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Abstract

The derivation trees of a tree adjoining grammar provide a first insight
into the sentence semantics, and are thus prime targets for generation sys-
tems. We define a formalism, feature-based regular tree grammars, and a
translation from feature based tree adjoining grammars into this new for-
malism. The translation preserves the derivation structures of the original
grammar, and accounts for feature unification.

1 Introduction

Each sentence derivation in a tree adjoining grammar (Joshi and Schabes, 1997,
TAG) results in two parse trees: a derived tree (Figure 1a), that represents
the phrase structure of the sentence, and a derivation tree (Figure 1b), that
records how the elementary trees of the grammar were combined. Each type of
parse tree is better suited for a different set of language processing tasks: the
derived tree is closely related to the lexical elements of the sentence, and the
derivation tree offers a first insight into the sentence semantics (Candito and
Kahane, 1998). Furthermore, the derivation tree language of a TAG, being a
regular tree language, is much simpler to manipulate than the corresponding
derived tree language.
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Figure 1: Parse trees for “One of the cats has caught a fish.” using the grammar
of Figure 2.
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Figure 2: A feature-based tree adjoining grammar. For the sake of clarity, we
identify elementary trees with their anchors in our examples.

Derivation trees are thus the cornerstone of several approaches to sentence
generation (Koller and Striegnitz, 2002; Koller and Stone, 2007), that rely cru-
cially on the ease of encoding regular tree grammars, as dependency grammars
and planning problems respectively. Derivation trees also serve as intermedi-
ate representations from which both derived trees (and thus the linear order
information) and semantics can be computed, e.g. with the abstract catego-
rial grammars of de Groote (2002), Pogodalla (2004), and Kanazawa (2007), or
similarly with the bimorphisms of Shieber (2006).

Nevertheless, these results do not directly apply to many real-world gram-
mars, which are expressed in a feature-based variant of TAGs (Vijay-Shanker,
1992). Each elementary tree node of these grammars carries two feature struc-
tures that constrain the allowed substitution or adjunction operations at this
node (see for instance Figure 2). In theory, such structures are unproblematic,
because the possible feature values are drawn from finite domains, and thus the
number of grammar categories could be increased in order to account for all
the possible structures. In practice, the sheer number of structures precludes
such a naive implementation: for instance, the 50 features used in the XTAG
English grammar (XTAG Research Group, 2001) together define a domain con-
taining more than 1019 different structures. Furthermore, finiteness does not
hold for some grammars, for instance with the semantic features of Gardent
and Kallmeyer (2003).

Ignoring feature structures typically results in massive over-generation in
derivation-centric systems. We define a formalism, feature-based regular tree
grammars, that produces derivation trees that account for the feature structures
found in a tree adjoining grammar. In more details,

• we recall how to generate the derivation trees of a tree adjoining grammar
through a regular tree grammar (Section 2), then

• we define feature-based regular tree grammars and present the translation
from feature-based TAG (Section 3); finally,

• we provide an improved translation inspired by left corner transformations
(Section 4).

We assume the reader is familiar with the theory of tree-adjoining grammars
(Joshi and Schabes, 1997), regular tree grammars (Comon et al., 2007), and
feature unification (Robinson, 1965).
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2 Regular Tree Grammars of Derivations

In this section, we define an encoding of the set of derivation trees of a tree
adjoining grammar as the language of a regular tree grammar (RTG). Several
encodings equivalent to regular tree grammars have been described in the lit-
erature; we follow here the one of de Groote (2002), but explicitly construct a
regular tree grammar.

Formally, a tree adjoining grammar is a tuple 〈Σ, N, I, A, S〉 where Σ is a
terminal alphabet, N is a nonterminal alphabet, I is a set of initial trees α, A is
a set of auxiliary trees β and S is a distinguished nonterminal from N . We note
γr the root node of the elementary tree γ and βf the foot node of the auxiliary
tree β. Let us denote by γ1, . . . , γn the active nodes of an elementary tree γ,
where a substitution or an adjunction can be performed;1 we call n the rank of
γ, denoted by rk(γ). We set γ1 to be the root node of γ, i.e. γ1 = γr. Finally,
lab(γi) denotes the label of node γi.

Each elementary tree γ of the TAG will be converted into a single rule
X −→ γ(Y1, . . . , Yn) of our RTG, such that rk(γ) = n and each of the Yi symbols
represents the possible adjunctions or substitutions of node γi. We introduce
accordingly two duplicates NA = {XA | X ∈ N} and NS = {XS | X ∈ N} of N ,
and a nonterminal labeling function defined for any active node γi with label
lab(γi) = X as

nt(γi) =

{
XA if γi is an adjunction site
XS if γi is a substitution site

(1)

The grammar rule corresponding to the elementary tree anchored by “one of”
in Figure 2 is then NPA −→ one of(NPA, DA, PA, NA), meaning that this tree
adjoins into an NP labeled node, and expects adjunctions on its nodes NPr, D,
P , and N . Given our set of elementary TAG trees, only the first one of these
four will be useful in a reduced RTG.

Definition 1. The regular derivation tree grammar G = 〈SS ,N ,F , R〉 of a
TAG 〈Σ, N, I, A, S〉 is a RTG with axiom SS , nonterminal alphabet N = NS ∪
NA, terminal alphabet F = I ∪A ∪ {εA} with ranks rk(γ) for elementary trees
γ in I ∪A and rank 0 for εA, and with set of rules

R = {XS −→ α(nt(α1), . . . , nt(αn)) | α ∈ I, n = rk(α), X = lab(αr)}
∪ {XA −→ β(nt(β1), . . . , nt(βn)) | β ∈ A,n = rk(β), X = lab(βr)}
∪ {XA −→ εA | XA ∈ NA}

The ε-rules XA −→ εA for each symbol XA account for adjunction sites where
no adjunction takes place. The RTG has the same size as the original TAG and
the translation can be computed in linear time.

1We consider in particular that no adjunction can occur at a foot node. We do not consider
null adjunctions constraints on root nodes and feature structures on null adjoining nodes,
which would rather obscure the presentation, and we do not treat other adjunction constraints
either.
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Figure 3: Some trees generated by the regular tree grammar of Example 2.

Example 2. The reduced regular tree grammar corresponding to the tree ad-
joining grammar of Figure 2 is then:

〈SS , {SS ,VPS ,VPA,NPS ,NPA},
{one of, the, cats, has, caught, a, fish, εA},
{ SS −→ caught(NPS ,VPA,NPS),

NPS −→ cats(NPA),

NPS −→ fish(NPA),

NPA −→ the(NPA),

NPA −→ a(NPA),

NPA −→ one of(NPA),

NPA −→ εA,

VPA −→ has(VPA),

VPA −→ εA}〉

Let us recall that the derivation relation induced by a regular tree grammar
G = 〈SS ,N ,F , R〉 relates terms2 of T (F ,N ), so that t =⇒ t′ holds iff there
exists a context3 C and a rule A −→ a(B1, . . . , Bn) such that t = C[A] and t′ =
C[a(B1, . . . , Bn)]. The language of the RTG is L(G) = {t ∈ T (F) | SS =⇒∗ t}.

One can check that the grammar of Example 2 generates trees with a root
labeled with “caught”, and three subtrees, the leftmost and rightmost of which
labeled with “cats” or “fish” followed by an arbitrary long combination of nodes
labeled with “one of”, “a” or “the”. The central subtree is an arbitrary long
combination of nodes labeled with “has”. Each branch terminates with εA. Two
of these trees can be seen on Figure 3. Our RTG generates the derivation trees
of a version of the original TAG expunged from its feature structures.

2The set of terms over the alphabet F and the set of variables X is denoted by T (F ,X );
T (F , ∅) = T (F) is the set of trees over F .

3A context C is a term of T (F ,X ∪ {x}), x 6∈ X , which contains a single occurrence of x.
The term C[t] for some term t of T (F ,X ) is obtained by replacing this occurrence by t.
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3 Unification on TAG Derivation Trees

3.1 Feature-based Regular Tree Grammars

In order to extend the previous construction to feature-based TAGs, our RTGs
use combinations of rewrites and unifications—also dubbed narrowings (Hanus,
1994)—of terms with variables in N × D, where N denotes the nonterminal
alphabet and D the set of feature structures.4

Definition 3. A feature-based regular tree grammar 〈S,N ,F ,D, R〉 comprises
an axiom S, a set N of nonterminal symbols that includes S, a ranked terminal
alphabet F , a set D of feature structures, and a set R of rules of form (A, d) −→
a((B1, d

′
1), . . . , (Bn, d′n)), where A,B1, . . . , Bn are nonterminals, d, d′1, . . . , d

′
n are

feature structures, and a is a terminal with rank n.
The derivation relation =⇒ for a feature-based RTG G = 〈S,N ,F ,D, R〉 re-

lates pairs of terms from T (F ,N × D) and u-substitutions, such that (s, e) =⇒
(t, e′) iff there exist a context C, a rule (A, d) −→ a((B1, d

′
1), . . . , (Bn, d′n)) in

R with fresh variables in the feature structures, a structure d′, and an u-
substitution σ verifying

s = C[(A, d′)], t = C[a((B1, σ(d′1)), . . . , (Bn, σ(d′n)))],
σ = mgu(d, e(d′)) and e′ = σ ◦ e.

The language of G is

L(G) = {t ∈ T (F) | ∃e, ((S,>), id) =⇒∗ (t, e)}.

Features percolate hierarchically through the computation of the most gen-
eral unifier mgu at each derivation step, while the global u-substitution e acts
as an environment that communicates unification results between the branches
of our terms.

Feature-based RTGs with a finite domain D are equivalent to regular tree
grammars. Unrestricted feature-based RTGs can encode Turing machines just
like unification grammars (Johnson, 1988), and thus we can reduce the halting
problem on the empty input for Turing machines to the emptiness problem for
feature-based RTGs, which is thereby undecidable.

3.2 Encoding Feature-based TAGs

For each tree γ with rank n, we now create a rule P −→ γ(P1, . . . , Pn). A
right-hand side pair Pi = (nt(γi), d′i) stands for an active node γi with fea-
ture structure d′i = feats(γi) =

[
top : top(γi)
bot : bot(γi)

]
, where top(γi) and bot(γi) denote

respectively the top and bottom feature structures of γi.
The left-hand side pair P = (A, d) carries the interface d = in(γ) of γ with

the rest of the grammar, such that d percolates the root top feature, and the

4In order to differentiate TAG tree substitutions from term substitutions, we call the latter
u-substitutions. Given two feature structures d and d′ in D, we denote by the u-substitution
σ = mgu(d, d′) their most general unifier if it exists. We denote by > the most general element
of D, and by id the identity.
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foot bot feature for auxiliary trees. Formally, for each initial tree α in I and
auxiliary tree β in A, using a fresh variable t, we define

in(α) =
[

top : t
top : top(αr)

]
(2)

in(β) =
[

top : t
top : top(βr)
bot : bot(βf )

]
(3)

The interface thus uses the top features of the root node of an elementary tree,
and we have to implement the fact that this top structure is the same as the
top structure of the variable that embodies the root node in the rule right-hand
side. With the same variable t, we define accordingly:

feat(γi) =

{[
top : t
bot : bot(γr)

]
if γi = γr[

top : top(γi)
bot : bot(γi)

]
otherwise

(4)

Finally, we add ε-rules (XA,
[

top : v
bot : v

]
) −→ εA for each symbol XA in order to

account for adjunction sites where no adjunction takes place. Let us denote by
tr(γi) the pair (nt(γi), feats(γi)).

Definition 4. The feature-based RTG G = 〈SS , NS ∪ NA,F ,D, R〉 of a TAG
〈Σ, N, I, A, S〉 with feature structures in D has terminal alphabet F = I ∪ A ∪
{εA} with respective ranks rk(α), rk(β), and 0, and set of rules

R = {(XS , in(α)) −→ α(tr(α1), . . . , tr(αn)) | α ∈ I, n = rk(α), X = lab(αr)}
∪ {(XA, in(β)) −→ β(tr(β1), . . . , tr(βn)) | β ∈ A,n = rk(β), X = lab(βr)}
∪ {XA

[
top : t
bot : t

]
−→ εA | XA ∈ NA}

Example 5. With the grammar of Figure 2, we obtain the following ruleset:

SS> −→ caught
“
NPS [ top : [ agr : x ] ] ,VPA

h
top :

»
agr : x

mode : ind

–
bot : [mode : ppart ]

i
,NPS>

”
NPS [ top : t ] −→ cats

`
NPA

ˆ
top : t
bot : [ agr : 3pl ]

˜´
NPS [ top : t ] −→ fish(NPA [ top : t ])

NPA

h
top : t

bot :
»

agr : x
const : −

– i
−→ the

„
NPA

»
top : t

bot :

"
agr : x

const : +
def : +

# –«
NPA

h
top : t

bot :
»

agr : 3sg
const : −

– i
−→ a

„
NPA

»
top : t

bot :

"
agr : 3sg

const : +
def : −

# –«
NPA

h
top : t

bot :
»
agr : 3pl
def : +

– i
−→ one of

“
NPA

h
top : t

bot :
»

agr : 3sg
const : +

– i”
NPA

ˆ
top : v
bot : v

˜
−→ εA

VPA

ˆ
top : t
bot : [mode : ppart ]

˜
−→ has

“
VPA

h
top : t

bot :
»

agr : 3sg
mode : ind

– i”
VPA

ˆ
top : v
bot : v

˜
−→ εA

With the grammar of Example 5, one can generate the derivation tree for
“One of the cats has caught a fish.” This derivation is presented in Figure 4.
Each node of the tree consists of a label and of a pair (t, e) where t is a term
from T (F ,N ×D) and e is an environment.5 In order to obtain fresh variables,
we rename variables from the RTG: we reuse the name of the variable in the
grammar, prefixed by the Gorn address of the node where the rewrite step

5Actually, we only write the change in the environment at each point of the derivation.
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takes place. Labels indicate the chronological order of the narrowings in the
derivation.

Labels in Figure 4 suggest that this derivation has been computed with a
left to right strategy. Of course, other strategies would have led to the same
result. The important thing to notice here is that the crux of the derivation
lies in the fifth rewrite step, where the agreement between the subject and the
verb is realized. Substitutions sites are completely defined when all adjunctions
in the subtree have been performed. In the next section we propose a different
translation that overcomes this drawback.

4 Left Corner Transformation

Derivations in the previous feature-based RTG are not very predictive: the
substitution of “cats” into “caught” in the derivation of Figure 1b does not
constrain the agreement feature of “caught”. This feature is only set at the
final ε-rewrite step after the adjunction of “one of”, when the top and bottom
features are unified. More generally, given a substitution site, we cannot a priori
rule out the substitution of most initial trees, because their root does usually
not carry a top feature.

A solution to this issue is to compute the derivations in a transformed gram-
mar, where we start with the ε-rewrite, apply the root adjunctions in reverse
order, and end with the initial tree substitution. Since our encoding sets the
root adjunct as the leftmost child, this amounts to a selective left corner trans-
formation (Rosenkrantz and Lewis II, 1970) of our RTG—an arguably simpler
intuition than what we could write for the corresponding transformation on
derived trees.

4.1 Transformed Regular Tree Grammars

The transformation involves regular tree grammar rules of form XS −→ α(XA, ...)
for substitutions, and XA −→ β(XA, ...) and XA −→ εA for root adjunctions. After
a reversal of the recursion of root adjunctions, we will first apply the ε rewrite
using a rule XS −→ εS(X) with rank 1 for εS , followed by the root adjunctions
X −→ β(X, ...), and finally the substitution itself X −→ α(...), with a decremented
rank for initial trees.

Example 6. On the grammar of Figure 2, we obtain the rules:

SS −→ caught(NPS ,VPA,NPS)
NPS −→ εS(NP)
NP −→ cats
NP −→ fish
NP −→ the(NP)
NP −→ one of(NP)

VPA −→ has(VPA)
VPA −→ εA

Adjunctions that do not occur on the root of an initial tree, like the adjunc-
tion of “has” in our example, keep their original translation using XA −→ β(XA, ...)
and XA −→ εA rules. We use the nonterminal symbols X of the grammar for
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root adjunctions and initial trees, and we retain XS for the initial εS rewrite on
substitution nodes.

Definition 7. The left-corner transformed RTG Glc = 〈SS , N∪NS∪NA,Flc, Rlc〉
of a TAG 〈Σ, N, I, A, S〉 has terminal alphabet Flc = I ∪ A ∪ {εA, εS} with re-
spective ranks rk(α)− 1, rk(β), 0, and 1, and set of rules

Rlc = {XS −→ εS(X) | XS ∈ NS}
∪ {X −→ α(nt(α2), . . . , nt(αn)) | α ∈ I, n = rk(α), X = lab(αr)}
∪ {X −→ β(X, nt(β2) . . . , nt(βn)) | β ∈ A,n = rk(β), X = lab(βr)}
∪ {XA −→ β(nt(β1), . . . , nt(βn)) | β ∈ A,n = rk(β), X = lab(βr)}
∪ {XA −→ εA | XA ∈ NA}

Due to the duplicated rules for auxiliary trees, the size of the left-corner
transformed RTG of a TAG is doubled at worst. In practice, the reduced
grammar witnesses a reasonable growth (10% on the French TAG grammar
of Gardent (2006)).

The transformation is easily reversed. We define accordingly the function
lc-1 from T (Flc) to T (F):

lc-1(εS(t)) = s(t, εA)
s(β(t1, t2, ..., tn), t) = s(t1, β(t, fβ2(t2), ..., fβn(tn)))

s(α(t1, ..., tn), t) = α(t, fα2(t1), ..., fαn+1(tn))
a(γ(t1, ..., tn)) = γ(fγ1(t1), ..., fγn(tn))

fγi(t) =

{
a(t) if γi is an adjunction site
lc-1(t) if γi is a substitution site

We can therefore generate a derivation tree in L(Glc) and recover the derivation
tree in L(G) through lc-1.

4.2 Features in the Transformed Grammar

Example 8. Applying the same transformation on the feature-based regular
tree grammar, we obtain the following rules for the grammar of Figure 2:

SS> −→ caught
“
NPS [ top : [ agr : x ] ] ,VPA

h
top :

»
agr : x

mode : ind

–
bot : [mode : ppart ]

i
,NPS>

”
NPS [ top : t ] −→ εS

`
NP

ˆ
top : t
bot : t

˜´
NP [ bot : [ agr : 3pl ] ] −→ cats

NP> −→ fish

NP

»
top : t

bot :

"
agr : x

const : +
def : +

# –
−→ the

“
NP

h
top : t

bot :
»

agr : x
const : −

– i”
NP

»
top : t

bot :

"
agr : 3sg

const : +
def : −

# –
−→ a

“
NP

h
top : t

bot :
»

agr : 3sg
const : −

– i”
NP

h
top : t

bot :
»

agr : 3sg
const : +

– i
−→ one of

“
NP

h
top : t

bot :
»
agr : 3pl
def : +

– i”
VPA

ˆ
top : t
bot : [mode : ppart ]

˜
−→ has

“
VPA

h
top : t

bot :
»

agr : 3sg
mode : ind

– i”
VPA

ˆ
top : v
bot : v

˜
−→ εA
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Since we reversed the recursion of root adjunctions, the feature structures
on the left-hand side and on the root node of the right-hand side of auxiliary
rules are swapped in their transformed counterparts (e.g. in the rule for “one
of”).

This version of a RTG for our example grammar is arguably much easier to
read than the one described in Example 5: a derivation has to go through “one
of” and “the” before adding “cats” as subject of “caught”.

The formal translation of a TAG into a transformed feature-based RTG
requires the following variant trlc of the tr function: for any auxiliary tree β in
A and any node γi of an elementary tree γ in I ∪A, and with t a fresh variable
of D:

inlc(β) =
[

top : t
bot : bot(βf )

]
(5)

featslc(γi) =

{[
top : t
top : top(γr)
bot : bot(γr)

]
if γi = γr

feats(γi) otherwise
(6)

trlc(γi) = (nt(γi), featslc(γi)) (7)

Definition 9. The left-corner transformed feature-based RTG Glc = 〈SS , N ∪
NS ∪NA,Flc,D, Rlc〉 of a TAG 〈Σ, N, I, A, S〉 with feature structures in D has
terminal alphabet Flc = I ∪A∪{εA, εS} with respective ranks rk(α)− 1, rk(β),
0, and 1, and set of rules

Rlc = {XS [ top : t ] −→ εS(X
[

top : t
bot : t

]
) | XS ∈ NS}

∪ {(X, feats(α1)) −→ α(trlc(α2), . . . , trlc(αn))
| α ∈ I, n = rk(α), X = lab(αr)}

∪ {(X, featslc(β1)) −→ β((X, inlc(β)), trlc(β2), . . . , trlc(βn))
| β ∈ A,n = rk(β), X = lab(βr)}

∪ {(XA, in(β)) −→ β(tr(β1), trlc(β2), . . . , trlc(βn))
| β ∈ A,n = rk(β), X = lab(βr)}

∪ {XA

[
top : t
bot : t

]
−→ εA | XA ∈ NA}

Again, the translation can be computed in linear time, and results in a
grammar with at worst twice the size of the original TAG.

5 Conclusion

We have introduced in this paper feature-based regular tree grammars as an ad-
equate representation for the derivation language of large coverage TAG gram-
mars. Unlike the restricted unification computations on the derivation tree
considered before by Kallmeyer and Romero (2004), feature-based RTGs ac-
curately translate the full range of unification mechanisms employed in TAGs.
Moreover, left-corner transformed grammars make derivations more predictable,
thus avoiding some backtracking in top-down generation.

Among the potential applications of our results, let us further mention more
accurate reachability computations between elementary trees, needed for in-
stance in order to check whether a TAG complies with the tree insertion gram-
mar (Schabes and Waters, 1995, TIG) or regular form (Rogers, 1994, RFTAG)
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conditions. In fact, among the formal checks one might wish to perform on
grammars, many rely on the availability of reachability relations.

Let us finally note that we could consider the string language of a TAG
encoded as a feature-based RTG—in a parser for instance—, if we extended the
model with topological information, in the line of Kuhlmann (2007).
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