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Abstract

We define and study a new approach to the implementability of timed
automata, where the semantics is perturbed by imprecisions and finite
frequency of the hardware. In order to circumvent these effects, we in-
troduce parametric shrinking of clock constraints, which corresponds to
tightening these. We propose symbolic procedures to decide the existence
of (and then compute) parameters under which the shrunk version of a
given timed automaton is non-blocking and can time-abstract simulate
the exact semantics. We then define an implementation semantics for
timed automata with a digital clock and positive reaction times, and show
that for shrinkable timed automata, non-blockingness and time-abstract
simulation are preserved in implementation.

1 Introduction

Timed automata [AD94] are a well-established model in real-time system design.
They offer an automata-theoretic framework to design, verify and synthesize
systems with timing constraints. The theory behind timed automata has been
extensively studied and mature model-checking tools are available. However, the
formalism of timed automata is mainly intended to be used to describe abstract
designs, so it is based on several idealistic assumptions. For instance, actions are
assumed to be instantaneous, and the delays can be infinitely precise; in fact,
one assumes perfectly continuous clocks and perfect measure of time. These
properties are clearly not preserved in a hardware implementation of a system
design.

The issue of the adequacy of the semantics of timed automata has been
addressed in several works. It is known that timed automata, in general, are not
robust to the relaxation of the idealistic assumptions mentioned above: guard
errors or clock drifts, however small they may be, may yield extra qualitative
behaviors (such as newly reachable locations) in some timed automata [Pur00,
DDMR08]; whereas requiring positive reaction times can also disable some desired
behaviors [CHR02, ACS10]. We provide examples of such timed automata in
Section 3. Therefore, given a target implementation platform, one needs to make
sure that the verification results obtained using timed automata carry over to
the implementation.

∗A preliminary version of this paper appeared in [SBM11, San13]
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Robust model-checking In [Pur00, DDMR08], the semantics of timed au-
tomata was considered under guard enlargement, and algorithms were given to
check the robustness of timed automata against this kind of perturbations. Guard
enlargement models imprecisions in the semantics by syntactically relaxing all
guards, thus turning clock constraints of the form x ∈ [a, b] into x ∈ [a−∆, b+∆]
for some positive parameter ∆. Robust model checking, which consists in deciding
the existence of a positive value for ∆ under which a property is satisfied, has
been proven decidable for safety properties [Pur00, DDMR08], and for richer
linear-time properties [BMR06, BMR08, BMS11, San11]. Properties verified in
this framework are said to robustly hold, since they hold even if all the timing
measures are subject to some bounded error. Such a robustness check allows to
relax the idealistic assumptions of the original semantics of timed automata.

The guard enlargement formalism can also offer correct implementations in
a concrete sense, as follows. In [DDR05], a concrete semantics was given, the
so-called program semantics, for a simple model of microprocessor executing a
given timed automaton, taking into account small reaction times, and imprecise
measure of time. It was proven that enlarging the guards of a timed automaton
yields an overapproximation (in the sense of timed simulation) of the program
semantics. Thus, studying the enlargement, say, by robust model-checking,
is one way to ensure the correctness of an implementation modelled by the
program semantics. Clearly, this method is valid for properties preserved by
timed simulation; these include safety and linear-time properties mentioned
above.

Contributions In this work, we consider an alternative way to obtain robust
timed automata models: To circumvent the effect of the clock imprecisions, given
a timed automaton A, we construct timed automaton B by shrinking the guards
of A, which is the opposite to enlargement, so that all behaviors of B under
enlargement are included in those of A. For instance, a given guard x ∈ [a, b] is
rewritten in B as x ∈ [a+δ, b−δ], so that when B is subject to guard enlargement
by ∆, this guard becomes

x ∈ [a+ δ −∆, b− δ + ∆] ⊆ [a, b],

provided that δ > ∆. Thus, the timed automaton B constructed in this manner
is, even under guard enlargement, a refinement1 of the abstract model A (under
the assumption that ∆ ≤ δ). This also means that all timing requirements
satisfied by A, such as critical deadlines, or bounded response properties are
strictly respected by B. Hence, this method of obtaining implementations has
the advantages of being simple and of introducing no behaviors.

Shrinking the guards may however remove interesting behaviors from the
model and even introduce deadlocks. We will in fact see in Example 3.4 that this
phenomenon may occur even in very simple real-time systems. In this paper, we
are interested in the preservation of the desired behaviors in B, in the following
sense. A timed automaton A is said non-blocking-shrinkable if it can be shrunk
into a timed automaton B that is non-blocking. It is simulation-shrinkable with
respect to some automaton F if some shrinking B can time-abstract simulate F .
Thus, if both conditions hold, not only B is a refinement of A, but it also still
contains some behavior F , and is non-blocking. Notice that if we choose F as the

1We employ this term to mean that there is a timed-simulation between B and A.
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region graph of A, then the shrinkability requires that B should time-abstract
simulate A.

We do not restrict to one single shrinking parameter, but to one parameter
per atomic clock constraint in the automaton. We give algorithms to decide
the existence of these shrinking parameters, and compute the least parameters
when they exist. We show that non-blocking-shrinkability can be checked and
computed in polynomial space, simulation-shrinkbility in pseudo-polynomial
time. Thus, shrinkability w.r.t. the region graph can be checked in exponential
time. Strong shrinkability, which requires both conditions to hold for a same
shrinking can also be checked in polynomial space and in time polynomial
in F . Our algorithms are symbolic and manipulate a parameterized extension of
difference bound matrices.

As a second result, we show that shrinkable timed automata are imple-
mentable in the following sense. We define an implementation semantics of timed
automata corresponding to the execution by a digital system (with a digital
clock). Our semantics is closely related to the program semantics of [DDR05] but
it is valid under slightly different assumptions. We study the relations between
the exact semantics and the implementation semantics, and prove additional
properties besides the one given in [DDR05]. We show that when a timed au-
tomaton A is shrinkable, say to a timed automaton B, then the implementation
semantics of B is non-blocking and time-abstract-simulates the exact semantics
of A. Thus, our framework allows not only to obtain an implementation that
is a refinement of the abstract model, but also to ensure non-blockingness and
time-abstract similarity. This provides a precise motivation for the shrinkability
problem: shrinkability is a sufficient condition for implementability in this model.

Finally, we note that shrinkability should also be seen as a robustness property
by itself, since it asks whether the given automaton is vulnerable to the removal
of limit behaviors by disallowing the borders of the guards. In fact, shrinkability
can detect, for instance, whether the liveness of a timed automaton depends on
the idealistic semantics to take transitions at infinitely precise time instants. Such
an example of a non-robust system is given in Section 6.3. Thus, while [Pur00,
DDMR08] and following work were interested in verifying the additional behaviors
in timed automata due to enlargement or clock drifts, we consider here the dual
problem of behavior preservation by checking the semantics under shrinking. Zeno
behaviors and other convergence phenomena [CHR02] are excluded naturally in
shrunk timed automata (see Section 3.3).

Comparison with robust model-checking We believe that the method of
shrinking timed automata in order to construct robust timed automata comple-
ments that of robust model-checking. In fact, as mentioned above, shrinking has
the advantage of yielding timed automata that are refinements of the original
ones, thus the initial model can be used itself as a specification; whereas robust
model-checking only guarantees that some chosen (and verified) properties will
hold in the model under enlargement. On the other hand, shrinking requires all
guards to be written as non-punctual intervals, so the initial timed automaton
design should foresee an error interval for all measurements2. In contrast, robust

2Note that although it is possible to apply shrinkability on timed automata with punctual
guards (see Section 6.3), the relation with the implementation semantics cannot be guaranteed
(Section 7).
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model-checking can always be applied to timed automata with punctual guards.
Such guards are often used to keep the design more abstract and simple, with
the advantage of yielding smaller state spaces during classical verification. Note
that all guards become non-punctual under enlargement, and robustness issues
can arise even in timed automata with only punctual guards [DDMR08].

The choice between robust model-checking and shrinking thus depends on
the design and specification at hand; for instance, whether it is sufficient to
model-check against a set of properties under enlargement, or a stronger notion
of refinement is preferred.

2 Preliminaries

A timed transition system (TTS) is a tuple (S, s0,Σ,→), where S is the set of
states, s0 ∈ S the initial state, Σ a finite alphabet, and → ⊆ S × (Σ×R≥0)× S
the transitions. Transitions are labelled by σ(T ), with T ∈ R≥0 the timestamp
of action σ ∈ Σ. In all TTSs we consider, the timestamps of consecutive actions
are assumed to be nondecreasing. A TTS (S, s0,Σ,→) is non-blocking if for

any transition s1
σ(T )−−−→ s2, there exist σ′ ∈ Σ, T ′ ≥ T and s3 ∈ S such that

s2
σ′(T ′)−−−−→ s3. Notice that, in this definition, we do not require s1 to be reachable

from s0.

Definition 2.1. Let S = (S, s0,Σ,→) be a TTS. A relation R ⊆ S × S is a

timed (resp. time-abstract) simulation if for all (s1, s2) ∈ R, if s1
σ(T )−−−→ s′1 for

some (σ, T ) ∈ Σ× R≥0, then s2
σ(T )−−−→ s′2 (resp. s2

σ(T ′)−−−→ s′2 for some T ′ ∈ R≥0)
for some s′2 with (s′1, s

′
2) ∈ R. A state s2 timed-simulates (resp. time-abstract-

simulates) a state s1 if there exists a timed (resp. time-abstract) simulation R
such that (s1, s2) ∈ R. In that case, we write s1 v s2 (resp. s1 vt.a. s2).

Given two TTSs S and T , we write S v T if the initial state of T timed-
simulates that of S in their disjoint union. We write S vt.a. T in case of a
time-abstract simulation. For any state s of S, we write ta-simT (s) for the set
of states of T that time-abstract simulate s in the disjoint union of S and T .
This set is called the time-abstract simulator set (or simply the simulator set) of
s in T .

Given a finite set of clocks C, we call valuations the elements of RC≥0. For a
subset R ⊆ C, a real number α ∈ R≥0 and a valuation v, we write v[R← α] for
the valuation defined by v[R← α](x) = v(x) for x ∈ C \R and v[R← α](x) = α
for x ∈ R. Given d ∈ R≥0, the valuation v+d is defined by (v+d)(x) = v(x) +d
for all x ∈ C. We extend these operations to sets of valuations in the obvious
way.

Let Q∞ = Q ∪ {−∞,∞}. An atomic clock constraint is a formula of the
form k ≤ x ≤ l or k ≤ x − y ≤ l where x, y ∈ C and k, l ∈ Q∞. A guard is
a conjunction of atomic clock constraints. A valuation v satisfies a guard g,
denoted v |= g, if all constraints are satisfied when each x ∈ C is replaced by
v(x). We denote by JgK the set of valuations that satisfy g.

We consider difference-bound matrices, which are data structures used to
represent sets of clock valuations in timed automata analysis [Dil90]. Write C =
{1, . . . , C}, and add an artificial clock of index 0, that has constant value 0.
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We let C0 = C ∪ {0}. We denote by Mn(X) the set of matrices of size n × n
with coefficients in X. A difference bound matrix (DBM) over C0 is an element
of MC+1(Q∞). Each M ∈MC+1(Q∞) defines a zone, that is, a convex subset
of RC≥0 defined by JMK = {v ∈ RC≥0 | ∀x, y ∈ C0,−My,x ≤ v(x)− v(y) ≤Mx,y}.
We will also denote the components of matrices M by [M ]x,y to ease reading,
for instance when M contains indices. Clearly, each DBM can be equivalently
described by a guard, and conversely. Notice that we only consider closed
zones, since we only have closed guards, but this is sufficient for our purpose.
A DBM M is non-empty if JMK is non-empty. M is normalized when for all
x, y, z ∈ C0, it holds Mx,y ≤ Mx,z +Mz,y. Any non-empty DBM can be made
normalized in polynomial time, by interpreting it as an adjacency matrix of a
weighted graph and computing all shortest paths between any two clocks. The
normalization of M is written norm(M). By extension, we say that a guard is
normalized if it is the conjunction of all entries of a normalized DBM. Notice
that a normalized guard contains |C0|2 atomic clock constraints. We denote by
ΦC the set of normalized guards on the clock set C.

Definition 2.2. A timed automaton A is a tuple (L, l0, C,Σ, E), with finite sets
L of locations, C of clocks, Σ of labels, E ⊆ L×ΦC ×Σ× 2C ×L of edges, with

l0 ∈ L the initial location. An edge e = (l, g, σ,R, l′) is also written as l
g,σ,R−−−→ l′.

Guard g is called the guard of e.

Notice that following other works on robustness such as [Pur00, DDMR08],
we only consider timed automata with closed guards, that is, we do not allow
strict inequalities. In this paper, we assume that Σ = E in all timed automata
we consider, that is, each edge has a unique label. This may be restrictive for
simulation relations. However, we are going to compare timed automata that
have the same structure, so this assumption will allow us to ensure stronger
relations. See Section 6.

Definition 2.3. The semantics of a timed automaton A = (L, l0, C,Σ, E) is
a TTS over alphabet Σ, denoted JAK, whose state space is L × RC≥0 × R≥0.

The initial state is (l0, 0, 0), where 0 denotes the valuation where all clocks

have value 0. There is a transition (l, v, T )
σ(T+τ)−−−−−→ (l′, v′, T + τ), for any edge

l
g,σ,R−−−→ l′ and τ ≥ 0, such that v + τ |= g and v′ = (v + τ)[R← 0].

Note that our definition of the timed automata semantics include the global
time elapsed since the beginning; this is not the case in the original definition
of [AD94]. Both definitions are equivalent, this additional component will ease
the comparison with non-standard semantics in Section 7.

A timed automaton is non-blocking if the TTS it defines is.
An example of a timed automaton is given in Fig. 1.

We define the enlargement of atomic clock constraints by δ ∈ Q as follows:
for x, y ∈ C and k, l ∈ Q>0, we let

〈k ≤ x〉δ = k − δ ≤ x, 〈x ≤ l〉δ = x ≤ l + δ,

〈k ≤ x− y〉δ = k − δ ≤ x− y, 〈x− y ≤ l〉δ = x− y ≤ l + δ.

The enlargement of a guard g, denoted by 〈g〉δ, is obtained by enlarging all its
atomic clock constraints. Note that δ can be negative here; this operation is
then called shrinking. We will write v |=δ g to mean v |= 〈g〉δ.
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`1 `2 `3
1≤x,y≤3 ∧ 0≤x−y≤2, y:=0

a

1≤x≤4 ∧ x−y≤3

b

c

Figure 1: Timed automaton A. Atomic clock constraints of the form y < ∞,
0 ≤ y or −∞ < x− y are omitted. One possible run of this timed automaton is

the following: (`1, (0, 0), 0)
1.5−−→ (`1, (1.5, 1.5), 1.5)

a−→ (`2, (1.5, 0), 1.5)
2−→ (`2, (3.5, 2), 3.5)

b−→ (`3, (3.5, 2), 3.5)
c−→ (`3, (3.5, 2), 3.5) . . ..

For any timed automaton A, let (gi)i∈I denote the vector of all atomic clock
constraints used in its guards. Given a vector of rational numbers δ = (δi)i∈I ,
we define Aδ as the timed automaton obtained from A by replacing gi with
〈gi〉δi . For any ∆ ∈ Q, A∆ will denote the timed automaton where all guards
are enlarged by ∆. If no timed automaton is implicit in the context, for any
guard g ∈ ΦC , we also define a shrinking as 〈g〉−kδ where δ > 0 and k ∈ N|C0|2 .

3 Robustness and Shrinkability

3.1 Previous Work on Robustness

The effect of small imprecisions on the semantics of timed automata was investi-
gated by Puri [Pur00], who gave an example of a timed automaton that is not
robust : its behaviour changes in the presence of the slightest clock drift. Clock
drifts were further investigated in [SFK08, Dim07]. De Wulf et al. later estab-
lished strong similarities between clock drifts and guard enlargement [DDMR08]
with respect to location reachability, showing that Puri’s example (shown in
Fig. 2) is also not robust with respect to guard enlargement. Indeed, consider
the difference y − x in `2 (or, equivalently, the value of y when entering `2):
in A, this value can only decrease, since between two consecutive visits to `2,
clock y goes down by at least 2 (it is reset to zero when it is larger than or equal
to 2), while clock x goes down by at most 2. In JA∆K, the difference y − x can
increase by as much as 2∆ between two consecutive visits to `2 (as long as it
is less than or equal to 2−∆), which eventually makes `3 reachable, however
small ∆ may be.

Motivated by the non-robustness of the semantics of timed automata, previous
works considered validating the behaviour of timed automata under small guard
enlargement. Robust model-checking, that is, determining a bound on the
enlargement under which the system satisfies a given property was investigated
first for safety, then for richer linear-time properties in [Pur00, DDMR08, BMR06,
BMR08, San11, BMS11]. Symbolic algorithms were suggested for subclasses
of timed automata in [DK06, JR11]. The idea of syntactic enlargement was
re-visited in [BMS12] in a game semantics, where perturbations are controlled
by a separate player, so that the controller can react to observed perturbations
in order to fulfill a given objective. See also [CHP11, SBMR13] for a variant of
the game semantics.

It was shown in [DDR05] how this framework allows one to prove that the
semantics is preserved in a model of physical implementation with digital clocks.
In fact, the semantics under enlargement was shown to be an overapproximation
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`0 `1 `2 `3
x=1

a,y:=0

y≥2,y:=0
a

x≤2,x:=0
b x=0∧y=2

c

1

1

2

2

`1

`2

x
0

0

y

Reach(JAK)

1

1

2

2

`1

`2

`3

x
0

0

y

⋂
∆>0

Reach(JA∆K)

Figure 2: A non-robust timed automaton from [Pur00]. In fact, location `3 is
not reachable in JAK but it is reachable in JA∆K for any ∆ > 0 [DDMR08].

(in the sense of timed simulation) of a semantics corresponding to the execution
of the system by a simple model of a microprocessor.

In a recent work [BLM+11], we defined transformations that provide, for
any given timed automaton A, a timed automaton A′ such that A and A′∆ are
ε-bisimilar, that is, there is a timed bisimulation in which the differences in
delays are bounded by ε at each step. The transformation can be applied to any
timed automaton, and an ε-bisimilar enlarged model can be obtained for any
desired ε > 0. However, the resulting automaton is not, in general, a refinement
of the abstract model, since the behaviour is only preserved approximately.
Moreover, A′ is constructed by embedding the region automaton so its size is
exponential.

Other approaches to robustness have also been considered. In [AT05], the
authors show how various kinds of clock imprecisions can be incorporated in the
timed automaton model, without redefining the semantics. Such an approach
was used in several case studies e.g. [BFK+98, HSV12]. The limitation is that
this can significantly increase the size of the model, and that one has to fix the
imprecision parameter. Other notions of robustness include the “tube semantics”
of [GHJ97]. This consists in discarding some isolated behaviour, rather than
introducing new ones, and it is not directly related to our work. See also [Mar11]
for a survey of different approaches on defining robustness in timed automata.

3.2 Shrinkability

We define shrinkings of timed automata and show how they can provide an
alternative way to construct robust systems. Our method always yields a
refinement of the abstract model, and moreover, we only modify the guards
of a given automaton, so the size is unchanged. Our algorithms then allow to
decide whether further properties, such as non-blockingness and time-abstract
simulation of some automaton, are satisfied.
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In order to circumvent the effect of the imprecisions, we suggest shrinking any
guard of the form “x ∈ [a, b]” into “x ∈ [a+ δ, b− δ]” for some δ > 0. The idea is
that under a small enlargement parameter ∆ > 0, we have [a+δ−∆, b−δ+∆] ⊆
[a, b]; in other terms, the satisfaction of the new guard implies the satisfaction
of the original guard, even with imprecisions.

Formally, a shrinking of a timed automaton A is A−kδ, where k ∈ NI>0 and
δ > 0, I denoting the set of all atomic clock constraints of A. Following the
remark on guards above, the enlarged automaton A−kδ+∆ is a refinement of A:
JA−kδ+∆K v JAK, provided that ∆ < mini∈I(ki) · δ. The application of shrinking
to implementability following this idea is developed in detail in Section 7.

Shrinking is a natural idea when one is interested in the strict preservation
of timing constraints, such as critical deadlines or bounded response properties.
However, shrinking may remove too many behaviours and the resulting automa-
ton may even become blocking (See e.g. Fig. 5). We are interested in deciding
the existence of shrinking parameters k and δ > 0, and in their computation,
for which the shrunk timed automaton is non-blocking, or able to time-abstract
simulate a given automaton, or both.

The formal definition of non-blocking-shrinkability is the following.

Definition 3.1. Let A be a timed automaton, and I the set of its atomic clock
constraints. A is non-blocking-shrinkable if there exists k ∈ NI>0 and δ0 ∈ Q>0

such that for all δ ∈ [0, δ0], JA−kδK is non-blocking.

We now define simulation-shrinkability. Ideally, we would like the shrunk
timed automaton to be able to time-abstract simulate the original timed au-
tomaton. But we give a more general definition, which allows us to define
shrinkings that contain some part of the time-abstract behaviour of the original
automaton. Given a timed automaton A, and some finite automaton F such
that JFK vt.a. JAK, A is said to be simulation-shrinkable with respect to F , if
some shrinking A−kδ simulates F3. Notice that F can be chosen as the region
automaton of A [AD94] or a smaller bisimulation quotient [TY01], in which case
a shrinking is required to time-abstract simulate A entirely. Otherwise, we still
guarantee that the shrinking contains some relevant behaviour F of the abstract
model. The formal definition is the following.

Definition 3.2. Let A be a timed automaton, and I the set of its atomic clock
constraints. Consider any finite automaton F such that JFK vt.a. JAK. A is
simulation-shrinkable w.r.t. F if there exists k ∈ NI>0 and δ0 ∈ Q>0 such that
for all δ ∈ [0, δ0],

JFK vt.a. JA−kδK
with the following additional requirement: for each state f of F , there exists
a guard g and h ∈ N|C0|2 such that for all δ ∈ [0, δ0], ta-simJA−kδK(f) equals
J〈g〉−hδK.

Furthermore, we say that a timed automaton is strongly shrinkable w.r.t.
F if it has a shrinking witnessing both its non-blocking-shrinkability and its
simulation-shrinkability w.r.t. F . The above k and δ0 are called the shrinking
parameters of A.

We now comment on the above definitions. We define shrinkability “for all
δ ∈ [0, δ0]”, so if an automaton is shrinkable, we require it to remain correct when

3To define JFK as a TTS, we see F as a timed automaton with no clocks.
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imprecisions are reduced, that is when δ is chosen smaller. In fact, the shrunk
automaton can be seen as an underapproximation of the initial automaton,
and we would like to be able to obtain arbitrarily close correct approximations
by only adjusting δ. This requirement is also related to the property called
“faster-is-better” [AT05, DDR05]. Notice also that when a timed automaton is
shrinkable w.r.t. simulation, then we require that for all small enough δ, each
simulator set can be expressed as shrinkings 〈g〉−hδ where h is the same for all δ
(that is, parameters h are uniform). If this is the case, then when we change
slightly the parameter δ > 0, the simulator sets also change slightly. Moreover,
simulator sets have a uniform expression, where δ is only a parameter. When
one uses the simulator sets to control the original system, this property yields
a uniform representation for the constraints to add to the system. Thus, the
controlled system can still be represented as a timed automaton, where the
guards contain the parameter δ. Note however that we do not know whether
there exist timed automata that would be shrinkable but violate the technical
requirement of Definition 3.2.

Example 3.3. We illustrate shrinkability on the timed automaton A of Fig. 1.
This timed automaton is shrinkable both for non-blockingness and for simulation.
One can check that A−kδ, shown in Fig. 3 is non-blocking, and can time-abstract
simulate A for all δ ∈ [0, 1

6 ]. One can also see that the simulator sets are uniform.
For instance, the set of states of A−kδ that simulate the initial state of A is
Jδ ≤ x ≤ 3 − δ ∧ y ≤ 3 − 2δ ∧ δ ≤ x − y ≤ 2 − 2δK for all δ ∈ [0, 1

6 ]. The
computation of these parameters, and that of the simulator sets of this example
are explained in Example 4.10.

`1 `2 `3

1+2δ≤x≤3−δ ∧ 1+δ≤y≤3−2δ
δ≤x−y≤2−2δ, y:=0

a

1+δ≤x≤4−δ ∧ δ≤y
∧ x−y≤3−δ

b

c

Figure 3: A shrinking A−kδ of timed automaton A defined in Fig. 1.

Example 3.4. We give a simple real-time scheduling example to illustrate
shrinkability. We consider a simple producer-consumer system where an event
is produced at least every τ time units, while the consumer processes an event
at most every τ time units. For the sake of the example, we will assume that
productions and consumptions should alternate; this corresponds to assuming no
buffer between both subsystems. Let us assume further that at each iteration, the
producer can be made run more or less faster as long as one production is made
at least every τ time units and both events alternate. Similarly, the frequency of
the consumer can be adjusted but only to go slower.

The resulting system can be summarized by the timed automaton A of Fig. 4,
for τ = 2. The reader will notice that this automaton is precisely the cycle in
the timed automaton we already saw in Fig. 2.

As we discussed earlier, this system is not robust to guard enlargement. That
is, if productions occur once every 2 + δ time units, or consumptions every 2− δ
time units, then an error state can be reached, where the time delay between
corresponding productions and consumptions become larger than or equal to 2
(the error state is omitted in Fig. 4 but could be added as in Fig. 2). Thus, not
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`1 `2

cons, y≥2,y:=0

prod, x≤2,x:=0

Figure 4: A timed automaton that models an alternating producer-consumer
system. The only timing requirements are that one production should happen at
least once every 2 time units, and one consumption at most once every 2 time
units. The speed can be adjusted as long as these constraints are satisfied and
both events alternate.

all runs are satisfying our purpose. In this case, applying shrinking might be a
good idea since we know that it will yield, even under enlargement, a refinement
of the exact model. In other terms, shrinking will restrict the possible behaviors
of the system to desired ones. However, we would like to check for shrinkability,
to make sure that the system is able to run forever under shrinking.

To apply simulation-shrinkability, we consider the finite automaton F which
consists of one simple cycle of label cons · prod. One can check that the timed
automaton A can time-abstract simulate F ; in fact, A has infinite runs. Now,
the simulation-shrinkability of A w.r.t. F consists in asking whether this timed
system has infinite behaviors (simulating F) when we assume that the periods of
consumption and production cannot be guaranteed to be adjusted to τ exactly. In
fact, shrinking the guards yields x ≤ 2− k1δ for the production, and y ≥ 2 + k2δ
for the consumption, where kδ are unknown positive parameters.

One can prove however that A is not simulation-shrinkable w.r.t. F . In fact,
if productions occur faster than once every 2− δ time units, and consumptions at
most every 2+δ time units, the delay between consecutive production-consumption
event pairs will keep growing, and the system will eventually enter a deadlock at
location `1 because of the upper bound x ≤ 2− k1δ. Thus, the infinite behavior
one can find by analyzing the exact semantics of this timed automaton actually
requires highly precise timings. Thus, the model is not only not robust to guard
enlargement, but its infinite behaviors are not realizable neither under finite
precision.

The algorithms presented in this paper allows to detect this non-shrinkability;
we show in Section 6.3 how to correct this system in order to construct a robust
and shrinkable one.

3.3 Shrinking as a Remedy to Unrealistic Behaviour

Shrinkability also excludes unrealistic timing constraints, such as Zeno behaviours.
In fact, for any timed automaton A, consider the automaton A′ obtained from A
by adding a new clock u, the constraint u ≥ 0 and the reset u := 0 at every edge.
Clearly, A and A′ are isomorphic. If automaton A′ is, say, simulation-shrinkable,
then A does not need Zeno strategies to satisfy the properties proven for the
exact semantics and preserved by time-abstract similarity. In fact, each u ≥ 0 is
shrunk to some u ≥ δi with δi > 0, so time diverges in any infinite run.

But unrealistic timing constraints are not limited to Zeno behaviours. The
automaton in Fig. 5 provides an example of a timed automaton which is non-
blocking for δ1 = δ2 = δ3 = 0, and lets the time diverge but it becomes blocking
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whenever δ2 > 0 or δ3 > 0, so it is not shrinkable.

`1 `2

y≤1−δ1 ∧ 1+δ2≤x
x:=0

y≤1−δ3, y:=0

Figure 5: A shrunk timed automaton that is blocking whenever δ2 > 0 or δ3 > 0.
To see this, consider any infinite execution and let d1, d3, . . . denote the delays
at location l1, and d2, d4, . . . those at l2. One can show that 1 ≤ d2i−1 + d2i for
all i ≥ 1, which means that time diverges, but also δ2 + δ3 ≤ d2i+2 − d2i and
d2i ≤ 1. The latter means that the sequence (d2i)i increases at least by δ2 + δ3
at each step and is bounded above by 1, which is possible only when δ2 = δ3 = 0.
Note that even if δ2 = δ3 = 0, non-blockingness requires consecutive delays to
be equal, which is not realistic for digital systems.

A similar example appears in [CHR02] with equality constraints, so it is
trivially not shrinkable. The above example shows that such phenomena can
occur even without the use of equality.

3.4 Decidability of Shrinkability

Our main result is the decidability of the shrinkability problems.

Theorem 3.5. The following results hold.

• For closed non-blocking timed automata, non-blocking-shrinkability is in
PSPACE, and in NP if the number of outgoing transitions from each location
is bounded.

• For closed timed automata A with distinct labels, simulation-shrinkability
w.r.t. any F is decidable in pseudo-polynomial time in the sizes of A
and F .

• For closed non-blocking timed automata with distinct labels, strong shrinka-
bility w.r.t. F is decidable in time exponential in A, and polynomial in F ,
more precisely, in time O(2|A| + p(|F|, |A|,M)), where M is the largest
constant of A, and p some polynomial.

Moreover, we will show that when a given timed automaton is shrinkable, the
least shrinking parameters can be computed (in a sense defined in Section 6). We
assume distinct labels for simulation-shrinkability, mainly for technical reasons.
Nevertheless, it is also meaningful for our purpose. In fact, we compare A
with its shrinking and require these to have approximately the same behaviour.
Checking simulation between these systems under this assumption not only
requires “observational” equivalence but also a structural one. In fact, if a
shrinking simulates F , it should do so by following exactly the same edges
as A does when simulating F . Thus, we require the shrinking and the initial
automaton to have the same internal behaviour.

In the rest of the paper, we present the proof of this result. We begin by
defining an extension of difference-bound matrices (DBMs), called shrunk DBMs,
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which are used to represent the state space of shrunk timed automata, and give
tools for solving fixpoint equations on shrunk DBMs by reduction to fixpoint
equations in the max-plus algebra. We then explain how these results can be
used to solve the shrinkability problems, by expressing them as fixpoint equations.
In Section 7, we present a concrete implementation semantics and prove that
non-blockingness and simulation are preserved in this semantics for all shrinkable
timed automata.

4 Some algebraic tools

4.1 Parameterized Difference Bound Matrices

We recall several elementary operations on DBMs. Given a DBM M , we let
Pret(M) be the normalized DBM that describes the time predecessors of JMK,
i.e., JPret(M)K = {v ∈ RC≥0 | ∃t ∈ R≥0 s.t. v + t ∈ JMK}. Given R ⊆ C, we let

UnresetR(M) be the normalized DBM that defines {v ∈ RC≥0 | v[R← 0] ∈ JMK}.
For two DBMs M and N , we write M ∩N for the normalized DBM describing
JMK∩JNK. A function f : MC+1(Q∞)n →MC+1(Q∞) (for some n > 0), is said
elementary if it combines its arguments using elementary operations. Efficient
algorithms exist for computing these operations on DBMs [BY04, Cha09].

Shrunk DBMs We extend standard DBMs in order to manipulate sets of
states in shrunk timed automata. We fix a tuple of parameters k = (ki)i∈I ,
which will take nonnegative integer values. The max-plus polynomials over k,
denoted by G(k), are generated by the grammar

φ ::= l ∈ N | ki, i ∈ I | φ+ φ | max(φ, φ).

For any max-plus polynomial φ and valuation ν : k −→ N, we denote by φ[ν]
the value of formula φ replacing each parameter k by ν(k). A shrinking matrix
is an element of MC+1(N), and a parameterized shrinking matrix (PSM) an
element of MC+1(G(k)). If P is a PSM and ν is a valuation, then P [ν] is the
shrinking matrix defined by replacing each parameter ki by ν(ki), and evaluating
the resulting expression.

We introduce a new data structure called shrunk DBM, by combining DBMs
and PSMs. A shrunk DBM is written in the form M − δP , where M is a DBM,
P a PSM and δ is a fresh parameter. Let us explain how shrunk guards can be
expressed using shrunk DBMs. Let M be a DBM, P a shrinking matrix, and
δ > 0. Suppose for example that for some i, M [i, 0] = α, M [0, i] = β, P [i, 0] = k
and P [0, i] = l. Then, M defines the constraint “−β ≤ x ≤ α” for some clock x,
whereas M −δP defines “−β+ lδ ≤ x ≤ α−kδ”. Furthermore, if M represents a
guard g, the shrunk guard 〈g〉−δ can be represented by the shrunk DBM M −1δ,
where matrix 1 has 0’s on the diagonal and 1’s everywhere else. A property that
is crucial for our results is that shrunk DBMs are closed under several elementary
operations. These operations are defined below.

When manipulating shrunk DBMs, we will often be interested in the prop-
erties of shrunk DBMs M − δP for “small enough δ > 0”, which means for all
δ ∈ [0, δ0], for some δ0 > 0. We will use the notation (M,P ), which means
that we consider M − δP for small enough δ > 0. For instance, when we
write Pret((M,P )) = (N,Q), we mean that there exists δ0 > 0 such that
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Pret(M − δP ) = N − δQ holds for all δ ∈ [0, δ0]. In all the operations, an upper
bound on δ0 will be computable.

Example 4.1. We consider the timed automaton of Fig. 1, with g1 = 1 ≤ x, y ≤
3 ∧ 0 ≤ x− y ≤ 3 the guard of the edge from `1 to `2. Let G1 denote the DBM
that represents this guard. We consider the following shrinking of this guard by
parameters (ki)iδ:

g′1 = 1 + k1δ ≤ x ≤ 3− k2δ ∧ 1 + k3δ ≤ y ≤ 3− k4δ ∧ k5δ ≤ x− y ≤ 2− k6δ.

This shrunk guard can be expressed by the shrunk DBM (G1, P ), where G1 and
P are defined as follows.

G1 =


0 x y

0 0 −1 −1
x 3 0 3
y 3 0 0

 P =


0 x y

0 0 k1 k3

x k2 0 k6

y k4 k5 0


Note that our definition of PSM is different from parametric DBMs considered

for instance in [HRSV01], since we use max-plus polynomials instead of linear
expressions and only consider natural number valuations.

Operations on shrunk DBMs We are going to use shrunk DBMs to express
the state space of shrunk timed automata. In order to do this, we need to
study some algebraic properties of shrunk DBMs. Let us first define symbolic
operations on expressions of the form α− k · δ, where α ∈ Q, k is an expression
in G(k) (bound to take values in N). In such expressions, δ is a variable (which
at the end will take small non-negative real values, see Lemma 4.2). More
precisely, given two pairs (α, k) and (β, l) in Q× G(k), we define the addition
(α, k) + (β, l) = (α + β, k + l), where (k + l)[ν] = k[ν] + l[ν] for all ν : k → N.
We also define the following relation:

(α, k) � (β, l) ⇔ α < β or (α = β and k[ν] ≥ l[ν] for all ν : k→ N).

An important (but quite straightforward) property of this definition is the
following. Notice that we are again interested in comparing (α, k) and (β, l) for
small positive values of δ.

Lemma 4.2. For all (α, k) and (β, l) in Q×G(k), the following two statements
are equivalent:

• (α, k) ≺ (β, l)

• for all ν : k → N, there exists δ0 > 0 s.t. for all 0 ≤ δ < δ0, it holds
α− k[ν] · δ ≤ β − l[ν] · δ.

Proof. Assume that the second statement holds. In particular when δ = 0, we
get α ≤ β. Hence either α < β, and we are done, or α = β. In the latter case,
we get that for all ν, it holds k[ν] · δ ≥ l[ν] · δ for small positive values of δ. Hence
for all ν, k[ν] ≥ l[ν].

Conversely, we consider several cases:

• if α < β: then for all ν : k→ N,

– either k[ν] = l[ν] and any non-negative δ satisfies α−k[ν]·δ < β−l[ν]·δ
(so that δ0 can be any positive real);
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– or |k[ν] − l[ν]| ≥ 1, in which case we let δ0 = β−α
|k[ν]−l[ν]| . Then any

nonnegative δ < δ0 satisfies |k[ν] − l[ν]| · δ < β − α. In particular,
(l[ν]− k[ν]) · δ < β − α, as required.

• if α = β and k[ν] ≥ l[ν] for all ν: then for any non-negative δ, k[ν]·δ ≥ l[ν]·δ,
and the result follows.

Notice that � is not an ordering relation: indeed, (α, k) � (β, l) � (α, k)
implies α = β and k[ν] = l[ν] for all ν, but the latter does not imply equality of k
and l (syntactically). In the sequel, we (silently) consider the quotient of G(k)
by this equivalence relation, so that � is a partial order. To see that not all
elements are comparable, consider (1, k1) and (1, k2 + k3). For some valuations,
the former is smaller than the latter, and for some valuations the inverse is true.

We now define the minimum of two elements of Q× G(k):

min((α, k), (β, l)) =


(α, k) if α < β,

(β, l) if β < α,

(α,max(k, l)) otherwise.

This definition enjoys the following property:

Lemma 4.3. For all (α, k) and (β, l) in Q×G(k), min((α, k), (β, l)) belongs to
Q× G(k) and is the greatest lower bound of (α, k) and (β, l) in that set.

Proof. The first statement is obvious, since max(k, l) belongs to G(k) as soon
as k and l do. That min((α, k), (β, l)) � (α, k) is easily obtained by considering
three cases:

• if α < β, then min((α, k), (β, l)) = (α, k), which implies our result;

• if β < α, then min((α, k), (β, l)) = (β, l), and (β, l) � (α, k) since β < α;

• if α = β, then min((α, k), (β, l)) = (α,max(k, l)), and (α,max(k, l)) �
(α, k) since (max(k, l))[ν] ≥ k[ν] for all ν (by definition of max).

Symmetrically, min((α, k), (β, l)) � (β, l).
Now, consider any (γ,m) s.t. (γ,m) � (α, k) and (γ,m) � (β, l). We show

that then (γ,m) � min((α, k), (β, l)). This follows immediately from the ob-
servation that min((α, k), (β, l)) is either equal to (α, k), or to (β, l), since the
assumption on (γ,m) then implies the desired inequality. We have, in fact, if
α < β, then min((α, k), (β, l)) = (α, k), and symmetrically for α > β. If α = β
and, say, k > l, then the minimum is (α, k).

The following set of propositions explains how elementary operations can be
computed on shrunk DBMs. In particular, it shows how shrinking parameters
(i.e., the PSMs) can be propagated in a backward analysis while staying in the
max-plus theory. All operations are illustrated in Example 4.10 at the end of
this section.

We first show that shrunk DBMs also have a normal form in the following
sense. Just like for DBMs, the normalization of a shrunk DBM (M,P ) is
obtained simply by computing the shortest path between all indices i and j, by

14



interpreting (M,P ) as the adjacency matrix of a directed graph. The algorithm
for normalization is the Floyd-Warshall all-pairs shortest path algorithm applied
to regular DBMs, but we simply apply it in our algebra over Q× G(k) where
the sum, the order � and min are defined as above.

Algorithm 1 Normalization procedure for shrunk DBMs.

Given a shrunk DBM (M,P ),
for i = 0..n do

for j = 0..n do
for k = 0..n do

(Mi,j , Pi,j)← min
(
(Mi,j , Pi,j), (Mi,k, Pi,k) + (Mk,j , Pk,j)

)
.

end for
end for

end for

Lemma 4.4. Let M be any DBM and P be a PSM. Then, there exists a
PSM P ′ such that for all valuations ν : k −→ N, there exists δ0 > 0 for which
norm(M − δ · P [ν]) = M ′ − δ · P ′[ν] for all δ ∈ [0, δ0], where M ′ = norm(M).
Moreover, one can compute δ0.

Proof. We initialize the matrix (N,Q) as the matrix of MC+1(Q×G(k)) whose
element in cell (i, j) is (Mi,j , Pi,j). We first prove that each step of the normal-
ization algorithm applied to R = (N,Q) in MC+1(Q × G(k)) yields a matrix
in MC+1(Q× G(k)). More precisely, given R = (N,Q) and integers i, j and k
less than or equal to C, we prove that the matrix R′ obtained from R by replacing
Ri,j with min(Ri,j , Ri,k + Rk,j) can be written as (N ′, Q′) for some DBM N ′

and Q′ ∈MC+1(G(k)).
Assume thatNi,j ≤ Ni,k+Nk,j . If the inequality is strict, then min(Ri,j , Ri,k+

Rk,j) is (Ni,j , Qi,j). Otherwise Ni,j = Ni,k + Nk,j : then R′i,j is set to
(Ni,j ,max(Qi,j , Qi,k + Qk,j)), which satisfies our requirement. Assume now
that Ni,k +Nk,j < Ni,j . In this case, R′i,j = Ri,k +Rk,j . The upper bound on δ,
under which the inequalities hold can be computed using Lemma 4.2.

Let us write (M ′, P ′) the shrunk DBM returned by the normalization algo-
rithm. By the definition of the minimum on pairs (Ni,j , Qi,j), the algorithm
applies normalization on the DBM N , so M ′ = norm(M). Pick any valu-
ation ν : k → N. We define a negative cycle of a shrunk DBM (M,P [ν])
as i1, i2, . . . , ik ∈ C0, where i1 = ik, and (Mi1,i2 , Pi1,i2) + (Mi2,i3 , Pi2,i3 [ν]) +
. . . + (Mik−1,ik , Pik−1,ik [ν]) ≺ (0, 0). if (M,P [ν]) contains a negative cycle,
then for any δ > 0, M − δP [ν] is empty since this would imply the con-
straint x − x ≤ M ′i1,i1 − δP

′
i1,i1

[ν] < 0, for some clock x. Otherwise, we have
norm(M − δ · P [ν]) = M ′ − δ · P ′[ν] for all small enough δ > 0. In fact the
operations performed on the parameterized expressions during the normaliza-
tion algorithm correspond to the normalization algorithm applied on the DBM
M − δP , by Lemma 4.3. Last, by applying Lemmas 4.2 and 4.3 to the (finitely
many) cells of the matrix (M ′, P ′) we get δ0 > 0 such that such that for all
δ ∈ [0, δ0] and for all indices i, j and k,

Mi,j − P ′i,j [ν] · δ ≤Mi,k − P ′i,k[ν] · δ +Mk,j − P ′k,j [ν] · δ,
so that M −P ′[ν] · δ is in normal form. Also, quite obviously, for any ν and δ as
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above, the DBM obtained at each step of the normalization algorithm defines
the same set of valuations as the original DBM.

Note that even if a DBM M is not empty, a shrunk DBM (M,P ) can be empty.
For instance, the shrunk DBM corresponding to constraints 1 + δ ≤ x ≤ 1− δ
is empty for all δ > 0, although the set J1 ≤ x ≤ 1K is not. The emptiness of
a shrunk DBM (M,P ), i.e. whether M − δP is empty for all δ > 0, can be
determined by first applying normalization, then checking whether all diagonal
components are 0.

The intersection of two shrunk DBMs can also be written as a shrunk DBM:

Lemma 4.5. Let M,N1, N2 be normalized DBMs such that M = N1 ∩ N2.
Then, for all PSMs P 1 and P 2, there exists a PSM P ′ such that for all valuations
ν : k→ N, there exists δ0 > 0 for which M − δ ·P ′[ν] = (N1− δ ·P 1[ν])∩ (N2−
δ · P 2[ν]) for all δ ∈ [0, δ0].

Proof. For all i, j, define (Ni,j , Pi,j) = min((N1
i,j , P

1
i,j), (N

2
i,j , P

2
i,j)). Then by

definition, Ni,j = min(N1
i,j , N

2
i,j), so that JNK = JMK. Applying Lemma 4.2

(several times), for any valuation ν, there is a positive δ0 for which Ni,j −Pi,j [ν] ·
δ = min(N1

i,j − P 1
i,j [ν] · δ,N2

i,j − P 2
i,j [ν] · δ), for all 0 ≤ δ < δ0, so that

the DBM N − P [ν] · δ corresponds to the intersection of N1 − P 2[ν] · δ and
N2 − P 2[ν] · δ.

To conclude, it suffices to apply Lemma. 4.4 to turn the resulting shrunk
DBM in normal form.

We now describe how we compute the shrinking matrix for the unreset
operation: given a DBM M and a set of clocks Z, UnresetZ(M) is the (normal-
form) DBM defining all clock valuations v s.t. v[Z := 0] belongs to M . It is
obtained by intersecting with the DBM representing the set Z = 0, and removing
contraints involving clocks in Z.

Lemma 4.6. Let M and N be two normalized DBMs such that M = UnresetZ(N)
for some Z ⊆ C. Then, for any PSM P , there exists a PSM P ′ such that
for all valuations ν : k → N, there exists δ0 > 0 for which M − P ′[ν] · δ =
UnresetZ(N − P [ν] · δ) for all δ ∈ [0, δ0].

Proof. We first consider the intersection of the shrunk DBM (N,P ) and the DBM
representing the set Z = 0. From Lemma. 4.5, this can be written as a shrunk
DBM (N ′, P ′), where N ′ is the normalized DBM obtained after intersecting N
with the DBM for Z = 0. The second step consists in removing the constraints
involving clocks of Z. This is achieved on DBMs by turning all the values in
the corresponding columns to ∞; for shrunk DBMs, we change (Mi,j , Pi,j) into
(∞, 0) whenever i ∈ Z or j ∈ Z except when i 6= j, the value of Pi,j being
actually not relevant in that case. This results in a shrunk DBM (M,Q) with
the required properties.

Note that if (N,P ) is empty, then so is (M,Q) since we did not change the
diagonal, and that the components of the shrinking matrix can only increase
during normalization.

Finally, we compute the time-predecessor set of a DBM by dropping the
lower-bound constraints on single clocks (i.e., the first row of the DBM), while
preserving all other constraints.
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Lemma 4.7. Let M and N be two normalized DBMs such that M = Pret(N).
Then for any PSM P , there exists a PSM P ′ such that for all valuations ν : k→ N,
there exists δ0 > 0 for which M − δ ·P ′[ν] = Pret(N − δ ·P [ν]) for all δ ∈ [0, δ0].

Proof. P ′ is obtained from P by also changing all the elements of the first row
into 0 (except for the component (0, 0)), and applying normalization. Note that
if (N,P ) is empty, so is (M,Q), as in the previous lemma, since the diagonal of
the shrinking matrix can only increase.

By combining the previous lemmas, we immediately get the following propo-
sition.

Proposition 4.8. Let f : MC+1(Q∞)n →MC+1(Q∞) be an elementary func-
tion and M0,M1, . . . ,Mn normalized DBMs satisfying M0 = f(M1, . . . ,Mn).
For any PSMs P1, . . . , Pn, one can compute a PSM P0 s.t. for all ν : k → N,
there exists a (computable) δ0 > 0 such that

M0 − δP0[ν] = f(M1 − δP1[ν], . . . ,Mn − δPn[ν]),

for all δ ∈ [0, δ0]. These computations can be carried out in polynomial time,
and in particular P0 has size polynomial in the size of P1, . . . , Pn and f .

Observe that in the above equation, for any valuation ν, (M,P0[ν]) is empty
whenever some (Mi, Pi[ν]) is empty.

Proposition 4.8 gives a polynomial-size PSM P0 provided that we represent
the max-plus polynomials by sharing subexpressions. For instance, we assume
that if we have max-plus polynomials φ1 and φ2 in memory, then the expression
max(φ1, φ2) is represented by a new node max() that points to φ1 and φ2. More
precisely, these expressions can be given as max-plus graphs defined in Section 5.2.
Then, each elementary operation adds a polynomial number of nodes (in the
number of clocks), thus yielding a polynomial-size representation.

The bound δ0 can be computed when successively applying Lemmas 4.4–4.7,
using Lemma 4.2. In fact, such a choice of δ ensures that all shrunk DBMs
encountered in the computations are non-empty and normalized or δ ∈ [0, δ0).
We show that δ0 can also be chosen simply as (roughly) the inverse of the
maximal component of all shrinking matrices that appear in all computations.

Remark 4.9. If the equation of Proposition 4.8 has a non-empty shrunk solution,
then one can choose δ0 = 1

3m , where m is the maximum of all components of the
shrinking matrices that appear in the computations.

Proof. Assume that for some valuation ν, Mi − δQi satisfies the equation for
all small enough δ > 0, where Qi = Pi[ν]. We will show that the equation is
then satisfied for all δ ∈ [0, 1

3m ]. To prove this, we need to show that for all
δ ∈ [0, 1

3m ), all shrunk DBMs are non-empty and satisfy the equations they are
involved in.

Since all shrunk DBMs are non-empty (for small enough δ > 0), all diagonals
of the shrinking matrices are equal to 0. Thus, it suffices to show that all shrunk
DBMs M − δQ are normalized. Normalization condition requires

∀i, j, k ∈ C3
0 , Mi,j − δQi,j ≤Mi,k − δQi,k +Mk,j − δQk,j ,

for all δ ∈ [0, δ0]. If Mi,j = Mi,k +Mk,j , then we must have Qi,j ≥ Qi,k +Qk,j .
So, for these components, the condition holds for all δ > 0. If Mi,j < Mi,k+Mk,j ,
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then the condition holds if δ0 ≤ |Mi,k+Mk,j−Mi,j

Qi,k+Qk,j−Qi,j |, but this is already the case

since δ0 ≤ 1
3m (the upper bound is infinity if the denominator is 0).

It remains to show that all equations that appear in the computations hold.
For an equation of the form (M,Q) = (N1, R1) ∩ (N2, R2), we have either
(N1)i,j = (N2)i,j and Qi,j = max((R1)i,j , (R2)i,j), or for example (N1)i,j <
(N2)i,j and (Mi,j , Qi,j) = ((N1)i,j , (Q1)i,j). In the former case, the equation

holds for all δ > 0. In the latter case, it holds for all δ < | (N2)i,j−(N1)i,j
(Q2)i,j−(Q1)i,j

|. This is

already the case since δ < 1
3m . For equations of the form (M,Q) = Pret((N,R)),

it suffices to choose δ small enough to ensure that normalization holds. For
(M,Q) = Unresetr((N,R)), one only needs to ensure that the intersection with
r = 0 and normalization holds. Both conditions were already shown to hold.

How much can m grow? A rough estimation shows that it is at most
exponential in the size of the equation. We haven’t observed such a growth in
practice.

Let us give an insight into the use of operations on shrunk DBMs to treat
shrinkability problems. The following example explains the computation of the
shrinking parameters on the timed automata of Fig. 1 and 3.

Example 4.10. We consider the timed automaton of Fig. 1, with g1 = 1 ≤ x, y ≤
3 ∧ 0 ≤ x − y ≤ 3 the guard of the edge from `1 to `2, R1 = {y} its reset set, and
g2 = 1 ≤ x ≤ 4 ∧ x− y ≤ 3 the guard of the edge from `2 to `3. As in Example 4.1, we
shrink the guard g1 into

g′1 = 1 + k1δ ≤ x ≤ 3− k2δ ∧ 1 + k3δ ≤ y ≤ 3− k4δ ∧ k5δ ≤ x− y ≤ 2− k6δ,

and g2 into

g′2 = 1 + k7δ ≤ x ≤ 4− k8δ ∧ k9δ ≤ y ∧ x− y ≤ 3− k10δ.

Assume that we are looking for a valuation of k = (ki)1≤i≤10 in N>0 for which the
resulting shrunk automaton A−kδ witnesses the shrinkability w.r.t. simulation, i.e.
it can time-abstract simulate A for small enough δ > 0. According to our definition
of shrinkability, the simulator sets of A−kδ must be shrinkings of the simulator sets
of A. Let us concentrate on three interesting simulation classes: all states `3 × RC≥0

are simulation-equivalent and can be extended to an infinite run, the set of states
X = Jx ≤ 4 ∧ 0 ≤ x− y ≤ 3K at location `2 are those that can go to `3 by a b action,
and the set of states Y = Jx, y ≤ 3 ∧ 0 ≤ x− y ≤ 3K at location `1 can go to X by an a
action. One can see that X is precisely the time-predecessors of g2, that is

X = Pret(g2) (1)

Further,
Y = Pret(g1 ∩Unresety(X)) (2)

expresses the fact that some point of `2 × JXK can be reached in one step starting from
`1×JY K, and this defines Y . Now, we use these equations to compute the simulator sets
when guards are shrunk. Let X ′ denote the shrunk DBM describing time-predecessors
of g′2, as given by Lemma 4.7. We have X ′ = Jx ≤ 4− k8δ ∧ x− y ≤ 3− k10δK, and
`2 ×X ′ is indeed the set of states of A−kδ that can simulate the states `2 ×X of A,
for any given valuation and small enough δ > 0. Let us now compute Y ′, the simulator
set in A−kδ of the states Y of A, applying Lemmas 4.4–4.7 to the equation relating Y
to X. In the figure below, the union of dark gray and light gray areas illustrate this
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equation for δ = 0, while the dark gray areas illustrate the equation between shrunk
zones, i.e. between X ′ and Y ′. We have:

Unresety(X ′) = Jx ≤ 3− k10δK,

Jg′1K ∩Unresety(X ′) = J1 + max(k1, k3 + k5)δ ≤ x ≤ 3−max(k2, k10)δ
∧1 + k3δ ≤ y ≤ 3−max(k4, k5 + max(k2, k10))δ
∧k5δ ≤ x− y ≤ 2−max(k6, k3 + max(k2, k10))δK,

Y ′ = Pret(Jg′1K ∩Unresety(X ′)) = Jk5δ ≤ x ≤ 3−max(k2, k10)δ
∧y ≤ 3−max(k4, k5 + max(k2, k10))δ
∧k5δ ≤ x− y ≤ 2−max(k6, k3 + max(k2, k10))δK.

The calculations are illustrated in Example 4.10. We now have at hand both parameter-
ized expressions for the simulator sets X ′ and Y ′, given parameterized shrunk guards
g′1 and g′2. It remains to choose a valuation, and check that X ′ and Y ′ are non-empty
for small enough δ > 0. We choose the valuation that sets k1 = k4 = k6 = 2 and other
parameters to 1. Note here that some parameters are set to 2 so that the shrunk guards
are normalized.4 We get that under this valuation, X ′ = Jx ≤ 4− δ ∧ x− y ≤ 3− δK
and Y ′ = Jδ ≤ x ≤ 3 − δ ∧ y ≤ 3 − 2δ ∧ δ ≤ x − y ≤ 2 − 2δK. These sets and the
guards are non-empty, and all equations above hold for all δ ∈ [0, 1

6
]. This bound can be

derived by looking at each application of Lemma 4.4–4.7 in our computations. Hence,
we obtained a shrunk timed automaton A−kδ that can time-abstract simulate A, and
expressions for the simulator sets parameterized by δ. 5

x

y

= Pretime


x

y

∩Unresety


x

y



Figure 6: The calculations of Example 4.10. The light and dark gray areas
combined describe the equation Y = Pret(g1 ∩ Unresety(X)), while the dark
areas describe the shrunk version: Y ′ = Pret(g

′
1 ∩Unresety(X ′)).

In Example 4.10, we guessed a valuation k that witnessed the shrinkability
of the considered timed automaton. The fact that the timed automaton did not
contain cycles simplified the constraints on this valuation. The aim of the next
section is to express systematically all constraints on parameters k induced by
the given equations, even in presence of cyclic dependencies, and provide an
algorithm to compute a valuation satisfying these constraints.

4.2 Equations on shrunk DBMs

We consider fixpoint equations on DBMs and study whether by “shrinking”
a given solution, one can still satisfy the equation. Our goal is to generalize

4We could instead apply normalization to g′1 and g′2 and set all parameters to 1.
5Note that the initial state `1 × 0 is not included in X′ unless we set k5 = 0. This can

be tested easily. Although Definition 2.1 requires simulation to hold at initial states, this
requirement can be relaxed depending on the application.
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the arguments of Example 4.10 where we were able to compute a shrinking of
the solutions to Equations (1) and (2). We consider fixpoint equations of the
following form.

Mi = fi(M1, . . . ,Mn,Mn+1, . . . ,Mn+n′), ∀1 ≤ i ≤ n, (3)

where M1, . . . ,Mn+n′ are unknown normalized DBMs and fi’s are elementary
functions. Notice that Mn+1, . . . ,Mn+n′ are unconstrained, i.e. they do not
appear in the left hand side of the equation. Let us write m = n + n′. For
instance, in Example 4.10, DBMs g1 and g2 are unconstrained since they only
appear in the right hand side of the equations, where as X and Y do appear in
the left hand side.

We assume we are given a solution (Mi)1≤i≤m to Equation (3), and we are
interested in shrunk solutions defined as follows.

Definition 4.11. Consider a solution (Mi)1≤i≤m of (3). A shrunk solution
of (3) w.r.t. (Mi)1≤i≤m is a triple(

(Mi)1≤i≤m, (Qi)1≤i≤m, δ0
)
,

where δ0 > 0 and Qi’s are shrinking matrices such that for all δ ∈ [0, δ0],
(Mi − δQi)1≤i≤m is a solution of (3). A shrunk solution is called the greatest
shrunk solution if (Qi)1≤i≤m are the least shrinking matrices that define a shrunk
solution w.r.t. (Mi)1≤i≤m.

Notice that we define shrunk solutions with shrinking matrices, not with
parameterized ones. Here, the “least shrinking matrices” refer to the order on
Nk defined by a ≤ b if, and only if ai ≤ bi for all 1 ≤ i ≤ k. Clearly, the sets
X ′ and Y ′ we computed in Example 4.10 are a shrunk solution (and in fact the
least one) with respect to the solution (X,Y ). A non-empty shrunk solution is a
shrunk solution whose all shrunk DBMs are non-empty.

We will now show that the problem of finding shrunk solutions can be
reduced to solving fixpoint equations in the max-plus algebra. For a non-empty
solution (Mi)1≤i≤m of (3), consider parameterized shrinking matrices Pi, for
all 1 ≤ i ≤ m, where each cell of each Pi is a unique parameter in k. By
Proposition 4.8, there exist matrices (φi)1≤i≤n of max-plus polynomials such
that (

Mi, φi(P1, . . . , Pm)[ν]
)

= fi
(
(M1, P1[ν]), . . . , (Mm, Pm[ν])),

for all 1 ≤ i ≤ n, and any valuation ν. Here, φi(P1, . . . , Pm) denotes a matrix
whose components are max-plus polynomials that combine the components of
matrices Pj . The above equation suggests that we study the following fixpoint
equation on PSMs Pi’s:

Pi = φi(P1, . . . , Pm), ∀1 ≤ i ≤ n,
[Pi]j,j = 0, ∀1 ≤ i ≤ m, 1 ≤ j ≤ |C0|.

(4)

If some valuation ν satisfies (4), then if we denote by Qi = Pi[ν] for all i, we
get that

(
(Mi)1≤i≤m, (Qi)1≤i≤m, δ0

)
is a shrunk solution of (3), for some δ0 > 0.

In fact, the first line means that the fixpoint equation holds (by Prop. 4.8),
and the second line means that this is a non-empty shrunk solution. Note
that requiring the diagonals to be zero is sufficient since we assume all shrunk
DBMs to be normalized. The converse also holds: the shrinking matrices of any
shrunk solution of (3) satisfies (4). By Prop. 4.8, the size of the equation (4) is
polynomial in the size of (3).
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Note that we will be often interested in solutions of (4) where some parameters
are positive. These parameters will, for instance, correspond to the shrinking
of the guards. In order to enforce positive values to some parameters, one can
augment Equation (4) with the following constraint, for any matrix cell [Pi]j,k
that is to be positive:

[Pi]j,k = max(1, [Pi]j,k). (5)

Remark 4.12. The choice of the positive parameters depend on the problem
at hand. For instance, in Section 6, we will shrink all the atomic constraints
of given timed automata by positive amounts, so all parameters will be positive.
One can nonetheless be interested in shrinking only the guards of some of the
edges, in which case, one would add the constraints (5) only for those parameters
that need to be positive.

Let us define P(x) = 0 if x = 0 and P(x) =∞ otherwise. We extend P(·) to
matrices, by componentwise application. The correspondence between shrunk
solutions and max-plus equations is formally stated in the following lemma.

Lemma 4.13. Consider any non-empty solution (Mi)1≤i≤m of (3), and the
max-plus polynomial matrices (φi)1≤i≤n as defined above. Then,

• For all shrinking matrices (Qi)1≤i≤m, there exists δ0 > 0 such that(
(Mi)1≤i≤m, (Qi)1≤i≤m, δ0

)
is a non-empty shrunk solution of (3) if, and

only if, (Qi)1≤i≤m is a solution of (4) in N.

•
(
(Mi)1≤i≤m, (Qi)1≤i≤m, δ0) is the greatest shrunk solution of (3) if, and

only if (Qi)1≤i≤m is the least solution of (4) in N.

• If (4) has a solution (Qi)1≤i≤m, then for any shrinking matrices Rn+1, . . . , Rm
such that P(Rj) ≥ P(Qj) for n+ 1 ≤ j ≤ m, there exist R1, . . . , Rn such
that (Ri)1≤i≤m is the least shrunk solution of (4), computable in polynomial
time.

The first two statements follow directly from the previous paragraph and
Prop. 4.8. The third statement follows easily from Theorem 5.1 given in the next
section, where we study the efficient computation of the solutions to fixpoint
equations in the max-plus algebra, as in Equation (4).

Example 4.14. As we noted earlier, the equation system of Example 4.10 was
simple to solve manually because it was not recursive (we were able to first solve
(1) and then (2)). We consider here a simple example to illustrate the need for
general fixpoint equation systems.

Consider a timed automaton with clocks x, y, and a self-loop guarded by 0 ≤
x, y ≤ 1 that resets x. Clearly, whenever the lower bound on x is shrunk (say,
to δ ≤ x) then the system contains no infinite runs, thus the timed automaton
is not simulation-shrinkable. Let us show how this can be seen by our results.
Consider X the set of states that can take (infinitely many times) the self-loop.
This set satisfies the following fixpoint equation

X = Pret(G ∩Unresetx(X)), (6)

where G stands for the guard. The greatest fixpoint can be seen to be the set
X = J0 ≤ x, y ≤ 1K. We see the set G as a variable, so (G,X) is a solution of
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this equation. We will now compute shrunk solutions w.r.t. (G,X). Let consider
the following shrunk DBMs with fresh parameters:

(X,P ) =

0 0 0
1 0 −1
1 1 0

 ,

k1 k2 k3

k4 k5 k6

k7 k8 k9


(G,Q) =

0 0 0
1 0 −1
1 1 0

 ,

k10 k11 k12

k13 k14 k15

k16 k17 k18


We will instantiate (4) for this equation. We calculate Pret((G,Q)∩Unresetx((X,P ))),
which yields (X,R) where R is(

m(k1, k2, k10) 0 0
m(k13, k15 +m(k16, k2 +m(k7, k8))) m(k5, k14) m(k15, k13 +m(k12, k2 + k3))

m(k16, k2 +m(k7, k8)) m(k17, k11 +m(k16, k2 +m(k7, k8))) m(k9, k18)

)
where we m represents max. Since we are looking for non-empty solutions, we
must set k1 = k5 = k9 = k10 = k14 = k18 = 0. Furthermore, we would like the
parameters k13, k16, k11, k12 to be positive so that the guard will be shrunk by a
positive amount on all sides. So Equation (4) is written, for this case, as follows.

k1 = max(k1, k2, k10)
k4 = max(k13, k15 + max(k16, k2 + max(k7, k8)))
k5 = max(k5, k14)
k6 = max(k15, k13 + max(k12, k2 + k3))
k7 = max(k16, k2 + max(k7, k8))
k8 = max(k17, k11 + max(k16, k2 + max(k7, k8)))
k9 = max(k9, k18)
ki = max(1, ki),∀i ∈ {1, 2, 3, 5, 9, 10, 14, 18}.

(7)

Is there a solution to this equation? If we concentrate on the two following lines,
it is easy to see that there is none:

k8 = max(k17, k11 + max(k16, k2 + max(k7, k8)))
k11 = max(1, k11)

In fact, the first line implies that k8 should be no less than k11 + k8, while the
second line requires k11 ≥ 1, a contradiction.

In the next section, we will study general polynomial fixpoint equations as
(7), and show how to check for solutions and solve them. These results will then
allow us to define our algorithms for shrinkability.

5 Max-Plus Algebra

5.1 Max-plus equations

In PSMs, formal expressions using maximization and sum are manipulated. The
set R≥0 endowed with these operations is called the max-plus algebra. There is
a well-established theory on solving equations in this algebra, with applications
to discrete-event systems [BCOQ92]. The purpose of this section is to show how
to solve polynomial fixpoint equations in the max-plus algebra.

Let k1, . . . , kn, kn+1, . . . , kn+n′ be parameters, and φ1, . . . , φn be max-plus
polynomials. We are interested in computing solutions of fixpoint equations of
the following form:

ki = φi(k1, . . . , kn, kn+1, . . . , kn+n′), ∀1 ≤ i ≤ n. (8)
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Notice that variables kn+1, . . . , kn+n′ only appear at the right hand side of the
equation. Equation (8) defines a non-linear equation (polynomials φi have arbi-
trary degrees). We call these equations max-plus polynomial fixpoint equations.
The equations between parameters that we derived in the previous section fall
into this category. Although Tarski’s Theorem [Tar55] guarantees the existence
of fixpoint solutions in N ∪ {∞}, we are interested in finite solutions, i.e., so-
lutions in N which is not a complete lattice. Note that some algorithms have
been studied to compute fixpoint equations of polynomial equations on general
ω-continuous semirings, see [EL11]. Our specialized algorithm provides a more
efficient solution, and can be used to show additional properties such as the
second part of the following theorem.

Theorem 5.1. The existence of a solution of a given max-plus polynomial
fixpoint equation is decidable in polynomial time in the size of the equation.

Moreover, if there is a solution v in N to a given equation E, then for any
values v′n+1, . . . , v

′
n+n′ ∈ N where vn+i > 0 ⇒ v′n+i > 0 for all 1 ≤ i ≤ n′,

equation E with the additional constraints {kn+i = vn+i}1≤i≤n′ has a least
solution, computable in polynomial time.

As in the previous section, we assume that expressions can be shared in
equations given as input to the above theorem. Such a data structure is detailed
in the next subsection. The second point of the theorem states that the existence
of solutions does not depend on the exact values of the unconstrained variables,
but only on their positiveness.

These results rely on an analysis of max-plus graphs, that we associate to
max-plus equations. The rest of this section defines these graphs and gives an
algorithm to solve these equations.

5.2 Max-Plus Graphs

Let k be a set of parameters. A max-plus graph G with parameters k is a
directed graph (V,E), where V is the set of nodes, and E ⊆ V ×V the set of arcs.
The node set V is partitioned into V = k∪N∪Max∪Plus. There is one node
for each parameter, and also some additional nodes labelled by natural numbers,
and others labelled either by max or by plus. The graphs satisfy the constraint
that each (directed) cycle contains at least one node in k. We identify nodes
n ∈ N with the natural number they represent. We will have at most one node
labelled by each natural number.

Intuitively, a max-plus graph encodes the relations between the parameters
k, where a directed path from parameter k to k′ means that k′ is greater than
or equal to k in any solution. Formally, given a max-plus graph G, a mapping
ν : k −→ N is called a valuation of G. An extended valuation ν is the extension of
a valuation ν to all nodes of G. An example is given in Fig. 7.

Definition 5.2. A valuation ν : k −→ N is a solution of a max-plus graph G
with parameters k if there exists some extended valuation ν, that satisfies the
following conditions.

• For all k ∈ k, ν(k) = max(ν(k′)) where the max is over all predecessors k′

of k,

• For all n ∈ N, ν(n) = n.
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• For all p ∈ Plus, ν(p) =
∑
p′ ν(p′), where the sum is over the predeces-

sors p′ of p.

• For all m ∈ Max, ν(m) = maxm′(ν(m′)) where the max is over the
predecessors m′ of m.

k1

6
max

6 1
1

+
6

2
2

k2

4
max

4
4
4

k3

4

Figure 7: The figure shows a max-plus graph containing the parameter nodes
k1, k2, k3. The numbers given above the nodes are an extended valuation. One
can notice that at all nodes but the plus node, the values are at least as large as
the values of the successors of the node. At the plus node, the given value 6 is
the sum of the values of the successors. One can check that the given extended
valuation is the least extended valuation in this graph, thus defines the least
solution.

Note that if we are interested in a positive integer solution of a max-plus
graph, we can simply add one edge from node 1 to each parameter k. We extend
the order ≤ to vector of numbers as (ai)i∈I ≤ (bi)i∈I iff ai ≤ bi for all i ∈ I.

Given a graph G = (V,E), a path from node v1 to node vk is a sequence
v1v2 . . . vk of nodes where (vi, vi+1) ∈ E for all 1 ≤ i ≤ k− 1. A simple cycle is a
path v1 . . . vk such that v1 = vk and nodes v1, . . . , vk−1 are pairwise distinct. A
node v′ is reachable from a node v if there is a path starting at v and ending at

v′. For two nodes v, v′ ∈ V , we write v
+−→ v′, if there is a path v = v1 . . . vk = v′

such that k ≥ 2, and vi ∈ Plus for some i ∈ {1, . . . , k}.
The following lemma gives a graph theoretical characterization of max-plus

graphs that have solutions. A simple cycle of a max-plus graph is a bad cycle if
it contains at least one Plus node, and at least one node that is reachable from
a node n ∈ N with n ≥ 1. A contradicting path is a path from k to l, for some
k, l ∈ N with k > l.

Lemma 5.3. A max-plus graph G with parameters k has a solution if and only
if it has no bad cycle or contradicting path. Moreover, if G has a solution, then
it has a least solution which can be computed in polynomial time in the size of G.

Proof. Clearly, if G has contradicting paths, it has no solution. Let us show that
if G has a bad cycle, then it does not have any solution.

Consider a simple bad cycle c in G that contains a plus node p, and suppose
there is an extended solution ν. We know that p has one predecessor in p′

in c, and another one outside, let us call it p′′. By hypothesis, all nodes
of c are reachable from a node n ≥ 1, which implies ν(p′′) ≥ 1. We have
ν(p) ≥ ν(p′) + ν(p′′) ≥ ν(p′) + 1. But since c is a cycle, combining inequalities
satisfied by ν along c, we get ν(p′) ≥ ν(p), therefore ν(p′) ≥ ν(p′) + 1, which is
a contradiction.

We now prove that if there are no contradicting paths and bad cycles, then
G has a solution, which we will construct explicitly. Consider first all nodes W
of G that are not reachable from any node n ∈ N with n ≥ 1. We can safely
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assign the value 0 to all the nodes of W (this doesn’t contradict the max-plus
graph since none of these nodes are reachable from a positive number). Then, we
replace all nodes of W by the node 0 ∈ Nat. Let us call G′ the graph obtained
from G in this manner. Clearly, if G′ has a solution, so does G, by extending the
solution with W ∩ k 7→ 0. Moreover, G′ can be computed in polynomial time.

If k ⊆ W then we are done. Otherwise, let us assume w.l.o.g. that all the
nodes of G are reachable from a positive number. We are now looking for a

solution in N>0. Then, by hypothesis, the relation
+−→ is anti-symmetric. We

partition the set of nodes of G into C0, C1, . . . , Cm such that C0 is the minimum

for the relation
+−→, and each Ci is the set of nodes whose all

+−→-predecessors

are in C0 ∪ . . . ∪ Ci−1 and that has at least one
+−→-predecessor in Ci−1. This

partition can be seen as a topological sort for the relation
+−→.

Observe that C0 is not empty by hypothesis (in fact, there is at least one
node that is reachable from a positive integer and there is no bad cycle) and
that any plus node of Ci has both its predecessors in C0 ∪ . . . ∪ Ci−1. Also,
there is no path in G from Ci to Cj for j < i by construction. Let G[Ci] denote
the graph G restricted to nodes of Ci. For all 1 ≤ i ≤ m, given a lower bound
ιi : Ci −→ N>0, there is a unique solution νi of G[Ci] such that ιi(v) ≤ νi(v)
for all v ∈ Ci. In fact, the solutions of G[Ci] which respect ιi are exactly the
solutions of the max-plus linear equation x = Ax ⊕ b, defined by Ak,l = 0 if
there is an arc (l, k) in G[Ci] and Ak,l = −∞ otherwise; and vector b is defined
as bk = ιi(k) for all k. 6 Solutions to this linear fixpoint equations exist in N>0,
and A∗b is one, and is in fact the least solution, where A∗ is defined as A∗k,l = 0
if there is path from l to k in G[Ci], and −∞ otherwise. This can be computed
in polynomial time (see Section 3 of [BCOQ92]).

We will define ν iteratively for each Ci, i ≥ 0. For i = 0, we let ν0 be
the least solution of G[C0] for ι0 defined by ι0(n) = n for n ∈ N ∩ C0 and
ι0(v) = 1 for all v ∈ C0 \N. At step i ≥ 0, suppose we are given valuations
ν0, . . . , νi−1 and a lower bound ιi. We compute νi as the least solution of G[Ci]
that respects ιi, and we define ιi+1 on Ci+1 as follows. For all u ∈ Ci+1 ∩ k,
we let ιi+1(u) = maxv:(v,u)∈E∧v∈C0∪...∪Ci ν(v); for all u ∈ Ci+1 ∩Max, we let
ιi+1(u) = max(ν(v1), ν(v2)) where v1, v2 ∈ C0 ∪ . . .∪Ci by construction; and for
all u ∈ Ci+1 ∩Plus, we let ιi+1(u) = ν(v1) + ν(v2) where v1, v2 ∈ C0 ∪ . . . ∪ Ci.
(Note that N ⊆ C0). Clearly, any solution of G that extends ν|C0∪...∪Ci must
satisfy this lower bound.

By construction, ν defines a solution. Moreover, we show that this is the
least solution. In fact, since this is a finite solution, the least solution ν′ given
by Tarski’s theorem is also finite. But we defined ν0 as the least solution in C0,
so that there is no solution of G whose values in C0 is less than ν0. This means
ν′|C0

≥ ν0. We show by induction that the lower bound ιi is satisfied by ν′|Ci ,
for all i, so that we get ν′|Ci ≥ νi by construction of νi. Hence, ν′ = ν.

We now define max-plus graphs that encode the solutions of equations of the
form (8). First, for a max-plus polynomial φ, let us define graph G(φ) associated
to φ, as follows. Graph G(φ) is the syntactic binary tree of the expression φ,
where the leaves are either constants or elements of k, and each internal node

6In max-plus algebra, max is the addition and is denoted by ⊕, whereas the sum is the
multiplication and is denoted by ⊗. The product of a matrix and a vector is defined as usual,
where multiplication is ⊗ and addition is ⊕.
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corresponds to either plus or max, and joins the subtrees of the corresponding
subexpressions. The root corresponds to the whole expression φ. We direct
the edges of the tree bottom up. Now, define the max-plus graph G associated
to equation (8) as the union of graphs G(φi) associated to each φi, where all
nodes corresponding to same parameters are merged together. Moreover, an
arc is added from the root node of each G(φi) to node ki, and from ki to the
root. Notice that any cycle we create in this manner contains a parameter node.
Observe that in our construction, each max- or plus-node of G corresponds to a
unique subexpression in one of the φi’s. The following lemma states that this
graph encodes precisely the solutions of equation (8).

Lemma 5.4. Let G be the max-plus graph associated to Equation (8). A
valuation ν : k −→ N is a solution of G if, and only if it is a solution of (8).
Therefore, ν is the least solution of G if, and only if it is the least finite solution
of (8).

Proof. As noted above, there is a correspondence between the nodes labelled
max or plus with the subexpressions. We use this to show how a solution of
G can be seen as a solution of (8) and vice versa. Suppose ν is an extended
solution that proves that ν is a solution of G. Then, this defines a solution
of (8) where ν(k) is the values given to k, and ν(V \ k) define the values of
the subexpressions in φi’s. In fact, by construction, these are the “intermediate”
values calculated in the subexpressions when one evaluates each φi. Using the
same correspondence, one can see that a solution of (8) yields a solution of G
whose extension correspond to these intermediate values.

Proof of Theorem 5.1. The first statement of Theorem 5.1 now follows directly
from Lemmas 5.3 and 5.4. For the second statement, define equation (E) from
equation (8) by adding equality constraints kn+i = vn+i for all 1 ≤ i ≤ n′, for any
vn+1, . . . , vn+n′ ∈ N>0. Assume that (8) has a solution where kn+1, . . . , kn+n′

are given positive values. We show that then, the max-plus graph G′ associated
with equation (E), does not have bad cycles or contradicting paths, which means
that it has a solution by above lemmas. In fact, in the max-plus graph G of (8),
no cycle that is reachable from a node kn+i contains a plus node, since this would
contradict the existence of a solution with a positive value for kn+i. Therefore,
when we add the additional constraint kn+i = vn+i we do not create any new
bad cycles or contradicting paths. The result follows.

Example 5.5. In Example 4.14, we proved manually, by contradiction, that
the considered equation had no solution. The contradiction was obtained by the
following lines:

k8 = max(k17, k11 + max(k16, k2 + max(k7, k8)))
k11 = max(1, k11)

We can apply the results of this section to detect the same contradiction. The
graph below shows the max-plus graph associated to these two lines (this is a
subgraph of the max-plus graph associated to the full equation). One can see
that the graph contains a bad cycle: k8 belongs to a cycle containing a plus node
which is reachable from node 1.
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6 Deciding shrinkability

We now apply the results we developed in previous sections to shrinkability.

6.1 Simulation-Shrinkability

We fix a closed timed automaton A = (L, l0, C,Σ, E) with distinct labels, and a
finite automaton F on the same alphabet Σ such that JFK vt.a. JAK. For any
edge with label σ ∈ Σ and guard gσ, let Gσ be the DBM that represents JgσK,
and Rσ be the reset set.

Computation of the Simulator Sets Since all edge labels are distinct, the
simulator set of each state f of F in JAK can be expressed as the greatest fixpoint
of the following equation:

Sf =
⋂
σ∈Σ

⋂
f
σ−→f ′

Pret(UnresetRσ (Sf ′) ∩ JGσK), (9)

for all states f of F , where (Sf )f∈F are unknown sets of states of A. The
greatest fixpoint is well-defined since the operator on the right, denoted Ω, is
non-decreasing.

We will use properties of the region equivalence in a timed automaton without
formalizing this well-known construction (for that, we refer to [AD94]). Regions
refine the largest time-abstract bisimulation in a timed automaton; therefore, if
(Sf )f are finite unions of regions, then (S′f )f = Ω((Sf )f ) are also finite unions
of regions. In particular, the largest fixpoint of (9) can be computed by a finite
number of iterations of operator Ω, after having initialized all sets with the full
set of states of A. We also notice that if (Sf )f are convex sets, then so are
(S′f )f = Ω((Sf )f ).

For every i, we write (Sif )f for the sets of states obtained after i iterations
of Ω in the above-mentioned iterative computation. From the above discussion,
the two following properties hold:

• for every state f of F , ta-simJAK(f) = limi→∞ Sif = Si0f for some i0;

• for every i, for every f , Sif is a finite convex union of regions.

We therefore deduce that the simulator set of each state f of F in JAK can
be expressed as the greatest fixpoint of the following equation on DBMs:

JMf K =
⋂
σ∈Σ

⋂
f
σ−→f ′

Pret(UnresetRσ (JMf ′K) ∩ JGσK), (10)
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for all states f of F , where (Mf )f are unknown DBMs.
We now argue that the simulator sets can be computed in time pseudo-

polynomial in A and F . As argued above, one can compute this greatest
fixpoint by initializing all Mf to unconstrained DBMs, and then iteratively
computing approximations applying (10) until a fixpoint is reached. If M i

f is

the i-th iterative DBM for state f , we obviously have that JM i
f K = Sif . As

each computed DBM represents a finite union of regions, it can be defined with
constraints using integer constants between −C and C, and all the computed
normalized DBMs only use integer constants in [−C · |C0|, C · |C0|] ∪ {−∞,∞}.

So, at each iteration, either the Mf ’s do not change, in which case the
fixpoint has been reached, or some constant is decreased by at least one. Thus,
fixpoint must be reached in at most O((C · |C0|) · |F| · |C0|2) iterations, and each
computation takes time O(|F| · |C0|3), since the expression inside the intersection
in (10) is computed, and all DBMs need be normalized for each edge of F .

Globally, the simulator sets for all f ’s can therefore be computed in time
O(C · |F|2 · |C0|6), which is then pseudo-polynomial.

Computing Shrunk Simulator Sets When They Exist Consider the
greatest solution (Mf )f of (10). Including the Gσ’s in the unknown DBMs,
Equation (10) can be seen as an instantiation of Equation (3) (page 20) over
DBMs (Mf )f ∪ (Gσ)σ.

Solving simulation-shrinkability w.r.t. F consists in deciding if for some
shrinking of the guards Gσ, there exist simulator sets that are shrinkings of the
sets Mf ’s. So, solving simulation-shrinkability w.r.t. F means deciding whether
(10) has a shrunk solution with respect to (Mf )f ∪ (Gσ)σ where the shrinking
matrices of Gσ’s are positive.7 This can be decided by Lemma 4.13.

Simulation-shrinkability does not depend on how much the guards are shrunk.
In fact, since Gσ’s are unconstrained in (9), if there is a shrunk solution to (9)
with positive shrinking matrices for Gσ’s, then for any shrinking matrices (Kσ)σ,
Lemma 4.13 provides a (greatest) shrunk solution where the shrinking matrices
for (Gσ)σ are fixed to (Kσ)σ. Therefore, either all positive integer vectors k,
which yield normalized guards, witness the shrinkability of A (into A−kδ), or
A is not simulation-shrinkable w.r.t. F for any value of k.

Furthermore, one can also require initial simulation between F and a shrink-
ing of A, i.e. the initial state of A−kδ should simulate the initial state f0 of F . In
this case, it suffices to compute the shrunk simulator sets as above (if these exist),
and then check whether the shrinking of the set Mf0 contains the valuation 0.
This can be done efficiently, since it suffices to intersect the shrinking with this
valuation and check for emptiness.

Now, solving simulation-shrinkability w.r.t. F only takes time polynomial
in the size of the equation. So the overall complexity is pseudo-polynomial
in A and F . Note that, one can check simulation-shrinkability w.r.t. A, which
requires the shrinking to time-abstract simulate A, by chosing F as a time-
abstract bisimulation quotient of A. In this case, F has exponential size, so
the procedure takes exponential time. Nevertheless, minimization can be used
to compute the coarsest bisimulation quotient as in [TY01], which yields small
equations in practice.

A summary of the several steps of the algorithm is given in Fig. 8.

7Let us call a shrinking matrix positive, if all its off-diagonal components are positive.
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Figure 8: Summary of the simulation-shrinkability algorithm. If shrinkability
holds (YES), then the analysis of the max-plus graph yields the least solution,
thus, the shrinking of the guards and the simulator sets in the shrunk timed
automaton. Note that the computation of a time-abstract bisimilarity quotient
can be replaced by an input requiring a finite automaton.

6.2 Non-blocking-Shrinkability

We fix a closed non-blocking timed automaton A = (L, l0, C,Σ, E). For any edge
with label σ ∈ Σ and guard gσ, let Gσ be the DBM that represents JgσK, and
Rσ be the reset set. The following equation characterizes non-blockingness:

∀σ ∈ Σ, JGσK ⊆
⋃

σ′:(σ,σ′)∈ΣE◦E

UnresetRσ (Pret(JGσ′K)), (11)

where we let ΣE◦E = {(σ, σ′) | ∃l, l′, l′′ ∈ L, l gσ,σ,Rσ−−−−−→ l′
gσ′ ,σ

′,Rσ′−−−−−−−→ l′′ ∈ E},
that is the set of pairs of labels of consecutive transitions in A. We rewrite this
equivalently as follows.

∀σ ∈ Σ, JGσK =
⋃

σ′:(σ,σ′)∈ΣE◦E

UnresetRσ (Pret(JGσ′K)) ∩ JGσK, (12)

Now, A is shrinkable w.r.t. non-blockingness if, and only if, this equation has a
shrunk solution w.r.t. (Gσ)σ. We can unfortunately not directly use our general
results on shrunk solutions since our equation contains a union. We instead
apply transformations to this equation in order to remove the union. We start
by rewriting the above equation as follows:

∀σ ∈ Σ, JGσK =
⋃

σ′:(σ,σ′)∈ΣE◦E

JMσ,σ′K

∀σ, σ′ ∈ Σ, JMσ,σ′K = UnresetRσ (Pret(JGσ′K)) ∩ JGσK
(13)

Fix a solution (Gσ)σ ∪ (Mσ,σ′)σ,σ′ , which exists again by the non-blockingness
assumption. We will solve the max-plus equation corresponding to the second
part of (13) by Lemma 4.13, but we first add to this equation some inequalities
which “encode” the first part of (13). We use the following technical lemma to
choose these inequalities.
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Lemma 6.1. Let C1, . . . , Cb and D be normalized DBMs s.t. JDK =
⋃

1≤i≤bJCiK
and P1, . . . , Pb and Q shrinking matrices s.t. for some δ0 > 0, D − δQ and
Ci − δPi are normalized for all δ ∈ [0, δ0]. Then, one can decide the existence
of (and then compute) some δ1 > 0 s.t. JD − δQK =

⋃
1≤i≤bJCi − δPiK for all

0 < δ < min(δ0, δ1), in polynomial space and in time O(|C0|2bp(|C|+ b)), where
p(·) is a polynomial.

Moreover, in this case, for all shrinking matrices Q′, P ′1, . . . , P
′
b s.t. Qx,y ./

(Pi)x,y ⇔ Q′x,y ./ (P ′i )x,y and (Pi)x,y ./ (Pj)x,y ⇔ (P ′i )x,y ./ (P ′j)x,y for all i, j ∈
{1, . . . , b}, x, y ∈ C0 and ./ ∈ {<,=}, it holds JD − δQ′K =

⋃
1≤i≤bJCi − δP ′i K

for all small enough δ > 0.

Proof. One can verify in polynomial time, whether for all i ∈ {1, . . . , b}, JCi −
δPiK ⊆ JD − δQK for all small enough δ ≥ 0: It suffices to check, for all x, y,
whether (Ci − δPi)x,y ≤ (D − δQ)x,y for small enough δ ≥ 0, which holds if
either (Ci)x,y < Dx,y or (Ci)x,y = Dx,y and (Pi)x,y ≥ Qx,y. In the former case,
we need to choose δ1 so that δ(Qx,y− (Ci)x,y) < Dx,y− (Ci)x,y for all 0 ≤ δ ≤ δ1,
whereas the latter always holds.

It remains to verify that JD − δQK ⊆
⋃

1≤i≤bJCi − δPiK. This holds if and
only if( ⋃

1≤i≤b

JCi − δPiK
)c
∩ JD − δQK =

⋂
1≤i≤b

⋃
(x,y)∈(C∪{0})2

Jx− y > (Ci − δPi)x,yK ∩ JD − δQK = ∅.

where (·)c denotes the set complement, which is true if and only if for all
(x(1), y(1)), . . . , (x(b), y(b)) ∈ (C∪{0})2,

⋂
1≤i≤b(Jx

(i)−y(i) > (Ci−δPi)x(i),y(i)K∩
JD−δQK) = ∅. But there are less than (|C0|)2b such terms, which are conjunctions
of b+ 1 DBMs, so the emptiness of each term can be checked in polynomial time,
as described above. The overall time complexity is then O((|C0|)2bp(|C| + b)).
But this verification can be carried out in polynomial space since each term can
be checked independently. Note that each term gives an upper bound on δ1, so
the equality holds choosing δ1 as the minimum of these.

The last statement follows from the fact that the emptiness, for all small
enough δ ≥ 0, of the disjuncts above only depends on the order between the
parameters.

Although we do not know whether the polynomial space complexity is optimal
for the above problem, the high complexity is of little surprise since checking
equality between a zone and a union of zones is a difficult problem in general
even in the exact setting [DHLP06].

The second point of the lemma says that the satisfaction of the first part of
(13) by a shrunk solution only depends on the relative ordering of the components
of the shrinking matrices. Therefore, we only need to guess the ordering between
all parameters (there is at least one if there exists a shrunk solution), and solve
the second part of (13) augmented with these guessed (in)equalities.

Formally, let Φ be the max-plus equation corresponding to the second part
of (13), as defined in Section 4.2. Let k′ denote the set of all parameters that
appear in Φ (there is one parameter per element of each matrix Gσ and Mσ,σ′).
Notice that k′ has size O

(
(|C0| · |L| · b)2

)
, where b is the maximal number of

outgoing edges in A, and that Φ has size polynomial in the size of A. Φ is
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Figure 9: Summary of the non-blocking-shrinkability algorithm. If shrinkability
holds (YES), then the analysis of the max-plus graph yields the least solution,
thus, the least shrinking of the guards that yield a non-blocking timed automaton.

a conjunction of equations k = φk(k′) for all k ∈ k′. For all pairs k, l ∈ k′,
we guess a relation among {<,=, >}, and define equation Φ′ by adding these
relations to Φ. This can be done, for the case k = l, by replacing the constraints
on k and l respectively by k = max(φk(k′), l) and l = max(φk(k′), k), and in
the case k > l, by replacing the constraint on k by k = max(φk(k′), l + 1).
Notice that Φ′ is obtained from Φ in polynomial time and with a polynomial
number of guesses. We then solve Φ′ using Theorem 5.1. If we find a solution,
say (Pσ)σ ∪ (Pσ,σ′)σ,σ′ , we verify that JGσ − δPσK =

⋃
σ′JMσ,σ′ − δPσ,σ′K for

small δ, for all pairs (σ, σ′) ∈ ΣE◦E , in time O(|C0|2bp(|A|)) and in polynomial
space by Lemma 6.1. We accept if all verifications succeed and reject otherwise.
If accepted, any solution provides a shrunk solution of (13), by Lemma 4.13.
Conversely, if there is a shrunk solution of (13), then, Φ′ can be constructed for
the guesses corresponding to this solution, and by Lemma 6.1, Φ′ has a solution.
If b is fixed, this procedure is in NP. Otherwise, instead of making guesses, we
can deterministically try all possible guesses (the number of possible guesses

is O(2(|C|·|L|·b)2) and verify in polynomial space, so the procedure is then in
PSPACE. A summary of the several steps of the algorithm is given in Fig. 9.

Finally, to decide strong shrinkability, one can first compute the least param-
eters k and δ0 for non-blocking-shrinking, then check simulation-shrinkability
since the latter does not depend on exact values of k and δ0.

6.3 In practice

We implemented the algorithm for the shrinkability with respect to simulation
in a tool called Shrinktech. The program is written in C++ and extends the
Uppaal DBM library 8 to shrunk DBMs and uses Kronos [BDM+98] to compute
a bisimulation quotient of a given timed automaton.

8http://people.cs.aau.dk/ adavid/UDBM/
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Let us return to Example 3.4. We have a timed automaton A describing
alternating events with adjustable periods with constraints. Remember that the
system is not simulation-shrinkable because an infinite run intuitively requires
the periods of both events to be exactly 2. To detect this, we define the finite
automaton F as the simple (untimed) cycle of A. When run on A and F the
tool Shrinktech answers that A is not shrinkable w.r.t. F . In fact, the tool finds
a bad cycle (see Section 5), in the generated max-plus graph, which can then be
traced back to the cycle cons · prod. This means that there is no possible value
for the shrinking parameters along this cycle under which the timed automaton
simulates the finite automaton.

The system can be fixed by allowing the productions to slow down further
when the consumptions also slow down. In fact, if we define timed automaton A′
by replacing the guard x ≤ 2, by x ≤ 3, then the tool answers that A′ is
shrinkable w.r.t. F with k1 = k2 = 1 and δ = 0.1.

In order to evaluate the performance of our tool, we applied it to several
benchmarks found in the literature. Some of these results are summarized
in Table 1. In all models, all atomic guards were shrunk by positive-valued
parameters except for equality constraints. This means that the shrinking
parameters of the guards that contain equality were not required to be positive
(see Remark 4.12).

The circuit models were studied with Imitator, a parameter synthesis tool for
timed automata9. The guards are used to encode timing constraints on the input
and output of the gates. The results show that the chosen constants are robust
in the sense that all time-abstract behaviors are preserved when the guards are
shrunk. The phone protocol, and the Philips Audio protocol are case studies
done with Kronos. The former contains several equality constraints, and even
though the model contains non-equality guards, mixing these turn out to imply
punctual simulator sets which are no longer valid when the (non-equality) guards
are shrunk. We believe that shrinkability analysis is more interesting for models
without equality constraints.

In the train gate controller example from [AKP00], and the model describes
a gate with constraints on opening and closing times, trains with time bounds
on arrival rate, and a controller. The full bisimilarity quotient is too large to
process, but the design is shrinkable w.r.t. a simple cycle requiring the liveness
of all trains. A possible interpretation of the shrinkability is that the train gate
controller does not require trains to go through the gate at the last moment, or
immediately after opening.

Fischer’s protocol shows the limit of the approach when the finite automaton
is the full bisimilarity quotient. Nevertheless, the verification time is significantly
smaller when the finite automaton is a simple cycle requiring all agents to make
progress. We believe that significant properties can be expressed with small
automata, and one rarely needs the full bisimilarity quotient.

The tool is open source and available at http://www.lsv.ens-cachan.fr/
Software/shrinktech.

9http://www.lsv.ens-cachan.fr/Software/imitator/
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Table 1: Experimental results. Shrinkability results marked with an asterisk
indicates that the finite automaton F was not the full bisimulation graph.
Model states trans clocks |F| time result

A 2 2 2 2/2 0.1s No
A′ 2 2 2 2/2 0.1s Yes
Phone Prot. 11 16 5 63/271 0.1s No
Philips Audio 446 2097 2 437/2734 46s Yes
Flip-Flop Circuit 22 34 5 30/64 1s Yes
Latch Circuit 32 77 7 105/364 1.6s Yes
Fischer’s Protocol 3 152 464 3 472/4321 20s Yes
Fischer’s Protocol 4 752 2864 4 4382/65821 310min Yes
Fischer’s Protocol 4 752 2864 4 4/4* 0.1s Yes
Train Gate Controller 320 1136 4 36135/1099414 MEMOUT
Train Gate Controller 320 1136 4 4/4* 0.1s Yes

7 Application to Implementability

In this section, we demonstrate how shrinkability can be used to ensure that
the behaviour is preserved in implementation. To this end, we first present an
implementation semantics for timed automata, which takes into account nonzero
reaction times, synchronization delays and clock imprecisions. Given a shrinkable
timed automaton, we show how the parameters of the implementation semantics
can be chosen so that the semantics is preserved. Our semantics corresponds to
the execution of timed automata by a digital system that has a single digital
clock and nonzero reaction time. It is similar to the one studied in [DDR05]
with minor differences (corresponding to different abstraction choices), and we
prove additional properties besides the one given there.

Implementability is in general a difficult problem, and an exact answer
needs to take into account a detailed model of the platform, such as the worst
and best case execution times for each instruction in a given microproces-
sor (e.g. [BKW12]). Such a modeling is out of the scope of this paper. It is
nonetheless useful to carry the formal verification as far as possible in the design
of a system, so as to gain confidence in the design at hand. Our goal here is
to show that some properties of the system (simulation and non-blockingness)
are preserved in a semantics that is closer to a real implementation than the
idealized abstract semantics of timed automata.

We first define our semantics and state its properties, then compare it with
[DDR05], and with other related work.

We describe a system which interacts, via sending and receiving signals, with a
physical environment (e.g. via sensors). We distinguish input and output actions,
and define the transitions of the system taking into account the imprecisions of
the clock, the transmission delay of signals and the reaction time of the system.
When an event is generated at time T by the environment, it is treated by the
system at time T + ε, for some ε > 0 which will be bounded but unpredictable.
Similarly, when the environment receives a signal at time T , it must have been
sent at some time T − ε. We assume that the system ignores any signal that is
received during the treatment of the previous signal; this reaction time will be
also bounded but unpredictable. Thus, in our semantics, the system does not
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have a buffer to store incoming signals; it either responds immediately to a signal
or ignores it. We define the timestamps of both input and output actions as the
reaction times of the environment, since we are interested in the behaviour of
the environment controlled by a digital timed system.

The implementation semantics has three parameters: a) ∆c is the clock
period, b) ∆r is the maximum reaction time, following each action, c) ∆t is the
maximum transmission delay of signals between the system and the environment
(ε above). We suppose the system has a ∆c-periodic clock, whose value, at any
real time T , is bT c∆c

= maxk∈N{k∆c | k∆c ≤ T}.

Definition 7.1. Let A = (L, `0, C,Σ, E) be a timed automaton with Σ = Σin ∪
Σout, and ∆r,∆c,∆t > 0. The implementation semantics JAKImpl is the TTS
(SA, s0,Σ, E) in which states are tuples (`, T, v, u0): ` is a location, T ∈ R≥0 the
current global time10, v ∈ RC≥0 the timestamp of the latest reset for each clock,
and u0 ∈ [0,∆r] the reaction time following the latest location change. From any

state (`, T, v, u0), for any edge `
σ,g,R−−−→ `′ and T ′ ≥ T , we let,

• if σ ∈ Σin, (`, T, v, u0)
σ(T ′)−−−→ (`′, T ′ + ε, v[R ← T ′ + ε], u′0), whenever

bT ′+εc∆c
−bvc∆c

|= g and T ′+ε ≥ T +u0, where (ε, u′0) ∈ [0,∆t]× [0,∆r]
is chosen non-deterministically,

• if σ ∈ Σout, (`, T, v, u0)
σ(T ′)−−−→ (`′, T ′, v[R ← T ′ − ε], u′0), whenever

bT ′ − εc∆c − bvc∆c |= g, ε < (T ′ − T ), and T ′ − ε ≥ T + u0, where
(ε, u′0) ∈ [0,∆t]× [0,∆r] is chosen non-deterministically.

The transitions should be interpreted as follows. If the environment generates
an event at time T ′, then the system responds to it at time T ′+ ε, provided that
the reaction time from the previous event is over (T ′ + ε ≥ T + u0), and the
guard is approximately satisfied. If the system generates an event at time T ′− ε,
similar constraints apply but the timestamp is registered as T ′, which is the time
the environment receives the event. Notice that ε and u0 are bounded by known
values but are unpredictable, so they cannot be chosen by the system. We will
consider scheduler functions ρ, which, depending on the history of a given run,
chooses (ε, u0) at each transition. For any scheduler ρ, we denote by JAKImpl

ρ the
implementation semantics, where (ε, u0) is given by ρ at each transition. We
will not formally define ρ here, but it can be done without difficulty.

The following proposition states the relation between the exact semantics and
the implementation semantics of timed automata. All properties hold under any
scheduler ρ. For any TTS T , let us write T ≥α, the TTS obtained from T where
consecutive transitions are restricted to be separated by at least α time units.
More precisely, the states of T ≥α are pairs (s, u) where s is a state of T , and u
is the time elapsed since the latest transition, (s0, 0) being the initial state if s0

is that of T . There is a transition (s, u)
σ(T )−−−→ (s′, 0) if, and only if s

σ(T )−−−→ s′ in
T and u ≥ α. For general TTS, this can be seen as a semantic modification. For
timed automata, this property can be easily obtained by adding a new clock u
reset at each transition and guards u ≥ α to every transition.

10Although we define the semantics with respect to an exact global time, the behaviour of
this TTS will only depend on an approximate measure of this time.
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Proposition 7.2. Let A be a closed non-blocking timed automaton, and ∆r,∆c,∆t >
0. Then, for any ∆ ≥ 2∆c + 4∆t + ∆r and scheduler ρ, JA∆KImpl

ρ is non-blocking
and,

JAK≥2∆r+∆t v JA∆KImpl
ρ v JA∆+2∆c+4∆tK.

Before proving this proposition, let us give our main result on implementability.
As in Section 3.3, for any timed automaton A, we denote by A′ the timed
automaton obtained from A by adding a new clock u reset at each edge. We
have the following result.

Theorem 7.3. Let A be a timed automaton that is strongly shrinkable w.r.t. the
region automaton of A and let A−kδ be its witnessing shrinking for δ ∈ [0, δ0].
Let ∆r,∆c,∆t > 0 be parameters such that 4∆c + 8∆t + 2∆r ≤ δ0. Then for
all ∆ ∈ [2∆c + 4∆t + ∆r, δ0 − 2∆c − 4∆t], for any scheduler ρ, JA∆KImpl

ρ is a
non-blocking timed refinement of A and time-abstract simulates A.

Proof. By Proposition 7.2 applied to A′−kδ, we have

JA′−kδK v JA′−kδ+∆KImpl
ρ v JA′−kδ+∆′K v JA′K = JAK,

and JA′−kδ+∆KImpl
ρ is non-blocking whenever ∆ ≥ 2∆c+4∆t+∆r, ∆′ = ∆+2∆c+

4∆t and δ ≥ max(2∆r + ∆t,∆
′). In fact, JA′−kδK≥2∆r+∆t is equal to JA′−kδK

whenever δ ≥ 2∆r + ∆t due to the shrinking of the additional clock constraints
in A′. The rightmost simulation is due to the fact that −kδ + ∆′ ≤ 0.

Thus, given δ0, the parameters ∆c,∆t,∆r and ∆ can be chosen so that the
implementation semantics of the automaton A′−kδ+∆ is a timed refinement of
the exact semantics of the original automaton. Moreover, when A′ is shrinkable
(say, with parameters kδ), then JA′−kδ+∆KImpl

ρ is also non-blocking and JA′K vt.a.

JA′−kδ+∆KImpl
ρ . Thus, shrinkable timed automata can be implemented so as to

preserve non-blockingness and the behaviour upto time-abstract simulation.
We prove Proposition 7.2 through Lemmas 7.4 – 7.8. In the proofs we use the

standard supremum distance on Rn defined by d∞(ν, ν′) = max1≤i≤n(|νi − ν′i|),
where ν, ν′ ∈ Rn. For any vector ν and real α, we denote by ν + α the vector
obtained by adding α to all components of ν.

Lemma 7.4. Let A be a timed automaton, ∆r,∆c,∆t > 0 denote the parameters.
Then, for any ∆ ≥ 2∆c + 4∆t, and any scheduler ρ,

JAKImpl
ρ v JA∆K.

Proof. We show that the relation R defined by (`, T, v, u0)R(`, ν, T ′) such that
T ′ ∈ [T −∆t, T ], and d∞(ν + T − T ′, T − v) ≤ ∆t is a timed simulation. Notice
that we do not require these two states to be at the same time instant, but the
difference between these instants must be bounded and the clock valuations
must be close when the second system delays to time T . Consider such a pair of
states.

Consider the following transition.

(`, T, v, u0)
σ(T+τ)−−−−−→ (`′, T + τ + ε, v[R← T + τ + ε], u′0),

for some σ ∈ Σin, and (u′0, ε) ∈ [0,∆r]× [0,∆t] is given by ρ, and bT + τ + εc∆c
−

bvc∆c
|= g. We show that the following transitions are realizable in JA∆K.

(`, ν, T ′)
σ(T+τ)−−−−−→ (`′, (ν + T + τ − T ′)[R← 0], T + τ).
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We need to show that ν + T + τ − T ′ |= 〈g〉2∆c+4∆t
. Using the fact that

bαc∆c
∈ [α−∆c, α] for any α ∈ R≥0, we get d∞

(
(T + τ + ε−v), (bT + τ + εc∆c

−
bvc∆c)

)
≤ ∆c. Then T + τ + ε − v |= 〈g〉2∆c (the factor 2 is due to diagonal

constraints), and, T + τ −v |= 〈g〉2∆c+2∆t
. Since d∞(ν+T −T ′, T −v) ≤ ∆t, we

also have d∞(ν+T −T ′+τ, T −v+τ) ≤ ∆t, so ν+T +τ−T ′ |= 〈g〉2∆c+4∆t
. We

now show that the new states are related by R. Let ν′ = (ν+T + τ −T ′)[R← 0]
and v′ = v[R← T+τ+ε]. We have d∞(ν′+ε, T+τ+ε−v′) ≤ ∆t. In fact, for any
clock x 6∈ R, this follows from the assumption that d∞(ν + T − T ′, T − v) ≤ ∆t,
and for all x ∈ R, we have ν′(x) + ε = ε ≤ ∆t and (T + τ + ε− v′)(x) = 0.

Now, consider the following transition.

(`, T, v, u0)
σ(T+τ)−−−−−→ (`′, T + τ, v[R← T + τ − ε], ε, u′0),

where σ ∈ Σout, (u′0, ε) ∈ [0,∆r]×[0,∆t] is given by ρ and bT+τ−εc∆c
−bvc∆c

|=
g. We show that the following transition is realizable in JA∆K.

(`, ν, T ′)
σ(T+τ)−−−−−→ (`′, (ν + T + τ − T ′)[R← 0], T + τ).

We show that ν + T + τ − T ′ |= 〈g〉2∆c+4∆t
. As in the previous case, we have,

T + τ − ε − v |= 〈g〉2∆c and using the fact that d∞(ν + T − T ′, T − v) ≤ ∆t,
we get ν + T + τ − T ′ |= 〈g〉2∆c+4∆t . Let ν′ = (ν + T + τ − T ′)[R ← 0] and
v′ = v[R← T + τ − ε]. We have d∞(ν′, T + τ − v′) ≤ ∆t. In fact, for any clock
x 6∈ R, this follows from d∞(ν + T − T ′, T − v) ≤ ∆t, and for all x ∈ R, we have
ν′(x) = 0 and (T + τ − v′)(x) = ε ≤ ∆t.

For any timed automaton A and ∆′ ≥ 0, we denote the states of JAK≥∆′ as
triples (`, ν, u), where ` is a location, ν a clock valuation and u the time elapsed
since the latest action (and it is 0 initially).

Lemma 7.5. Let A be a timed automaton, and ∆r,∆c,∆t > 0 parameters.
Then, for any ∆ ≥ 2∆c + 4∆t, and any scheduler ρ,

JAK≥2∆r+∆t v JA∆KImpl
ρ .

Proof. We show that the relation R defined by (`, ν, T )R(`, T ′, v, u0) such that
T ′ ∈ [T, T + ∆t] and d∞(ν + (T ′ − T ), T ′ − v) ≤ ∆t is a timed simulation.
Consider such a pair of states.

Suppose that (`, ν, T )
σ(T+τ)−−−−−→ (`′, ν′, T + τ) for some σ ∈ Σin, where ν′ =

(ν + τ)[R← 0]. For any (u0, ε) ∈ [0,∆r]× [0,∆t] given by ρ, this is simulated
by the following transition.

(`, T ′, v, u0)
σ(T+τ)−−−−−→ (`′, T + τ + ε, v[R← T + τ + ε], u′0).

In fact, by hypothesis, τ ≥ 2∆r + ∆t, so (T + τ) − T ′ ≥ ∆r ≥ u0, hence the
reaction time is over when the action happens. Let us show that the guard is
satisfied. We have ν + τ |= g. Since d∞(ν + T ′ − T, T ′ − v) ≤ ∆t, we have
d∞(ν + τ, T + τ − v) ≤ ∆t (in fact, we add τ − (T ′−T ) = τ −T ′+T to the first
vector, and (T +τ)−T ′ = τ−T ′+T to the second). Hence T +τ+ε−v |= 〈g〉4∆t

.
Then, bT +τ + εc∆c−bvc∆c |= 〈g〉4∆t+2∆c , so the guard is satisfied. Let us write
v′ = v[R← T + τ + ε]. It remans to show that d∞(ν′ + ε, T + τ + ε− v′) ≤ ∆t.
In fact, for all x 6∈ R this follows from hypothesis since the difference between
the values of a clock in the two systems is unchanged when both systems delay
to time instant T + τ + ε. For all x ∈ R, we have (ν′ + ε)(x) = ε ≤ ∆t and
(T + τ + ε− v′)(x) = 0. Hence, (`′, ν′, T + τ)R(`′, T + τ + ε, v′, u′0).
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Suppose now that (`, ν, T )
σ(T+τ)−−−−−→ (`′, ν′, T + τ) for some σ ∈ Σout, where

ν′ = (ν + τ)[R ← 0]. For any (u′0, ε) ∈ [0,∆r] × [0,∆t] given by ρ, this is
simulated by the following.

(`, T ′, v, u0)
σ(T+τ)−−−−−→ (`′, T + τ, v[R← T + τ − ε], u′0),

In fact, by hypothesis, τ ≥ 2∆r + ∆t, so T + τ − ε− T ′ ≥ ∆r. Let us show that
the guard is satisfied. We have ν + τ |= g. Since d∞(ν + (T ′ − T ), T ′ − v) ≤ ∆t,
we have d∞(ν+ τ, T + τ − v) ≤ ∆t as in the previous case, hence T + τ − ε− v |=
〈g〉4∆t

. Then, bT + τ − εc∆c
− bvc∆c

|= 〈g〉4∆t+2∆c
. It remans to show that

d∞(ν′, T + τ − v′) ≤ ∆t. This follows from hypothesis for clocks x 6∈ R since
both systems delay to time instant T + τ . For all x ∈ R, we have (ν′)(x) = 0
and (T + τ − v′)(x) = ε ≤ ∆t. Hence, (`′, ν′, T + τ)R(`′, T + τ, v′, u′0).

We are now interested in the preservation of non-blockingness in the im-
plementation semantics. Note that this is not a consequence of the simulation
relations. We first prove a property on the enlarged zones.

Definition 7.6. Let Z be any closed convex subset of RC≥0. The lower boundary
of Z is the set lb(Z) = {v ∈ Z | ∀τ > 0, v − τ 6∈ Z}. The width of Z is defined
as inf{τ | ∃v ∈ lb(Z), v + τ 6∈ Z). In other terms, the width of Z is the least
delay necessary to go out of Z starting inside the lower boundary.

A guard is said to be normalized if the corresponding DBM is normalized.

Lemma 7.7. Let g be a normalized guard such that JgK 6= ∅. Then for any
∆ > 0, J〈g〉∆K has width greater than or equal to ∆.

Proof. Let M be a DBM that describes JgK. Then M ′ = M + ∆1 describes
J〈g〉∆K, where 1 is the matrix with same dimension as M in which all off-diagonal
entries are 1’s and diagonal entries are 0. Let v ∈ lb(JM ′K). We will show that
v + τ ∈ JM ′K for all τ ∈ [0,∆]. First, observe that clock differences are constant
during delay transitions. So, whenever −My,x −∆ ≤ v(x)− v(y) ≤Mx,y + ∆,
we have −My,x −∆ ≤ (v(x) + τ) − (v(y) + τ) ≤ Mx,y + ∆ for all τ . We now
show that rectangular constraints are also satisfied for at least ∆ time units.
Since v ∈ lb(JM ′K), there exists x ∈ C, such that −M0,x −∆ = v(x) (otherwise
valuation v can be decremented by some positive amount). For this clock,
obviously −M0,x−∆ ≤ v(x) + τ ≤Mx,0 + ∆ for τ ∈ [0,∆], since −M0,x ≤Mx,0

(in fact, the set is not empty). Now, consider any y ∈ C. DBM M ′ implies the
following diagonal constraint (and possibly a tighter one).

−∆−M0,x −My,0 ≤ v(x)− v(y) ≤Mx,0 +M0,y + ∆.

But, combining the above inequality with v(x) = −M0,x − ∆, we get that
v(y) ≤My,0, so v(y) + τ ≤M ′y,0 = My,0 + ∆ for τ ∈ [0,∆].

The following lemma shows that if the exact semantics is non-blocking, then
the implementation semantics is also non-blocking.

Lemma 7.8. Let A be a timed automaton, ∆r,∆c,∆t > 0 be parameters and
assume that JAK is non-blocking. Then for any ∆ ≥ ∆r + 2∆c + ∆t, JA∆KImpl is
non-blocking.
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Proof. First, observe that if JAK is non-blocking, then so is JA∆K for any

∆ > 0. In fact, consider an edge `
g,σ,R−−−→ `′ and any corresponding tran-

sition (`, v1, T )
σ(T+τ)−−−−−→ (`′, v′1, T + τ) in JA∆K. Since v1 + τ |=∆ g, there

exists v2 such that d∞(v2, v1) ≤ ∆ and v2 + τ |= g. Let v′2 be such that

(`, v2, T )
σ(T+τ)−−−−−→ (`′, v′2, T + τ). Since JAK is non-blocking, for some τ ≥ 0, there

exists an edge with guard g′ such that v′2 + τ |= g′. But d∞(v′1, v
′
2) ≤ ∆, so

we also have v′1 + τ |=∆ g′, and the edge is enabled from (`′, v′1, T + τ) as well.
Hence JA∆K is non-blocking.

Let (`, T, v, u0)
σ(T+τ)−−−−−→ (`′, T + τ + ε, v′, u′0) denote a transition in JA∆KImpl

with v′ = v[R← T+τ+ε] for some σ ∈ Σin, and `
σ,g,R−−−→ `′ the corresponding edge

in A. We have bT + τ + εc∆c
− bvc∆c

|=∆ g, so for ν = bT + τ + εc∆c
− bvc∆c

,

we have (`, ν, 0)
σ(0)−−−→ (`′, ν′, 0) in JA∆K, where ν′ = ν[R ← 0]. Notice that

ν′ = bT + τ + εc∆c
−bv′c∆c

. Since JA∆K is non-blocking, there exists τ ≥ 0 such
that ν′ + τ |=∆ g′, where g′ is the guard of some edge with label σ′ outgoing
from `′.

Consider Z = J〈g′〉∆K, whose width is at least ∆ by Lemma 7.7. Then, there
exists α, β ∈ R≥0 such that α+ ∆ ≤ β and ν′ + τ ′ ∈ J〈g′〉∆K for all τ ′ ∈ [α, β].
We show that (`′, T + τ + ε, v′, u′0) can delay some amount τ ′ and take this
transition. For any max(α,∆r) + ∆c ≤ τ ′ ≤ β −∆c −∆t, we have

bT+τ+εc∆c
+(max(α,∆r)+∆c)−∆c ≤ bT+τ+ε+τ ′c∆c

≤ bT+τ+εc∆c
+(β−∆c−∆t)+∆c.

Thus,

ν′ + max(α,∆r) ≤ bT + τ + ε+ τ ′c∆c − bv′c∆c ≤ ν′ + β −∆t. (14)

Notice that such a τ ′ exists since ∆r + 2∆c + ∆t ≤ ∆. Hence, if σ′ ∈ Σout, then,
for any ε′ ∈ [0,∆t] given by ρ, the transition

(`′, T + τ + ε, v′, u′0)
σ′(T+τ+ε+τ ′+ε′)−−−−−−−−−−−−→ (`′′, T + τ + ε+ τ ′ + ε′, ·, ·),

is valid. If σ′ ∈ Σin, then

(`′, T + τ + ε, v′, u′0)
σ′(T+τ+ε+τ ′)−−−−−−−−−→ (`′′, T + τ + ε+ τ ′ + ε′, ·, ·)

is valid thanks to the right hand side term in (14) (since ε′ ∈ [0,∆t].
The proof is similar when σ ∈ Σout.

7.1 Related Work on Implementation Semantics

A similar semantics, called the program semantics, was defined in [DDR05] and
was proven to be simulated by the enlarged semantics (as in the rightmost
simulation in Proposition 7.2). Our definition follows their ideas, but we define
a somewhat more abstract semantics by concentrating on different aspects. The
main difference is that we do not insist on the semantics to produce events
almost as soon as possible (almost ASAP). Thus, transitions are not urgent
in our semantics; only the reactions to input events are. Also, our semantics
is not input-enabled, that is, it can ignore signals during the treatment of
another signal, since it has no buffer. Both assumptions are applicable to
different platforms (see [AMP98, Die01] for examples of systems that ignore
any signal unless it is maintained long enough). Moreover, instead of giving a
detailed model of the treatment of the signals in several steps, we rather define
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action transitions taking a positive unpredictable amount of time, during which
computations take place. This allows us to model the unpredictability using
schedulers and state our properties for any scheduler. Due to these differences,
both semantics are uncomparable: the program semantics is not simulated, in
general, by our implementation semantics, and vice versa. Note that two results
in Proposition 7.2 are new compared to [DDR05]: the leftmost simulation and
the preservation of non-blockingness.

A similar effort to define an implementation semantics for programmable logic
controllers as PLC automata, was studied in [Die01]. However, one cannot use the
full power of timed automata in that framework since PLC automata correspond
to a restricted class of timed automata. A different line of work considers
the implementability of timed automata extended with tasks under sampling of
time [KMTY04] but no detailed semantics is studied (see also [HHK01]). Another
recent work considers the variation in execution times in systems modeled as
timed automata, when actions have long execution times [ACS10].

8 Conclusion

In this work, we introduced the technique of shrinking the guards of timed
automata, in order to obtain correct implementations. We showed that shrinking
the guards always yields implementations that are refinements of the abstract
models, and we gave algorithms to synthesize the shrinking parameters for all
atomic guards to ensure that the shrunk automaton is non-blocking, and can
time-abstract simulate (some part of) the initial automaton. Our framework
allows one to design a system with the usual timed automata semantics, use
existing tools to run simulations and do verification, and then synthesize the
shrinking parameters before implementing the system. If the automaton is
shrinkable, then several properties proved for the initial automaton are preserved
in the implementation. If it is not shrinkable, then this suggests that the model
is vulnerable to the slightest variations in the measure of time and should thus
be considered as non-robust, and the design should be reviewed.

Future work includes developing techniques to solve a larger class of fix-
point equations on shrunk DBMs, such as those including arbitrary use of the
union operation. One could then solve, for instance, the simulation-shrinkability
problem without the hypothesis of distinct edge labels. We believe the shrunk
DBMs we introduced can be useful in solving other problems in timed automata,
involving small imprecisions. We recently used this data structure to solve a
different kind of robustness problem on timed automata, where the control is
modelled as a game, and the imprecisions are controlled by one of the play-
ers [BMS12, SBMR13]. We plan to investigate such a game semantics for richer
objectives and under probabilistic perturbations.
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[KMTY04] Pavel Krćal, Leonid Mokrushin, P. Thiagarajan, and Wang Yi.
Timed vs. time-triggered automata. In Philippa Gardner and Nobuko
Yoshida, editors, CONCUR 2004 - Concurrency Theory, volume
3170 of Lecture Notes in Computer Science, pages 340–354. Springer
Berlin / Heidelberg, 2004.

[Mar11] Nicolas Markey. Robustness in real-time systems. In Proceedings
of the 6th IEEE International Symposium on Industrial Embedded
Systems (SIES’11), pages 28–34, Väster̊as, Sweden, June 2011. IEEE
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