
Computing finite variants for subterm
convergent rewrite systems ?

Ştefan Ciobâcă

LSV, ENS Cachan & CNRS

Abstract. Driven by an application in the verification of security pro-
tocols, we introduce the strong finite variant property, an extention of
the finite variant property defined in [1] and we show that subterm con-
vergent rewrite systems enjoy the strong finite variant property modulo
the empty equational theory.

We argue that the strong finite variant property is more natural and
more useful in practice than the finite variant property. We also compare
the two properties and we provide a prototype implementation of an
algorithm that computes a finite strongly complete set of variants for
any term t with respect to a subterm convergent rewrite system.

1 Introduction

Given a term (e.g. t = dec(x, y)) and a convergent term rewriting system (e.g.
R = {dec(enc(x, y), y)→ x}), we are interested in having a convenient symbolic
representation of all normal forms tσ↓ of instantiations tσ of the term t.

In the above case, the normal form of tσ will fall into one of the following
two cases:

1. either σ(x) =R enc(s, σ(y)) for some term s, in which case tσ↓ = s↓
2. or σ(x) 6=R enc(s, σ(y)) for any term s, in which case tσ↓ = t(σ↓) (where
σ↓ denotes the normal form of σ).

Informally, rewrite systems for which instantiations of any term t can be
classified into a finite number of categories such as above are said to have the
finite variant property.

The finite variant property is useful in symbolic analysis of security proto-
cols [1] and in solving unification and disunification problems [1,2].

Contributions. We work with subterm convergent rewrite systems, a class of
rewrite systems relevant to security protocol analysis [3]. We show that these
rewrite systems have the finite variant property and a slightly stronger property
which we call the strong finite variant property. The proofs are constructive
and we implement the algorithm for computing a strongly complete finite set of
variants of a term in the tool SubVariant.

? This work has been partly supported by the ANR SeSur AVOTÉ.



Related work. The finite variant property was first introduced in [1]. In [4],
sufficient conditions and necessary conditions for the finite variant property are
introduced. Variant narrowing [2] is a complete procedure for equational unifica-
tion inspired by the finite variant property. A modular proof method for termi-
nation based on the notion of variant is proposed in [5]. Several techniques [6,7,8]
for verifying security protocols make use of the finite variant property as a sub-
step in the algorithm.

2 Preliminaries

We consider standard notations for a term algebra: a finite signature F , each
function symbol f ∈ F having an arity ar(f) ∈ N, a countably infinite set of X of
variables, the set T (X0) denoting all terms bulid inductively from the variables
X0 ⊆ X by applying function symbols from F . Given a term t, vars(t) is the set
of variables appearing in t.

Substitutions are defined as usual, with tσ denoting the term t after applica-
tion of the substitution σ. The identity substitution is denoted id. The restriction
of a substitution σ to a set X of variables is denoted σ[X].

We define positions as usual, with pos(t) denoting the positions of a term
t ∈ T (X ). We denote the subterm of t at position p ∈ pos(t) by t|p. The term t
with position p ∈ pos(t) instantiated to s is denoted t[s]p. If t ∈ T (X ), we will
denote by st(t) the set of subterms of t. If s ∈ st(t), we write s v t. By mgu(s, t)
we denote the most general unifier of two unifiable terms s and t.

If R is a rewrite system, we use →R for the one-step rewrite relation defined
by R and →∗R for the transitive and reflexive closure of →R. If R is convergent,
we will denote by t↓R the normal form of t. We say that two terms s and t are
equal modulo R, and we write s =R t, if s↓ = t↓.

We are interested in a particular class of convergent term rewriting systems:

Definition 1 (subterm convergent rewrite system).
A rewrite system R is called subterm convergent if it is convergent and if

for all rewrite rules l→ r of R we have:

1. either r v l (we then call l→ r a subterm rule)
2. or vars(r) = ∅ and r = r↓R (we then call l→ r an extended rule)

The first type of rewrite rule, which justifies the name of these rewrite sys-
tems, was introduced in [3]. Subsequently, in [9], the extended rules were intro-
duced. We treat here both types of rules.

3 The finite variant property

For any convergent term rewriting systemR and any term t, we define the notion
of complete set of variants of t with respect to R:



Definition 2. A set of substitutions {σ1, . . . , σn} is a complete set of variants
of a term t (with respect to R) if for any substitution ω, we have that (tω)↓ =
(tσi)↓τ for some 1 ≤ i ≤ n and some substitution τ .

Note that the difficulty in the above definition is that the term (tσi)↓τ is
not normalized after the application of the substitution τ to the term (tσi)↓.
Therefore all the rewrite steps to reach a normal form from tω must be captured
by some substitution σi as it is demonstrated bellow in Example 1. This means
in particular that the set {id} consisting of the identity substitution is in general
not a finite complete set of variants.

A convergent term rewriting system R is said to have the finite variant prop-
erty if any term t admits a finite complete set of unifiers with respect to the
rewrite system R.

Example 1. Let t = dec(x, y) and R = {dec(enc(x, y), y)→ x}. Then we have
that σ1 = id (the identity substitution) and σ2 = {x 7→ enc(z, y)} form a
complete set of variants of t.

Indeed, for any substitution ω in normal form, we have that dec(x, y)ω↓ =
dec(x, y)ω (if the decryption does not succeed at the head) or dec(x, y)ω↓ = t′

if the decryption succeeds and therefore xω = enc(t′, yω).

The following example illustrates that a finite complete set of variants does
not always exist.

Example 2. We consider the term rewriting system R = {f(g(x)) → g(f(x))}
and the term t = f(x). By analyzing the substitutions ωi = {x 7→ gi(y)} (i ∈ N)
and the normal forms tωi↓ = gi(f(y)) (i ∈ N), it can be proven that any complete
set of variants of t will contain all of the substitutions σi = {x 7→ gi(y)} for i ∈ N
and up to renaming of the variable y. Therefore this term rewriting system does
not have the finite variant property.

Rewrite systems for which any term t has a finite complete set of variants
are said to have the finite variant property.

4 The strong finite variant property

We now define what is a strongly complete set of variants of a term t with respect
to a convergent term rewriting system R:

Definition 3. A set of substitutions σ1, . . . , σn is a strongly complete set of
variants of t (with respect to the rewrite system R) if for any substitution ω,
we have that ω[X]↓ = (σi↓τ)[X]1 for some substitution τ and some σi such that
(tω)↓ = (tσi)↓τ , where X = vars(t) is the set of variables appearing in t.

1 Recall that the notation ω[X] denotes the restriction of the substitution ω to the
variables in X.



Note that in the above definition the condition ω[X]↓ = (σi↓τ)[X] does not in
general imply (tω)↓ = (tσi)↓τ : take R = {dec(enc(x, y), y)→ x}, t = dec(x, y),
ω = enc(z, y), σi = id (the identity substitution). We have that τ = ω is such
that ω[X]↓ = (σi↓τ)[X] = τ [X] but (tω)↓ = z 6= (tσi)↓τ = dec(enc(z, y), y).

A convergent term rewriting system R is said to have the strong variant
property if any term t admits a finite strongly complete set of variants.

As with complete sets of variants, a finite strongly complete set of variants
does not exist in general.

The main difference is that in the strong version, we ask that the substitutions
σi match the normal forms of all variables appearing in t. The following example
illustrates this idea and shows that the notion of complete set of variants and
the notion of strongly complete set of variants do not coincide.

Example 3. We consider the (subterm convergent) term rewriting system

R = {h(f(x), y)→ y, h(g(x), y)→ y}

and the term t = h(x, y).

The S = {σ1 = id, σ2 = {x 7→ f(z)} is a complete finite set of variants of t.
Note that S does not contain the substitution σ3 = {x 7→ g(z)}.

However, S is not a strongly complete set of variants of t: if we consider the
substitution ω = {x→ g(a)} for some constant a, we have that:

1. ω↓ = σ1τ1 (with τ1 = {x 7→ g(a)}), but tω↓ 6= tσ1↓τ1.

2. ω↓ 6= σ2τ2 for any substitution τ2.

However, the set S ∪ {σ3} is a strongly complete set of variants of t.

One application of the finite variant property is in solving unification prob-

lems s
?

=R t modulo the rewrite system by treating the equality sign as a free
function symbol and then finding all variants of the equation. In this context of
equational unification, we argue that strongly complete sets of variants are more
natural:

Example 4. Continuing Example 3, if only complete sets of variants (and not
strongly complete sets) are used for equational unification, some unifiers are
missed. The equation

h(z, y)
?

=R y

has S (defined in Example 3) as a complete set of variants. Starting from S, only
the unifier {z 7→ f(x)} is found. However, by considering the strongly complete
set of variants S ∪ {σ3}, the unifier {z 7→ g(x)} is found as well.

Another application is the verification of security protocols where strongly
complete set of variants can be used to get rid of the equational theory.



4.1 Strict containment

It is easy to see that a term rewriting system having the strong finite variant
property also has the finite variant property. The reverse is not true: term rewrit-
ing systems having the finite variant property need not have the strong finite
variant property. Let us consider the signature F = {f/1, g/1, c0/0, c1/0, . . .}
and the following convergent term rewriting system

R = {f(g(x))→ f(x)}.

It is easy to observe that any term t has a normal form which is either
t↓ = gn(fm(x)) or t↓ = gn(fm(ck)) for some variable x and some integers n,m, k.

The identity substitution id forms by itself a complete set of variants of any
term t built over the signature F .

However, R does not have the strong finite variant property. This is illus-
trated by the following example.

Example 5. Let t = f(x). By analyzing the instantiations tωi where the sub-
stitutions ωi are defined ωi = {x 7→ gi(y)} (i ∈ N), it can be shown that
σi[{x}] = {x 7→ gi(z)} (i ∈ N) must be contained in any strongly complete set of
variants (up to renaming of z). Therefore any strongly complete set of variants
of t is infinite.

4.2 In the presence of free symbols

The above example depends on the signature F . Indeed, in the presence of a
free symbol of arity greater than or equal to 2, we have that the two notions
coincide since a finite complete set of variants of the term tuple(t, x1, . . . , xn)
(where vars(t) = {x1, . . . , xn} and where tuple is a free function symbol) is a
strongly complete set of variants of the term t.

Note that the free symbol tuple of arity n + 1 can be encoded by a free
symbol of arity ≥ 2 by replacing, for example, the term tuple(t1, . . . , tk) with
f(t1, f(t2, f(. . . , f(tk−1, tk)))) in case f is a free binary symbol.

We have shown that the notions of strong finite variant property and finite
variant property coincide when the signature contains a free function symbol of
arity ≥ 2. This follows because a complete set of variants of tuple(t, x1, . . . , xn) is
a strongly complete set of variants of t. However note that even in the presence of
such a free symbol, a complete set of variants of t is not always strongly complete
for t (see Example 3).

5 Algorithm for a (strongly) complete set of finite
variants

We show that subterm convergent term rewriting systems have the strong finite
variant property by giving an algorithm that computes a finite strongly complete
set of variants for a term t and for a subterm convergent rewrite system R.



In the following we denote by p↑ the set of all positions that are descendants
of p (including p itself): p↑ = {q | q = p · p′ for some p′}.

The algorithm we present for computing a strongly complete finite set of
variants is based on a refinement of narrowing. Each narrowing step (denoted
hereafter ↪→) works on a configuration (t,P, σ) consisting of a term t, a set of
positions P of t at which we will apply narrowing and a substitution σ in which
a variant will be accumulated.

p ∈ P
l→ r ∈ R vars({l, r}) ∩ vars(t) = ∅
θ = mgu(l, t|p)

(t,P, σ) ↪→ (tθ[rθ]p,P \ p↑, σ ◦ θ)

Fig. 1. Narrowing step

To compute a complete finite set of variants of some term t, we will begin
with the initial configuration C0 = (t, posinit(t), id) where posinit(t) denotes all
non-variable positions of t and non-deterministically apply narrowing steps.

Each narrowing step non-deterministically chooses a rewrite rule l → r and
a position p from P where narrowing is performed. The choice of P = posinit(t)
in the initial configuration is a way to enforce the basic restriction, that is,
narrowing is only performed strictly inside t (and not inside the variables of t).
Furthermore, if we have performed narrowing at a position p and because of the
specificity of subterm convergent rewrite systems, there is no need to consider
this position or any of its descendants anymore and therefore they are removed
from P. At each narrowing step, the variant of the initial term is accumulated
in σ. If by ↪→∗ we denote the reflexive-transitive closure of ↪→, we have that:

Theorem 1 (Correctness).
If R is a subterm convergent rewrite system, then the set

Σ = {σ | (t, posinit(t), id) ↪→∗ (t′,P ′, σ)}

is a finite complete set of variants of t with respect to R.

A subterm convergent rewrite system remains subterm convergent by the
addition of a free function symbol tuple. Therefore, to compute a finite strongly
complete set of variants of a term t it is sufficient to compute a finite complete
set of variants of the term tuple(t, x1, . . . xn), where vars(t) = {x1, . . . , xn}.

6 Conclusion and further work

We have shown that subterm convergent rewrite systems have the strong fi-
nite variant property and we have implemented our algorithm in Section 5 in



the prototype tool SubVariant (available at http://www.lsv.ens-cachan.fr/

~ciobaca/subvariant).
We are currently using this result to obtain a decision procedure for verifying

equivalences between cryptographic processes. Another possible direction for
future work is to find algorithms for computing strongly complete set of variants
modulo associative-commutative function symbols. An extended version of this
paper, including the proofs missing due to space constraints is available as a
research report [10].

7 Acknowledgements

I would like to thank Steve Kremer, Stéphanie Delaune and the anonymous
reviewers for interesting comments regarding this work.

References

1. H. Comon-Lundh and S. Delaune, “The finite variant property: How to get rid
of some algebraic properties,” in Proceedings of the 16th International Conference
on Rewriting Techniques and Applications (RTA’05), ser. Lecture Notes in
Computer Science, J. Giesl, Ed., vol. 3467. Nara, Japan: Springer, Apr. 2005,
pp. 294–307. [Online]. Available: http://www.lsv.ens-cachan.fr/Publis/PAPERS/
PDF/rta05-CD.pdf

2. S. Escobar, J. Meseguer, and R. Sasse, “Variant narrowing and equational
unification,” Electron. Notes Theor. Comput. Sci., vol. 238, pp. 103–119, June
2009. [Online]. Available: http://portal.acm.org/citation.cfm?id=1556507.1556661

3. M. Abadi and V. Cortier, “Deciding knowledge in security protocols under equa-
tional theories,” in ICALP, 2004, pp. 46–58.

4. S. Escobar, J. Meseguer, and R. Sasse, “Effectively checking the finite variant
property,” in RTA, 2008, pp. 79–93.

5. F. Durán, S. Lucas, and J. Meseguer, “Termination modulo combinations of equa-
tional theories,” in FroCos, 2009, pp. 246–262.

6. S. Bursuc and H. Comon-Lundh, “Protocol security and algebraic properties: De-
cision results for a bounded number of sessions,” in RTA, 2009, pp. 133–147.

7. S. Bursuc, H. Comon-Lundh, and S. Delaune, “Deducibility constraints, equational
theory and electronic money,” in Rewriting, Computation and Proof, 2007, pp. 196–
212.

8. Y. Chevalier and M. Kourjieh, “On the decidability of (ground) reachability prob-
lems for cryptographic protocols (extended version),” CoRR, vol. abs/0906.1199,
2009.

9. M. Baudet, V. Cortier, and S. Delaune, “YAPA: A generic tool for computing
intruder knowledge,” in Proceedings of the 20th International Conference on
Rewriting Techniques and Applications (RTA’09), ser. Lecture Notes in Computer
Science, R. Treinen, Ed., vol. 5595. Braśılia, Brazil: Springer, Jun.-Jul. 2009,
pp. 148–163. [Online]. Available: http://www.lsv.ens-cachan.fr/Publis/PAPERS/
PDF/BCD-rta09.pdf

10. Ş. Ciobâcă, “Computing finite variants for subterm convergent rewrite
systems,” Laboratoire Spécification et Vérification, ENS Cachan, France,
Research Report LSV-11-06, Apr. 2011, 16 pages. [Online]. Available:
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS LSV/PDF/rr-lsv-2011-06.pdf

http://www.lsv.ens-cachan.fr/~ciobaca/subvariant
http://www.lsv.ens-cachan.fr/~ciobaca/subvariant
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/rta05-CD.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/rta05-CD.pdf
http://portal.acm.org/citation.cfm?id=1556507.1556661
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BCD-rta09.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BCD-rta09.pdf
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/ rr-lsv-2011-06.pdf

	Computing finite variants for subterm convergent rewrite systems 

