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Abstract—Formal methods (e.g. Timed Automata or Linear
Hybrid Automata) can be used to analyse a real-time system by
performing a reachability analysis on the model. The advantage
of using formal methods is that they are more expressive than
classical analytic models used in schedulability analysis. For
example, it is possible to express state-dependent behaviour,
arbitrary activation patterns, etc.

In this paper we use the formalism of Linear Hybrid Au-
tomata to encode a hierarchical scheduling system. In particular,
we model a dynamic server algorithm and the tasks contained
within, abstracting away the rest of the system, thus enabling
component-based scheduling analysis. We prove the correctness
of the model and the decidability of the reachability analysis
for the case of periodic tasks. Then, we compare the results
of our model against classical schedulability analysis techniques,
showing that our analysis performs better than analytic methods
in terms of resource utilisation. We further present two case
studies: a component with state-dependent tasks, and a simplified
model of a real avionics system. Finally, through extensive tests
with various configurations, we demonstrate that this approach
is usable for medium-size components.

I. INTRODUCTION

The complexity of modern embedded real-time applica-
tions, like automotive and avionics systems, is steadily increas-
ing. Until recently, complexity was addressed by using physical
separation: each different functionality was implemented by a
different application module on a different ECU (Electronic
Control Unit), and all ECUs were connected by a real-time
control network.

The pressure to reduce the design costs and the number of
ECUs is forcing developers to integrate different applications
on the same computational platform. The IMA (Integrated
Modular Avionics) [1], [2] is a set of standard specifications for
simplifying the development of avionic software; among other
requirements, it allows different independent applications to
share the same hardware and software resources [3].

To avoid interference between independently developed
applications that share the same processor, the underlying
RTOS must support the concepts of temporal partitioning
and hierarchical scheduling [4]–[6]. Hierarchical scheduling
consists in using two (or more) levels of scheduling: the global
one performs the temporal partitioning among the applications;
whereas the local ones are specific for each application and
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Fig. 1: An example of hierarchical scheduling system.

dictate which task to execute. In Fig. 1 we show a pictorial
representation of a hierarchical scheduling system consisting
of three applications that coexist in the same single processor
system, each one with its own scheduler. Each application
and its corresponding local scheduler are “wrapped” into an
entity that we denote as scheduling server (or simply server)
which acts as a mediator between the global scheduler and the
application. The global scheduler “sees” the entire application
as it were a single task to be scheduled according to its specific
scheduling parameters; the application “sees” the platform on
which it is executing as a virtual processor of slower speed.

Therefore, the combination of temporal partitioning and
hierarchical scheduling makes it possible to define a virtual
processor for each application, and to perform schedulability
analysis on the virtual processor rather than on a single
dedicated processor.

If the applications running on a system are independent
of each other, then it is possible to analyse each of them
in isolation; in fact, the ability of an application to meet its
deadlines depends on the worst-case computation times and
the arrival patterns of its tasks, and on the temporal partition
that the global scheduler (and the server) allocate to it, but it
does not depend on the presence of other applications in the
system.

Such property enables component-based schedulability
analysis, a research topic largely investigated in recent years.
In particular, many different schedulability analyses have been



proposed for independent applications of periodic or sporadic
tasks, even when they share mutually exclusive resources.
However, such analyses usually rely on simple task models,
like periodic or sporadic tasks: introducing a new arrival
pattern or a new task model requires to derive new equations
for the analysis.

Schedulability analysis is also possible using formal meth-
ods, like Timed Automata (TA) [7] or Linear Hybrid Automata
(LHA) [8]. The advantage of using formal methods is that
they are much more expressive than classical models used in
schedulability analysis [9]. Since these methods are extensions
of state-based models with time, it is very easy to express state
and time-dependent behaviours and arbitrary arrival patterns.
The schedulability problem is usually encoded as a reachability
problem on the state space of the model: a deadline-miss
condition is modelled as a bad location that should never
be reached by the model. However, few researchers [10]–[14]
until now have proposed to use formal methods for modelling
hierarchical systems.

Contributions of this paper: In this paper we use the for-
malism of LHA [8] to model a dynamic periodic server algo-
rithm for hierarchical scheduling, and the application contained
within. We prove the correctness of the model with respect to
server schedulability. We also prove the decidability of the
schedulability analysis for the case of periodic independent
tasks.

We compare the results of our model against the schedu-
lability test proposed by Lipari and Bini in [6] on a simple
case-study. The results are reported in Section VIII and show
that our test based on LHA finds many more schedulable points
than the Lipari-Bini test, and thus permits to achieve a better
resource utilisation. In Section VIII-B, we show how to encode
the schedulability analysis of a state-dependent application,
thus demonstrating the power of our methodology. We also
use our model in the hierarchical design of a complex avionics
system. Finally, a set of experiments has been conducted
to evaluate the complexity of our model-based component
analysis for practical use.

II. STATE OF THE ART

The ARINC 653 standard [3] defines temporal partitioning
for avionics applications. The global scheduler is a simple
Time Division Multiplexing (TDM), in which the time is
divided into frames of fixed length, each frame is divided
into slots and each slot is assigned to one application. Besides
TDM, more dynamic time partitioning algorithms are possible:
for example the periodic resource model [5] and the periodic
server [6].

Dynamic server algorithms have some advantages over
TDM. First of all, the temporal interface of a periodic server
consists only of two parameters: the budget Q and the pe-
riod P ; the server guarantees that the application will receive Q
time units every period P , but unlike the TDM, it does not
specify at which precise instants the application will receive
the allocation. This means that, once the application has been
guaranteed feasible on a server with certain parameters Q
and P , during the integration phase the designer has much
more freedom in the allocation of the budget. The second
advantage is that a dynamic server algorithm can better take

advantage of the dynamic behaviour of the application and
adapt itself at run-time to different conditions.

Hierarchical scheduling and component based real-time
scheduling analysis has been studied extensively in the past
years. Feng and Mok [4] proposed the resource partition model
and schedulability analysis for it. Shih and Lee [5] introduced
the concept of temporal interface and the periodic resource
model. Lipari and Bini [6] proposed the periodic server model
to abstract many different temporal partitioning algorithms,
and an algorithm to compute the values of the parameters
to make the application schedulable. Davis and Burns [15]
proposed a method to compute the response time of tasks
running on a local fixed priority scheduler when the tasks
periods are synchronised with the server period.

Schedulability analysis using TA has been proposed by
many researchers [9]. In [16], Timed Automata are extended
with tasks and non-preemptive scheduling is encoded as a
reachability problem. Based on [16], Fersman and Yi [17],
[18] provide decidability and undecidability results for generic
real-time schedulability analysis in Timed Automata, and they
formalise TA extended with tasks as Task Automata. In [19],
self-suspending task schedule is modelled in TA and an off-
line schedule is generated. [20] uses TA with stopwatches for
modelling a schedule in distributed real-time systems. None of
these works take resource partition into account.

A formal model of hierarchical scheduling systems using
TA has been proposed in [10]. The goal of the authors is to
verify the correctness of the two-level scheduler and generate
C code for the scheduler and the tasks. Moreover, their analysis
is global in the sense that they verify the correctness of the
whole system rather than a single application. In this paper,
instead, we aim at component-based schedulability analysis
of a single application. Another formal model of hierarchical
scheduling using Parametric Timed Automata (PTA) has been
proposed in [11], [12]. The authors restrict themselves to a
TDM global scheduler and perform a global analysis (rather
than a component-based one).

A component based analysis of hierarchical real-time sys-
tems is proposed in [13], [14]. The authors use the model of
Preemptive Timed Petri Nets (pTPN), to model a hierarchical
systems, and are able to perform analysis of independent
applications. They show that component based analysis con-
siderably reduces the complexity of analysing a system. The
main difference with this paper is that they model a TDM
global scheduler, whereas in this paper we model a dynamic
periodic server algorithm.

III. SYSTEM MODEL

In this paper we assume that an application is a set of
periodic real-time tasks A = 〈τ1, τ2, . . . , τn〉. The system con-
sists of a set of applications to be scheduled using hierarchical
scheduling and temporal partitioning on a single processor
system. We assume that all applications are independent of
each other thus that we can analyse them in isolation.

Each application is executed upon a virtual processor plat-
form, which is provided by a server. In this paper we consider
the periodic server proposed in [6]. Each server is assigned a
budget Q and a period P , and the global scheduler guarantees



that the application will receive Q units of execution time every
P time units. The global scheduler performs Earliest Deadline
First (EDF) [21] among the servers: each server is considered
as a periodic task with period and relative deadline P , and
worst-case computation time Q. Therefore, it must hold true
that

∑
i
Qi

Pi
≤ 1.

A periodic task τi is a tuple 〈Oi, Ci, Ti, Di, pi〉, where
Oi is the initial phase, Ci is the Worst-Case Execution Time
(WCET), Ti is the period, Di is the relative deadline, and pi
is an integer that represents the task’s priority (lower pi means
higher priority). A task is activated every period, starting from
its phase Oi, at time instants ri,k = Oi + kTi (where k is a
non-negative integer), called release times. Each task instance
(or job) must execute for Ci units of time within its absolute
deadline di,j = ri,j+Di. In this paper, we consider constrained
deadline tasks, i.e., Di ≤ Ti.

As for local scheduler, we assume the Fully Preemptive
Fixed Priority (FPFP) scheduler: each task is assigned a
priority pi, and the task with the highest priority is chosen
to execute, preempting lower priority tasks when necessary.

IV. SERVER ALGORITHM

In this section we present the server algorithm that is used
to provide the temporal partition necessary for an application
to execute. We use the same algorithm proposed in [6], which
is a particular case of the Constant Bandwidth Server [22]. We
summarise the algorithm here for convenience.

A server S is assigned two parameters: Q is the server
maximum budget, and P is the server period. In addition,
the server maintains three internal variables: q represents the
current remaining budget, and d is the current scheduling
deadline, and an internal state which can be one of the
following:

• Idle: the initial state; it represents the situation in
which no task is active in the application;

• Active: when there is at least one active task, but the
server is not executing because other servers (for other
applications) with earlier scheduling deadlines have
been selected by the global EDF scheduler;

• Executing: when the server has been selected by the
global EDF scheduler, and it is running an application
task;

• Recharging: when there is at least one active task in
the application, but the server cannot execute because
the current budget is zero;

• Empty: when there is no active task, but the server
has already consumed part of its budget, so it has to
wait before it can become Idle again.

The server variables and the server state are updated according
to the following rules:

1) Initially, q = 0, d = 0 and the server is Idle.
2) When a task is released at time t, if the server is Idle,

then q := Q and d := t+P , and the server becomes
Active; if the server is already Active, then nothing
needs to be done.

3) At any time t, the global scheduler selects an Active
server, and a task inside it which will be chosen to
run subject to local scheduling policy. The chosen
server moves to the Executing state.

4) While some task in the server is running, the current
budget q is decremented accordingly.

5) The global scheduler can preempt a server to execute
another server. The preempted server moves back to
the Active state.

6) If q reaches 0 and some task has not completed execu-
tion, then the server will be suspended till time d, and
moves to Recharging. During the suspended interval,
it cannot be chosen by the global scheduler. At time d,
q is recharged to Q and d is set to d+P and the server
moves to the Active state.

7) When, at time t, the last task in the server has finished
its execution, if t ≥ d−q PQ , the server becomes Idle;
otherwise, it remains Empty, and will become Idle at
time d − q PQ , unless another task arrives before that
time point.

The global scheduler performs the Earliest Deadline First
policy using the scheduling deadlines of the servers. The
following two results are direct consequences of Theorem 1
and Lemma 1 of [22]:

Theorem 1. Consider a system consisting of n servers,
{S1, . . . , Sn}, with Si = (Qi, Pi), such that

∑n
i=1

Qi

Pi
≤ 1.

Then, no server misses its scheduling deadlines.

Theorem 2. Given a server Si = (Qi, Pi), let ts be an instant
in which the server moves from the idle state to the active
state, and let tf be the first instant after ts such that the server
becomes idle again. Then the server receives in interval [ts, tf ]
an amount of execution time ∆exe which is bounded by:⌊

tf − ts
Pi

⌋
Qi ≤ ∆exe ≤

⌈
tf − ts
Pi

⌉
Qi

V. LINEAR HYBRID AUTOMATA

A hybrid automaton [8], [23] is a finite-state automaton
associated with a finite set of variables continuously varying in
dense time. In this section, we introduce the basic terminology
and the definition of Linear Hybrid Automata.

Let Var = {x1, . . . , xn} be a set of variables and
˙Var = {ẋ1, . . . , ẋn} be the set of variables’ derivatives over

time. A linear constraint atom over Var is of the form∑n
i=1 cixi ∼ b, where ci (for 1 ≤ i ≤ n) and b are rational

numbers and ∼ ∈ {<,≤,=,≥, >}. A linear constraint is the
conjunction of a finite number of constraint atoms. A valua-
tion ν over Var is a function that assigns a real value to each
element in Var. The same notations can also be defined for ˙Var.
Definition 1. A Linear Hybrid Automaton H = 〈Var, Loc, Init,
Lab,Trans, D, Inv〉 consists of seven components:

1) A finite set Var of variables.
2) A finite set Loc of locations.
3) A labelling function Init that specifies the set of initial

valuations for initial locations of the automaton.
If l is not an initial location, then Init(l) = ∅.

4) A finite set Lab of synchronisation labels including a
stutter label ε.



5) A finite set Trans of transitions. Each transition is a
tuple 〈l, γ, a, α, l′〉 consisting of a source location l, a
target location l′, a guard γ that is a linear constraint
over Var, a synchronisation label a ∈ Lab, and the
transition relation α that assigns values to variables
in Var. We say that l is a pre-location of l′. We require
that on each location, there is a stutter transition
(l, true, ε, Id, l) where Id = {(ν, ν)|ν ∈ V (Var)} is
the identical transition relation. These are the only
ε-labelled transitions.

6) A labelling function D which assigns to each location
a linear constraint over variables’ derivatives.

7) A labelling function Inv which assigns to each lo-
cation a constraint, called invariant, over variables.
The automaton can only stay in location l as long as
current valuations of variables satisfy Inv(l).

Let H1 = 〈Var, Loc1, Init1, Lab1,Trans1, D1, Inv1〉 and
H2 = 〈Var, Loc2, Init2, Lab2,Trans2, D2, Inv2〉 be two LHA
over a set of variables Var. Their parallel composition
H1 ×H2 is the LHA 〈Var, Loc1 × Loc2, Init, Lab1 ∪ Lab2,
Trans, D, Inv〉 such that

• Init(l1, l2) = Init1(l1) ∩ Init2(l2).

• 〈(l1, l2), γ, a, α, (l′1, l
′
2)〉 ∈ Trans iff

1) 〈l1, γ1, a1, α1, l
′
1〉 ∈ Trans1 and 〈l2, γ2, a2,

α2, l
′
2〉 ∈ Trans2;

2) γ = γ1 ∩ γ2.
3) – either a1 = a2 = a,

– or a2 = ε and a1 = a 6∈ Lab1 ∩ Lab2,
– or a1 = ε and a2 = a 6∈ Lab1 ∩ Lab2;

4) α = α1 ∩ α2.

• D(l1, l2) = D1(l1) ∩D2(l2).

• Inv(l1, l2) = Inv1(l1) ∩ Inv2(l2).

A state s of the LHA is of the form of (l, ν), where l is
a location and ν is a valuation of Var. A state can change in
two ways:

• A discrete step : (l, ν)
a−→ (l′, ν′) which means that

there exists an edge 〈l, γ, a, α, l′〉 s.t.

ν |= γ ∧ ν′ = α(ν) ∧ ν′ |= Inv(l)

• A time step: (l, ν)
t−→ (l, ν′) where t is a real value

representing time elapse, s.t.

ν |= Inv(l) ∧ ν′ ∈ ν ↑tD(l) ∧ν
′ |= Inv(l) ∧ t ≥ 0

ν ↑tD(l) represents the set of valuations that can be
reached by letting variables continuously evolve for t
time units, according to derivatives constrained by D,
and starting from the valuation ν.

Let d be a linear constraint on ˙Var and S be a set of
valuations. We note S ↗ d the set of valuations that can be
reached by starting from a valuation in S, subject to derivatives
constraints in d. We are interested in all possible valuations in
a location l, written Rl, that satisfies the following equation:

Rl =
([

Init(l) ∪
⋃

(l′,γ,a,α,l)

α(Rl′ ∩ γ) ∩ Inv(l)
]
↗ D(l)

)
∩ Inv(l) (1)

VI. PERIODIC SERVER MODEL IN LHA

In this section, we introduce a LHA for modelling the
periodic server algorithm described in Section IV. In the
model, we need to stop the clocks, since our servers and
tasks can be preempted. Also, we need to use arbitrary linear
constraints on clock variables. For convenience, we decided to
rely on the more general model of LHA rather than restrict
ourselves to TA with stopwatches [7].

If we want to precisely model a system of n applications
{A1, . . . ,An}, each one served by a server Si with parameters
(Qi, Pi), we have to build:

• n automata, one per server;

• one automaton for modelling the global EDF sched-
uler;

• one automaton per task;

• and finally, one automaton per local FPFP scheduler.

The final system can be represented by the parallel composition
of all such automata. However, this approach has two main
inconveniences: first of all, it is specific for one single system,
and it would be necessary to build a new model for each
different system. Second, the resulting automaton is very
complex even for a small number of applications and tasks
(state-space explosion problem).

We assume that applications are independent of each
other, thus we can analyse each application in isolation. It is
important to underline that such assumption is basically the
same used in avionics real-time applications that have been
designed according to the IMA architecture: tasks belonging
to different applications can only communicate through non-
blocking communication primitives. Therefore, we can use
appropriate abstractions to build the model of one single
server: in particular, we will abstract away the presence of
the other servers and the global scheduler.

We make a one-to-one correspondence between states of
the algorithm and locations of the LHA. In particular, we use:

• one location for each state of the algorithm;

• two different time variables (also called clocks): vari-
able x represents the consumed budget, whereas vari-
able y represents the time passed since the beginning
of the server period.

The Server linear hybrid automaton is depicted in Fig. 2.
Idle is the initial location and Init(Idle) = {x = y = 0}. The
application tasks served by this server are modelled with two
synchronisation labels: active notifies a task’s activation and
empty means that the last task in the server has finished its
execution.

If a task arrives when the Server automaton is in Idle, the
model goes to location Active. The transition from Active to
Executing happens when the global scheduler picks the server
to execute. The reverse transition from Executing to Active
models server preemption. Notice that these two transitions
have no synchronisation labels because we want to abstract
away the presence of other servers in the system and of the
global scheduler.



Idle
ẋ = ẏ = 0

Active
ẋ = 0, ẏ = 1
y − x ≤ P −Q

Executing
ẋ = ẏ = 1
x ≤ Q

Recharging
ẋ = 0, ẏ = 1
y ≤ P

Empty
ẋ = 0, ẏ = 1
xP ≥ yQ

active
x := y := 0 x < Q

x = Qy = P
x := y := 0

empty
xP > yQ

activexP = yQ

empty
xP ≤ yQ

Fig. 2: The Server automaton.

Since we abstracted away the description of the global
EDF scheduler and of the other servers, we need to add some
constraints to guarantee that the model behaves correctly. We
take for granted that Theorem 1 holds, and that therefore the
server will meet all its scheduling deadlines. We impose such
property by adding invariant y−x ≤ P−Q to location Active.
This invariant states that, while in Active, there is still enough
time to complete the execution of Q units before the end of the
period. Therefore, no later than the time when y−x = P −Q
the automaton has to move to location Executing.

When the currently used budget reaches x = Q, the Server
automaton moves from Executing to Recharging. It will stay
in location Recharging until the start of a new period, at which
point the current consumed budget is reset to x := 0. Location
Empty models Rule 7 of the algorithm in Section IV: if the
server tasks finish executing too early (xP ≤ yQ), then the
automaton directly moves to location Idle. If it is too late
(xP > yQ), the automaton first moves to location Empty
where it waits for the time y to reach the appropriate value
before moving to Idle and resetting the model.

A. Proof of correctness

We now prove that the proposed Server automaton cor-
rectly models the server algorithm. In particular, we are
going to prove that, under the assumption of Theorem 1, the
automaton also respects Theorem 2.

Theorem 3. Let Server be an automaton with parameters
(Q,P ) that models a dynamic periodic server, and let ts be
an instant in which the automaton moves from location Idle
to location Active. Let tf be the first instant after ts such that
the automaton enters again location Idle. Let ∆exe(ts, tf ) be
the total amount of time that the server spends in location
Executing in interval [ts, tf ]. Then,⌊

tf − ts
P

⌋
Q ≤ ∆exe ≤

⌈
tf − ts
P

⌉
Q

The proof has been removed for space constraints, it can
be found in [24].

VII. SCHEDULABILITY ANALYSIS

In this section, we use the Server automaton to perform
the schedulability test of an application on a periodic server.
Without loss of generality, we adapted the encoding used
in [20] to show how to combine already existing schedulability
model with our LHA model, in order to check if a task set in
a server will miss its deadline.

A. Scheduler automaton

We now show how to encode an application with a FPFP
local scheduler using an example with two tasks {τ1, τ2}.
In Fig. 3 we show the Scheduler automaton that encodes the
FPFP scheduler along with the task execution, and the two
automata Arr1 and Arr2 that model the arrival times of the
two tasks.

Let’s start from the latter: each task arrival patterns is
modelled with a timed automaton Arri with just two locations,
and one clock ri which is always increasing. The first transition
from location Phase to Arrival models the first release time
at the task offset; the second transition is a loop from Arrival
to itself that models subsequent releases. It is easily possible
to model different arrival patterns by simple changing the
corresponding arrival automaton. Without loss of generality,
in this paper we assume periodic tasks with offset.

In the Scheduler automaton, we use two kinds of clock
variables: executing variables, such as c1 and c2, for recording
a task’s accumulating execution time; and deadline variables
(d1 and d2) for tracking if a task misses its deadline. The syn-
chronisation label empty and active are the same as the
in Server automaton. We accept there exist more than one
synchronisation label on a transition in Scheduler automaton.
Take the transition from Idle to τ1 running, which has two
labels τ1 release and active on it, as an example. In order to
trigger this transition, the Scheduler should first synchronise
with Arr1 through τ1 release, then synchronise with Server
through active. This can be conveniently implemented by
inserting an urgent location [25], where no time elapse is
allowed, and decompose the transition into two.



Phase
ṙ1 = 1

Arrival
ṙ1 = 1r1 = O1

τ1 release
r1 := 0

r1 = T1
τ1 release
r1 := 0

Phase
ṙ2 = 1

Arrival
ṙ2 = 1r2 = O2

τ2 release
r2 := 0

r2 = T2
τ2 release
r2 := 0

Idle
ċ1 = ċ2 = 0

ḋ1 = ḋ2 = 0

τ1 running
ċ1 = ḋ1 = 1, ċ2 = ḋ2 = 0
c1 ≤ C1 ∧ d1 ≤ D1

τ2 running
ċ1 = ḋ1 = 0, ċ2 = ḋ2 = 1
c2 ≤ C2 ∧ d2 ≤ D2

τ1 running τ2 released
ċ1 = ḋ1 = ḋ2 = 1, ċ2 = 0

c1 ≤ C1 ∧ d1 ≤ D1 ∧ d2 ≤ D2

Deadline
missed

τ1 release, active,
C1 := 0

τ2 release, active,
C2 := 0

c1 = C1

empty
c1 := d1 := 0 τ2 release

c1 < C1

d1 >= D1

c2 = C2

empty
c2 := d2 := 0

τ1 release
c2 < C2

d2 >= D2

c1 = C1

c1 := d1 := 0

c1 < C1

d1 ≥ D1

c1 < C1

d2 ≥ D2

Fig. 3: Model of a FPFP scheduler for two periodic tasks τ1, τ2.

Each location in the Scheduler automaton models a dif-
ferent state of the ready queue of the scheduler. Location Idle
models an empty ready queue; location “τ1 running” models
the case in which only task τ1 is active and running; location
“τ1 running, τ2 released” models the case in which the ready
queue contains both τ1 and τ2, but τ1 is running because it has
the highest priority. Location “τ2 running” models the case in
which only τ2 is active and running. Finally, location Deadline
Missed models the case in which one of the two tasks misses
its deadline. Schedulability can be checked by performing a
reachability analysis for location Deadline Missed.

Figure 3 only models the schedule of two tasks. Generating
the model for n tasks can be done automatically by generating
all possible 2n configurations of the ready queue. This means
that the size of the model is exponential in the number of tasks
in the application. However, consider that in most practical
cases, the number of tasks inside one application is limited
to a few units. Also, component-based analysis abstracts away
the rest of the system and hence it is much less complex than
analysing the entire system as a whole, as shown in [13].

B. Hierarchical composition

The automata of Fig. 3 models an application consisting
of two tasks running on a single processor. We now describe
how to compose such model with the LHA model of the server
presented in Section VI.

Definition 2. A Hierarchical Scheduling Composition of a
task set with a periodic server is defined as the parallel compo-
sition of the server automaton Server, the scheduler automaton
Scheduler and the task arrival automata Arr1, . . . ,Arrn, as
defined in Section V:

HSC = Server × Scheduler × Arr1 × . . .× Arrn

with the following additional rule:

• Let l ∈ HSC be a location of the composed automaton,
with l = (lSer, lSched, l1, . . . , ln), and lSer ∈ Server,
lSched ∈ Scheduler, and li ∈ Arri, for all i =
1, . . . , n. If lSer 6= Executing, then the derivatives of
all execution time variables are set to 0: ċi = 0, for
all i = 1, . . . , n.

C. Decidability

Once again, schedulability analysis can be encoded as a
reachability analysis over automaton HSC. We now prove that
such analysis is decidable for the case of independent periodic
tasks.

Lemma 1. Given a HSC automaton that models a set of
periodic tasks T = {τ1, . . . , τn} executing in a periodic
server. The task set is schedulable if, and only if, location
Deadline Missed is unreachable in a time interval equal to
[0, 2× lcm{T1, . . . , Tn, P}+ max{Oi}], where Ti and Oi is
the period and the initial offset of task τi.

Proof: The proof uses a well-known result by Leung and
Whitehead [26]: “A set of periodic tasks with deadlines less
than or equal to the periods is schedulable if, and only if, there
is no deadline miss in the interval [0, 2H+max{Oi}]”, where
H denotes the hyper period—the least common multiple (lcm)
of all tasks’ periods. Intuitively, the reason is that the arrival
pattern of a set of periodic tasks will repeat every hyperperiod
after an initial transitory 2H + max{Oi}, so the schedule
is periodic, and it is sufficient to check in the first periodic
instance of the schedule.

Now we also take periodic server into account. We are
interested in finding a similar period such that not only task
arrival pattern repeat themselves, but also all possible server
behaviours will be identical. For finding the upper bound of the
length of such an interval, we regard the server as a periodic
task with period P , worst-case execution time Q and initial



offset 0. Then we apply Leung and Whitehead test on the
extended task set including original task set and the server.
Thus, to check if a task misses its deadline in a server, it
is sufficient to check all possible paths in the time interval
[0, 2 × lcm{T1, . . . , Tn, P} + max{Oi}]. Notice that, thanks
to non-determinism, the HSC automaton already models all
possible generated schedules for the servers, therefore it covers
all possible scheduling behaviours in the considered interval.

From Lemma 1, it follows that our problem can be ex-
pressed as a problem of reachability in bounded time, in partic-
ular, we need to analyse the system and see if a Deadline Miss
state is reachable in [0, 2× lcm{T1, . . . , Tn, P}+ max{Oi}].

Reachability analysis in bounded time has been proved to
be decidable for a particular sub-class of LHA called Rectan-
gular Automata [27]. Unfortunately, the HSC automaton does
not fall in this class, since the server automaton in Fig. 2 uses
diagonal constraints as invariant in locations Empty and Active
and as guard in the transitions between Empty and Idle, and
between Executing and Idle.

In a nutshell, the problem is that in a LHA there can be an
unbounded number of transitions in a finite interval of time.
This effect is sometimes referred to as Zeno effect [7], as the
distance between any two transitions can be made arbitrarily
small, hence bounded time does not imply runs of bounded
lengths.

Using techniques from [27], it is possible to prove that
reachability analysis can be performed on an HSC by only
exploring paths of finite and bounded length, hence with a
terminating algorithm. Due to space constraints, the complete
proof is available in a technical report [24].

VIII. EVALUATION

We have implemented the HSC analysis in the the software
tool FOrmal Real-Time Scheduler (FORTS) [28]. FORTS is a
model checker targeting real-time scheduling problem and it
accepts LHA model as input. We use it here for reachability
analysis in HSC.

A. Comparison with the Lipari-Bini test

We used the tool to compare the results of our analysis
against the test proposed by Lipari and Bini in [6]. We
modelled the same application described and analysed in [6].
In Table I we report the parameters of the task set, which has
a total utilisation of 47%.

Task Oi Ci Di Ti pi

τ1 0 2 8 8 1
τ2 0 2 20 20 2
τ3 0 6 50 50 3

TABLE I: Parameters of the example application.

In this experiment, we checked the schedulability of the
task set in servers with different values of (Q,P ). In particular,
we tested all integer values of P ∈ [1, 27], and all values of
Q ∈ [1, P ]. The results are shown in Fig. 4: the crosses are
the results of the Lipari-Bini test, whereas the green triangles
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Fig. 4: Feasible server parameters. Crosses are the
schedulable pairs (Q,P ) found by the Lipari-Bini test [6];

triangles are the ones found by our analysis.

are the results of the HSC model. As you can see, the latter
found many more schedulable points. In particular, point (Q =
3, P = 6), which leads to an utilisation of 50% (only 3% larger
than the task set utilisation) was found by the HSC, while it
was not found by the analytic model.

The reason for this difference is that the Lipari-Bini test
makes worst-case assumptions on the maximum delay that an
application task can experience. In particular, this test assumes
that, when the highest priority task is activated, it may have
to wait up to 2(P − Q). Since the highest priority task has
computation time C1 = 2 and relative deadline D1 = 8, it
necessarily follows that (P −Q) ≤ 3. In Fig. 4, it is possible
to note that this is always true for the Lipari-Bini test. However,
the worst case initial delay may never happen: the HSC model
shows that in many cases (P −Q) > 3, and for large P s this
can be as large as 6. How is it possible?

To understand what happens, consider the case of P = 22
and Q = 16. According to the analytic method, the worst case
happens when the highest priority task arrives and, at the same
instant, the server has just exhausted its budget. Apparently,
this seems to be the case of time t = 16, when the server
budget Q = 16 has just been exhausted. However, notice that
the first busy period starting at time t = 0 lasts only for 12
units: therefore, at time 12 the server moves to location Empty,
and from there, it moves to location Active at time t = 16
(due to the arrival of τ1), where it can spend at most two units
of time before moving to location Executing and completing
the requested C1 = 2 units of execution time. In other words, it
never happens that the application can completely deplete the
budget of the server. This fact is not taken into consideration by
the analytic method, which then produces pessimistic results.

B. External service test

As discussed in the previous sections, the LHA formalism
has the advantage of being more expressive, in the sense that
it allows designers to model and analyse complex scheduling
scenarios that cannot be expressed easily as a set of indepen-
dent periodic real-time tasks.



To demonstrate the expressiveness of the model, consider
an application consisting of just two real-time periodic tasks,
whose parameters are reported in Table II. Each task provides
a service that is requested by the external environment (i.e.
by other applications, or by an interrupt). Each task τi has
an incoming queue of requests: at its periodic activation time
it checks the contents of the queue: if there is no request, it
executes for very little time C ′

i; if there is one request, it will
execute for C ′′

i ; if there are two or more requests it will execute
for C ′′′

i . Therefore, the actual load generated by the application
depends on the number of external requests per task.

Task C′
i C′′

i C′′′
i Di Ti pi

τ1 1 2 3 12 12 1
τ2 1 3 5 15 15 2

TABLE II: Parameters of the external service application.

In our example, we model the two request queues with
simple counters w1, w2, both initialised to be 0. At its arrival
time, each task reads its counter, sets its computation time
to the corresponding value, and resets the counter to 0.
In the LHA formalism, a discrete variable like wi can be
automatically encoded in the location signature.

The arrival of external requests is modelled by the Service
automaton shown in Fig. 5. Initially, the automaton waits non
deterministically for an interval of time between 0 and its
maximum initial offset Or. Then, every Tr units of time, it
produces one request for either τ1 or τ2, and the choice is
again non deterministic.

It is not easy to compute the worst-case load produced
by the application: if we want to use classical schedulability
analysis, we need to analyse all possible combinations of
requests to the two tasks. In fact, the Service automaton can
request only one service at time, and depending on the values
of Tr, several possible combinations of service requests may
generate the worst-case load.

However, our HSC automaton does exactly this: it checks
all possible combinations of service requests, and verifies
if the system is schedulable under all possible cases. By
setting Tr = 10 and Or = 0 and applying the analysis for
different values of the pairs (Q,P ), we obtained the results
shown in Fig. 6. Notice that the worst-case utilisation of
the task set, without considering the Service automaton, is

Phase
ṙ = 1

Request
ṙ = 1

r ≤ Or
r := 0

w1 := w1 + 1

r ≤ Or
r := 0

w2 := w2 + 1

r = Tr
w1 := w1 + 1

r := 0

r = Tr
w2 := w2 + 1

r := 0

Fig. 5: The service request automaton

 0

 5

 10

 15

 20

 0  5  10  15  20

Q

P

Fig. 6: Feasible server parameters for external service test

C′′′
1

T1
+

C′′′
2

T2
= 58.333%. However, the minimum fraction Q

P
found by our analysis is 50%, corresponding to the two pairs
(Q = 1, P = 2) and (Q = 2, P = 4). In fact, by analysing
all possible combination of service requests, we found that the
largest utilisation needed is indeed 50%, exactly equal to what
our analysis found. This value corresponds to the case when
the first task τ1 executes for C ′′

1 = 2 (serving one request),
whereas the second task τ2 executes for C ′′′

2 = 5 (serving two
requests).

Also, notice that the pair (Q = 8, P = 15) provides
schedulability with server utilisation equal to 53.34% and a
relatively large P . In general, a large P is desirable because
it reduces the overhead of switching between different appli-
cations. In this case, our analysis shows that we can set a
period larger than the smaller period in the application, and
still achieve a relatively low resource utilisation.

C. A real case study of an avionics system

The case study we use here was originally described in [29]
and [30]; it was later adapted to hierarchical scheduling in [14].
It consist of fifteen real-time tasks with very different values of
periods. Carnevali et al. [14] partitioned the task set into five
components and verified the schedulability of each partition
under TDM with a pre-defined pattern of time slot assignment.
The tasks and the components are reported in Table III, where
time is expressed in milliseconds.

In our analysis, we used the same components as in [14].
We modelled each partition using a HSC automaton. Then,
we performed the analysis of the entire system in two steps:
we first analysed each component individually. The servers’
parameters with minimal utilisation for each component are
listed in the fourth column of Table IV.

In the second step, we performed the “integration” by
selecting the combination of pairs (P,Q) for each component
so that the overall utilisation is less than 100%. Notice that,
by using dynamic periodic servers, we can easily select dif-
ferent values for the periods and the budget of the different
applications so to minimise some cost function. For example,
one objective could be to maximise the values of the servers



Component Task O C T D p U

A1

τ11 0 1 10 5 1

0.2
τ12 0 1 40 40 2
τ13 10 2 40 40 3
τ14 20 1 40 40 4

A2

τ21 0 1 40 40 1

0.305
τ22 0 5 50 50 2
τ23 10 4 50 50 3
τ24 16 5 50 50 4

A3
τ31 2 4 80 80 1

0.06
τ32 15 1 100 100 2

A4
τ41 0 4 100 100 1

0.045
τ42 10 1 200 200 2

A5

τ51 10 1 200 200 1
0.019τ52 3 4 400 400 2

τ53 0 4 1000 1000 3

TABLE III: Specification of the avionics case study

Orig. Util. Min Utilisation Reduced Overhead
A1 0.2 (5,1) Q/P = 0.2 (5,1) Q/P = 0.2

A2 0.305 (50,16) Q/P = 0.32 (50,16) Q/P = 0.32

A3 0.06 (80,5) Q/P = 0.0625 (100,24) Q/P = 0.24

A4 0.045 (22,1) Q/P = 0.0455 (100,5) Q/P = 0.05

A5 0.019 (100,2) Q/P = 0.02 (200,9) Q/P = 0.045

Utot 0.629 0.648 0.855

TABLE IV: Server parameters for the avionics case study.

periods: in fact, small periods imply a more frequent switch
between components, and hence a greater overhead. One
possible choice for each parameters is reported in the fifth
and last column of Table IV.

D. Scalability of the analysis

A full-fledged analysis of the run-time complexity of our
model is out of the scope of this paper. Nevertheless, it is
important to briefly discuss the scalability of our analysis
with respect to the size of the model. First of all, a few
caveat. It is well-known that formal methods suffer from the
so called state-space explosion problem: the number of states
to analyse is exponential in the size of the input. Therefore,
an exponential dependency from the number of tasks in the
application is unavoidable. The important issue here is to
understand to which extent the analysis is still doable with
modern computer systems.

The experiment was conducted on a common MacBook
with Intel(R) Core(TM) i5 CPU @ 2.5GHz and 8 GB of RAM.
We run tests for different task sets and different values of
the parameters. Each test is specified by a tuple (N,U, P )
, where N ∈ {8, 10} is the task set size, U is task set
utilisation, and P ∈ {20, 40, 60} is the period of a server.

N 8 10

P 20 40 60 20 40 60

max time (s) 209 443 483 938 2120 2244
ave time (s) 63 85 104 245 371 384

max memory (M) 79 145 178 229 444 527
ave memory (M) 26 35 44 69 107 126

TABLE V: Run-time results of HSC
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Fig. 8: Run-time of FORTS on a 10 task model

We also fix Q
P = 0.6. For each pair (N,P ) 150 task sets

would be randomly generated according to the Randfixedsum
algorithm [31]. For a task set, its utilization U is randomly
sampled in the range [0.2, 0.6]. Task periods are selected
in the range [10, 100] using log-uniform sampling and the
minimum granularity of periods is 10. Each task’s initial phase
is uniformly distributed between 0 and its period. We know that
the complexity of reachability analysis in a HSC is directly
related to the hyperperiod length of tasks and server. We
constrain this hyperperiod length to be less than 2000. Task
priorities are assigned by Rate Monotonic scheduling: a task
with shorter period will be given higher priority; the priority
relation between two tasks with the same period is randomly
selected. Furthermore, we avoid the generation of task τi, with
Di − Ci < P −Q, which will trivially miss their deadline.

For each task set, we measured the time (in seconds) and
memory (in MB) needed to decide schedulability. The run-
time results are reported in Fig. 7 and Fig. 8; more detailed
statistical results are in Table V. A first observation is that
larger P will result in higher cost of HSC analysis, due to
the non-determinism in the Server automaton. And we get the
worst-case scenario when P = 60 and N = 10, under which
circumstance the longest running time for one HSC is around
37 minutes, whereas the memory cost is always less than 530
MB. We believe that, by introducing parallelism in the analysis



tool and by carefully optimising the code we could achieve
higher performance.

IX. CONCLUSIONS

We presented a formal model of a dynamic server algorithm
for hierarchical scheduling that can be used for component-
based analysis of hierarchical real-time systems. The model
is based on the very expressive formalism of Linear Hybrid
Automata. We have shown that the model provides more
precise results than classical analytic schedulability formulas,
and allows to model components with complex dependencies.
We have run extensive simulation to demonstrate that the
model can be analysed efficiently for components with 10 real-
time periodic tasks.

The proposed model is very general but it does not account
yet for the overhead of context switch between components.
Also, the impact of memory access and caches on the execution
time of the tasks has been neglected. We are currently working
on a more accurate model that can account for the scheduling
overhead and the cache-related preemption delay caused by
other components in the system.
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