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Abstract

Parallel key search or meet-in-the-middle attacks have been shown to be effective against
a number of security APIs, designed to regulate access to tamper resistant hardware devices.
However, they are outside the scope of standard Dolev-Yao style modelling techniques. In this
paper, we present an extension to the Dolev-Yao model that allows these kinds of attacks to
be detected. It is work in progress: we need to introduce quantitative aspects to the analysis,
and we show why existing quantitative extensions to the Dolev-Yao calculus are inadequate for
this.

1 Introduction

The purpose of a security application program interface (API) is to allow untrusted code to
access sensitive resources in a secure way. Tamper-proof hardware security modules (HSMs),
for example, have security APIs which control access to the cryptoprocessor and memory inside
the module. This allows the API to manage access to cryptographic keys. HSMs are deployed
in security critical environments such as the cash machine network, where they are used to
protect customers PINs and other sensitive data. They typically consist of a cryptoprocessor
and a small amount of memory inside a tamper-proof enclosure. They are designed so that
should an intruder open the casing or drill into it to insert probes, the memory will auto-erase
in a matter of nanoseconds. In a typical ATM network application, all encryption, decryption
and verification of PINs takes place inside the HSM. Security APIs typically manage keys by
keeping a secret master key inside the device. This is used to encrypt all the ‘working keys’
used for operational functions, so that they can be securely stored outside the device.

One technique used by attackers attempting to breach security is to generate a large number
of different working keys of a particular type, and to obtain some known value encrypted under
all these keys. This can often be achieved by using a key test command provided by the API.
The attacker can then encrypt this known value under random values himself until he gets a
match with one of his generated keys. Note that this is far less costly than brute-force cracking
one particular key. The result is a pair consisting of a key, and that key encrypted under the
master key. On its own this pair is useless, but sometimes it can be used to obtain the value of
other keys, such as the security-critical PIN derivation keys used to obtain customer PINs from
account numbers. However, examining an API to determine whether such an attack is possible
is not an easy task. At first sight it may appear that only unimportant keys can be cracked in
this way. The manual discovery of an attack like the one given in [3] takes considerable work.

A promising approach to automating security API analysis involves adapting Dolev-Yao style
protocol analysis techniques [7], where details of cryptographic algorithms used are abstracted
away, and a logical model is constructed, with rules describing the operations of the intruder
and protocol. This can be adapted quite naturally to API analysis by considering the API to be
a set of 2-party protocols, each describing an exchange between the secure hardware module and
the host machine [8, 9, 6]. However, previous work has not taken parallel key search attacks
into account. The aim of the work in this paper is to address this problem, by proposing
a formal model that allows operations corresponding to computationally feasible parallel key
search attacks to be incorporated into a Dolev-Yao style model for security analysis of the API.
When combined with the usual operations of the Dolev-Yao intruder, it should enable us to
determine whether a parallel key search attack can be used to obtain a security-critical key.
Our formalism is based on the one given in [4], where key conjuring, another ‘non-Dolev-Yao’

1



operation, was incorporated into an API model. Both tricks may be necessary for some known
attacks, e.g. [3].

This is a ‘work in progress paper’: in order for our formalism to distinguish between feasible
and infeasible attacks, we will need to introduce quantitative aspects into the model, which
should reflect results in computational cryptography. We provide only a sketch of our treatment
here.

2 Notation

Our (mostly standard) notation for API models, including the mechanism for modelling key
conjuring described in full in [4] and [5]. We summarise it here.

Cryptographic primitives are represented by functional symbols. More specifically, we con-
sider a signature Σ which consists of an infinite number of constants including a special con-
stant 0 and three non constant symbols { } (encryption), dec (decryption) and ⊕ (XORing) of
arity 2. We also assume an infinite set of variables X . The set of terms, denoted by T (Σ,X ),
is defined inductively by

T ::= terms
x variable x

| f(T1, . . . , Tn) function application

where f ranges over the functions of Σ and n matches the arity of f . For instance, the term {m}k

is intended to represent the message m encrypted with the key k (using symmetric encryption)
whereas the term m1 ⊕m2 represents the message m1 XORed with the message m2. The
constants may represent control vectors or keys for example.

We equip the signature Σ with an equational theory EAPI that models the algebraic properties
of our operators:

EAPI :=

8<:
{dec(x, y)}y = x x⊕ 0 = x
dec({x}y, y) = x x⊕ x = 0

x⊕ (y ⊕ z) = (x⊕ y)⊕ z x⊕ y = y ⊕ x

It defines a congruence relation that is closed under substitutions of terms for variables.
We rely on a sort system for terms. Terms which respect this sort-system are said to be

well-typed. It includes a set of base type Base and a set of ciphertext type Cipher. We have
variables and constants of both types. Moreover we assume that our function symbols have the
following type:

⊕ : Base × Base → Base
{ } : Base × Base → Cipher
dec : Cipher × Base → Base

A pure term t is a well-typed term whose only encryption symbol (when such a symbol
exists) is at its root position. We say that a term t is headed with f if its root symbol is f . The
set of variables occurring in t is denoted vars(t). We denote by st(t) the set of subterms of t.
This notation is extended as expected to set of terms. A term is ground if it has no variable.

In the IBM 4758 CCA API, as in many others, symmetric keys are subject to parity checking.
These checks are represented in our formalism by occurrences of the predicate symbols chkEven
and chkOdd, each having a term as argument. Intuitively, chkOdd(t) means that t has an odd
parity. Among the constants in Σ, some have a parity. By default (no explicit parity given to
a constant), we will assume that such a constant has no parity. Moreover, we have some rules
to infer parity from known facts, which are:

chkEven(x1), chkEven(x2) → chkEven(x1 ⊕ x2)
chkOdd(x1), chkOdd(x2) → chkEven(x1 ⊕ x2)
chkEven(x1), chkOdd(x2) → chkOdd(x1 ⊕ x2)

Intruder capabilities and the protocol behaviour are described using rules as defined below.

Definition 1 (API rule) An API rule is a rule of the form chk1(u1), . . . , chkk(uk), x1, . . . , xn →
t, where

• x1, . . . , xn are variables,
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• t is a term such that vars(t) ⊆ {x1, . . . , xn},
• u1, . . . , uk are terms of Base type not headed with ⊕,

• chki ∈ {chkOdd, chkEven}, 1 ≤ i ≤ k.

We also assume that the rule only involves pure terms.

We now describe key conjuring : suppose an intruder wants to use a particular command
in an attack, but does not have access to an appropriate key. For example, suppose he has no
data keys (terms of the form {d1}km⊕data), but wants to use the Encrypt Data command. In an
implicit decryption formalism, the command is defined like this

x, {xkey}km⊕data → {x}xkey

If the intruder has no data keys, he can just guess values for the encrypted data key. This is
called key conjuring. In [4], we introduce a transformation that detects all possible key conjuring
rules. Key conjuring rules are of the following form:

x1, . . . , xk
new n→ t, n

chk1(u1), . . . , chkk(uk) chk′1(v1), [chk′2(n)]

where our n comes from a set of nonces, a subset of the set of constants that does not contain the
special constant 0. We assume an infinite number of nonces of both types. A nonce represents
a fresh value that has been never used before. As an example, the key conjuring rule derived
from the Encrypt Data rule above looks like

x
new n→ {x}dec(n,km⊕data), n, chkOdd(dec(n, km⊕ data))

The parity check on the right indicates that the intruder learns that decrypting n under key
km⊕ data gives a valid data key (i.e., a term of odd parity).

3 Parallel Key Search

A parallel key search attack proceeds in three phases: first, the intruder generates a set of
encrypted keys of a particular type. Then, he obtains a set of test patterns, e.g. a known value
encrypted under each key. Then, he generates test patterns of his own off-line until he gets a
match, revealing the value of an encrypted key.

We observe that every rule that introduces a fresh nonce can be used an arbitrary number
of times to produce a stream of fresh, random values. We therefore model key generation rules
in a similar way to key conjuring rules, i.e. they are rules of the form:

x1, . . . , xn
new n→ t[x1, . . . , xn, n]

chk1(u1), . . . , chkk(uk) chk′1(v1), [chk′2(n)]

The chki(ui)s on the left indicate the set of parity predicates that must hold for the rule
to apply. The generated key t[x1, . . . , xn, n] contains some new fresh material n. The chki(vi)s
indicate new parity facts which the intruder learns by applying the rule.

We have to account for the intruder generating random data for use in offline operations.
This is covered by the rule

new n→ n
[chkEven(n); chkOdd(n)]

Note that the intruder can generate fresh terms of either odd or even parity. We now define
a fingerprint function. A fingerprint function is a bijection over bitstrings. In the context of
our definition of APIs, we can define fingerprint functions recursively as follows:

Definition 2 (Fingerprint function)

1. f : x → x is a fingerprint function.

2. If c is a constant and g() a fingerprint function, then f : x → g(x) ⊕ c is a fingerprint
function.

3. If c is a constant and g() a fingerprint function, then f : x → {g(x)}c is a fingerprint
function.
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4. If c is a constant and g() a fingerprint function, then f : x → {c}g(x) is a fingerprint
function.

5. If c is a constant and g() a fingerprint function, then f : x → dec(c, g(x)) is a fingerprint
function.

6. If c is a constant and g() a fingerprint function, then f : x → dec(g(x), c) is a fingerprint
function.

Parallel key search is modelled by a collision rule: for all fingerprint functions f, g:

n1, f(n1), f(g(n2)) → g(n2)

The intuitive meaning of this rule is: ‘if the intruder can generate a stream of values n1

with associated fingerprints f(n1), and he can also generate a stream f(g(n2)), then by parallel
key search he can generate a stream g(n2).’ Note that the rule as written does not attempt to
account for the computational effort required to produce the stream of g(n2)s. This will come
later (see section 3.2). Note further that this rule is higher order: it quantifies over functions.
An implementation would have to either support second order unification, or have some pre-
chosen list of commonly used fingerprint functions (such as encrypting a string of 0s, the most
commonly used ’key test’ operation).

3.1 An Example Attack

We now give an example of a parallel key search attack in our formalism. This attack was
implemented using FPGA hardware by Clayton and Bond and used to extract the keys from
a working IBM 4758, [3]. Here, we give steps 1–6 of the attack, first in italics, literatim as
described by Clayton1, then as written in our model:

Step 1: Create a single DES key part of unknown value.
Step 2: Create a single DES key part of value 0.
Step 3: XOR these two key parts together to create a DES data key
Step 4: Encrypt zero [..] with the data key and display the encrypted value.
Step 5: Repeat steps 2 to 4 for values 1..16383
These five steps are accomplished using the key conjuring version of Key Part Import 3 (see

[4]), using a random nonce stream n1 of even parity values as the key part, and then using the
encrypt data command to obtain the check values:

new n1→ n1

chkEven(n1)

Key Part Import 3:

n1, data
new n2→ n2, {dec(n2, km⊕ kp⊕ data)⊕ n1}km⊕data

chkEven(data) chkOdd(dec(n2, km⊕ kp⊕ xtype))
chkEven(n1)

Encrypt Data:
0, {dec(n2, km⊕ kp⊕ data)⊕ n1}km⊕data → {0}dec(n2,km⊕kp⊕data)⊕n1

chkOdd(dec({dec(n2, km⊕ kp⊕ data)⊕ n1}km⊕data, km⊕ data))

This set of tasks less than 10 minutes to run, and at the end of them we have 16384 different
encrypted versions of zero. We can then use our FPGA design to crack these values in parallel.
Hence we have determined the ”unknown” value from Step 1.

This is modelled by the following rules:

new n3→ n3

chkOdd(n3)

n3, n1 → n3 ⊕ n1

0, n3 → {0}n3

Collision rule:
n3, {0}n3⊕n1 , {0}dec(n2,km⊕kp⊕data)⊕n1

→ dec(n2, km⊕ kp⊕ data)

1See http://www.cl.cam.ac.uk/~rnc1/descrack
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Step 6: Combine the unknown value from Step 1 with a known value so as to create a data
key. We now know the value of a data key within the IBM 4758.

new n4→ n4

chkEven(n4)

Key Part Import 3 :
chkEven(n4), n2, n4, data → {dec(n2, km⊕ kp⊕ data)⊕ n4}km⊕xtype

chkOdd(dec(n2, km⊕ kp⊕ xtype))
chkEven(data)

n4, dec(n2, km⊕ kp⊕ xtype) → dec(n2, km⊕ kp⊕ data)⊕ n4

3.2 Quantitative Analysis

If considered as a regular Dolev-Yao rule, the collision rule is far too powerful. For our model
to be realistic, we must introduce a quantitative element to the model, taking account of the
computational cost of particular operations. Previous efforts to introduce quantitative modelling
to the Dolev-Yao model have assigned concrete costs, [2], or probabilities, [1], to each rule. This
is insufficient for modelling attacks involving parallel key search, since the cost of using the rule
will vary depending on the cost of obtaining the values n1, f(n1), and f(n2). Instead, we require
a calculus that assigns a cost to each term in the intruder’s knowledge. Each API or intruder
rule, with k terms on the left hand side, has associated with it a cost function C : Nk → N,
representing the cost of obtaining the term on the right hand side of a rule as a function of the
costs of the terms on the left. The cost functions should be paramaterised in terms of offline work
and access to the API using a similar treatment to the ‘concrete security’ analysis of symmetric
key encryption schemes, where a symmetric encryption oracle is considered. Developing our
quantitative analysis is a priority in our ongoing work on this topic.
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