
Verification of Petri Nets with Read Arcs

César Rodŕıguez and Stefan Schwoon

LSV (ENS Cachan & CNRS & INRIA), France

Abstract. Recent work studied the unfolding construction for contex-
tual nets, i.e. nets with read arcs. Such unfoldings are more concise and
can usually be constructed more efficiently than for Petri nets. However,
concrete verification algorithms exploiting these advantages were lacking
so far. We address this question and propose SAT-based verification al-
gorithms for deadlock and reachability of contextual nets. Moreover, we
study optimizations of the SAT encoding and report on experiments.

1 Introduction

Petri nets are a well-known model for concurrent systems. McMillan [17] intro-
duced unfoldings as a tool for verifying properties of such nets. Roughly speaking,
the unfolding of a net N is an acyclic net bisimilar to N . McMillan showed that
for bounded nets one can use a finite prefix P of the unfolding to check certain
properties of N , e.g. reachability of markings or deadlock-freeness; McMillan
himself proposed a deadlock-checking algorithm based on this idea.

The interest of unfoldings lies in the fact that, while P is in general larger
than N , it is smaller than the full reachability graph. Moreover, deadlock or
reachability checking are NP-complete for P but PSPACE-complete for N . Thus,
the unfolding technique represents a time/space tradeoff for verifying Petri nets.
This tradeoff is particularly attractive when testing multiple properties of the
same net because P needs to be constructed only once.

The publication of [17] triggered a large body of research. To name a few
items, the necessary size of P has been reduced [9], efficient tools for generating
P have been implemented [16, 24], and unfoldings-based verification algorithms
have been developed [7, 10,11,14,18]. An extensive survey can be found in [8].

Recently, unfoldings of contextual nets (c-nets) have been studied, i.e. nets
with read arcs that check for the presence of tokens without consuming them.
Their unfoldings can be exponentially more compact than for Petri nets. It is
thus natural to base verification on unfoldings of c-nets rather than Petri nets.

Previous work on c-net unfoldings has concentrated on their construction: [2]
gave an abstract algorithm, and [1, 22] provided efficient construction methods.
However, concrete verification algorithms making use of them are still missing. In
this paper, we aim to close this gap. Our contributions are twofold: we investigate
SAT-encodings of unfoldings, and we extend them to c-nets.

Concerning the first point, recall that given a finite complete prefix P of a
bounded Petri net N , deciding deadlock-freeness, reachability, or coverability
on N is NP-complete. Thus, previous works consisted in reductions to different

NP-complete problems: McMillan [17] employed a branch-and-bound technique,
Heljanko [11] a stable-models encoding, and Melzer and Römer [18] used mixed
integer linear programming, later improved by Khomenko and Koutny [14, 15].
The technique used by Esparza and Schröter [10] is an ad-hoc algorithm based
on additional information obtained while computing the unfolding.

The previous decade has seen the emergence of powerful SAT solvers. It is
natural to profit from these advances and reduce to SAT instead; all the more so
because unfoldings are 1-safe nets, so the marking of a place naturally translates
to a boolean variable. Indeed, SAT solving has already been proposed for the
similar problem of model-checking merged processes [13], and [8] gives an explicit
SAT encoding for Petri net unfoldings. However, we are not aware of a publicly
available tool that uses this idea. We examine the performance of the encoding
and propose some optimizations.

Our principal contribution consists in extending the techniques for deadlock
checking and reachability to unfoldings of c-nets. Thus, we intend to leverage
their advantages w.r.t. ordinary unfoldings, i.e. faster construction and smaller
size. It is worth noting that the smaller size of c-net unfoldings does not auto-
matically translate to an easier SAT problem, for the following reasons: First,
the presence of read arcs may cause so-called cycles of asymmetric conflict.
Thus, a SAT encoding requires acyclicity constraints, which are not necessary
for conventional unfoldings. Secondly, an event in a c-net unfolding can occur
in multiple different execution contexts, called histories, and the constructions
proposed in [1,2,22] require to annotate events with potentially many such histo-
ries. In contrast, every event in a Petri net unfolding has only one history. Some
verification algorithms for Petri nets rely on this fact and do not easily adapt to
c-nets. We propose solutions for both problems. Our encoding does not refer to
the histories at all, and the effect of the acyclicty constraints can be palliated
by several strategies. We add that the SAT-encoding for c-net unfoldings was
already briefly sketched in [25], but without considering these problems.

To our knowledge, this is the first paper proposing practical verification algo-
rithms using unfoldings of c-nets. These algorithms are provided as an add-on to
the tool Cunf, which is freely available [20]. The tool is more efficient than pre-
vious approaches when applied to Petri net unfoldings, and even more efficient
than that when used on c-net unfoldings.

The paper is structured as follows: In Section 2, we recall notation and pre-
vious results. In Section 3 we explain how unfoldings can be used to check for
deadlock and reachability, and in Section 4, we discuss the reduction of the prob-
lem to SAT. We report on experiments in Section 5 and conclude in Section 6.
A longer version of this paper is available at [21].

2 Basic notions

In this section, we establish our basic definitions and recall previous results. Due
to space constraints, this section is quite concise (see [2, 22] for background).

2.1 Contextual nets

A contextual net (c-net) is a tuple N = 〈P, T, F,C,m0〉, where P and T are
disjoint sets of places and transitions, F ⊆ (P ×T)∪ (T ×P) is the flow relation,
C ⊆ P × T is the context relation and m0 : P → N is the initial marking. A pair
(p, t) ∈ C is called read arc. A Petri net is a c-net without read arcs. N is called
finite if P and T are finite sets. Fig. 1 (a) depicts a c-net. Read arcs are drawn
as undirected lines, here between p and C.

For x ∈ P ∪ T , let •x := { y ∈ P ∪ T | (y, x) ∈ F } the preset of x and
x• := { y ∈ P ∪ T | (x, y) ∈ F } the postset of x. The context of a place p
is defined as p := { t ∈ T | (p, t) ∈ C }, and the context of a transition t as
t := { p ∈ P | (p, t) ∈ C }. These notions extend to sets in the usual fashion.

A function m : P → N is called marking of N . A transition t is enabled at m
if m(p) ≥ 1 for all all p ∈ t ∪ •t. Such, t can fire, leading to marking m′, where
m′(p) = m(p)−|{p}∩ •t|+ |{p}∩ t•| for all p ∈ P . We say that some marking m
is reachable if it can be obtained by a finite sequence of firings starting at m0.
A marking m is deadlocked if it does not enable any transition.

N is called k-bounded if m(p) ≤ k for all reachable m and p ∈ P , and safe
if it is 1-bounded. For safe nets, we treat markings as sets of places carrying
tokens.

e1(A)
e2(B)

e4(D)

c2(q)

e3(C)

c6(s) c7(s)

c9(q)

c1(p)

c3(r)

c8(p)

c4(r) c5(s)

e5(E)

(b)

A
B

C

D

sr
E

qp

(a)

Fig. 1. (a) A safe c-net N ; and (b) an unfolding prefix P for N .

2.2 Occurrence nets

Let N = 〈P, T, F,C,m0〉 be a c-net. For t, t′ ∈ T , we write t <· t′ if t•∩(•t′∪t′) 6=
∅. We write < for the transitive closure of F∪<·, and ≤ for the reflexive closure of
<. For x ∈ P∪T , we write [x] for the set of causes of x, defined as {t ∈ T | t ≤ x}.
A set X ⊆ T is causally closed if [t] ⊆ X for all t ∈ X.

Two transitions t, t′ are in symmetric conflict, denoted t # t′, iff •t∩ •t′ 6= ∅,
and in asymmetric conflict, written t↗ t′, iff (i) t <· t′, or (ii) t∩ •t′ 6= ∅, or (iii)
t 6= t′ and t # t′. In case (ii) we also write t↗↗ t′. For a set of events X ⊆ T , we
write ↗X to denote the relation ↗∩ (X ×X).

A c-net O = 〈B,E,G,D, m̂0〉 is called an occurrence net iff (i) O is safe and
for any b ∈ B, we have |•b| ≤ 1; (ii) < is a strict partial order for O; (iii) for all
e ∈ E, [e] is finite and ↗[e] acyclic; (iv) m̂0 = { b ∈ B | •b = ∅ }.

Let O be such an occurrence net. As per tradition, we call the elements
of B conditions, and those of E events. A configuration of O is a finite, causally
closed set of events C such that ↗C is acyclic. Conf (O) denotes the set of all
such configurations. For a configuration C, let cut(C) := (m̂0 ∪ C•) \ •C.

A prefix of O is a net P = 〈B′, E′, G′, D′, m̂0〉 such that E′ ⊆ E is causally
closed, B′ = m̂0 ∪ (E′)•, and G′, D′ are the restrictions of G,D to (B′ ∪ E′).

2.3 Unfoldings

Let N = 〈P, T, F,C,m0〉 be a bounded c-net. It is possible [2,22] to produce an
occurrence net UN = 〈B,E,G,D, m̂0〉, called the unfolding of N and equipped
with a mapping f : (B ∪ E)→ (P ∪ T), that has the following properties:

– f maps conditions to places and events to transitions. We extend f to sets,
multisets, and sequences in the usual way; f applied to a marking of UN (a
set) will yield a marking of N (a multiset).

– UN is an acyclic version of N , i.e. the firing sequences and reachable markings
of UN , modulo the mapping f , are exactly the same as in N .

In general, UN is infinite, but one can generate a finite prefix P of it that
is marking-complete, meaning that any marking m is reachable in N iff there
exists a marking m̂ reachable in P with f(m̂) = m. Fig. 1 (b) depicts a marking-
complete prefix of the c-net shown in Fig. 1 (a), where f is given in parentheses.

3 Using unfoldings for verification

In this section, we illustrate why some existing verification approaches for Petri
net unfoldings do not adapt well to c-net unfoldings. This justifies the choice of
marking-completeness in Section 2.3 and is related to the notion of cutoff.

For Petri nets (i.e., without read arcs), existing algorithms such as [9, 17]
produce a finite prefix P by truncating the unfolding at so-called cutoff events.
Essentially, for a cutoff event e there exists another event e′ in P such that
f(cut([e])) = f(cut([e′])). Intuitively, e does not contribute a new marking to
the unfolding, and therefore e and its successors can be omitted from P.

Certain deadlock-checking algorithms for Petri nets depend on a stricter no-
tion than marking-completeness, which we call cutoff-completeness, that also
demands to include such cutoffs in P. If P is cutoff-complete, then N contains
a deadlock iff P contains a cutoff-free configuration C such that cut(C) is dead-
locked in P. This reduction is directly employed in [14,18] and indirectly in [17].

Seeing as the algorithm in [14] performs very well, it would be tempting to
adapt this reduction to c-nets. However, we provide an example showing that this
reduction is problematic for c-nets. First, recall that the unfolding construction

for c-nets given in [1,2,22] lifts the notion of cutoff to event-history pairs. Here,
a configuration H is called history of an event e if e′(↗H)∗e for all e′ ∈ H.
In this case 〈e,H〉 is called extended event, and in analogy to Petri nets, some
extended events will be marked as cutoffs when another extended event 〈e′, H ′〉
exists such that f(cut(H)) = f(cut(H ′)). An event may have multiple histories,
some of which are cutoffs while others are not.

The net shown in Fig. 1 (a) is free of deadlocks. An unfolding prefix P is
shown in Fig. 1 (b), the mapping f is given in parentheses. Event e1 has two
histories: H1 = {e1} and H2 = {e3, e1}. The unfolding algorithm will make
〈e1, H2〉 a cutoff but not 〈e1, H1〉; indeed H2 leads to the same marking {r, s}
as 〈e2, {e2}〉1. An event is shown in black if all its histories are cutoffs.

The prefix in Fig. 1 (b) is marking-complete and also cutoff-complete, when
the latter notion is lifted to enriched events. Under this assumption the above-
given reduction of the deadlock-checking problem is still valid.

Consider the marking m′ = {c3, c6}, which is deadlocked in P. The configu-
ration leading to m′ has a cutoff (namely, 〈e1, H2〉), so m′ cannot be interpreted
as representing a deadlock of N – indeed f(m′) = {r, s} enables transition E in
N . However, as this example demonstrates, checking whether a given configura-
tion is cutoff-free requires to reason about histories and not just about events.
This is undesirable because forbidding certain histories would result in a rather
more complex SAT formula. We therefore use another solution that is completely
event-based and requires only marking-completeness:

Remark 1. Let N be a bounded c-net and P a marking-complete prefix for N .
Then N contains a deadlock iff P has a reachable marking m′ such that f(m′)
is deadlocked. Moreover, m is reachable in N iff P has a reachable marking m′

such that f(m′) = m.

In the following, we assume that every event in a marking-complete prefix has
at least one non-cutoff history; the unfolding tool Cunf [20] can be instructed
to remove the others at no extra cost.

4 SAT-encodings of c-nets

The SAT problem is as follows: given a formula φ of propositional logic, find
whether there exists a satisfying assignment that makes φ true. SAT solving has
taken a quantum leap during the last decade, and many efficient solvers for this
problem exist. Here, we encode the deadlock-checking and reachability problem
for c-nets in SAT, based on Remark 1. For Petri nets, such an encoding was
given in [8]; we generalize it to c-nets and enrich it with optimizations. Notice
that most constraints that we give translate directly into CNF.

For the rest of this section, let N = 〈P, T, F,C,m0〉 be a finite safe c-net and
P = 〈B,E,G,D, m̂0〉 a finite marking-complete prefix of N . We first construct

1 It is not important to understand why the unfolding construction prefers to declare
〈e1, H2〉 a cutoff rather than 〈e2, {e2}〉, and our point is independent of this choice;
what matters is that some events may have cutoff and non-cutoff histories.

a propositional formula φdeadP that is unsatisfiable iff N is deadlock-free. Sec-
tion 4.4 explains the modifications needed to implement reachability checking,
and Section 4.5 explains how the encoding can be generalized to bounded nets.

The formula φdeadP is defined over variables e for e ∈ E and p for p ∈ P as:

φdeadP := φcausalP ∧ φsymP ∧ φasymP ∧ φmark
P ∧ φdisP

The first three constraints enforce that any satisfying assignment represents
a configuration C, and φmark

P defines the marking m := f(cut(C)), which φdisP
verifies to be deadlocked.

Recall that a configuration is a causally closed set of events free of loops in
the ↗ relation. Subformulae φcausalP and φsymP request C to be a causally closed
set of events that has no pair of events in symmetric conflict:

φcausalP :=
∧

e∈E
e′∈•(•e∪e)

(e→ e′) φsymP :=
∧

c∈C AMO(c•),

where AMO(x1, . . . , xn) is satisfied iff at most one of x1, . . . , xn is satisfied(see
Section 5.1). φasymP ensures that C is free of ↗-cycles; the details come in Sec-
tion 4.1. φmark

P characterizes supersets of the marking m reached by C:

φmark
P :=

∧
c∈B

p=f(c)
{e}=•c

((
e ∧
∧

e′∈c• ¬e′
)
→ p

)

Finally, φdisP ensures that m is indeed deadlocked in N :

φdisP :=
∧

t∈T
∨

p∈•t∪t ¬p

Notice that a variable p may be true even if p /∈ m. However, such an assignment
can only serve to hide a deadlock, so this encoding is safe.

4.1 Asymmetric conflict loops

We now explain φasymP , which ensures that ↗C is acyclic (for convenience, we
equate a relation with a directed graph in the natural way). Symmetric conflicts
form cycles of length 2 in↗ and are efficiently handled by the AMO constraints
of φsymP . In a Petri net, these are the only cycles that can occur. However, in a
c-net there may also be cycles in the relation R := <· ∪ ↗↗. We show now that
they occur naturally in well-known examples:

Consider Fig. 2, which shows the beginning of an unfolding of Dekker’s
mutual-exclusion algorithm [19] (only some events of interest are shown). In
the beginning, both processes indicate their interest to enter the critical section
by raising their flag (events e1, f1). They then check whether the flag of the other
process is low (events e2, f2) and if so, proceed (e3) and possibly repeat (e4, e5).
If both processes want to enter the critical section (f ′2), some arbitration happens
(not displayed). Two conflict cycles in this example are e1 <· e2 ↗↗ f1 <· f2 ↗↗ e1
and f1 <· f ′2 ↗↗ e3 <· e4 <· e5 ↗↗ f1.

Process 1

Process 2

flag1

turn

flag2

flag1 := 0
turn := 2

flag1 := 1flag2 = 0? flag2 = 0?flag1 := 1

flag2 := 1

= 1

e1 e4 e5e3

= 0 = 1 = 0

= 2

= 1

= 0

= 1

e2

f1

f2

f ′
2

flag1 = 0?

flag1 = 1?

Fig. 2. Partial unfolding of Dekker’s algorithm algorithm with asymmetric cycles.

Several encodings have been proposed in the literature for acyclicity con-
straints, including transitive closure and ranks (see, e.g., [4]). In the ranking
method, one introduces for each event e additional boolean variables that rep-
resent an integer up to r (the so-called rank of e), where r is a large enough
number. Then, for each pair (e, f) ∈ R, one introduces a clause (e∧ f)→ [[e < f]],
where [[e < f]] is an additional variable that, if true, forces the rank of e to be
less than the rank of f . Naturally, this clause is only necessary if e and f are in
the same strongly connected component (SCC) of R.

A lower bound for r is the length of the longest chain in ↗ that does not
contain a cycle; however, finding the latter is itself an NP-complete problem. A
simple upper bound for r is the size of the largest SCC of R. To further reduce
this upper bound, one can exploit the fact that C is causally closed and that
every cycle in R contains at least two edges stemming from ↗↗. Consider the
relation R′ := { (e, g) | ∃f, h : e ↗↗ f ≤ g ↗↗ h }. One can easily see that any
causally closed set of events contains a cycle in R iff it contains a cycle in R′, so
r can be bounded by the largest SCC of R′ instead.

On the other hand, R′ may actually contain more pairs than R, and com-
puting R′ may take quadratic time in |E|. So instead, we reduce the size of R
by a less drastic method that can run in linear time: An event e is eliminated
from R by fusing its incoming and outgoing edges in R only if (i) e is not the
source of a ↗↗-edge and (ii) fusing the edges and eliminating e will not increase
the number of edges in R.

Fig. 2 demonstrates another important point. The figure contains two dif-
ferent cycles, both of which contain f1. Thus, all events in Fig. 2 belong to the
same SCC in R. Indeed, we observe in our experiments that the SCCs of R tend
to be large, often composed of thousands of events, but consist of many short,
interlocking cycles. This suggests that an upper bound for r better than the size
of R, even after reduction, may still be feasible. We therefore suggest another
trick: first, check for deadlock while omitting φasymP from φdeadP altogether. This
may result in false positives, i.e. a set of events leading to a deadlocked marking
that is not actually reachable because it contains a cycle in↗. If the SAT solver

comes up with such a spurious deadlock, repeat with φasymP properly included.
The experiments concerning these points are discussed in Section 5.1.

4.2 Reduction of stubborn events

In this section, we discuss an optimization that palliates a problem of SAT
checkers. Consider the occurrence net shown in Fig. 3. If event e1 fires, then
nothing can prevent e2, e3, e4, and e5 from firing. Thus, any configuration leading
to a deadlock must either contain all five events or none of them. However, e1 is
not guaranteed to fire due to the white event that consumes from its context.

· · ·
· · ·

(p3)

e1 (p2)

(p1)
(q2)

(s)

e4

(t)e2

(q1)

(r2)

(r1)

e3

e5

Fig. 3. Stubborn events.

In SAT solving, the value of a variable that is either known or has been
tentatively decided is propagated to simplify other clauses [6]. Thus, in the SAT
encoding for Fig. 3 (see [21] for more details), a SAT solver can immediately
decide that no deadlock configuration may contain e5 when the black event is a
cutoff. This propagation is handled very efficiently by modern solvers, and there
is no gain in emulating this behaviour while generating the SAT encoding.

However, unit propagation in our encoding is not able to detect that e3 and
e4 are logical implications of e1. Even when a solver tentatively sets e1 to true,
unit propagation only infers that e2 must also be true, but not e3 or e4. It takes
another decision, e.g. for e3 or e4, to derive a contradiction and, depending on
the solver, possibly multiple steps to decide that e1 must necessarily be false.

On the other hand, such information is easy to detect on the unfolding struc-
ture, and we shall modify the proposed SAT encoding in these cases. Let us
call stubborn any event e satisfying (•e ∪ e)• = {e}. Intuitively, once all events
preceding e have fired, then firing e is unavoidable to find a deadlock. In Fig. 3,
events e2, e3, e4, e5 are all stubborn.

Indeed, consider any deadlocked configuration C of P, and let e be any stub-
born event verifying •(•e∪e) ⊆ C. Then either e is in C or it is enabled at cut(C),
since C contains all events preceding e. But the latter is not possible because C
is a deadlock, so e must be in C, which proves that e ∈ C iff •(•e ∪ e) ⊆ C (the
other direction follows from the fact that C is causally closed).

This suggests that we could substitute every occurrence of e by a conjunction
of the variables associated to the predecessors of e. We denote by Es the set of
stubborn events, and define inductively the set of predecessors of any event e as
pred(e) := •(•e ∪ e) \ Es ∪

⋃
e′∈•(•e∪e)∩Es

pred(e′).

Proposition 1. If e is stubborn, then any deadlocked configuration C of P ver-
ifies that e ∈ C iff pred(e) ⊆ C.

Corollary 1. φdeadP ≡ φdeadP ∧
∧

e∈Es
(e↔

∧
e′∈pred(e) e

′)

Corollary 1 can be exploited to modify φdeadP in two ways: for every stubborn
event e, (i) add a clause

∧
e′∈•(e∪•e) e

′ → e, or (ii) substitute e by
∧

e′∈pred(e) e
′.

In our experiments, we chose method (ii), which eliminates the stubborn events
from the encoding altogether. The resulting formula, after an initial unit propa-
gation phase by the SAT solver, allows to immediately derive ¬e1. We note that
in certain cases, this can increase the formula by a quadratic factor, see [21].

We briefly explain the changes to φdeadP motivated by method (ii): φsymP is
not affected because no stubborn event appears in any symmetric conflict, and
neither is φdisP . In φcausalP , however, clauses e → e′ are replaced by e → e′′ for
every e′′ ∈ pred(e). In a clause

(
e ∧
∧

e′∈c• ¬e′
)
→ p of φmark

P , we replace e by a
conjunction over pred(e). In principle, the same needs to be done for e′. However,
if |c•| ≥ 2, then no event in c• is stubborn, and nothing changes; but if c• = {e′}
is a singleton, and e′ is stubborn, then the clause is split into |pred(e′)| different
clauses. For φasymP , in a clause of the form e ∧ f → [[e < f]], both e and f are
replaced by conjunctions, if applicable; thus, the formula will still require ranks
for e and f even if e or f are not present.

We remark that stubborn events are also treated specially in the stable-
models encoding of [11]. While stable models are similar to SAT, the treatment
in [11] is simpler; its analogue in propositional logic would not eliminate stubborn
events from the formula nor allow to directly conclude that e1 cannot be fired.

4.3 Additional simplification

We briefly mention some possible simplifications of the formula. First, for a place
p, if p• ∪ p = ∅, then p does not appear in φdisP and can be omitted from φmark

P .
Secondly, for two conditions c, d, if c• ⊆ d•, then AMO(c•) is implied by

AMO(d•) and can be omitted from φsymP . Similarly, for two transition t, u where
•t ⊆ •u, disabledness of t implies disabledness of u, so u can be omitted from
φdisP . We return to this point in Section 5.1.

4.4 Reachability and Coverability

The SAT encoding can be easily modified to check reachability or coverability
of a marking. For simplicity, the formulas given here are not directly in CNF.

For coverability, we want to check whether N has a reachable marking m
such that PM ⊆ m, where PM ⊆ P . This requires the following modifications:
φmark
P still has the same intention but the sense of the implication is reversed; if

a variable p is true we need to ensure that indeed some condition labelled by p
is marked in C. We introduce additional variables c for some conditions c:

φmark
P :=

∧
p∈PM

(
p→

∨
f(c)=p c

)
∧
∧

f(c)∈PM

(
c→

(∧
e∈•c e ∧

∧
e∈c• ¬e

))

Moreover, φdisP specifies reachability of PM : φdisP :=
∧

p∈PM
p

For reachability, we want to check whether a given marking m is reach-
able. Then, the variables representing the places must contain the exact marking
reached by the event, which is achieved by replacing the one-sided implications of
φmark
P by equivalences. Moreover, φdisP needs to be changed to

∧
p∈m p∧

∧
p/∈m ¬p.

4.5 Bounded nets

We briefly sketch an extension to k-bounded nets. For deadlock checking, actu-
ally no modifications are needed because we require the preset and context of
each transition to be a set. This is in the tradition of [1, 2, 22], where it helps
to ease the presentation. However, if presets and contexts could be general mul-
tisets, then, for p ∈ P , one could replace the variable p by variables pi, where
1 ≤ i ≤ k, with the meaning “p carries at least i tokens”. Then one would modify
φmark
P to make pi true if at least i conditions with label p are marked in C, and
φdisP requires that for each transition t there exists some p ∈ •t ∪ t such that pi

is false, where i is the number of tokens in p required by t. The extension for
reachability is analogous, modulo the sense of the implication (cf. Section 4.4).

5 Experimental evaluation

In this section, we evaluate the SAT-based reduction proposed in Section 4.
For this, we wrote a program that reads an unfolding prefix P generated by
Cunf [20] and outputs the associated formula φdeadP in DIMACS CNF format.
As a SAT solver, we used the well-known tool MiniSat [6].

In Section 5.1, we first report on the effect of certain encoding variants and
optimizations like those in Sections 4.1 to 4.3. In Section 5.2, we then compare
against other unfolding-based methods, and we evaluate the effect of using c-nets
rather than Petri nets. We concentrate on the aspect of deadlock checking; as
pointed out in Section 4.4, the encoding for reachability is very similar.

5.1 Optimizations

Section 4 proposed several optimizations of the encoding. We now empirically
evaluate their impact on the solving time. We employed as benchmarks the same
set of safe nets that has previously been used in other papers of the literature
on Petri net unfoldings, e.g. [11, 12, 22, 23]. For each Petri net N in the set, we
obtained a c-net N ′ by substituting pairs of arcs (p, t) and (t, p) in N by read
arcs; we thus have a set of Petri nets and an alternative set of c-nets.

Stubborn event elimination and subset reduction Over the set of Petri
nets shown in Table 2, we found that removal of stubborn events reduces the
accumulated SAT solving time by 27%. When applied together with the subset
optimization from Section 4.3, this grows to 30%. For c-nets, we measured a 14%

reduction when stubborn events are removed from the encoding without acyclic-
ity constraints but only a 6% reduction if additionally the subset optimizations
are applied. Experiments over the encoding with acyclicity were similar.

This suggest that removal of stubborn events has a positive impact on per-
formance, while subset optimization has very limited, even negative impact. For
the following, we applied only the stubborn event optimization.

AMO constraint The constraint AMO(x1, . . . , xn) in φsymP can be trivially
encoded by

∧
1≤i<j≤n(¬xi ∨ ¬xj). However, this pairwise encoding is quadratic,

and the SAT performance suffered for examples with large conflict sets.
A survey of better encodings can be found in [3]. Our tool uses a k-tree

encoding, that introduces O(n) additional variables and adds O(n) clauses, see
[21]. We observed an overall improvement when replacing the pairwise with the
k-tree encoding. The accumulated SAT solving time on our benchmarks under
values of k = 2, . . . , 8 was minimal for k = 4. Experiments over c-nets on the
encoding suggested k = 4 as a good candidate, as well. We therefore used 4-tree
encodings in φsymP for the following experiments.

Acyclicity checking Section 4.1 explained that φasymP encodes cycle-freeness of
configuration C w.r.t. the relation R = <· ∪↗↗. We investigated three encodings
suggested in [4]: transitive closure, unary ranks, and binary ranks. The latter
clearly outperformed the others. In the binary rank encoding, every event is
associated with a rank, i.e. an integer up to some bound r, that is represented
by dlog2 re boolean variables. Constraints of the form [[e < f]] ensure that the
rank of event e is less than the rank of event f if (e, f) ∈ R. If n is the number
of events in P, the resulting SAT encoding is of size O(n2 log n).

Moreover, Section 4.1 proposed a method to reduce the size of R. Table 1
shows the size of the direct asymmetric conflict relation before and after this
reduction for some c-nets unfoldings with at least one cycle in R. More precisely,
we show the size of the largest SCC (in most examples there is in fact only one
non-trivial SCC). In average, the method proposed eliminates 66% of the nodes
and 26% of the edges, seeming thus to be more effective at reducing the number
of nodes rather than the number of edges, wich in turn becomes a reduction in
the number of variables rather than the number of clauses of the encoding.

However, in some examples, the remaining SCCs are still rather large, on the
order of tens of thousands of events, and in these cases φasymP negatively impacts
the running time. We therefore implemented a two-stage approach, in which
the first stage simply omits φasymP from the formula. Only when this first stage
yields a false positive, a second stage with φasymP is used to obtain a definitive
result. This approach was very successful: in over 100 different nets from various
sources that we tried, only 2 (small) nets yielded a false positive. The experiments
presented in the following use this two-stage approach.

SAT-solver settings MiniSat allows to change aspects of the SAT-solving
algorithm, such as decision variables, default polarity etc. We attempted to tweak

Before reduction After reduction Ratio after/before
Net Nodes Edges Nodes Edges Nodes Edges

bds 1.sync 192 271 27 52 0.14 0.19
byzagr4 1b 3197 64501 2348 61088 0.73 0.95
q 1.sync 189 4095 126 4032 0.67 0.98
bds 1.fsa 66 89 9 16 0.14 0.18
dme11 8745 44968 4918 40301 0.56 0.90
rw 2w1r 1766 8877 915 7447 0.52 0.84

Table 1. Reduction of the asymmetric-conflict relation.

these settings in order to exploit knowledge about the problem domain, but
without obtaining significant improvements. More details are given in [21].

5.2 Comparisons

In [15], Khomenko and Koutny compared three versions of their deadlock check-
ing method, implemented in the tool clp, against the methods by McMillan [17],
Melzer and Römer [18], and Heljanko [11]. In their benchmarks, the first version
of their algorithm2 outperformed the other methods on almost all examples. We
experimentally confirmed this conclusion. Moreover, we learnt of an unpublished
SAT-based tool by Khomenko which is said to be slower than clp.3 We therefore
compare our technique with the first method of clp.4

We discuss two families of examples: a standard suite of benchmarks known
from the unfolding literature (see Section 5.1), and another family encoding
networks of logic gates. The first family does not specifically exploit the features
of c-nets; here the savings are not dramatic but still significant. In the second
family, c-nets lead to large time savings.

Table 2 presents the results on the aforementioned standard suite. We used
Mole [24] to produce finite complete prefixes of the Petri nets and Cunf [20]
to do the same for c-nets.5 The running times for Mole and Cunf are given in
the respective columns, the number of events and conditions of the two prefixes
is indicated in the columns |E| and |B|. For Petri nets, we also give the running
times of clp, and the running time of MiniSat in our encoding on the Petri net.
For c-nets we provide the running times of MiniSat with the settings discussed
in Section 5.1. Times are given in seconds and represent averages over 10 runs.

2 Column std in Tables 1 and 2 in [15].
3 According to the author, V. Khomenko.
4 All experiments have been performed using Cunf v1.4, Mole v1.0.6, both compiled

with gcc 4.4.5, version 301 of clp, and MiniSat v2.2.0. Our machine has twelve 64bit
Intel Xeon CPUs, running at 2.67GHz, 50GB RAM and executes Linux 2.6.32-5.

5 The running times of Mole and Cunf are comparable on Petri nets, but Mole
produces prefixes in a format suitable for clp.

Petri net unfolding c-net unfolding

Mole clp SAT Cunf SAT

Net Res. Time |E| |B| Time Time Time |E| |B| Time

bds 1.sync L 0.58 12900 37306 0.04 0.01 0.14 1830 2771 <0.01
byzagr4 1b L 3.71 14724 42276 0.53 0.26 3.25 8044 17603 0.19
dme11 L 6.56 9185 31186 0.60 0.28 10.86 9185 16710 0.25
dpd 7.sync L 1.21 10354 29939 0.10 0.18 1.09 10354 21359 0.02

ftp 1.sync L 45.37 91730 275099 1.13 0.38 26.85 50928 96617 0.05
furnace 4 L 37.44 114477 264823 1.29 0.19 19.11 94413 147438 0.12
rw 12.sync L 3.95 98361 295152 0.08 0.02 3.96 98361 196796 0.02
rw 1w3r L 0.30 15432 28207 0.11 0.22 0.36 14521 24174 0.40
rw 2w1r L 0.22 9363 18575 0.04 0.34 0.32 9363 15304 0.58

elevator 4 D 2.58 16856 47743 0.24 0.03 1.51 16856 28593 0.06
key 4 D 1.68 69600 139206 0.07 0.08 2.07 4754 7862 <0.01
mmgt 4.fsa D 1.16 46902 92940 0.02 0.04 1.17 46902 92076 0.05
q 1.sync D 1.76 10716 30087 <0.01 0.02 1.54 10716 20567 0.01∑

106.52 4.25 2.05 72.23 1.75

Table 2. Comparison of deadlock-checking methods; the Res(ult) is L(ive) or D(ead)

We do not provide the translation times to generate linear equation systems
(for clp) or SAT formulas (for MiniSat). Those times would not be very rep-
resentative since both translators are suboptimal; our own translator to SAT is
in a preliminary stage. Also, there is no reason to suspect that the translation
times for the linear equations of [15] and SAT, when optimized, would be very
different, and we expect such optimized times to be fractions of a second.

Compared to clp, SAT checking performs well over Petri nets, solving the
problems twice as fast on aggregate. Concerning the comparison of SAT checking
between Petri nets and c-nets, we obtain another advantage of 13% for deadlock
verification. More significantly, the time for generating c-net unfoldings is 30%
less than for Petri nets. This advantage is not huge, but recall that these bench-
marks are already favourable examples for Petri net unfoldings and were not
specifically designed to exploit the advantages of c-nets. The two-stage approach
was essential for performance: while the acyclic constraints had a big impact only
on a few examples (notably byzagr4 1b,dme,rw*), that effect would have more
than nullified the advantage of faster unfolding times.

We now present a class of nets in which read arcs have natural advantages:
the encoding of asynchronous circuits of logic gates as Petri nets, one of the mo-
tivations originally mentioned by McMillan [17]. In this encoding, the signals, i.e.
the inputs and outputs of each gate, are modelled with two places for indicating
whether the signal is high (1) or low (0). The outputs change as a function of

reading the inputs. Fig. 4 (a) shows an AND-gate and its encoding as a c-net
fragment.

To illustrate the benefits that c-nets enjoy here, we discuss a simple experi-
ment. We consider a grid of n :=k×k AND-gates, shown in Fig. 4 (b) for k = 3.
The inputs for the AND-gates are at the left and top of the figure, and outputs
propagate to the right and towards the bottom. Inputs may switch freely between
high and low. We encoded such grids into c-nets; additionally, we replaced read
arcs with arrow loops to obtain equivalent Petri nets (so called plain encodings).
We then used Cunf to construct complete unfolding prefixes of the c-nets and
their plain encodings, and observed that signal changes may be propagated to
the bottom right in many different orders, which are distinguished by Petri-net
unfoldings but not by c-net unfoldings. Hence, unfoldings of the plain nets were
of exponential size in n, while the contextual ones were linear. Moreover, Cunf
built the latter ones in time O(n3), see Fig. 4 (c). The verification method for
c-nets herein presented allows to profit from the reduced unfolding time.

c1a1

a0 c0 b0

a
b

c
(b) (c)

b1

(a)

10−2
10−1

100
101
102

10 15 20 25
k

T
im

e
(s

)
plain

contextual

Fig. 4. (a) Encoding of a logical AND-gate; (b) grid of AND-gates; (c) unfolding times

6 Conclusions

We presented verification algorithms based on c-net unfoldings. The twofold ad-
vantages over previous work are the overall performance of the SAT encoding,
and that c-nets allow to profit from faster unfolding procedures and/or faster
verification on the resulting unfolding prefixes. The latter result was not a fore-
gone conclusion due to the richer structure of c-net unfoldings, in particular the
presence of cycles and histories.

We studied optimizations of the encoding, concentrating on optimizations on
the net level, while leaving optimizations on the logical level to the SAT solver.

An interesting future direction of work would be to extend the verification
algorithms to a richer set of properties. E.g., LTL model-checking for Petri nets
has been investigated in [7], but the trace logics investigated by Diekert and
Gastin [5] and others seem like another natural choice.

Acknowledgements: The authors would like to thank Keijo Heljanko, Victor
Khomenko, Paolo Baldan, and the referees for helpful hints and discussions.

References

1. Baldan, P., Bruni, A., Corradini, A., König, B., Schwoon, S.: On the computation
of McMillan’s prefix for contextual nets and graph grammars. In: Proc. ICGT’10.
LNCS, vol. 6372, pp. 91–106 (2010)

2. Baldan, P., Corradini, A., König, B., Schwoon, S.: McMillan’s complete prefix for
contextual nets. ToPNoC 1, 199–220 (2008), LNCS 5100

3. Chen, J.: A new SAT encoding of the at-most-one constraint. In: Proc. Constraint
Modelling and Reformulation (2010)

4. Codish, M., Genaim, S., Stuckey, P.J.: A declarative encoding of telecommunica-
tions feature subscription in SAT. In: Proc. PPDP. pp. 255–266. ACM (2009)

5. Diekert, V., Gastin, P.: From local to global temporal logics over Mazurkiewicz
traces. Theoretical Computer Science 356(1-2), 126–135 (May 2006)

6. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Proc. SAT. pp. 502–518.
LNCS 2919 (2003)

7. Esparza, J., Heljanko, K.: Implementing LTL model checking with net unfoldings.
In: Proc. SPIN. LNCS, vol. 2057, pp. 37–56 (2001)

8. Esparza, J., Heljanko, K.: Unfoldings - A Partial-Order Approach to Model Check-
ing. EATCS Monographs in Theoretical Computer Science, Springer (2008)

9. Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding al-
gorithm. Formal Methods in System Design 20, 285–310 (2002)

10. Esparza, J., Schröter, C.: Unfolding based algorithms for the reachability problem.
Fund. Inf. 47(3-4), 231–245 (2001)

11. Heljanko, K.: Using logic programs with stable model semantics to solve deadlock
and reachability problems for 1-safe Petri nets. Fund. Inf. 37(3), 247–268 (1999)

12. Khomenko, V.: Model Checking Based on Prefixes of Petri Net Unfoldings. Ph.D.
thesis, School of Computing Science, Newcastle University (2003)

13. Khomenko, V., Kondratyev, A., Koutny, M., Vogler, W.: Merged processes – a new
condensed representation of Petri net behaviour. Act. Inf. 43(5), 307–330 (2006)

14. Khomenko, V., Koutny, M.: LP deadlock checking using partial order dependencies.
In: Proc. CONCUR. pp. 410–425. LNCS 1877 (2000)

15. Khomenko, V., Koutny, M.: Verification of bounded Petri nets using integer pro-
gramming. Formal Methods in System Design 30(2), 143–176 (2007)

16. Khomenko, V.: Punf, homepages.cs.ncl.ac.uk/victor.khomenko/tools/punf/
17. McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the ver-

ification of asynchronous circuits. In: Proc. CAV. pp. 164–177. LNCS 663 (1992)
18. Melzer, S., Römer, S.: Deadlock checking using net unfoldings. In: Proc CAV.

LNCS, vol. 1254, pp. 352–363 (1997)
19. Raynal, M.: Algorithms for Mutual Exclusion. MIT Press (1986)
20. Rodŕıguez, C.: Cunf, http://www.lsv.ens-cachan.fr/~rodriguez/tools/cunf/
21. Rodŕıguez, C., Schwoon, S.: Verification of Petri Nets with Read Arcs. Tech. Rep.

LSV-12-12, LSV, ENS de Cachan (2012)
22. Rodŕıguez, C., Schwoon, S., Baldan, P.: Efficient contextual unfolding. In: Proc.

Concur. LNCS, vol. 6901, pp. 342–357 (September 2011)
23. Schröter, C.: Halbordnungs- und Reduktionstechniken für die automatische Veri-

fikation von verteilten Systemen. Ph.D. thesis, Universität Stuttgart (2006)
24. Schwoon, S.: Mole, http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/
25. Schwoon, S., Rodŕıguez, C.: Construction and SAT-based verification of contextual

unfoldings. In: Proc. DCFS. pp. 34–42. LNCS 6808 (2011), extended abstract

homepages.cs.ncl.ac.uk/victor.khomenko/tools/punf/
http://www.lsv.ens-cachan.fr/~rodriguez/tools/cunf/
http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/

	Verification of Petri Nets with Read Arcs

