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Abstract: From a partial observation of the behaviour of a labeled Discrete Event System, fault
Diagnosis strives to determine whether or not a given “invisible” fault event has occurred. The
diagnosability problem can be stated as follows: does the labeling allow for an outside observer
to determine the occurrence of the fault, no later than a bounded number of events after that
unobservable occurrence ? In concurrent systems, partial order semantics adds to the difficulty of
the problem, but also provides a richer and more complex picture of observation and diagnosis.
In particular, it is crucial to clarify the intuitive notion of “time after fault occurrence”. To this
end, we will use a unifying metric framework for event structures, providing a general topological
description of diagnosability in both sequential and nonsequential semantics for Petri nets.
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1. INTRODUCTION

Diagnosis under partial observation is a classical problem
in automatic control in general, and has received consid-
erable attention in discret event system (DES) theory,
among other fields. In the DES setting, the approach
that we will call “classical” here supposes that the ob-
served system is an automaton with transition set T ,
(behavioural) language L ⊆ T ∗, and a set of observable
transition labels O. The associated labeling map, let us call
it η : T → O in line with the formalism used below, may
not be required injective, and leaves some transitions from
T unobservable, in particular fault φ. The observations
have the form of words w ∈ O∗ obtained by extending
η into a homomorphism T ∗ → O∗. A classical definition
of diagnosability is given in [(4)], following [(27)]; writing
s ∼η s′ iff s, s′ ∈ T ∗ are mapped to the same observable
word in O∗, we can state it as follows:

L is non-diagnosable iff there exist sequences sN , sY ∈ L
such that:

(1) sY is faulty, sN is healthy, and sN ∼η sY ;
(2) moreover, sY with the above is arbitrarily long after

the first fault, i. e. for every k ∈ N there exists a choice
of sN , sY ∈ L with the above properties and such that
the suffix sY/φ

of sY after the first occurrence of fault

φ in sY satisfies |sY | ≥ k.

Concurrent systems are difficult to supervise using the
classical approach because of the state explosion problem.
For intrinsically asynchronous distributed systems, such
as encountered in telecommunications or more generally in
networked systems, it also makes sense conceptually to use
models that reflect the local and distributed nature of the
observed system, such as Petri nets or graph grammars.

Putting these ideas together, we were led in [(8)] to
carry over diagnosis to asynchronous models and their
non-interleaved semantics ; see also the discussion of the
necessity for using partial order methods in [(7)]. This
generalized methodology for fault diagnosis is based on the
non-sequential executions of labeled Petri nets. We have
provided a series of results [(14; 16; 17; 18)] on partial
order diagnosability for Petri nets, in the spirit of the
above definition. While the sequential case is embedded
and generalized in these results, new features emerge in
partial ordered runs that have no counterpart in sequential
behaviour; this led to the distinction between strong and
wea diagnosability notions in [(14; 18)].

Bauer and Pinchinat [(2)] have given a topological view
on diagnosability in terms of sequential languages. Their
results are confirmed and generalized in the present work.
In fact, the topological framework is obtained applying
suitable metrics to event structures; for this, we generalize
a standard metric construction to be found in [(3; 20)]
and others, in such a way that progress and observation
properties can be captured in the resulting topology. Event
structures provide a unifying semantical model both for
the sequential and non-sequential viewpoints. That is,
both sequential languages as in [(4; 2)] AND the partial
order semantics given in [(5; 25)] and used in [(9; 18)]
associate event structures to a system; and the metric
topology given here coincides, on the sequential semantics,
with the Cantor topology used in [(2)]. The characteriza-
tion of diagnosable systems from [(18)] is generalized in
the present article to the topological level, and beyond the
domain of safe Petri nets and finite state systems.

Structure of the paper: We begin in Section 2. with the
basic definitions for (labeled) event structures, and provide
the link with Petri nets in Section 3. The following Section
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4. investigates partial observation and diagnosability, and
develops the main contributions of this paper. We con-
clude in Section 5.

2. EVENT STRUCTURES

Preliminaries. Let A be a set. A∗ , {a1 . . . an | ai ∈ A}
is the set of all finite words over A; the set of infinite words
over A is denoted Aω. Let 1A be the indicator function of
A, i.e. 1A(x) = 1 iff x ∈ A and 1A(x) = 0 for x 6∈ A.
Let f : A → B be a partial function. Write f(a) ↓ if f is
defined on a ∈ A, and f(a) ↑ otherwise. The domain of f

is dom(f) , {a ∈ A | f(a) ↓}, and the image of f is

f(A) , {b ∈ B | ∃ a ∈ dom(f) : f(a) ↓ ∧ f(a) = b}.

Event Structures. We shall be using throughout this
paper prime event structures (PES) following Winskel et
al [(25; 30)], with particular attention to labeling.

Definition 1. A (labeled) prime event structure (over al-
phabet A) is a tuple E = (E , 6, #, λ), where

(1) E = supp(E) is the support, or set of events of E ,
(2) 6⊆ E × E is a partial order satisfying the property

of finite causes, i.e.

∀ e ∈ E : |{e ′ ∈ E | e ′ 6 e}| < ∞, (1)

(3) # ⊆ E × E an irreflexive symmetric conflict relation
satisfying the property of conflict heredity, i.e.

∀ e, e ′, e ′′ ∈ E : e#e ′ ∧ e ′ 6 e ′′ ⇒ e 6 e ′′, (2)

(4) λ : E → A is a total mapping called the labelling.

Events e, e ′ ∈ E are concurrent, written e co e ′, iff neither
e = e ′ nor e 6 e ′ e ′ 6= e nor e#e ′ hold. If co = ⊥,
i.e. if co is the empty relation, we call E sequential. An
A-labeled event structure is called simple 1 iff

e co e ′ ⇒ λ(e) 6= λ(e ′). (3)

A simple labeled event structure will be called an SES.
Let E1 = (E1, 61, #1, λ1) and E2 = (E2, 62, #2, λ2) be
two A-labeled event structures.

(1) If E1 ⊆ E2 and for all e, e ′ ∈ E1,

e#1e
′ ⇔ e#2e

′ and e 61 e ′ ⇔ e 62 e ′,

then E1 is a sub-event structure of E2.
(2) A partial mapping f : E1 → E2 is called an (A−)

morphism iff
• e 61 e ′ ⇒ f (e) 62 f (e ′)
• dom (λ1) ⊆ dom (f ) and dom (f ) ⊆ dom (λ2)
• ∀ e ∈ E1 : λ1(e) = λ2 (f (e)) .

(3) E1 and E2 are (A-)isomorphic iff there exist mor-
phisms f : E1 → E2 and f −1 : E2 → E1 such that
for all e1 ∈ dom(f ) and all e2 ∈ dom(f −1),

f − (f (e1)) = e1 and f
(
f −1 (e2)

)
= e2.

The set of causes or prime configuration of e ∈ E is
[e] , {e ′ | e ′ 6 e}. A prefix of E is any downward closed
subset B ⊆ E , i.e. such that for every e ∈ B , [e] ⊆ B .
Denote the set of E ’s prefixes as B(E). Prefix c is a
configuration if and only if it is conflict-free, i.e. e ∈ c
1 one might call it safe or auto-concurrency free

and e#e ′ imply e ′ 6∈ c. Denote as C(E) the set of E ’s
configurations. Call any ⊆-maximal element of C(E) a run
of E ; denote the set of E ’s runs as Ω(E), or simply Ω if no
confusion can arise.

Note that all prefixes of E , and in particular all its
configurations, constitute sub-event-structures of E ; we
will denote these structures with the same symbols as the
corresponding sets. For c ∈ C and S ⊆ C, let

Cc , {c̃ ∈ C | c ⊆ c̃} , Ω c , {ω ∈ Ω | c ⊆ ω}
and ΩS ,

⋃

c∈S

Ωc.

Further, for any c ∈ C(E), denote as

Ec = (Ec, 6|Ec
, #|Ec

, λ|Ec
),

where Ec , {e ∈ E\c | ∀ e ′ ∈ c : ¬ (e # e ′)} ,

the shift of E by c. If c′ ∈ C(Ec), then c ◦ c′ is the unique
configuration of E such that (i) c is a prefix of c ◦ c′, and
(ii) c ◦ c′ ∩Ec = c′. For every c′ ∈ C(Ec), we observe that

c′′ , c ∪ c′ ∈ c(E); write in this case c′′ = c ◦ c′, and say
that c′′ is obtained by appending c′ to c.

Prefix relations. Let [E ]A be the A-isomorphism class of
A-labeled PES E . Denote

BA(E) , {[B ]A | B ∈ B(E)} (4)

CA(E) , {[c]A | c ∈ C(E)} (5)

Write B1 ⊑ B2 iff B1 is A-isomorphic to a prefix of B2; ⊑
lifts to a binary relation on BA(E), which we will denote by

the same symbol ⊑. For c1, c2 ∈ C(E), let [c1]⊓ [c2] , [c3],
where c3 is the ⊆-maximal prefix of c1 such that c2 has a
prefix c′

3 that is A-isomorphic to c3.

Metrics. The sets C(E) and Ω(E) can be equipped with
Lawson or Scott topologies, or with natural metrics ; we
will follow and generalize the latter approach, similar to
metrizations of traces as studied in [(19)]. Our pseudo-
metrics allow to capture in particular partial observation
and fault equivalence. Our principal tool are µ-Heights:
Let µ : A → R+

0 be any total mapping; we shall refer
to µ as a weight function. As a particular case, consider
µ(e) ≡ 1E : we will refer this as the counting weight.
The following construction yields pseudometrics that are
equivalent (in topological terms) to the prefix metric [(20)]
and the Foata normal form metric [(3)], see [(19)], when
the counting weight is chosen; other choices of weights
allow to generalize to observation and fault equivalence.

The µ-induced ∗-height H∗
µ(B) of a prefix is defined

recursively by setting, for ∅ representing the empty preset,

H∗
µ(∅) , 0 (6)

H∗
µ([e]) , H∗

µ([e] \ {e}) + µ(e) (7)

H∗
µ(B) , sup

e∈B
(H∗

µ([e])). (8)

Now, for τ ∈ [0, ∞) let Uµ
τ be the τ-prefix under µ, i.e.

Uµ
τ ,

⋃{
B ∈ B(E) | H∗

µ(B) 6 τ
}

, (9)

222



and let Eµ
τ be the prime event structure that E induces on

Uµ
τ . Then define Hµ(c) for all c ∈ C(E) as

Hµ(c) , sup{τ | c ∈ Ω(Eµ
τ )}. (10)

Note that Hµ(•) is invariant under A-isomorphism. Thus,
let Ψµ(•) : C(E) → [0, 1] and the µ-pseudometric dµ(•, •)
be given by

Ψµ(c) , 2−Hµ(c) (11)

dµ(c1, c2) , Ψµ(c1 ⊓ c2). (12)

Again, consider µ(e) ≡ 1E ; denote as H(•), Ψ(•) and
d(•, •) the associated height, conciseness and pre-distance.
We observe for this special case:

Lemma 1. For all c ∈ C,

H(c) = ∞ ⇒ c ∈ Ω. (13)

Proof: Assume c 6∈ Ω, and let e ∈ E\c such that there

is no e ′ ∈ c such that e ′#e, and let n , H([e ′]). Then
H(c) 6 n < ∞ by definition of H(•). 2

As noted above, Hµ(•) and thus all functions derived
from it, are invariant under isomorphisms. They thus lift
without any further effort to functions on Cλ(E) instead of
C(E); we will abuse of notation by using the same symbols
for those lifted versions.

3. PETRI NETS AND THEIR SEMANTICS.

Petri Nets. We will turn now to an important subclass
of event structures, obtained through Petri net models,

Definition 2. A net is a tuple N = (P ,T ,F ) where

• P 6= ∅ is a set of places,
• T 6= ∅ is a set of transitions such that P ∩ T = ∅,
• F ⊆ (P × T ) ∪ (T × P) is a set of flow arcs.

A marking is a multiset m of places, i.e. a map from P
to N . A Petri net is a tuple N = (P ,T ,F ,m), where

• (P ,T ,F ) is a finite net, and
• m : P → N is an initial marking.

Elements of P ∪ T are called the nodes of N . For a
transition t ∈ T , we call •t = {p | (p, t) ∈ F} the preset
of t, t• = {p | (t, p) ∈ F} the postset of t . In Figure 1,
we represent as usual places by empty circles, transitions
by squares, F by arrows, and the marking of a place p by
putting the corresponding number of black tokens into p. A
transition t is enabled in marking m if ∀p ∈ •t , m(p) > 0.
This enabled transition can fire, resulting in a new marking
m′ = m− •t+ t•; this firing relation is denoted by m[t〉m′.
A marking m is reachable if there exists a firing sequence,
i.e. transitions t0 . . . tn such that m0[t0〉m1[t1〉 . . . [tn〉m. A
net is safe if for all reachable markings m, m(p) ⊆ {0, 1}
for all p ∈ P .

Sequential semantics. The language L of N is the set of
words e0 . . . en over a set E with a mapping λ : E → T
such that λ(e0) . . . λ(en) is a firing sequence. Assume now
that L is trim: any two words w, w′ in L share their
common prefix, i.e. if there are u ∈ E∗, x, x′ ∈ E∞ and
e, e ′ ∈ E such that w = uex and w′ = ue ′x′, then

λ(e) = λ(e ′) implies e = e ′. The sequential semantics
of N is given by event structure Eseq = (E , 6seq, #seq , λ),
obtained from L by setting

(1) e 6seq e ′ iff there exist u, v ∈ E∗ and w ∈ E∞ such
that ueve ′w ∈ L, and

(2) e#seqe
′ iff there exist ē, ē ′ ∈ E and u, v ∈ E∗ such

that uē, uē ′ ∈ L with λ(ē) 6= λ(ē ′).

Unfoldings. In a net N = (P ,T ,F ), let <N the tran-
sitive closure of F , and 6N the reflexive closure of <N .
Further, set t1#imt2 for transitions t1 and t2 if and only if
t1 6= t2 and •t1 ∩ •t2 6= ∅, and define # = #N by

a # b ⇔ ∃ta, tb ∈ T :

{
ta #im tb

∧ ta 6N a
∧ tb 6N b.

Definition 3. A net ON = (B ,E ,G) is an occurrence
net if and only if it satisfies

(1) 6ON is a partial order;
(2) for all b ∈ B , |•b| ∈ {0, 1};
(3) for all x ∈ B ∪E , the set [x] = {y ∈ B ∪E | y 6ON x}

is finite;
(4) no self-conflict, i.e. there is no x ∈ B ∪ E such that

x#ONx;
(5) the set cut0 of 6ON -minimal nodes is contained in B

and finite.

The nodes of E are the events, those of B conditions.
Occurrence nets are the mathematical form of the partial
order unfolding semantics for Petri nets [(6)]; although
more general applications are possible, we will focus here
on unfoldings of safe Petri nets only.

If N1 = (P1,T1,F1) and N2 = (P2,T2,F2) are nets, a
homomorphism is a mapping h : P1 ∪ T1 → P2 ∪ T2 such
that

• h(P1) ⊆ P2 and
• for every t1 ∈ T1, the restriction to •t1 is a bijection

between the set •t1 in N1 and the •h(t1) in N2, and
similarly for t1

• and (h(t1))
•.

A branching process of safe Petri net N = (N ,m0) is a pair
β = (ON , π), where ON = (B ,E ,G) is an occurrence net,
and π is a homomorphism from ON to N such that:

(1) The restriction of π to cut0 is a bijection from cut0
to m0, and

(2) for every e1, e2 ∈ E , if •e1 = •e2 and h(e1) = h(e2)
then e1 = e2.

Branching processes β1 = (ON 1, π1) and β2 = (ON 2, π2)
for N are isomorphic iff there exists a bijective homomor-
phism h : ON 1 → ON 2 such that π1 = π2 ◦ h. The
unique (up to isomorphism) maximal branching process
βU = (ON U , πU ) of N is called the unfolding of N ; see
[(6)] for a canonical algorithm to compute the unfolding
of N .

The partial order semantics for N is given by the event
structure EU = (EU , 6U , #U , πE

U ) where EU is the set of
events in N ’s unfolding βU , and 6U , #U , and πE

U are the
restrictions to EU of the corresponding elements of βU .
By construction, the labeling πE

U for EU is simple in the
above sense: this property simply reflects the fact that no
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Fig. 1. Left: a Petri Net ; right: a prefix of its unfolding,
with events bearing the name of π-image

transition can have more than one concurrent occurrence
if the net is safe.

4. OBSERVABILITY AND DIAGNOSABILITY

Let η : A → O a partial mapping into an observation
alphabet O. For a given labeled prime event structure
E = (E , 6, #, λ), let Eη , {e | η (λ (e)) ↓} be the set of

visible events, and Eε , {e | η (λ (e)) ↑} the set of invisible
events. Using the above construction from the previous
section, we obtain the visible height Hη(•), observable
conciseness Ψη(•) and pre-distance dη(•, •), respectively,
by setting µ ≡ 1Eη .

Observability. To avoid tedious case distinctions, we
assume henceforth that all runs of E are of infinite height;
if necessary, consider any finite-height run extended by an
infinite chain of dummy events.

Definition 4. A labeled ES (E , η) is observable iff

H(c) = ∞ ⇒ Hη(c) = ∞. (14)

Topologies. Obviously, any choice of µ : A → R+
0 and

hence of dµ(•, •) defines a topology Tµ, called the µ-
topology, on Ω. Note that for µ ≡ 1E , we obtain the
restriction - to Ω - of the Scott topology on C; call
this topology T. Further, denote as Ω/µ

the quotient
space under µ◦λ-preserving isomorphism, with associated
quotient topology Tµ. In particular, set O , Tη.

Defining diagnosability. Let φ ∈ Aε be a fault. A
configuration c ∈ C(E) is called faulty iff c ∩ λ−1({φ}) 6=
∅, and healthy otherwise. We can capture faultiness of
configurations using µ ≡ 1Aη , and then letting Hφ(c) ,
Hµφ

(c), etc. A configuration c is faulty iff Hφ(c) > 0.
Again, faultiness is invariant under isomorphism. Denote
as ΩF (CF ) the set of faulty runs (configurations), and
ΩNF the set of healthy runs. We observe that if c is faulty,
so is every extension of c, i.e. every c′ ∈ C(E) such that
c ⊆ c′ is faulty. As a consequence, we have:

Lemma 2. ΩF is open in T.

Note, however, that ΩF is in general neither open nor
closed in O. We can distinguish three diagnosis states,
given by sets of runs:

Fault − definite : FD , {ω ∈ Ω | [ω]η ⊆ ΩF}
NF − definite : ND , {ω ∈ Ω | [ω]η ⊆ ΩNF}

Indefinite : ID , Ω\ (FD ∪ ND) .

It is of course not feasible to verify directly the infinite
runs. In [(4)], a diagnoser system is built over diagnoser
states that correspond to finite observation sequences :
a diagnoser state represents the knowledge that can be
derived about the eventual diagnosis, from a given finite
observation. We shall not proceed here by constructing
a diagnoser, since it is not feasible in general event struc-
tures; its state space would be infinite in general 2 . Rather,
we give directly a definition of eventual diagnosability
notions:

Definition 5. φ is eventually F-diagnosable for (E , η) iff
ΩF is open in O. Dually, φ is eventually N-diagnosable for
(E , η) iff ΩNF is open in O.

This is a notion that does not at all take the time
after fault occurrence into account, contrary to e.g. [(27;
10)]. It generalizes the traditional definition from [(4)]
given in the introduction, and the ones we presented for
Petri nets in [(14; 16; 17)]. The corresponding structural
characterization will be generalized in Theorem 3 below.

Metric characterization. Exploring the topology O
to characterize F-and NF-diagnosability shows us that
both are equivalent, confirming corresponding results (see
[(29)]) in the sequential case:

Theorem 1. If (E , η) is observable, then φ is eventually F-
diagnosable for (E , η) iff for every faulty ωφ ∈ ΩF , there
exists a finite-height prefix cφ of ωφ such that Ωcφ

⊆ ΩF .
Dually, if (E , η) is observable, then φ is eventually NF-
diagnosable for (E , η) iff for every healthy ω0 ∈ ΩNF , there
exists a finite prefix c0 of ω0 such that Ωc0 ⊆ ΩNF .

Proof: Fix ωφ and assume φ is eventually F-diagnosable;
then there exists δ = δ(ωφ) such that

∀ω ∈ ΩNF : dη(ωφ, ω) > δ. (15)

Let k be any integer such that k > log2(δ); then let
cφ be the smallest prefix of ωφ such that Hη(cφ) = k.
By observability, H(c) < +∞, and (15) implies that
Ωcφ

⊆ ΩF . The reverse implication is obvious. Finally,
the proof for the characterization of NF-diagnosability is
exactly analogous. 2

We obtain the following additional result:

Theorem 2. If (E , η) is observable, then: φ is eventually
NF-diagnosable for (E , η) iff it is eventually F-diagnosable
for (E , η).

Proof: It suffices to exploit the symmetry of dη(•, •) in
the proof of Theorem 1. 2

The astute reader will notice that a system may be
diagnosable even without being observable as defined in

2 Note that, for the case of Petri nets with sequential semantics (see
below), the diagnoser construction is carried out in [(22)]
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Def. 4. In the case of non-observability, all runs ω, ω′ for
which Hλ(c) is finite, satisfy dη(ω, ω′) = 0. For φ to be F-
or NF-diagnosable in (E , η), the runs of finite observable
height must either all be faulty or all be healthy. In our
view, this fact illustrates that all interesting diagnosis
problems concern observable systems. - The equivalence
of F-diagnosability and NF-diagnosability had been shown
in [(29)] for the classical approach, using an enumeration
argument that requires sequential semantics.

Structural Characterization. The following generalizes
our results for unfoldings of safe Petri nets presented in
[(14)]. For any two finite configurations c1, c2 ∈ C(E), say
that c2 dominates c1, written c1 ∝ c2, iff Ec1 is a prefix of
Ec2 . Event structure E is quasi-regular 3 iff for all c ∈ C(E)
of finite height, every (infinite) run ω ∈ Ω(Ec) contains
at least one pair (c1, c2) of finite height configurations as
prefixes such that c1 ⊆ c2 and c1 ∝ c2. In particular, all
unfoldings of 1-safe Petri nets are quasi-regular: all infinite
runs of these unfoldings must pass through an infinite
number of finite configurations corresponding to the same
net marking, since the number of reachable markings is
finite. Any pair (c1, c2) of such configurations with c1 ⊆ c2

satisfies c1 ∝ c2 by construction of the unfolding. - To
complete our preparations for Theorem 3, let c ∼η c′ iff
there is an η-isomorphism between c and c′, and c ∼φ c′

iff c and c′ are either both healthy or both faulty.

Theorem 3. If (E , η) is observable and quasi-regular, φ is
eventually F-diagnosable for (E , η) iff for all configurations
c1, c2, c

′
1, c

′
2 ∈ C(E) of finite height such that

c1 ⊆ c′
1 ∧ c1 ∝ c′

1

c2 ⊆ c′
2 ∧ c2 ∝ c′

2,

the following holds:

c1 ∼η c2

∧ c′
1 ∼η c′

2
∧ H(c1) < H(c′

1)

}
⇒ c′

1 ∼φ c′
2. (16)

Proof: To show the “if” part, assume c1, c2, c
′
1, c

′
2 violate

(16), i.e. without loss of generality

(1) c′
2 is faulty, but neither c′

1 nor c1 are,
(2) for i ∈ {1, 2}, c′

i = ci ◦ di, where di ∈ C(Eci) and
d1

1 6= ∅ (d2 may be empty) , and
(3) for i ∈ {1, 2}, c′

i ∼η ci and c′
i ∝ ci.

It follows that there is a configuration d2
i ∈ C(Ec′

i
) that

is an isomorphic copy of di. Iterating this argument, let
c1

i , c′
i = c1 ◦ d1

i and cn+1
i , cn

i ◦ dn+1
i for n ∈ N. Then

by assumption, H(cn
1 ) →n→∞ ∞ (the same need not be

true for the sequence of cn
2 ). We have cn

i ∼η ci for all
n; by construction, all cn

2 are healthy, so φ can not be
F-diagnosable for (E , η) .

For “only if”, suppose φ is not F-diagnosable for (E , η).
Then there exists ω ∈ ΩF such that for any finite-height
prefix c of ω, there is c′ ∈ C(E) that satisfies c′ ∼η c and
Ωc′ ∩ ΩNF 6= ∅. But then one obtains a violation of (16)
from the assumption that E is quasi-regular. 2

3 in reference to the more restrictive regular event structures that
are the object of Thiagarajan’s conjecture [(28)].

What Interleavings do and don’t see. Figure 1 illustrates
that choosing a partial order vs an interleaving semantics
has important consequences. To see this, note that if
the net behaviour is recorded in sequential form, we still
have an event structure semantics; yet the resulting event
structure is degenerate in the sense that co is empty.
Defining metric topology etc. as above, let φ = π−1({v}),
and assume the observation labellings for Eseq and EU both
satisfy dom(η) = π−1({a}). Then:

a) In sequential semantics, the net is not observable: the
run ωs ∈ Ω(Eseq) which consists only of occurrences of
u and v satisfies Hη(ωs) = 0 and Hλ(ωs) = ∞. Fur-
ther, (Eseq , η) is neither F-diagnosable nor NF-diagnosable,
since all runs without an occurrence y are observationally
indiscernable from the run ω′ formed only by occurrences
of a and b; this ∼η class therefore contains both faulty and
healthy runs.

b) However, with the same assumptions, (EU , η) is both
observable and diagnosable; in fact, all runs ω ∈ Ω(EU )
are F-definite.

This example shows that, while our framework allows to
choose a variety of different semantics, there are huge dif-
ferences in whether or not a given Petri net is diagnosable,
depending on the semantics.

5. CONCLUSION

Comparison with the classical approach. The defini-
tion for F-diagnosability given in Sampath, Lafortune et
al [(27)] requires existence of a uniform bound on the
“time” after occurrence of the fault before diagnosis.can
be adapted to our framework - using a sequential event
structure E obtained from a finite automaton - as follows:
Let

C∗
φ , {c ∈ CF | ∀c. ∈ C : c′ ⊆ c ⇒ c′ 6∈ CF}

be the set of minimal faulty configurations. φ is F-
diagnosable for (E , η) iff for every cφ ∈ C∗

φ, there exists

K = K (c) > 0 such that the following holds: If c ∈ C(E)
is such that cφ is η-isomorphic to a prefix of c, and the
1-height of c is bounded by K plus the height of cφ, then
c is also faulty:

Ψ1(cφ) + K 6 Ψ1(c) ⇒ c ∈ CF . (17)

then c is also faulty. Note that this definition uses the
1-height, not observable height; under observability and
for finite state systems, both are equivalent in the sense
that the topologies obtained are the same; plugging Ψη(•)
into (17) instead of Ψ1(•) will define the same systems as
diagnosable. in fact, it suffices to adjust the value of K
to the maximum of K and the number of states of the
system. This definition had inspired the analogous one we
have given in [(14)] for Petri nets, which are also finite state
systems and therefore allow for the same uniform bound.
In our setting here, which is more general and adequate
for capturing infinite state systems as well, it is no longer
feasible to use Ψ1(•) instead of Ψη(•); moreover, we believe
it is preferable to base the definition of diagnosability on an
accessible entity, namely the stream of observations, rather
than unobservable system behaviour. The verification of
diagnosability has been shown PSPACE-complete for
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the sequential case in [(2)]. This carries over to the
nonsequential case since eventual diagnosability for safe
Petri nets is in PSPACE; in fact, it suffices in the
worst case to compute U1E

τ for τ obtained as the number
K of states of the net multiplied by the number of A-
isomorphism classes among the maximal configurations of
U1E

K (the proofs follows similar lines as a result in [(15)]).

Outlook: The topological framework presented here has
the advantage of allowing for unified proofs, based on the
properties of event structures regardless of the semantics
that generates them. It is applicable to any kind of
system model that has an event structure semantics,
and potentially useful for capturing extensions such as
incomplete models, or loss of alarm. Future work will
address such extensions.
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