F p
α(x + 1).

Similarly, (A.32) shows that for all x ≥ p, g(x) ≤ g′(x) ≤ Fα+1(x).
Let us conclude this appendix with the following lemma, which shows that

the difficulties raised by non-CNF ordinal terms (recall RemarkA.14) are alleviated
when working with the (Fα)α:

Lemma A.16. For all γ > 0 and α, if h is monotone and eventually dominated by
a function in Fγ , then

1. if α < ω, fα is dominated by a function in Fγ+α, and

2. if γ < ω and α ≥ ω, fα is dominated by a function in Fα.

Proof of 1. We proceed by induction on α < ω.

For the base case α = 0: we have f0 = h dominated by a function in Fγ by hy-
pothesis.

For the successor case α = k + 1: by ind. hyp. fk is dominated by a function in
Fγ+k, thus by (A.31) there exists p s.t. fk(x) ≤ F p

γ+k(x+1) = F p
γ+k◦F0(x).

By induction on n, we deduce

fn
k (x) ≤ (F p

γ+k ◦ F0)
n(x) ; (A.33)

erefore,

fk+1(x) = fx
k (x) (A.34)

(A.33)
≤ (F p

γ+k ◦ F0)
x(x) (A.35)

(A.29)
≤ F

(p+1)x+1
γ+k ((p+ 1)x+ 1) (A.36)

= Fγ+k+1((p+ 1)x+ 1) ,

where the laer function x 7→ Fγ+k+1((p + 1)x + 1) is defined by sub-
stitution from Fγ+k+1, successor, and (p + 1)-fold addition, and therefore
belongs to Fγ+k+1.

A.8. Classes of Subrecursive Functions 81

Proof of 2. By (A.32), there exists x0 s.t. for all x ≥ x0, h(x) ≤ Fγ+1(x). By

lemmas A.13 and A.15, fα(x)
(A.29)
≤ fα(x + x0) ≤ Fα(x + x0 + γ + 1) for all x,

where the laer function x 7→ Fα(x+ x0 + γ + 1) is in Fα.

82 Appendix A. Subrecursive Functions

B

PROBLEMS OF ENORMOUS COMPLEXITY

B.1 Fast-Growing Complexities 83
B.2 Fω-Complete Problems 88
B.3 Fωω -Complete Problems 90
B.4 Fωωω -Complete Problems 93

Because their main interest lies in characterizing which problems are efficiently
solvable, most textbooks in complexity theory concentrate on the frontiers be-
tween tractability and intractability, with less interest for the “truly intractable”
problems found in ET and beyond. Unfortunately, many natural decision
problems are not that tame and require to explore the uncharted classes outside
the exponential hierarchy.

is appendix borrows its title from a survey by Friedman (1999), where the
reader will find many problems living outside E. We are however not
interested in “creating” new problems of enormous complexity, but rather in clas-
sifying already known problems in some important stops related to the extended
Grzegorczyck hierarchy. Because we wanted this appendix to be reasonably self-
contained, we will recall several definitions found elsewhere in these notes.

B.1 FG C

E H. Let us start where most accounts on complexity stop:
define the class of exponential-time problems as

ET def
=
∪
c

DT
(
2n

c)
and the corresponding nondeterministic and space-bounded classes as

NET def
=
∪
c

NT
(
2n

c)
ES def

=
∪
c

S
(
2n

c)
.

84 Appendix B. Problems of Enormous Complexity

Problems complete for ET, like corridor tiling games (Chlebus, 1986) or
equivalence of regular tree languages (Seidl, 1990), are known not to be in PT,
hence the denomination “truly intractable” or “provably intractable” in the liter-
ature.

We can generalize these classes of problems to the exponential hierarchy

kET def
=
∪
c

DT

 2.
. .2︸︷︷︸

k times

nc
 ,

with the nondeterministic and space-bounded variants defined accordingly. e
union of the classes in this hierarchy is the class of elementary problems:

E def
=
∪
k

kET =
∪
c

DT

(
2.

. .2︸︷︷︸
c times

n
)
.

Note that we could as easily define E in terms of nondeterministic time
bounds, space bounds, alternation classes, etc. Our interest in this appendix lies
in the problems found outside this class, for which suitable hierarchies need to be
used.

T E G H (Fα)α<ε0 is an infinite hierarchy of
classes of functions f with argument(s) and images in N (Löb and Wainer, 1970).
At the heart of each Fα lies the αth fast-growing function Fα:N→ N, which is
defined by

F0(x)
def
= x+ 1 , Fα+1(x)

def
= F x

α (x) =

x times︷ ︸︸ ︷
Fα(Fα(· · ·Fα(x))) ,

Fλ(x)
def
= Fλx(x) ,

where λx < λ is the xth element of the fundamental sequence for the limit ordinal
λ, defined by

(γ + ωβ+1)x
def
= γ + ωβ · x , (γ + ωλ)x

def
= γ + ωλx .

For instance,

F1(x) = 2x , F2(x) = 2xx ,

F3(x) > 2.
. .2}

x times ,

Fω is an Ackermannian function,

Fωω is a hyper-Ackermannian function, etc.

B.1. Fast-Growing Complexities 85

For α ≥ 2, each level of the extended Grzegorczyk hierarchy can be charac-
terized as a class of functions computable with bounded resources

Fα =
∪
c

FDT (F c
α(n)) , (B.1)

the choice between deterministic and nondeterministic or between time-bounded
and space-bounded computations being once more irrelevant because F2 is al-
ready a function of exponential growth. In particular, F c

α belongs to Fα for every
α and fixed c.

Every function f in Fα is honest, i.e. can be computed in time elementary in
itself (Wainer, 1970)—this is a variant of the time constructible or proper complexity
functions found in the literature, but beer suited for the high complexities we are
considering. Every f is also eventually bounded by Fα′ if α < α′, i.e. there ex-
ists a rank xf,α s.t. for all x1, . . . , xn, if maxi xi ≥ xf,α, then f(x1, . . . , xn) ≤
Fα′(maxi xi). However, for all α′ > α > 0, Fα′ ̸∈ Fα, and the hierarchy
(Fα)α<ε0 is strict for α > 0.

I S. Although some deep results have been obtained on the lower
classes,1 we focus here on the non-elementary classes, i.e. on α ≥ 2, where we
find for instance

F2 = FE ,∪
k

Fk = FPR ,∪
k

Fωk = FMR ,∪
α<ε0

Fα = FOR .

We are dealing here with classes of functions, but writing F ∗
α for the restriction

ofFα to {0, 1}-valued functions, we obtain the classification of decision problems
displayed in Figure B.1.

Unfortunately, these classes are not quite satisfying for some interesting prob-
lems, which are non elementary (resp. non primitive-recursive, or non multiply-
recursive, …), but only barely so. e issue is that complexity classes like e.g. F ∗

3 ,
which is the first class that contains non-elementary problems, are very large: F ∗

3

contains for instance problems that require space F 100
3 , more than a hundred-fold

compositions of towers of exponentials. As a result, hardness for F3 cannot be
obtained for the classical examples of non-elementary problems.

1See Ritchie (1963) for a characterization of FLS, and for variants see e.g. Cobham (1965);
Bellantoni and Cook (1992) for FPT, or the chapter by Clote (1999) for a survey of these tech-
niques.

86 Appendix B. Problems of Enormous Complexity

PTco-NP NP

PS

ET NEco-NE

ES

2-ET

F ∗
2 =

E

∪
k F ∗

k =
PR

∪
k F ∗

ωk =
MR

F3

Fω

Fωω

Fωωω

Figure B.1: Some complexity classes.

B.1. Fast-Growing Complexities 87

We therefore introduce smaller classes:

Fα
def
=

∪
p∈∪β<αFβ

DT (Fα(p(n))) . (B.2)

As previously, the choice of DT rather than NT or S or AT is ir-
relevant for α ≥ 3. is yields for instance a class F3 of non-elementary de-
cision problems closed under elementary reductions, a class Fω of Ackerman-
nian problems closed under primitive-recursive reductions, a class Fωω of hyper-
Ackermannian problems closed under multiply-recursive reductions, etc.2 We
can name a few of these complexity classes:

Fω = A ,

Fωω = HA .

Of course, we could replace in (B.2) the class of reductions ∪β<αFβ by a more
traditional one, like FLS or FPT, or for α ≥ ω by primitive-recursive
reductions in

∪
k Fk as done by Chambart (2011). However this definition beer

captures the intuition one can have of a problem being “complete for Fα.”
A point worth making is that the extended Grzegorczyk hierarchy has multi-

ple natural characterizations: as loop programs for α < ω (Meyer and Ritchie,
1967), as ordinal-recursive functions with bounded growth (Wainer, 1970), as
functions computable with restricted resources as in (B.1), as functions provably
total in fragments of Peano arithmetic (Fairtlough and Wainer, 1998), etc.—which
make the complexity classes we introduced here meaningful.

A F3C E can be found in the seminal paper of Stockmeyer and
Meyer (1973), and is quite likely already known by many readers. Define a star-
free expression over some alphabet Σ as a term e with abstract syntax

e ::= a | ε | ∅ | e+ e | ee | ¬e

where a ranges over Σ and ε denotes the empty string. Such expressions are
inductively interpreted as languages included in Σ∗ by:

JaK def
= {a} JεK def

= {ε} J∅K def
= ∅Je1 + e2K def

= Je1K ∪ Je2K Je1e2K def
= Je1K · Je2K J¬eK def

= Σ∗ ∖ JeK .
2An alternative class for α ≥ 3 is

F′α
def
=

∪
c

DT (Fα(n+ c)) ,

which is oen sufficient and already robust under changes in the model of computation, but not
robust under reductions.

Yet another alternative would be to consider the Wainer hierarchy (Hβ)β<ε0 of functions
(Wainer, 1972), which provides an infinite refinement of each Fα as

∪
β<ωα+1 Hβ , but its classes

lack both forms of robustness: any f in Hβ is bounded by Hβ the βth function of the Hardy
hierarchy. What we define here as Fα seems closer to

∪
β<ωα·2 H ∗

β .

88 Appendix B. Problems of Enormous Complexity

e decision problem we are interested in is whether two such expressions
e1, e2 are equivalent, i.e. whether Je1K = Je2K. Stockmeyer and Meyer (1973)

show that this problem is hard for 2.
. .2
}

logn times space under FLS reduc-
tions. en, F3-hardness follows by an FE reduction from any Turing

machine working in spaceF3(p(n)) into a machine working in space 2.
. .2
}

logn times.
at the problem is in F3 can be checked using an automaton-based algorithm:
construct automata recognizing Je1K and Je2K respectively, using determinization
to handle each complement operator at the expense of an exponential blowup, and
check equivalence of the obtained automata in PS—the overall procedure is

in space polynomial in 2.
. .2
}

n times, thus in F3.

B.2 FωC P

We gather here some decision problems that can be proven decidable in Fω thanks
toDickson’s Lemma overNd and to the combinatorial analyses ofMcAloon (1984);
Clote (1986); Figueira et al. (2011). We therefore focus on the references for lower
bounds.

V A S (VAS, and equivalently Petri nets), provided the first
known Ackermannian decision problem: [FCP].

A d-dimensional VAS is a pair ⟨x0,A⟩ where x0 is an initial configuration
in Nd and A is a finite set of transitions in Zd. A transition a in A can be ap-
plied to a configuration x in Nd if x′ = x + a is in Nd; the resulting configura-
tion is then x′. e complexity of decision problems for VAS usually varies from
ES-complete (Lipton, 1976; Rackoff, 1978; Blockelet and Schmitz, 2011) to
Fω-complete (Mayr and Meyer, 1981; Jančar, 2001) to undecidable (Hack, 1976;
Jančar, 1995), via a key problem, which is decidable but of unknown complexity:
VAS Reachability (Mayr, 1981; Kosaraju, 1982; Lambert, 1992; Leroux, 2011).

[FCP] Finite Containment Problem
instance: Two VAS V1 and V2 known to have finite sets Reach(V1) and Reach(V2)

of reachable configurations.
question: Is Reach(V1) included in Reach(V2)?
reference: Mayr andMeyer (1981), from anFω-bounded version of Hilbert’s Tenth

Problem. A simpler reduction is given by Jančar (2001) from the halting
problem of Fω-bounded Minsky machines.

comment: Testing whether the set of reachable configurations of a VAS is finite
is ES-complete (Lipton, 1976; Rackoff, 1978). [FCP] provided the ini-
tial motivation for the work of McAloon (1984); Clote (1986). [FCP] has
been generalized by Jančar (2001) to a large range of behaviourial relations
between two VASs. Without the finiteness condition, these questions are
undecidable (Hack, 1976; Jančar, 1995, 2001).

B.2. Fω-Complete Problems 89

L C M. A lossy counter machine (LCM) is syntactically a Min-
sky machine, but its operational semantics are different: its counter values can
decrease nondeterministically at any moment during execution. See Chapter 3
for details.

[LCM] Lossy Counter Machines Reachability
instance: A lossy counter machine M and a configuration σ.
question: Is σ reachable in M with lossy semantics?
reference: Schnoebelen (2010a), by a direct reduction from Fω-bounded Minsky

machines. e first proofs were given independently by Urquhart (1999)
and Schnoebelen (2002).

comment: Hardness also holds for terminating LCMs, for coverability in Reset or
Transfer Petri nets, and for reachability in counter machines with incre-
menting errors.

[LCMT] Lossy Counter Machines Termination
instance: A lossy counter machine M .
question: Is every run of M finite?
reference: Schnoebelen (2010a), from [LCM].
comment: Hardness also holds for termination of Reset Petri nets.

R L provide different semantics of implication, where a fact B is
said to follow from A, wrien “A ⊃ B”, only if A is actually relevant in the de-
duction of B. is excludes for instance A ⊃ (B ⊃ A), (A ∧ ¬A) ⊃ B, etc.—see
Dunn and Restall (2002) for more details. Although the full logic R is undecid-
able (Urquhart, 1984), its conjunctive-implicative fragmentR⊃,∧ is decidable, and
Ackermannian:

[CRI] Conjunctive Relevant Implication
instance: A formula A of R⊃,∧.
question: Is A a theorem of R⊃,∧?
reference: Urquhart (1999), from a variant of [LCM]: the emptiness problem of

alternating expansive counter systems, for which he proved Fω-hardness di-
rectly from the halting problem in Fω-bounded Minsky machines.

comment: Hardness also holds for LR+ and any intermediate logic betweenR⊃,∧
and T⊃,∧—which might include some undecidable fragments.

D L R A are concerned with structures like words or
trees with an additional equivalence relation over the elements. e motivation
for this stems in particular from XML processing, where the equivalence stands
for elements sharing the same datum from some infinite data domain D. Acker-
mannian complexities oen arise in this context, both for automata models (es-
sentially register automata and their many variants) and for logics (which include
logics with freeze operators and XPath fragments)—the two views being tightly
interconnected.

90 Appendix B. Problems of Enormous Complexity

[ARA] Emptiness of Alternating 1-Register Automata
instance: An ARA A.
question: Is L(A) empty?
reference: Demri and Lazić (2006), from reachability in incrementing counter ma-

chines [LCM].
comment: ere exist many variants of the ARA model, and hardness also holds

for the corresponding data logics (e.g. Jurdziński and Lazić, 2007; Demri
and Lazić, 2009; Figueira and Segoufin, 2009; Tan, 2010; Figueira, 2012). See
[ATA] for the case of linearly ordered data.

I T L provide a formal framework for reasoning about tem-
poral intervals. Halpern and Shoham (1991) define a logic with modalities ex-
pressing the basic relationships that can hold between two temporal intervals,
⟨B⟩ for “begun by”, ⟨E⟩ for “ended by”, and their inverses ⟨B̄⟩ and ⟨Ē⟩. is
logic, and even small fragments of it, has an undecidable satisfiability problem,
thus prompting the search for decidable restrictions and variants. Montanari et al.
(2010) show that the logic with relations AĀBB̄—where ⟨A⟩ expresses that the
two intervals “meet”, i.e. share an endpoint—, has an Fω-complete satisfiability
problem over finite linear orders:

[ITL] Finite Linear Satisfiability of AĀBB̄ Interval Temporal Logic
instance: An AĀBB̄ formula φ.
question: Does there exist an interval structure S over some finite linear order

and an interval I of S s.t. S, I |= φ?
reference: Montanari et al. (2010), from [LCM].
comment: Hardness already holds for the fragments ĀB and ĀB̄ (Bresolin et al.,

2012).

B.3 FωωC P

e following problems have been proven decidable thanks to Higman’s Lemma
over some finite alphabet. All the complexity upper bounds in Fωω stem from
the constructive proofs of Weiermann (1994); Cichoń and Tahhan Biar (1998);
Schmitz and Schnoebelen (2011). Again, we point to the relevant references for
lower bounds.

L C S (LCS) are finite labeled transition systems ⟨Q,M, δ, q0⟩
where transitions in δ ⊆ Q × {?, !} ×M × Q read and write on an unbounded
channel. is would lead to a Turing-complete model of computation, but the
operational semantics of LCS are “lossy”: the channel loses symbols in an uncon-
trolled manner. Formally, the configurations of an LCS are pairs (q, x), where q in
Q holds the current state and x in M∗ holds the current contents of the channel.
A read (q, ?m, q′) in δ updates this configuration into (q, x′) if there exists some

B.3. Fωω -Complete Problems 91

x′′ s.t. x′ ≤∗ x′′ and mx′′ ≤∗ x—where ≤∗ denotes subword embedding—, while
a write transition (q, !m, q′) updates it into (q′, x′) with x′ ≤∗ xm; the initial
configuration is (q0, ε), with empty initial channel contents.

Due to the unboundedness of the channel, there might be infinitely many
configurations reachable through transitions. Nonetheless, many problems are
decidable (Abdulla and Jonsson, 1996; Cécé et al., 1996) using Higman’s Lemma
and what would later become the WSTS theory. LCS are also the primary source
of problems hard for Fωω :

[LCS] LCS Reachability
instance: A LCS and a configuration (q, x) in Q×M∗.
question: Is (q, x) reachable from the initial configuration?
reference: Chambart and Schnoebelen (2008b), by a direct reduction from Fωω -

bounded Minsky machines.
comment: Hardness already holds for terminating systems, and for reachability

in faulty channel systems, where symbols are nondeterministically inserted
in the channel at arbitrary positions instead of being lost.

[LCST] LCS Termination
instance: A LCS.
question: Is every sequence of transitions from the initial configuration finite?
reference: Chambart and Schnoebelen (2008b), from [LCS].

ere are many interesting applications of these questions; let us mention one
in particular: Atig et al. (2010) show how concurrent finite programs communi-
cating through weak shared memory—i.e. prone to reorderings of read or writes,
modeling the actual behaviour of microprocessors, their instruction pipelines and
cache levels—have an Fωω -complete control-state reachability problem, through
reductions to and from [LCS].

E P have been introduced byChambart and Schnoebelen (2007),
motivated by decidability problems in various classes of channel systems mixing
lossy and reliable channels. ese problems are centered on the substring embed-
ding relation ≤∗ and called Post Embedding Problems. ere is a wealth of vari-
ants and applications, see (Chambart and Schnoebelen, 2008a, 2010; Karandikar
and Schnoebelen, 2012).

We give here a slightly different viewpoint, taken from (Barceló et al., 2012),
that uses regular relations (i.e. definable by synchronous finite transducers) and
rational relations (i.e. definable by finite transducers):

[RatEP] Rational Embedding Problem
instance: A rational relation R included in (Σ∗)2.
question: Is R ∩ ≤∗ non empty?
reference: Chambart and Schnoebelen (2007), from [LCS].

92 Appendix B. Problems of Enormous Complexity

comment: Chambart and Schnoebelen (2007) call this problem the Regular Post
Embedding Problem, but the name is misleading due to [RegEP]. An equiv-
alent presentation uses a rational language L included in Σ∗ and two ho-
momorphisms u, v: Σ∗ → Σ∗, and asks whether there exists w in L s.t.
u(w) ≤∗ v(w).

[RegEP] Regular Embedding Problem
instance: A regular relation R included in (Σ∗)2.
question: Is R ∩ ≤∗ non empty?
reference: Barceló et al. (2012), from [RatEP].

[GEP] Generalized Embedding Problem
instance: A regular relation R included in (Σ∗)m and a subset I of {1, ...,m}2.
question: Does there exist (w1, . . . , wm) in R s.t. for all (i, j) in I , wi ≤∗ wj?
reference: Barceló et al. (2012), from [RegEP].
comment: [RegEP] is the case wherem = 2 and I = {(1, 2)}. Barceló et al. (2012)

use [GEP] to show the Fωω -completeness of querying graph databases using
particular extended conjunctive regular path queries.

M T L T A allow to reason on timed words
over Σ × R, where Σ is a finite alphabet and the real values are non-decreasing
timestamps on events. A timed automaton (NTA, Alur and Dill, 1994) is a finite au-
tomaton extended with clocks that evolve synchronously through time, and can
be reset and compared against some time interval by the transitions of the au-
tomaton; the model can be extended with alternation (and is then called an ATA).

Metric temporal logic (MTL, Koymans, 1990) is an extension of linear tempo-
ral logic where temporal modalities are decorated with real intervals constraining
satisfaction; for instance, a timed word w satisfies the formula F[3,∞)φ at position
i, wrien w, i |= F[3,∞)φ, only if φ holds at some position j > i of w with times-
tamp τj − τi ≥ 3. Satisfiability problems for MTL reduce to emptiness problems
for timed automata.

Lasota and Walukiewicz (2008) and Ouaknine and Worrell (2007) prove using
WSTS techniques that, in the case of a single clock, emptiness of ATAs is decid-
able.

[ATA] Emptiness of Alternating 1-Clock Timed Automata
instance: An ATA A.
question: Is L(A) empty?
reference: Lasota and Walukiewicz (2008), from faulty channel systems [LCS].
comment: Hardness already holds for universality of nondeterministic 1-clock

timed automata.

[fMTL] Finite Satisfiability of Metric Temporal Logic
instance: An MTL formula φ.
question: Does there exist a finite timed word w s.t. w, 0 |= φ?

B.4. Fωωω -Complete Problems 93

reference: Ouaknine and Worrell (2007), from faulty channel systems [LCS].

Note that recent work on data automata over linearly ordered domains has
uncovered some strong ties with timed automata (Figueira et al., 2010; Bojańczyk
et al., 2011; Figueira, 2012; Bojańczyk and Lasota, 2012).

B.4 Fωωω C P

Currently, the known Fωωω -complete problems are all related to extensions of
Petri nets called enriched nets, which include timed-arc Petri nets (Abdulla and
Nylén, 2001), data nets and Petri data nets (Lazić et al., 2008), and constrained
multiset rewriting systems (Abdulla and Delzanno, 2006). Reductions between
the different classes of enriched nets can be found in (Abdulla et al., 2011; Bonnet
et al., 2010). Defining these families of nets here would take too much space; see
the references for details.

[ENC] Enriched Net Coverability
instance: An enriched net N and a place p of the net.
question: Is there a reachable marking with a least one token in p?
reference: Haddad et al. (2012), by a direct reduction from the halting problem in

Fωωω -bounded Minsky machines.
comment: Hardness already holds for bounded, terminating nets.

[ENT] Enriched Net Termination
instance: An enriched net N .
question: Are all the executions of the net finite?
reference: Haddad et al. (2012), from [ENC].

94 Appendix B. Problems of Enormous Complexity

REFERENCES

Abdulla, P.A. and Jonsson, B., 1996. Verifying programs with unreliable channels. Information and
Computation, 127(2):91–101. doi:10.1006/inco.1996.0053. Cited on page 91.

Abdulla, P.A., Čerāns, K., Jonsson, B., and Tsay, Y.K., 1996. General decidability theorems for
infinite-state systems. In LICS’96, pages 313–321. IEEE. doi:10.1109/LICS.1996.561359. Cited on
page 20.

Abdulla, P.A., Čerāns, K., Jonsson, B., and Tsay, Y.K., 2000. Algorithmic analysis of programs
with well quasi-ordered domains. Information and Computation, 160(1–2):109–127. doi:10.1006/
inco.1999.2843. Cited on page 20.

Abdulla, P.A., Bouajjani, A., and d’Orso, J., 2008. Monotonic and downward closed games. Journal
of Logic and Computation, 18(1):153–169. doi:10.1093/logcom/exm062. Cited on page 20.

Abdulla, P.A., Delzanno, G., and Van Begin, L., 2011. A classification of the expressive power of
well-structured transition systems. Information and Computation, 209(3):248–279. doi:10.1016/
j.ic.2010.11.003. Cited on page 93.

Abdulla, P.A. and Nylén, A., 2001. Timed Petri nets and BQOs. In Colom, J.M. and Koutny, M.,
editors, Petri Nets 2001, volume 2075 of Lecture Notes in Computer Science, pages 53–70. Springer.
doi:10.1007/3-540-45740-2_5. Cited on page 93.

Abdulla, P.A. and Delzanno, G., 2006. On the coverability problem for constrained multiset rewrit-
ing. In AVIS 2006. Cited on page 93.

Alur, R. and Dill, D.L., 1994. A theory of timed automata. eoretical Computer Science, 126(2):
183–235. doi:10.1016/0304-3975(94)90010-8. Cited on page 92.

Amadio, R. and Meyssonnier, Ch., 2002. On decidability of the control reachability problem in the
asynchronous π-calculus. Nordic Journal of Computing, 9(2):70–101. Cited on page 66.

Araki, T. and Kasami, T., 1976. Some decision problems related to the reachability problem for Petri
nets. eoretical Computer Science, 3(1):85–104. doi:10.1016/0304-3975(76)90067-0. Cited on
page 66.

Atig, M.F., Bouajjani, A., Burckhardt, S., and Musuvathi, M., 2010. On the verification problem for
weak memory models. In POPL 2010, pages 7–18. ACM Press. doi:10.1145/1706299.1706303.
Cited on page 91.

Barceló, P., Figueira, D., and Libkin, L., 2012. Graph logics with rational relations and the generalized
intersection problem. In LICS 2012, pages 115–124. IEEE. doi:10.1109/LICS.2012.23. Cited on
pages 91, 92.

Bellantoni, S. and Cook, S., 1992. A new recursion-theoretic characterization of the polytime func-
tions. Computational Complexity, 2(2):97–110. doi:10.1007/BF01201998. Cited on page 85.

Bertrand, N. and Schnoebelen, Ph., 2012. Computable fixpoints in well-structured symbolic model
checking. Formal Methods in System Design. doi:10.1007/s10703-012-0168-y. To appear. Cited
on page 20.

Blass, A. and Gurevich, Y., 2008. Program termination and well partial orderings. ACM Transactions
on Computational Logic, 9(3):1–26. doi:10.1145/1352582.1352586. Cited on page 20.

Blockelet, M. and Schmitz, S., 2011. Model-checking coverability graphs of vector addition systems.
In Murlak, F. and Sankowski, P., editors, MFCS 2011, volume 6907 of Lecture Notes in Computer

http://dx.doi.org/10.1006/inco.1996.0053
http://dx.doi.org/10.1109/LICS.1996.561359
http://dx.doi.org/10.1006/inco.1999.2843
http://dx.doi.org/10.1006/inco.1999.2843
http://dx.doi.org/10.1093/logcom/exm062
http://dx.doi.org/10.1016/j.ic.2010.11.003
http://dx.doi.org/10.1016/j.ic.2010.11.003
http://dx.doi.org/10.1007/3-540-45740-2_5
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1016/0304-3975(76)90067-0
http://dx.doi.org/10.1145/1706299.1706303
http://dx.doi.org/10.1109/LICS.2012.23
http://dx.doi.org/10.1007/BF01201998
http://dx.doi.org/10.1007/s10703-012-0168-y
http://dx.doi.org/10.1145/1352582.1352586

96 B–C References

Science, pages 108–119. Springer. doi:10.1007/978-3-642-22993-0_13. Cited on pages 21, 88.
Bojańczyk, M., Klin, B., and Lasota, S., 2011. Automata with group actions. In LICS 2011, pages

355–364. doi:10.1109/LICS.2011.48. Cited on page 93.
Bojańczyk, M. and Lasota, S., 2012. A machine-independent characterization of timed languages.

In Czumaj, A., Mehlhorn, K., Pis, A., and Waenhofer, R., editors, ICALP 2012, volume 7392 of
Lecture Notes in Computer Science, pages 92–103. Springer. doi:10.1007/978-3-642-31585-5_12.
Cited on page 93.

Bonnet, R., Finkel, A., Haddad, S., and Rosa-Velardo, F., 2010. Comparing Petri Data Nets and Timed
Petri Nets. Research Report LSV-10-23, LSV, ENS Cachan. http://tinyurl.com/82vwcxf. Cited
on page 93.

Bouyer, P., Markey, N., Ouaknine, J., Schnoebelen, Ph., and Worrell, J., 2012. On termination
and invariance for faulty channel machines. Formal Aspects of Computing, 24(4):595–607.
doi:10.1007/s00165-012-0234-7. Cited on page 66.

Bresolin, D., Della Monica, D., Montanari, A., Sala, P., and Sciavicco, G., 2012. Interval temporal
logics over finite linear orders: e complete picture. In ECAI 2012. To appear. Cited on pages 66,
90.

Cardoza, E., Lipton, R., and Meyer, A.R., 1976. Exponential space complete problems for Petri nets
and commutative subgroups. In STOC’76, pages 50–54. ACM Press. doi:10.1145/800113.803630.
Cited on page 21.

Cécé, G., Finkel, A., and Purushothaman Iyer, S., 1996. Unreliable channels are easier to verify than
perfect channels. Information and Computation, 124(1):20–31. doi:10.1006/inco.1996.0003. Cited
on page 91.

Chambart, P. and Schnoebelen, Ph., 2010. Computing blocker sets for the Regular Post Embedding
Problem. InDLT 2010, volume 6224 of Lecture Notes in Computer Science, pages 136–147. Springer.
doi:10.1007/978-3-642-14455-4_14. Cited on page 91.

Chambart, P. and Schnoebelen, Ph., 2007. Post embedding problem is not primitive recursive,
with applications to channel systems. In Arvind, V. and Prasad, S., editors, FSTTCS 2007 ,
volume 4855 of Lecture Notes in Computer Science, pages 265–276. Springer. doi:10.1007/
978-3-540-77050-3_22. Cited on pages 91, 92.

Chambart, P. and Schnoebelen, Ph., 2008a. e ω-regular Post embedding problem. In Amadio, R.,
editor, FoSSaCS 2008, volume 4962 of Lecture Notes in Computer Science, pages 97–111. Springer.
doi:10.1007/978-3-540-78499-9_8. Cited on page 91.

Chambart, P. and Schnoebelen, Ph., 2008b. e ordinal recursive complexity of lossy channel sys-
tems. In LICS 2008, pages 205–216. IEEE. doi:10.1109/LICS.2008.47. Cited on pages 66, 91.

Chambart, P., 2011. On Post’s Embedding Problem and the complexity of lossy channels. PhD thesis,
ENS Cachan. http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/chambart-these11.pdf. Cited
on page 87.

Chlebus, B.S., 1986. Domino-tiling games. Journal of Computer and System Sciences, 32(3):374–392.
doi:10.1016/0022-0000(86)90036-X. Cited on page 84.

Ciardo, G., 1994. Petri nets with marking-dependent arc cardinality: Properties and analysis. In
Valee, R., editor, Petri nets ’94, volume 815 of Lecture Notes in Computer Science, pages 179–198.
Springer. doi:10.1007/3-540-58152-9_11. Cited on page 66.

Cichoń, E.A. and Wainer, S.S., 1983. e slow-growing and the Grzecorczyk hierarchies. Journal of
Symbolic Logic, 48(2):399–408. Cited on pages 67, 72, 77.

Cichoń, E.A. and Tahhan Biar, E., 1998. Ordinal recursive bounds for Higman’s eorem. eoret-
ical Computer Science, 201(1–2):63–84. doi:10.1016/S0304-3975(97)00009-1. Cited on pages 50,
67, 69, 72, 73, 75, 90.

Clote, P., 1999. Computation models and function algebras. In Griffor, E.R., editor, Handbook of
Computability eory, volume 140 of Studies in Logic and the Foundations of Mathematics, chap-
ter 17, pages 589–681. Elsevier. doi:10.1016/S0049-237X(99)80033-0. Cited on page 85.

Clote, P., 1986. On the finite containment problem for Petri nets. eoretical Computer Science, 43:

http://dx.doi.org/10.1007/978-3-642-22993-0_13
http://dx.doi.org/10.1109/LICS.2011.48
http://dx.doi.org/10.1007/978-3-642-31585-5_12
http://tinyurl.com/82vwcxf
http://dx.doi.org/10.1007/s00165-012-0234-7
http://dx.doi.org/10.1145/800113.803630
http://dx.doi.org/10.1006/inco.1996.0003
http://dx.doi.org/10.1007/978-3-642-14455-4_14
http://dx.doi.org/10.1007/978-3-540-77050-3_22
http://dx.doi.org/10.1007/978-3-540-77050-3_22
http://dx.doi.org/10.1007/978-3-540-78499-9_8
http://dx.doi.org/10.1109/LICS.2008.47
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/chambart-these11.pdf
http://dx.doi.org/10.1016/0022-0000(86)90036-X
http://dx.doi.org/10.1007/3-540-58152-9_11
http://dx.doi.org/10.1016/S0304-3975(97)00009-1
http://dx.doi.org/10.1016/S0049-237X(99)80033-0

References C–F 97

99–105. doi:10.1016/0304-3975(86)90169-6. Cited on pages 49, 88.
Cobham, A., 1965. e intrinsic computational difficulty of functions. In Bar-Hillel, Y., editor,

International Congress for Logic, Methodology and Philosophy of Science, volume 2, pages 24–30.
North-Holland. Cited on page 85.

Cook, B., Podelski, A., and Rybalchenko, A., 2011. Proving program termination. Communications
of the ACM, 54:88–98. doi:10.1145/1941487.1941509. Cited on page 20.

de Jongh, D.H.J. and Parikh, R., 1977. Well-partial orderings and hierarchies. Indagationes Mathe-
maticae, 39(3):195–207. doi:10.1016/1385-7258(77)90067-1. Cited on page 50.

Demri, S., 2006. Linear-time temporal logics with Presburger constraints: An overview. Journal of
Applied Non-Classical Logics, 16(3–4):311–347. doi:10.3166/jancl.16.311-347. Cited on page 66.

Demri, S. and Lazić, R., 2006. LTL with the freeze quantifier and register automata. In LICS 2006,
pages 17–26. IEEE. doi:10.1109/LICS.2006.31. Cited on page 90.

Demri, S. and Lazić, R., 2009. LTL with the freeze quantifier and register automata. ACM Transac-
tions on Computational Logic, 10(3). doi:10.1145/1507244.1507246. Cited on pages 66, 90.

Dennis-Jones, E. and Wainer, S., 1984. Subrecursive hierarchies via direct limits. In Börger, E.,
Oberschelp, W., Richter, M., Schinzel, B., andomas, W., editors, Computation and Proof eory,
volume 1104 of Lecture Notes in Mathematics, pages 117–128. Springer. doi:10.1007/BFb0099482.
Cited on pages 68, 69.

Dickson, L.E., 1913. Finiteness of the odd perfect and primitive abundant numbers with n distinct
prime factors. American Journal of Mathematics, 35(4):413–422. doi:10.2307/2370405. Cited on
page 20.

Dufourd, C., Jančar, P., and Schnoebelen, Ph., 1999. Boundedness of reset P/T nets. In ICALP’99,
volume 1644 of Lecture Notes in Computer Science, pages 301–310. Springer. doi:10.1007/
3-540-48523-6_27. Cited on page 66.

Dunn, J.M. and Restall, G., 2002. Relevance logic. In Gabbay, D.M. and Guenthner, F., editors,
Handbook of Philosophical Logic, volume 6, pages 1–128. Kluwer Academic Publishers. http:
//consequently.org/papers/rle.pdf. Cited on pages 20, 89.

Fairtlough, M.V.H. and Wainer, S.S., 1992. Ordinal complexity of recursive definitions. Information
and Computation, 99(2):123–153. doi:10.1016/0890-5401(92)90027-D. Cited on pages 68, 69.

Fairtlough, M. andWainer, S.S., 1998. Hierarchies of provably recursive functions. In Buss, S., editor,
Handbook of Proof eory, volume 137 of Studies in Logic and the Foundations of Mathematics,
chapter III, pages 149–207. Elsevier. doi:10.1016/S0049-237X(98)80018-9. Cited on pages 50, 67,
87.

Figueira, D. and Segoufin, L., 2009. Future-looking logics on data words and trees. In Královič, R.
and Niwiński, D., editors, MFCS 2009 , volume 5734 of Lecture Notes in Computer Science, pages
331–343. Springer. doi:10.1007/978-3-642-03816-7_29. Cited on pages 66, 90.

Figueira, D., Hofman, P., and Lasota, S., 2010. Relating timed and register automata. In Fröschle,
S. and Valencia, F., editors, EXPRESS 2010, volume 41 of EPTCS, pages 61–75. doi:10.4204/
EPTCS.41.5. Cited on page 93.

Figueira, D., Figueira, S., Schmitz, S., and Schnoebelen, Ph., 2011. Ackermannian and primitive-
recursive bounds with Dickson’s Lemma. In LICS 2011, pages 269–278. IEEE. doi:10.1109/
LICS.2011.39. Cited on pages iii, 49, 88.

Figueira, D., 2012. Alternating register automata on finite words and trees. Logical Methods in
Computer Science, 8(1):22. doi:10.2168/LMCS-8(1:22)2012. Cited on pages 90, 93.

Finkel, A., 1987. A generalization of the procedure of Karp and Miller to well structured transition
systems. In ICALP’87 , volume 267 of Lecture Notes in Computer Science, pages 499–508. Springer.
doi:10.1007/3-540-18088-5_43. Cited on page 20.

Finkel, A., 1990. Reduction and covering of infinite reachability trees. Information and Computation,
89(2):144–179. doi:10.1016/0890-5401(90)90009-7. Cited on page 20.

Finkel, A. and Schnoebelen, Ph., 2001. Well-structured transition systems everywhere! eoretical
Computer Science, 256(1–2):63–92. doi:10.1016/S0304-3975(00)00102-X. Cited on page 20.

http://dx.doi.org/10.1016/0304-3975(86)90169-6
http://dx.doi.org/10.1145/1941487.1941509
http://dx.doi.org/10.1016/1385-7258(77)90067-1
http://dx.doi.org/10.3166/jancl.16.311-347
http://dx.doi.org/10.1109/LICS.2006.31
http://dx.doi.org/10.1145/1507244.1507246
http://dx.doi.org/10.1007/BFb0099482
http://www.jstor.org/stable/2370405
http://dx.doi.org/10.1007/3-540-48523-6_27
http://dx.doi.org/10.1007/3-540-48523-6_27
http://consequently.org/papers/rle.pdf
http://consequently.org/papers/rle.pdf
http://dx.doi.org/10.1016/0890-5401(92)90027-D
http://dx.doi.org/10.1016/S0049-237X(98)80018-9
http://dx.doi.org/10.1007/978-3-642-03816-7_29
http://dx.doi.org/10.4204/EPTCS.41.5
http://dx.doi.org/10.4204/EPTCS.41.5
http://dx.doi.org/10.1109/LICS.2011.39
http://dx.doi.org/10.1109/LICS.2011.39
http://dx.doi.org/10.2168/LMCS-8(1:22)2012
http://dx.doi.org/10.1007/3-540-18088-5_43
http://dx.doi.org/10.1016/0890-5401(90)90009-7
http://dx.doi.org/10.1016/S0304-3975(00)00102-X

98 F–L References

Finkel, A. and Goubault-Larrecq, J., 2009. Forward analysis for WSTS, part I: Completions. In
STACS 2009, volume 3 of Leibniz International Proceedings in Informatics, pages 433–444. LZI.
doi:10.4230/LIPIcs.STACS.2009.1844. Cited on page 20.

Finkel, A. and Goubault-Larrecq, J., 2012. Forward analysis for WSTS, part II: Complete WSTS.
Logical Methods in Computer Science. To appear. Cited on pages 20, 21.

Friedman, H.M., 1999. Some decision problems of enormous complexity. In LICS 1999 , pages 2–13.
IEEE. doi:10.1109/LICS.1999.782577. Cited on page 83.

Friedman, H.M., 2001. Long finite sequences. Journal of Combinatorial eory, Series A, 95(1):
102–144. doi:10.1006/jcta.2000.3154. Cited on page 49.

Grzegorczyk, A., 1953. Some classes of recursive functions. Rozprawy Matematyczne, 4. http:
//matwbn.icm.edu.pl/ksiazki/rm/rm04/rm0401.pdf. Cited on page 50.

Hack, M., 1976. e equality problem for vector addition systems is undecidable. eoretical Com-
puter Science, 2(1):77–95. doi:10.1016/0304-3975(76)90008-6. Cited on page 88.

Haddad, S., Schmitz, S., and Schnoebelen, Ph., 2012. e ordinal-recursive complexity of timed-
arc Petri nets, data nets, and other enriched nets. In LICS 2012, pages 355–364. IEEE. doi:
10.1109/LICS.2012.46. Cited on pages iii, 66, 93.

Halpern, J.Y. and Shoham, Y., 1991. A propositional modal logic of time intervals. Journal of the
ACM, 38(4):935–962. doi:10.1145/115234.115351. Cited on page 90.

Higman, G., 1952. Ordering by divisibility in abstract algebras. Proceedings of the London Mathe-
matical Society, 3(2):326–336. doi:10.1112/plms/s3-2.1.326. Cited on page 20.

Howell, R.R., Rosier, L.E., Huynh, D.T., and Yen, H.C., 1986. Some complexity bounds for problems
concerning finite and 2-dimensional vector addition systems with states. eoretical Computer
Science, 46:107–140. doi:10.1016/0304-3975(86)90026-5. Cited on page 49.

Jančar, P., 1999. A note on well quasi-orderings for powersets. Information Processing Leers, 72
(5–6):155–161. doi:10.1016/S0020-0190(99)00149-0. Cited on pages 16, 20.

Jančar, P., 1995. Undecidability of bisimilarity for Petri nets and some related problems. eoretical
Computer Science, 148(2):281–301. doi:10.1016/0304-3975(95)00037-W. Cited on page 88.

Jančar, P., 2001. Nonprimitive recursive complexity and undecidability for Petri net equivalences.
eoretical Computer Science, 256(1–2):23–30. doi:10.1016/S0304-3975(00)00100-6. Cited on
pages 21, 88.

Jurdziński, M. and Lazić, R., 2007. Alternation-free modal mu-calculus for data trees. In LICS 2007,
pages 131–140. IEEE. doi:10.1109/LICS.2007.11. Cited on pages 66, 90.

Karandikar, P. and Schnoebelen, Ph., 2012. Cuing through regular Post embedding problems.
In CSR 2012, volume 7353 of Lecture Notes in Computer Science, pages 229–240. Springer. doi:
10.1007/978-3-642-30642-6_22. Cited on page 91.

Karp, R.M. and Miller, R.E., 1969. Parallel program schemata. Journal of Computer and System
Sciences, 3(2):147–195. doi:10.1016/S0022-0000(69)80011-5. Cited on page 21.

Ketonen, J. and Solovay, R., 1981. Rapidly growing Ramsey functions. Annals of Mathematics, 113
(2):27–314. doi:10.2307/2006985. Cited on page 49.

Kosaraju, S.R., 1982. Decidability of reachability in vector addition systems. In STOC’82, pages
267–281. ACM Press. doi:10.1145/800070.802201. Cited on page 88.

Koymans, R., 1990. Specifying real-time properties with metric temporal logic. Real-Time Systems,
2(4):255–299. doi:10.1007/BF01995674. Cited on page 92.

Kripke, S.A., 1959. e problem of entailment. In ASL 1959 , volume 24(4) of Journal of Symbolic
Logic, page 324. http://www.jstor.org/stable/2963903. Abstract. Cited on page 20.

Kruskal, J.B., 1972. e theory of well-quasi-ordering: A frequently discovered concept. Journal
of Combinatorial eory, Series A, 13(3):297–305. doi:10.1016/0097-3165(72)90063-5. Cited on
pages iii, 20.

Lambert, J.L., 1992. A structure to decide reachability in Petri nets. eoretical Computer Science,
99(1):79–104. doi:10.1016/0304-3975(92)90173-D. Cited on page 88.

http://dx.doi.org/10.4230/LIPIcs.STACS.2009.1844
http://dx.doi.org/10.1109/LICS.1999.782577
http://dx.doi.org/10.1006/jcta.2000.3154
http://matwbn.icm.edu.pl/ksiazki/rm/rm04/rm0401.pdf
http://matwbn.icm.edu.pl/ksiazki/rm/rm04/rm0401.pdf
http://dx.doi.org/10.1016/0304-3975(76)90008-6
http://dx.doi.org/10.1109/LICS.2012.46
http://dx.doi.org/10.1109/LICS.2012.46
http://dx.doi.org/10.1145/115234.115351
http://dx.doi.org/10.1112/plms/s3-2.1.326
http://dx.doi.org/10.1016/0304-3975(86)90026-5
http://dx.doi.org/10.1016/S0020-0190(99)00149-0
http://dx.doi.org/10.1016/0304-3975(95)00037-W
http://dx.doi.org/10.1016/S0304-3975(00)00100-6
http://dx.doi.org/10.1109/LICS.2007.11
http://dx.doi.org/10.1007/978-3-642-30642-6_22
http://dx.doi.org/10.1007/978-3-642-30642-6_22
http://dx.doi.org/10.1016/S0022-0000(69)80011-5
http://dx.doi.org/10.2307/2006985
http://dx.doi.org/10.1145/800070.802201
http://dx.doi.org/10.1007/BF01995674
http://www.jstor.org/stable/2963903
http://dx.doi.org/10.1016/0097-3165(72)90063-5
http://dx.doi.org/10.1016/0304-3975(92)90173-D

References L–S 99

Lasota, S. and Walukiewicz, I., 2008. Alternating timed automata. ACM Transactions on Computa-
tional Logic, 9(2):10. doi:10.1145/1342991.1342994. Cited on page 92.

Lazić, R., Newcomb, T., Ouaknine, J., Roscoe, A., andWorrell, J., 2008. Nets with tokens which carry
data. Fundamenta Informaticae, 88(3):251–274. Cited on page 93.

Leroux, J., 2011. Vector addition system reachability problem: a short self-contained proof. In POPL
2011, pages 307–316. ACM Press. doi:10.1145/1926385.1926421. Cited on page 88.

Lipton, R.J., 1976. e reachability problem requires exponential space. Technical Report 62, De-
partment of Computer Science, Yale University. Cited on page 88.

Löb, M. andWainer, S., 1970. Hierarchies of number theoretic functions, I. Archiv ür Mathematische
Logik und Grundlagenforschung, 13:39–51. doi:10.1007/BF01967649. Cited on pages 50, 75, 79,
80, 84.

Lovász, L., 2006. Graph minor theory. Bulletin of the American Mathematical Society, 43(1):75–86.
doi:10.1090/S0273-0979-05-01088-8. Cited on page 20.

Marcone, A., 1994. Foundations of BQO theory. Transactions of the American Mathematical Society,
345(2):641–660. doi:10.1090/S0002-9947-1994-1219735-8. Cited on page 20.

Mayr, E.W., 1981. An algorithm for the general Petri net reachability problem. In STOC’81, pages
238–246. ACM Press. doi:10.1145/800076.802477. Cited on page 88.

Mayr, E.W. and Meyer, A.R., 1981. e complexity of the finite containment problem for Petri nets.
Journal of the ACM, 28(3):561–576. doi:10.1145/322261.322271. Cited on pages 21, 88.

Mayr, R., 2000. Undecidable problems in unreliable computations. In LATIN 2000, volume 1776 of
Lecture Notes in Computer Science, pages 377–386. Springer. doi:10.1007/10719839_37. Cited on
page 66.

McAloon, K., 1984. Petri nets and large finite sets. eoretical Computer Science, 32(1–2):173–183.
doi:10.1016/0304-3975(84)90029-X. Cited on pages 49, 88.

Meyer, A.R. and Ritchie, D.M., 1967. e complexity of loop programs. In ACM ’67 , pages 465–469.
doi:10.1145/800196.806014. Cited on page 87.

Milner, E.C., 1985. Basic WQO- and BQO-theory. In Rival, I., editor, Graphs and Order. e Role of
Graphs in the eory of Ordered Sets and Its Applications, pages 487–502. D. Reidel Publishing.
Cited on page 20.

Montanari, A., Puppis, G., and Sala, P., 2010. Maximal decidable fragments of Halpern and Shoham’s
modal logic of intervals. In Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F.,
and Spirakis, P., editors, ICALP 2010, volume 6199 of Lecture Notes in Computer Science, pages
345–356. Springer. doi:10.1007/978-3-642-14162-1_29. Cited on page 90.

Odifreddi, P.G., 1999. Classical Recursion eory, vol. II, volume 143 of Studies in Logic and the
Foundations of Mathematics. Elsevier. doi:10.1016/S0049-237X(99)80040-8. Cited on pages 50,
67.

Ouaknine, J.O. andWorrell, J.B., 2007. On the decidability and complexity of Metric Temporal Logic
over finite words. Logical Methods in Computer Science, 3(1):8. doi:10.2168/LMCS-3(1:8)2007.
Cited on pages 92, 93.

Padovani, V., 2012. Ticket Entailment is decidable. Mathematical Structures in Computer Science.
arXiv:1106.1875. To appear. Cited on page 20.

Podelski, A. and Rybalchenko, A., 2004. Transition invariants. In LICS 2004, pages 32–41. IEEE.
doi:10.1109/LICS.2004.1319598. Cited on page 20.

Rackoff, C., 1978. e covering and boundedness problems for vector addition systems. eoretical
Computer Science, 6(2):223–231. doi:10.1016/0304-3975(78)90036-1. Cited on pages 21, 88.

Rado, R., 1954. Partial well-ordering of sets of vectors. Mathematika, 1(2):89–95. doi:10.1112/
S0025579300000565. Cited on pages 16, 20.

Ritchie, R.W., 1963. Classes of predictably computable functions. Transactions of the AmericanMath-
ematical Society, 106(1):139–173. doi:10.1090/S0002-9947-1963-0158822-2. Cited on page 85.

Rose, H.E., 1984. Subrecursion: Functions and Hierarchies, volume 9 of Oxford Logic Guides. Claren-
don Press. Cited on pages 50, 67.

http://dx.doi.org/10.1145/1342991.1342994
http://dx.doi.org/10.1145/1926385.1926421
http://dx.doi.org/10.1007/BF01967649
http://dx.doi.org/10.1090/S0273-0979-05-01088-8
http://dx.doi.org/10.1090/S0002-9947-1994-1219735-8
http://dx.doi.org/10.1145/800076.802477
http://dx.doi.org/10.1145/322261.322271
http://dx.doi.org/10.1007/10719839_37
http://dx.doi.org/10.1016/0304-3975(84)90029-X
http://dx.doi.org/10.1145/800196.806014
http://dx.doi.org/10.1007/978-3-642-14162-1_29
http://dx.doi.org/10.1016/S0049-237X(99)80040-8
http://dx.doi.org/10.2168/LMCS-3(1:8)2007
http://arxiv.org/abs/1106.1875
http://dx.doi.org/10.1109/LICS.2004.1319598
http://dx.doi.org/10.1016/0304-3975(78)90036-1
http://dx.doi.org/10.1112/S0025579300000565
http://dx.doi.org/10.1112/S0025579300000565
http://dx.doi.org/10.1090/S0002-9947-1963-0158822-2

100 S–W References

Schmitz, S. and Schnoebelen, Ph., 2011. Multiply-recursive upper bounds with Higman’s Lemma.
In ICALP 2011, volume 6756 of Lecture Notes in Computer Science, pages 441–452. Springer. doi:
10.1007/978-3-642-22012-8_35. Cited on pages iii, 49, 90.

Schnoebelen, Ph., 2002. Verifying lossy channel systems has nonprimitive recursive complexity.
Information Processing Leers, 83(5):251–261. doi:10.1016/S0020-0190(01)00337-4. Cited on
pages 66, 89.

Schnoebelen, Ph., 2010a. Revisiting Ackermann-hardness for lossy counter machines and reset Petri
nets. In Hliněný, P. and Kučera, A., editors,MFCS 2010, volume 6281 of Lecture Notes in Computer
Science, pages 616–628. Springer. doi:10.1007/978-3-642-15155-2_54. Cited on pages iii, 66, 89.

Schnoebelen, Ph., 2010b. Lossy counter machines decidability cheat sheet. In Kučera, A. and
Potapov, I., editors, RP 2010, volume 6227 of Lecture Notes in Computer Science, pages 51–75.
Springer. doi:10.1007/978-3-642-15349-5_4. Cited on page 66.

Seidl, H., 1990. Deciding equivalence of finite tree automata. SIAM Journal on Computing, 19(3):
424–437. doi:10.1137/0219027. Cited on page 84.

Stockmeyer, L.J. and Meyer, A.R., 1973. Word problems requiring exponential time. In STOC ’73,
pages 1–9. ACM Press. doi:10.1145/800125.804029. Cited on pages 87, 88.

Tan, T., 2010. On pebble automata for data languages with decidable emptiness problem. Journal of
Computer and System Sciences, 76(8):778–791. doi:10.1016/j.jcss.2010.03.004. Cited on pages 66,
90.

Turing, A., 1949. Checking a large routine. In Report of a Conference on High Speed Automatic
Calculating Machines. Republished in e early British computer conferences, pages 70–72, MIT
Press, 1989. Cited on page 20.

Urquhart, A., 1984. e undecidability of entailment and relevant implication. Journal of Symbolic
Logic, 49(4):1059–1073. http://www.jstor.org/stable/2274261. Cited on pages 20, 89.

Urquhart, A., 1999. e complexity of decision procedures in relevance logic II. Journal of Symbolic
Logic, 64(4):1774–1802. doi:10.2307/2586811. Cited on pages 20, 66, 89.

Wainer, S.S., 1970. A classification of the ordinal recursive functions. Archiv ür Mathematische
Logik und Grundlagenforschung, 13(3):136–153. doi:10.1007/BF01973619. Cited on pages 85, 87.

Wainer, S.S., 1972. Ordinal recursion, and a refinement of the extended Grzegorczyk hierarchy.
Journal of Symbolic Logic, 37(2):281–292. http://www.jstor.org/stable/2272973. Cited on page 87.

Weiermann, A., 1994. Complexity bounds for some finite forms of Kruskal’s eorem. Journal of
Symbolic Computation, 18(5):463–488. doi:10.1006/jsco.1994.1059. Cited on pages 50, 90.

http://dx.doi.org/10.1007/978-3-642-22012-8_35
http://dx.doi.org/10.1007/978-3-642-22012-8_35
http://dx.doi.org/10.1016/S0020-0190(01)00337-4
http://dx.doi.org/10.1007/978-3-642-15155-2_54
http://dx.doi.org/10.1007/978-3-642-15349-5_4
http://dx.doi.org/10.1137/0219027
http://dx.doi.org/10.1145/800125.804029
http://dx.doi.org/10.1016/j.jcss.2010.03.004
http://www.jstor.org/stable/2274261
http://dx.doi.org/10.2307/2586811
http://dx.doi.org/10.1007/BF01973619
http://www.jstor.org/stable/2272973
http://dx.doi.org/10.1006/jsco.1994.1059

INDEX

Ackermann function, 27
antichain, 2
ascending chain condition, 3

backward coverability, 6, 28
beer quasi orders, 20
bounding function, 36

Cantor Normal Form, 37
cartesian product, 25, 33
Cichoń hierarchy, 39, 46, 48
compatibility, 4

downward, 17
reflexive transitive, 17
transitive, 17

contraction
ordering, 11
rule, 10

control
control function, 23
controlled sequence, 24

control-state reachability, 6
counter machine, 50

extended, 50
incrementing, 63
lossy, 51
Minsky, 50
reset, 59
transfer, 63

coverability, 5, 11, 28, 52, 59
covering, 12
cut elimination, 10
cut-off subtraction, 45

Descent Equation, 31
Dickson’s Lemma, 3, 14
disjoint sum, 25, 33
disjunctive termination argument, 8
downward

closed, 2
closure, 2

compatibility, 17
WSTS, 18

effective pred-basis, 6
Egli-Milner ordering, 16
exchange rule, 10
excluded minors, 3

fast-growing hierarchy, 26, 46
fundamental sequence, 39

Graph Minor eorem, 4
Grzegorczyk hierarchy, 22, 26, 44, 48

Hardness eorem, 49, 59, 60, 63
Hardy

computation, 53
hierarchy, 46, 52

Higman’s Lemma, 3, 15
Hoare ordering, 16
honest function, 27

image-finite, 5
increasing pair, 1, 7, 21
incrementing counter machine, 63

Karp & Miller
graph, 19
tree, 13

Kruskal’s Tree eorem, 4, 16

length function, 24
eorem, 27, 43

lexicographic ordering, 14, 46
linear ordering, 1
linearization, 15, 36
lossy counter machine, 51

Minsky machine, 50
monomial, 14
multiset support, 11

natural

102 N–z Index

product, 37
sum, 37

Noetherian relation, 8
norm

infinite norm, 23
wqo, see nwqo

nwqo, 23
derivation, 34
empty, 25
isomorphism, 24
naturals, 25
polynomial, 25
polynomial normal form, 26, 34
reflection, 32
residual, 30
singleton, 25

ω-node, 19
one function, 44
order type, 36

maximal, 36, 48
ordinal

limit, 37
ordering, 37
predecessor, 39
structural ordering, 40
successor, 37

partial ordering, 1
pigeonhole principle, 30
Post-effective, 5
predecessor set, 6
prefix ordering, 14
primitive recursion, 44

limited, 44
projection function, 44

quasi ordering, 1

Ramsey eorem, 2, 18
ranking function, 8
reachability tree, 5
reflection, see nwqo reflection
reflexive transitive compatibility, 17

relevant implication, 11
reset machine, 59

sequence
bad, 7, 21
controlled, see control
extension, 3
fundamental, see fundamental sequence
good, 7, 21
r-bad, 46
r-good, 46

Smyth’s ordering, 14
sparser-than ordering, 15
strict ordering, 1
subformula property, 10
substitution, 44
subword embedding, 3
successor set, 5
sum function, 44
super-homogeneous function, 43

termination, 5, 28, 52, 63
threshold, 19
total ordering, 1
transfer machine, 63
transition system, 4
transitive compatibility, 17

upward
closed, 2
closure, 2

vector addition system, 12
with states, 4

weakening, 10
well founded

ordering, 2
relation, 8

well partial ordering, 1
well quasi ordering, 1
well-structured transition system, 4

zero function, 44

	1 Basics of WQOs and Applications
	1.1 Well Quasi Orderings
	1.1.1 Alternative Definitions
	1.1.2 Upward-closed Subsets of wqos
	1.1.3 Constructing wqos

	1.2 Well-Structured Transition Systems
	1.2.1 Termination
	1.2.2 Coverability

	1.3 Examples of Applications
	1.3.1 Program Termination
	1.3.2 Relevance Logic
	1.3.3 Karp & Miller Trees

	Exercises
	Bibliographic Notes

	2 Complexity Upper Bounds
	2.1 The Length of Controlled Bad Sequences
	2.1.1 Controlled Sequences
	2.1.2 Polynomial nwqos
	2.1.3 Subrecursive Functions
	2.1.4 Upper Bounds for Dickson's Lemma

	2.2 Applications
	2.2.1 Termination Algorithm
	2.2.2 Coverability Algorithm

	2.3 Bounding the Length Function
	2.3.1 Residual nwqos and a Descent Equation
	2.3.2 Reflecting nwqos
	2.3.3 A Bounding Function

	2.4 Classification in the Grzegorczyk Hierarchy
	2.4.1 Maximal Order Types
	2.4.2 The Cichoń Hierarchy
	2.4.3 Monotonicity
	2.4.4 Wrapping Up

	Exercises
	Bibliographic Notes

	3 Complexity Lower Bounds
	3.1 Counter Machines
	3.1.1 Extended Counter Machines
	3.1.2 Operational Semantics
	3.1.3 Lossy Counter Machines
	3.1.4 Behavioral Problems on Counter Machines

	3.2 Hardy Computations
	3.2.1 Encoding Hardy Computations
	3.2.2 Implementing Hardy Computations with Counter Machines

	3.3 Minsky Machines on a Budget
	3.4 Ackermann-Hardness for Lossy Counter Machines
	3.5 Handling Reset Petri Nets
	3.5.1 Replacing Zero-Tests with Resets
	3.5.2 From Extended to Minsky Machines

	3.6 Hardness for Termination
	Exercises
	Bibliographic Notes

	A Subrecursive Functions
	A.1 Ordinal Terms
	A.2 Fundamental Sequences and Predecessors
	A.3 Pointwise Ordering and Lean Ordinals
	A.4 Ordinal Indexed Functions
	A.5 Pointwise Ordering and Monotonicity
	A.6 Different Fundamental Sequences
	A.7 Different Control Functions
	A.8 Classes of Subrecursive Functions

	B Problems of Enormous Complexity
	B.1 Fast-Growing Complexities
	B.2 F-Complete Problems
	B.3 F-Complete Problems
	B.4 F-Complete Problems

	References
	Index

