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Abstract. In this invited contribution, we revisit the stochastic shortest
path problem, and show how recent results allow one to improve over the
classical solutions: we present algorithms to synthesize strategies with
multiple guarantees on the distribution of the length of paths reaching
a given target, rather than simply minimizing its expected value. The
concepts and algorithms that we propose here are applications of more
general results that have been obtained recently for Markov decision
processes and that are described in a series of recent papers.

1 Introduction

Markov decision processes (MDP) [18] are natural models for systems that ex-
hibit both non-deterministic and stochastic evolutions. An MDP is executed in
rounds. In each round, the MDP is in a give state and an action is chosen by a
controller (this is the resolution of non-determinism). Once this action has been
fixed then the next state is determined following a probability distribution asso-
ciated to the current state and the action that has been chosen by the controller.
A controller can thus be considered as a strategy (a.k.a. policy) that determines
which action to choose according to the history of the execution so far. MDPs
have been studied intensively and there are algorithms to synthesize strategies
that enforce a large variety of objectives like omega-regular objectives [9], PCTL
objectives [1], or quantitative objectives [18].

One philosophy, three variants. The classical strategy synthesis setting often
considers a single objective to be optimized such as the reachability probability,
or the expected cost to target. Such simple objectives are not always sufficient
to describe the properties required from an efficient controller. Indeed, on the
one hand, one often has several measures of performance, and several objectives
to satisfy, so the desired strategies have to settle for trade-offs between these.
On the other hand, the strategies computed in the classical setting are tailored
for the precise probabilities given in the MDP, which often correspond to the
average behavior of the system in hand. This approach is not satisfactory if one
is also interested in giving some formal guarantees under several scenarios, say,
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under normal conditions (i.e., average behavior), but also a minor failure, and
a major failure. In this paper, we summarize recent results that we have ob-
tained in this direction with the common goal of improving the strategies that
can be synthesized for probabilistic systems. They were presented in three recent
publications [5,20,19]. All three models that we studied share a common philos-
ophy which is to provide a framework for the synthesis of strategies ensuring
richer performance guarantees than the traditional models. The three problems
we tackle can be summarized as follows.

First, in [5], we study a problem that is at the crossroad between the analysis
of two-player zero-sum quantitative graph games and of quantitative MDPs. In
the former, we want strategies for the controller that ensure a given minimal
performance against all possible behaviors of its environment: we ask for strict
guarantees on the worst-case performance. In the latter, the controller plays
against a stochastic environment, and we want strategies that ensure a good
expected performance, with no guarantee on individual outcomes. Both models
have clear weaknesses: strategies that are good for the worst-case may exhibit
suboptimal behaviors in probable situations while strategies that are good for
the expectation may be terrible in some unlikely but possible situations. The be-
yond worst-case synthesis problem asks to construct strategies that provide both
worst-case guarantees and guarantees on the expected value against a particular
stochastic model of the environment given as input. We have considered both
the mean-payoff value problem and the shortest path problem.

Second, in [19], we study multi-dimensional weighted MDPs, which are useful
for modeling systems with multiple objectives. Those objectives may be conflict-
ing, and so the analysis of trade-offs is important. To allow the analysis of those
trade-offs, we study a general form of percentile queries. Percentile queries are as
follows: given a multi-dimensional weighted MDP and a quantitative payoff func-
tion f (such as mean-payoff or truncated sum), quantitative thresholds vi (one
per dimension), and probability thresholds αi, we show how to compute a single

strategy that enforces that for all dimension i, the probability that an outcome
ρ satisfies fi(ρ) ≥ vi is at least αi. We have obtained several new complexity
results on the associated decision problems and established efficient algorithms
to solve these problems.

Third, in [20], we introduce multi-environment MDPs (MEMDPs) which are
MDPs with a set of probabilistic transition functions. The goal in an MEMDP
is to synthesize a single controller with guaranteed performances against all

environments of this set even though the environment is unknown a priori. While
MEMDPs can be seen as a special class of partially observable MDPs, several
verification problems that are undecidable for partially observable MDPs, are
decidable for MEMDPs and sometimes even allow for efficient solutions.

Stochastic shortest path. To illustrate those results in a uniform manner, we
consider the stochastic shortest path problem, SSP problem, and study several
variations. The shortest path problem is a classical optimization problem that
asks, given a weighted graph, to find a path from a starting state to a target
state such that the sum of weights along edges used in the path is minimized.



Stochastic variants consider edges with probabilistic distributions on destina-
tions and/or on weights. We revisit here some of those variants at the light of
the results that we have obtained in the contributions described above.

Structure of the paper. Our paper is organized as follows. In Sect. 2, we
recall some elementary notions about MDPs. In Sect. 3, we define two classical
stochastic variations on the SSP problem: the first one asks to minimize the
expected length of paths to target, and the second one asks to force short paths
with high probability. In Sect 4, we apply the beyond worst-case analysis to the
shortest path problem and summarize our results presented in [5]. In Sect. 5,
we consider a multi-dimension version of the shortest path problem where edges
both have a length and a cost. We illustrate how percentile queries, that we have
studied in [19], are natural objectives for the study of trade-offs in this setting.
In Sect. 6, we study a version of the SSP where the stochastic information is
given by several probabilistic transition relations instead of one, so we apply the
multi-environment MDP analysis introduced in [20] on this variant. Throughout
Sect. 4-6, we also give a summary of our general results on the corresponding
models, as well as additional pointers to the literature.

2 Preliminaries

Markov decision processes. A (finite) Markov decision process (MDP) is a
tuple D = (S, sinit, A, δ) where S is a finite set of states, sinit ∈ S is the initial
state, A is a finite set of actions, and δ : S × A → D(S) is a partial function
called the probabilistic transition function, whereD(S) denotes the set of rational
probability distributions over S. The set of actions that are available in a state
s ∈ S is denoted by A(s). We use δ(s, a, s′) as a shorthand for δ(s, a)(s′). A
weighted MDP D = (S, sinit, A, δ, w) is an MDP with a d-dimension integer

weight function w : A → Zd. For any dimension i ∈ {1, . . . , d}, we denote by
wi : A → Z the projection of w to the i-th dimension, i is omitted when there is
only one dimension.

We define a run ρ of D as a finite or infinite sequence ρ = s1a1 . . . an−1sn . . .
of states and actions such that δ(si, ai, si+1) > 0 for all i ≥ 1. We denote the
prefix of ρ up to state si by ρ(i). A run is called initial if it starts in the initial
state sinit. We denote the set of runs of D by R(D) and its set of initial runs by
Rsinit(D). Finite runs that end in a state are also called histories, and denoted
by H(D) and Hsinit(D), respectively.

Strategies. A strategy σ is a function H(D) → D(A) such that for all h ∈ H(D)
ending in s, we have Supp(σ(h)) ∈ A(s), where Supp denotes the support of the
probability distribution. The set of all possible strategies is denoted by Σ. A
strategy is pure if all histories are mapped to Dirac distributions. A strategy σ
can be encoded by a stochastic Moore machine, (M, σa, σu, α) whereM is a finite
or infinite set of memory elements; σa : S×M → D(A) the next action function

where Supp(σ(s,m)) ⊆ A(s) for any s ∈ S and m ∈ M; σu : A×S×M → D(M)
the memory update function; and α the initial distribution on M. We say that σ



is finite-memory if |M| < ∞, and K-memory if |M| = K; it is memoryless
if K = 1, thus only depends on the last state of the history. We define such
strategies as functions s 7→ D(A(s)) for all s ∈ S. Otherwise a strategy is infinite-
memory.

Markov chains. A weighted Markov chain (MC) is a tuple M = (S, dinit, ∆,w)
where S is a (non-necessarily finite) set of states, dinit ∈ D(S) is the initial
distribution, ∆ : S → D(S) is the probabilistic transition function, and w : S ×
S → Zd is a d-dimension weight function. Markov chains are essentially MDPs
where for all s ∈ S, we have that |A(s)| = 1.

We define a run of M as a finite or infinite sequence s1s2 . . . sn . . . of states
such that ∆(si, si+1) > 0 for all i ≥ 1. A run is called initial if it starts in the
initial state s such that dinit(s) > 0. Runs of M are denoted by R(M), and its
set of initial runs by Rdinit

(M).

Markov chains induced by a strategy. An MDP D = (S, sinit, A, δ) and
a strategy σ encoded by (M, σa, σu, α) determine a Markov chain M = Dσ

defined on the state space S × M as follows. The initial distribution is such
that for any m ∈ M, state (sinit,m) has probability α(m), and 0 for other
states. For any pair of states (s,m) and (s′,m′), the probability of the transition
((s,m), a, (s′,m′)) is equal to σa(s,m)(a) · δ(s, a, s′) · σu(s,m, a)(m′). So, a run

of Dσ is a finite or infinite sequence of the form (s1,m1), a1, (s2,m2), a2, . . .
where each ((si,mi), ai, (si+1,mi+1)) is a transition with non-zero probability
in Dσ, and s1 = sinit. In this case, the run s1a1s2a2 . . ., obtained by projection
to D, is said to be compatible with σ.

In an MC M , an event is a measurable set of runs E ⊆ Rdinit
(M). Every

event has a uniquely defined probability [24] (Carathodory’s extension theorem
induces a unique probability measure on the Borel σ-algebra over Rdinit

(M)).
We denote by PM (E) the probability that a run belongs to E when the initial
state is chosen according to dinit, and M is executed for an infinite number of
steps. Given a measurable function f : R(M) → R ∪ {∞}, we denote by EM (f)
the expected value or expectation of f over initial runs in M . When considering
probabilities of events in Dσ, for D an MDP and σ a strategy on D, we often
consider runs defined by their projection onD. Thus, given E ⊆ R(D), we denote
by Pσ

D[E ] the probability of the runs of Dσ whose projection to D is in E .

3 The stochastic shortest path problem

The shortest path problem in a weighted graph is a classical problem that asks,
given a starting state s and a set of target states T , to find a path from s to a
state t ∈ T of minimal length (i.e., that minimizes the sum of the weights along
the edges in the path). See for example [8]. There have been several stochastic
variants of this classical graph problem defined and studied in the literature, see
for example [18]. We recall here two main variants of this problem, other new
variants are defined and studied in the subsequent sections.

Let D = (S, sinit, A, δ, w) be an MDP with a single-dimensional weight func-
tion w : A → N0 that assigns to each action a ∈ A a strictly positive integer.



Let T ⊆ S be a set of target states. Given an initial run ρ = s1s2 . . . si . . . in
the MDP, we define its truncated sum up to T to be TST (ρ) =

∑n−1
j=1 w(aj) if

sn is the first visit of a state in T ⊆ S within ρ; otherwise if T is never reached,
then we set TST (ρ) = ∞. The function TST is measurable, and so this function
has an expected value in a weighted MC and sets of runs defined from TST are
measurable. The following two problems have been considered in the literature.

Minimizing the expected length of paths to target. Given a weighted
MDP, we may be interested in strategies (choices of actions) that minimize the
expected length of paths to target. This is called the stochastic shortest path

expectation problem, SSP-E for short, and it is defined as follows.

Definition 1 (SSP-E problem). Given a single-dimensional weighted MDP

D = (S, sinit, A, δ, w) and a threshold ℓ ∈ N, decide if there exists σ such that

Eσ
D(TST ) ≤ ℓ.

Theorem 1 ([2]). The SSP-E problem can be decided in polynomial time. Opti-

mal pure memoryless strategies always exist and can be constructed in polynomial

time.

There are several algorithms proposed in the literature to solve this problem.
We recall a simple one based on linear programming (LP). For other solutions
based on value iteration or strategy iteration, we refer the interested reader to,
e.g., [2,10]. To apply the reduction to LP, we must make the hypothesis that,
for each state s ∈ S of the MDP, there is a path from s to the target set T . It
is clear that the expectation of states that are not connected to the target set
T by a path is infinite. So, we will assume that all such states have first been
removed from the MDP. This can easily be done in linear time. Also, it is clear
that for all states in T , the expected length of the shortest path is trivially equal
to 0. So, we restrict our attention to states in S \ T . For each state s ∈ S \ T ,
we consider one variable xs, and we define the following linear program:

max
∑

s∈S\T

xs

under the constraints

xs ≤ w(a) +
∑

s′∈S\T

δ(s, a, s′) · xs′ for all s ∈ S \ T , for all a ∈ A(s).

It can be shown (e.g., in [2]) that the optimal solution v for this LP is such that vs

is the expectation of the length of the shortest path from s to a state in T under
an optimal strategy. Such an optimal strategy can easily be constructed from
the optimal solution v. The following pure memoryless strategy σv is optimal:

σv(s) = arg min
a∈A(s)



w(a) +
∑

s′∈S\T

δ(s, a, s′) · vs′



 .



Forcing short paths with high probability. As an alternative to the expec-
tation, given a weighted MDP, we may be interested in strategies that maximize
the probability of short paths to target. This is called the stochastic shortest

path percentile problem, SSP-P for short, and provides a preferable solution if
we are risk-averse. The problem is defined as follows.

Definition 2 (SSP-P problem). Given a single-dimensional weighted MDP

D = (S, sinit, A, δ, w), value ℓ ∈ N, and probability threshold α ∈ [0, 1]∩Q, decide

if there exists a strategy σ such that Pσ
D

[

{ρ ∈ Rsinit(D) | TST (ρ) ≤ ℓ}
]

≥ α.

Theorem 2. The SSP-P problem can be decided in pseudo-polynomial time, and

it is PSPACE-hard. Optimal pure strategies with exponential memory always exist

and can be constructed in exponential time.

The PSPACE-hardness result was recently proved in [15]. An algorithm to
solve this problem can be obtained by a (pseudo-polynomial-time) reduction to
the stochastic reachability problem, SR for short.

Given an unweighted MDP D = (S, sinit, A, δ), a set of target states T ⊆ S,
and a probability threshold α ∈ [0, 1]∩Q, the SR problem asks to decide if there
is a strategy σ that ensures, when played from sinit, to reach the set T with a
probability that exceeds the threshold α. The SR problem can also be solved in
polynomial time by a reduction to linear programming. Here is a description of
the LP. For all states s ∈ S, we consider a variable xs in the following LP:

min
∑

s∈S

xs

under the constraints

xs = 1 ∀s ∈ T ,
xs = 0 ∀s ∈ S which cannot reach T ,
xs ≥

∑

s′∈S δ(s, a, s′) · xs′ ∀a ∈ A(s).

The optimal solution v for this LP is such that vs is the maximal probability
to reach the set of targets T that can be achieved from s. From the optimal
solution v, we can define a pure memoryless strategy σv which achieve vs when
played from s, we define it for all states s 6∈ T that can reach T :

σv(s) = arg max
a∈A(s)

[

∑

s′∈S

δ(s, a, s′) · xs′

]

.

We are now ready to define the reduction from the SSP-P problem to the
the SR problem. Given a weighted MDP D = (S, sinit, A, δ, w), a set of targets
T ⊆ S, a value ℓ ∈ N, and a probability threshold α ∈ [0, 1]∩Q, we construct an
MDP Dℓ. Dℓ is constructed from D and contains an additional information in
its state space: it records the sum of the weights encountered so far. Formally,
Dℓ = (S′, s′init, A

′, δ′, w′) where:



– S′ is the set of states, each one being a pair (s, v), where s ∈ S and v ∈
{0, 1, . . . , ℓ}∪{⊥}. Intuitively v records the running sum along an execution
in D (⊥ > ℓ by convention);

– its initial state s′init is equal to (sinit, 0);
– the set of actions is A and the weight function is unchanged, i.e., A′ = A

and w′ = w;
– the transition relation is as follows: for all pairs (s, v), (s′, v′) ∈ S′, and

actions a ∈ A, we have that δ((s, v), a)(s′, v′) = δ(s, a)(s′) if v′ = v +
w(a) ≤ ℓ, δ((s, v), a)(s′, v′) = δ(s, a)(s′) if v′ = ⊥ and v + w(a) > ℓ, and
δ((s, v), a)(s′, v′) = 0 otherwise.

The size of Dℓ is proportional to the size of D and the value ℓ, i.e., it is thus
pseudo-polynomial in the encoding of the SSP-P problem. The SR objective in
Dℓ is to reach T ′ = {(s, v) | s ∈ T ∧ v ≤ ℓ} with a probability at least α.

Runs that satisfy the reachability objective in Dℓ are in bijection with runs
that reach T in D with a truncated sum at most ℓ. So if there is a strategy that
enforces reaching T ′ in Dℓ with probability p ≥ α, then there is a strategy in
D to ensure that T is reached with a path of length at most ℓ with probability
p ≥ α (the strategy that is followed in Dℓ can be followed in D if we remember
what is the sum of weights so far). The converse also holds. As for a reachability
objective, memoryless strategies are optimal, we deduce that pseudo-polynomial-
size memory is sufficient (and is sometimes necessary) in the SSP-P problem, and
the problem can be solved in pseudo-polynomial time. As the problem has been
shown to be PSPACE-Hard, this pseudo-polynomial-time solution is essentially
optimal, see [15] for details.

Illustration.We illustrate the concepts of this paper on a running example that
we have introduced in [5] and that we extend in the subsequent sections. The
MDP of Fig. 1 models the choices that an employee faces when he wants to reach
work from home. He has the choice between taking the train, driving or biking.
When he decides to bike, he reaches his office in 45 minutes. If he decides to take
his car, then the journey depends on traffic conditions that are modeled by a
probabilistic distribution between light, medium and heavy traffic. The employee
can also try to catch a train, which takes 35 minutes to reach work. But trains
can be delayed (potentially multiple times): in that case, the employee decides if
he waits or if he goes back home (and then take his car or his bike). We consider
two scenarios that correspond to the two problems defined above.

If the employee wants to minimize the expected duration of his journey from
home to work, we need to solve a SSP-E problem. By Theorem 1, we know
that pure memoryless strategies suffice to be optimal. It turns out that in our
example, taking the car is the strategy that minimizes the expected time to
work: this choice gives an expectation equal to 33 minutes.

Observe that taking the car presents some risk: if the traffic is heavy, then
work is only reached after 71 minutes. This can be unacceptable for the em-
ployee’s boss if it happens too frequently. So if the employee is risk-averse, opti-
mizing the expectation may not be the best choice. For example, the employee
may want to reach work within 40 minutes with high probability, say 95%. In
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Fig. 1. An everyday life application of stochastic shortest path problems: choosing a
mean of transport to go from home to work. Actions (black dots) are labeled with
durations in minutes, and stochastic transitions are labeled with their probability.

this case, we need to solve a SSP-P problem. First, observe that taking the train
ensures to reach work within 40 minutes in 99% of the runs. Indeed, if the train
is not delayed, we reach work with 37 minutes, and this happens with probabil-
ity 9/10. Now, if the train is late and the employee decides to wait, the train
arrives in the next 3 minutes with probability 9/10: in that case, the employee
arrives at work within 40 minutes. So, the strategy consisting in going to the
railway station and waiting for the train (as long as needed) gives us a proba-
bility 99/100 to reach work within 40 minutes, fulfilling our objective. Second,
it is easy to see that both bicycle and car are excluded in order to satisfy the
SPP-P problem. With bicycle we reach work in 45 minutes with probability one,
and with the car we reach work in 71 minutes with probability 1/10, hence we
miss the constraint of 40 minutes too often.

Related work. The SSP-P problem was studied in MDPs with either all non-
negative or all non-positive weights in [17,22]. The related notion of quantile

queries was studied in [23]: such queries are essentially equivalent to minimiz-
ing the value ℓ inside the constraint of an SSP-P problem such that there still
exists a satisfying strategy for some fixed α. It has been recently extended to
cost problems [15], which can handle arbitrary Boolean combinations of inequal-
ities over the truncated sum instead of only TST (ρ) ≤ ℓ. All those works only
study single-dimensional MDPs. For the SPP-E problem, extensions to multi-
dimensional MDPs have been considered in [14].



4 Good expectation under acceptable worst-case

Worst-case guarantees. Assume now that the employee wants a strategy to
go from home to work such that work is guaranteed to be reached within 60
minutes (e.g., to avoid missing an important meeting with his boss). It is clear
that both optimal (w.r.t. problems SSP-E and SSP-P respectively) strategies of
Sect. 3 are excluded: there is the possibility of heavy traffic with the car (and a
journey of 71 minutes), and trains can be delayed indefinitely in the worst case.

To ensure a strict upper bound on the length of the path, an adequate model
is the shortest path game problem, SP-G for short. In a shortest path game,
the uncertainty becomes adversarial: when there is some uncertainty about the
outcome of an action, we do not consider a probabilistic model but we let an
adversary decide the outcome of the action. So, to model a shortest path game
based on an MDP D = (S, sinit, A, δ, w), we modify the interpretation of the
transition relation as follows: after some history h that ends up in state s, if the
strategy chooses action a ∈ A(s), then the adversary chooses the successor state
within Supp(δ(s, a)) without taking into account the actual values of the prob-
abilities. With this intuition in mind, if we fix a strategy σ (for the controller),
then the set of possible outcomes in D, noted OutσD, is the set of initial runs that
are compatible with σ, i.e., OutσD = {ρ ∈ Rsinit(D) | ∀ i ≥ 0: ai ∈ Supp(σ(ρ(i)))}.
Now, we can define the SP-G problem as follows.

Definition 3 (SP-G problem). Given single-dimensional weighted MDP D =
(S, sinit, A, δ, w), set of target states T ⊆ S, and value ℓ ∈ N, decide if there exists

a strategy σ such that for all ρ ∈ OutσD, we have that TST (ρ) ≤ ℓ.

Theorem 3 ([16]). The SP-G problem can be decided in polynomial time. Opti-

mal pure memoryless strategies always exist and can be constructed in polynomial

time.

Under the hypothesis that actions in D have strictly positive weight, the
controller has no interest in forming cycles, and if he cannot avoid to close
cycles (before reaching T ), then there will be outcomes that will never reach
T , yielding an infinite truncated sum. As a consequence, the only option for
the controller is to win within |S| = n steps. So, to solve the SP-G problem, we
compute for each state s and for each i, 0 ≤ i ≤ n, the value C(s, i), representing
the lowest bound on the length to the target T from s that the controller can
ensure, if the game is played for i steps. Those values can be computed using
dynamic programming as follows: for all s ∈ T , C(s, 0) = 0, and for all s ∈ S \T ,
C(s, 0) = +∞. Now, assume that 0 < i < n and that we have already computed
C(s, i− 1) for all s ∈ S. Then for i steps, we have that

C(s, i) = min
[

C(s, i− 1), min
a∈A(s)

max
s′∈Supp(δ(s,a))

w(a) + C(s′, i− 1)
]

.

So, C(sinit, n) can be computed in polynomial time, and we have that the con-
troller can force to reach T from sinit with a path of length at most ℓ if and only
if C(sinit, n) ≤ ℓ.



Related work. For results about the SP-G problem when weights can also be
negative, we refer the interested reader to [3] where a pseudo-polynomial-time
algorithm has been designed and to [11] where complexity issues are discussed
(see Theorem 8 in that reference). In multi-dimensional MDPs with both positive
and negative weights, it follows from results on total-payoff games that the SP-G
problem is undecidable [7].

Illustration. If we apply this technique on the example of Fig. 1, it shows that
taking bicycle is a safe option to ensure the strict 60 minutes upper bound.
However, the expected time to reach work when following this strategy is 45
minutes, which is far from the optimum of 33 minutes that can be obtained
when we neglect the worst-case constraint.

In answer to this, we may be interested in synthesizing a strategy that min-
imizes the expected time to work under the constraint that work is reached
within 60 minutes in the worst case. We claim that the optimal strategy in this
case is the following: try to take the train, if the train is delayed three times
consecutively, then go back home and take the bicycle. This strategy is safe as it
always reaches work within 58 minutes and its expectation is ≈ 37, 34 minutes
(so better than taking directly the bicycle). Observe that it is pure but requires
finite memory, in contrast to the case of problems SSP-E and SSP-G.

Beyond worst-case synthesis. In [5,4], we study the synthesis of strategies
that ensure, simultaneously, a worst-case threshold (when probabilities are re-
placed by adversarial choices), and a good expectation (when probabilities are
taken into account). We can now recall the precise definition of the problem.

Definition 4 (SSP-WE problem). Given a single-dimensional weighted MDP

D = (S, sinit, A, δ, w), a set of target states T ⊆ S, and two values ℓ1, ℓ2 ∈ N,

decide if there exists a strategy σ such that:

1. ∀ ρ ∈ OutσD : TST (ρ) ≤ ℓ1,
2. Eσ

D(TST ) ≤ ℓ2.

While the SP-G problem and the SSP-E problem are both solvable in poly-
nomial time and pure memoryless strategies suffice in both cases, the SSP-WE

problem proves to be inherently harder.

Theorem 4 ([5]). The SSP-WE problem can be decided in pseudo-polynomial

time and is NP-hard. Pseudo-polynomial memory is always sufficient and in gen-

eral necessary, and satisfying strategies can be constructed in pseudo-polynomial

time.

The algorithm proposed in [5] to solve the SSP-WE problem can be summa-
rized as follows. First, construct the MDP Dℓ as for solving the SSP-P problem.
States ofDℓ are pairs (s, v) where s ∈ S is a state ofD and v is the sum of weights
of edges traversed so far. Consider the target T ′ = {(s, v) | s ∈ T∧v ≤ ℓ}. Second,
compute for each state (s, v) what are the safe actions, noted A(s, v), that ensure
to reach T ′ in Dℓ no matter how the adversary resolves non-determinism. A(s, v)
can be computed inductively as follows: we start with A0(s, v) = A(s) if v ≤ ℓ



and A0(s, v) = ∅ if v = ⊥, i.e., a priori, all the actions are good in states that have
not yet exceeded the sum ℓ while states that have exceeded ℓ are hopeless and
none of the actions are good. Assume that we have computed Ai(s, v), for i ≥ 0,
then Ai+1(s, v) = {a ∈ Ai(s, v) | ∀ (s′, v′) ∈ Supp(δ((s, v), a)) : Ai(s, v) 6= ∅}. As
the set of good actions is finite and is decreasing, it is easy to see that this process
ends after a finite number of steps that is polynomial in the size of Dℓ. We note
DA

ℓ , the MDP Dℓ limited to the safe actions. Then, it remains to solve the SSP-E
on DA

ℓ . The overall complexity of the algorithm is pseudo-polynomial, and the
NP-hardness result established in [5] implies that we cannot hope to obtain a
truly-polynomial-time algorithm unless P = NP.

Additional results. In [5,4], we also study the so-called beyond worst-case
synthesis for models with the mean-payoff function instead of the truncated
sum. Mean-payoff games [12] are infinite-duration, two-player zero-sum games
played on weighted graphs. In those games, the controller wants to maximize
the long-run average of the weights of the edges traversed during the game
while the adversary aims to minimize this long-run average. Given a mean-
payoff game and a stochastic model of the adversary, their product defines an
MDP on which we study the problem MP-WE, the mean-payoff analogue of
problem SSP-WE. We have shown that it is in NP ∩ coNP for finite-memory

strategies, essentially matching the complexity of the simpler problem MP-G of
solving mean-payoff games without considering the expected value. We have also
established that pure strategies with pseudo-polynomial-memory are sufficient.
Our synthesis algorithm is much more complex than for SSP-WE, and requires
to overcome several technical difficulties to prove NP ∩ coNP-membership.

5 Percentile queries in multi-dimensional MDPs

Illustration. Consider the MDP D depicted in Fig. 2. It gives a simplified
choice model for commuting from home to work, but introduces two-dimensional
weights: each action is labeled with a duration, in minutes, and a cost, in dollars.
Multi-dimensional MDPs are useful to analyze systems with multiple objectives

that are potentially conflicting and make necessary the analysis of trade-offs. For
instance, we may want a choice of transportation that gives us high probability
to reach work in due time but also limits the risk of an expensive journey. Since
faster options are often more expensive, trade-offs have to be considered.

Recall the SSP-P problem presented in Def. 2: it asks to decide the existence
of strategies satisfying a single percentile constraint. This problem can only be
applied to single-dimensional MDPs. For example, one may look for a strategy
that ensures that 80% of compatible initial runs take at most 40 minutes (con-
straint C1), or that 50% of them cost at most 10 dollars (C2). A good strategy
for C1 would be to take the taxi, which guarantees that work is reached within
10 minutes with probability 0.99 > 0.8. For C2, taking the bus is a good option,
because already 70% of the runs will reach work for only 3 dollars. Note that
taking the taxi does not satisfy C2, nor does taking the bus satisfy C1.
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Fig. 2. Multi-percentile queries can help when
actions both impact the duration of the jour-
ney (first dimension) and its cost (second di-
mension): trade-offs have to be considered.

In practice, a desirable strategy
should be able to satisfy both C1
and C2. This is the goal of our
model of multi-constraint percentile

queries, introduced in [19]. For ex-
ample, an appropriate strategy for
the conjunction (C1 ∧ C2) is to try
the bus once, and then take the taxi
if the bus does not depart. Indeed,
this strategy ensures that work is
reached within 40 minutes with
probability larger than 0.99 thanks
to runs home·bus·work (probabil-
ity 0.7 and duration 30) and
home·bus·home·taxi·work (proba-
bility 0.297 and duration 40). Fur-
thermore, it also ensures that more
than half the time, the total cost to
target is at most 10 dollars, thanks
to run home·bus·work which has probability 0.7 and cost 3. Observe that this
strategy requires memory. In this particular example, it is possible to build
another acceptable strategy which is memoryless but requires randomness. Con-
sider the strategy that flips an unfair coin in home to decide if we take the bus or
the taxi, with probabilities 3/5 and 2/5 respectively. Constraint C1 is ensured
thanks to runs home·bus·work (probability 0.42) and home·taxi·work (proba-
bility 0.396). Constraint C2 is ensured thanks to runs (home·bus)n·work with
n = 1, 2, 3: they have probabilities 0.42, ≥ 0.07 and ≥ 0.01 respectively, totaling
to ≥ 0.5, while they all have cost at most 3 ·3 = 9 < 10. As we will see, percentile
queries in general require strategies that both use memory and randomness, in
constrast to the previous problems which could forgo randomness.

Percentile queries. In [19], we study the synthesis of strategies that enforce
percentile queries for the shortest path.

Definition 5 (SSP-PQ problem). Given a d-dimensional weighted MDP D =
(S, sinit, A, δ, w), and q ∈ N percentile constraints described by sets of target states

Ti ⊆ S, dimensions ki ∈ {1, . . . , d}, value thresholds ℓi ∈ N and probability

thresholds αi ∈ [0, 1]∩Q, where i ∈ {1, . . . , q}, decide if there exists a strategy σ
such that

∀ i ∈ {1, . . . , q}, Pσ
D

[

TS
Ti

ki
≤ ℓi

]

≥ αi,

where TSTi

ki
denotes the truncated sum on dimension ki and w.r.t. target set Ti.

Our algorithm is able to solve the problem for queries with multiple constraints,
potentially related to different dimensions of the weight function and to different
target sets: this offers great flexibility which is useful in modeling applications.



Theorem 5 ([19]). The SSP-PQ problem can be decided in exponential time

in general, and pseudo-polynomial time for single-dimension single-target multi-

contraint queries. The problem is PSPACE-hard even for single-constraint que-

ries. Randomized exponential-memory strategies are always sufficient and in gen-

eral necessary, and satisfying strategies can be constructed in exponential time.

The first step to solve an SSP-PQ problem on MDP D is to build a new MDP
Dℓ similarly to what was defined for the SSP-P problem, but with ℓ = maxi ℓi,
and adapting the construction to multi-dimensional weights. In particular, we ob-
serve that a run can only be disregarded when the sum on each of its dimensions
exceeds ℓ. Essentially, some runs may satisfy only a subset of constraints and still
be interesting for the controller, as seen in the example above. Still, the size of
Dℓ can be maintained to a single-exponential by defining a suitable equivalence
relation between states (pseudo-polynomial for single-dimensional MDPs and

single-target queries). Precisely, the states of Dℓ are in S × ({0, . . . , ℓ} ∪ {⊥})d.
Now, for each constraint i, we compute a set of target states Ri in Dℓ that
exactly captures all runs satisfying the inequality of the constraint.

We are left with a multiple reachability problem on Dℓ: we look for a strat-
egy σℓ that ensures that each of these sets Ri is reached with probability αi.
This is a generalization of the SR problem defined above. It follows from [13]
that this multiple reachability problem can be answered in time polynomial in
|Dℓ| but exponential in the number of sets Ri, i.e., in q. The complexity can
be reduced for single-dimensional MDPs and queries with a unique target T : in
that case, sets Ri can be made absorbing, and the multiple reachability problem
can be answered in time polynomial in Dℓ through linear programming. Overall,
our algorithm thus requires pseudo-polynomial time in that case. It is clear that
σℓ can be easily translated to a good strategy σ in D and conversely.

The PSPACE-hardness result already holds for the single-constraint case, i.e.,
the SSP-P problem (Theorem 2), following results of [15]. Hence the SSP-PQ

framework offers a wide extension for basically no price in decision complexity.

Additional results. In [19], we establish that the SSP-PQ problem becomes un-
decidable if we allow for both negative and positive weights in multi-dimensional
MDPs, even with a unique target set.

Furthermore, in [19], we study the concept of percentile queries for a large
range of classical payoff functions, not limited to the truncated sum: sup, inf,
limsup, liminf, mean-payoff and discounted sum. In all cases, the complexity for
the most general setting - multi-dimensional MDPs, multiple constraints - is at
most exponential, better in some cases. Interestingly, when the query size is fixed,
all problems except for the discounted sum can be solved in polynomial time.
Note that in most applications, the query size can be reasonably bounded while
the model can be very large, so this framework is ideally suited. In many cases, we
show how to reduce the complexity for single-dimensional queries, and for single-
constraint queries. We also improve the knowledge of the multiple reachability
problem sketched above by proving its PSPACE-hardness and identifying the
subclass of queries with nested targets as solvable in polynomial time.



Related work. As mentioned in Sect. 3, there are several works that ex-
tend the SSP-P problem in different directions. In particular, cost problems,
recently introduced in [15], can handle arbitrary Boolean combinations of in-
equalities ϕ over the truncated sum inside an SSP-P problem: it can be written
as Pσ

D

[

TST |= ϕ
]

≥ α. Observe that this is orthogonal to our percentile queries.
Cost problems are studied on single-dimensional MDPs and all the inequalities
relate to the same target T , in contrast to our setting which allows both for
multiple dimensions and multiple target sets. The single probability threshold
bounds the probability of the whole event ϕ whereas we analyze each event in-
dependently. Both settings are in general incomparable (see [19]), but they share
the SSP-P problem as a common subclass.

6 Multiple environments

The probabilities in a stochastic process represent a model of the environment.
For instance, in Fig. 1, the probability of a train coming when we wait in the
train station is a simplified model of the behavior of the train network. Clearly,
this behavior can be significantly different on some particular days, for instance,
when there is a strike. In this section, we consider the problem of synthesizing
strategies in probabilistic systems with guarantees against a finite number of
different environments.

Illustration. Let us consider again the problem of commuting to work, and
assume that some days there may be an unannounced strike (S) in the train
service, and an accident (A) in the highway. Thus, four settings are possible: (),
(A), (S), (AS). When there is a strike, there is no train service; and when there
is an accident, the highway is blocked. We assume that we are not informed
of the strike or the accident in advance. Our goal is to synthesize a strategy
with guarantees against these four environments with no prior knowledge of the
situation we are in.

Consider the MDP D of Fig. 3, which models the normal conditions without
strike or accident. We will define three different MDPs from D on the same state
space to model the three other environments, by modifying the probabilities of
dotted edges. For each environment E ∈ {(A), (S), (AS)}, we define MDP DE

from D as follows.

1. For D(S), action wait from state stat deterministically leads back to stat.
2. For D(A), action go from state h2 deterministically leads back to h2.
3. For D(AS), we apply both items 1 and 2.

Note that if strikes and accidents have small probabilities, instead of creating
separate models, one could integrate their effect in a single model by adjust-
ing the probabilities in D, for instance, by reducing the probability of moving
forward in the highway. Such an approach may be useful (and simpler) for an av-

erage analysis. However, we are interested here in giving guarantees against each
scenario rather than optimizing a global average. Our formulation can rather be
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Fig. 3. Commuting to work. States h1, h2 represent sections of the highway. After h1,
one may take an alternative road which is longer but not affected by traffic.

modeled by partially observable MDPs since the strategy is not aware of the
state of the system. However, most problems are undecidable in this setting [6].

Our objective is to get to work with high probability within reasonable time.
More precisely, we would like to make sure to be at work, with probability 0.95 in
all cases: in 40 minutes if there is no strike, in 50 minutes if there is a strike but
no accident, and 75 minutes if there is a strike and an accident. More formally,
we would like to synthesize a single strategy σ such that:

– Pσ
D[TST ≤ 40] ≥ 0.95,

– Pσ
D(S) [TS

T ≤ 50] ≥ 0.95,

– Pσ
D(A) [TS

T ≤ 40] ≥ 0.95,

– Pσ
D(SA) [TS

T ≤ 75] ≥ 0.95.

Solution. We will describe a strategy that satisfies our objective. First, note
that we shouldn’t take the car right away since even if we take the alternative
road, we will be at work in 40 minutes only with probability 0.90 (even if there
is no accident, we may spend 20 minutes in h1). Our strategy is the following.
We first walk to the train station, and wait there at most twice. Clearly, if there
is no strike, we get to work in less than 40 minutes with probability at least 0.99.
Otherwise, we run back home, and take the car. Note that we already spent 5
minutes at this point. Our strategy on the highway is the following. We take the
alternative road if, and only if we failed to make progress twice by taking action
go (e.g., we observed h1 · go · h1 · go · h2 · go · h2).

We already saw that in the absence of strike, this strategy satisfies our ob-
jective. If there is a strike but no accident, we will surely take the car. Then the
history ending with h1 ·go·h2 ·go·work has probability 0.81 and takes 30 minutes.
The histories ending with h1 ·go·h1 ·go·h2 ·go·work and h1 ·go·h2 ·go·h2 ·go·work
have each probability 0.081 and take 40 and 45 minutes respectively. Overall,
with probability at least 0.97 we get to work in at most 50 minutes. If there is a
strike and an accident, then the history h2 · go · work is never observed. In this
case, the history ending with h1 ·go ·h2 ·go ·h2 ·go ·h2 ·alternative has probability
0.90 and takes 75 minutes, and history h1 · go · h1 · go · h2 · go · h2 · alternative
has probability 0.09 and takes 75 minutes. Hence we ensure the constraint with
probability 0.99.

Algorithms. Formally, we define a multi-environment MDP as a tuple D =
(

S, sinit, A, (δi)1≤i≤k, (wi)1≤i≤k

)

, where each (S, sinit, A, δi, wi) is an MDP, corre-
sponding to a different environment.



Definition 6 (SSP-ME problem). Given any single-dimensional multi-envi-

ronment MDP D = (S, sinit, A, (δi)1≤i≤k, (wi)1≤i≤k

)

, target states T ⊆ S, thresh-
olds ℓ1, . . . , ℓk ∈ N, and probabilities α1, . . . , αk ∈ [0, 1]∩Q, decide if there exists

a strategy σ satisfying

∀i ∈ {1, . . . , k}, Pσ
Di

[TST ≤ ℓi] ≥ αi.

For the particular case of α1 = . . . = αk = 1, the problem is called the
almost-sure SSP-ME problem. The limit-sure SSP-ME problem asks whether the
SSP-ME problem has a solution for all probability vectors (α1, . . . , αk) ∈]0, 1[k. If
the limit-sure problem can be satisfied, the almost-sure case can be approximated
arbitrarily closely. Note that in some multi-environment MDPs, the limit-sure
SSP-ME problem has a solution although the almost-sure one does not.

Theorem 6 ([20]). The almost-sure and limit-sure SSP-ME problems can be

solved in pseudo-polynomial time for a fixed number of environments. Finite

memory suffices for the almost-sure case, and a family of finite-memory strate-

gies that witnesses the limit-sure problem can be computed.

We analyze the structure of the MDPs to identify learning components in
which one can almost-surely (resp. limit-surely) determine the current environ-
ment. Once these are identified, one can transform the MDPs into simpler forms
on which known algorithms on (single-environment) MDPs are applied [21].

For an example of a learning component, consider two states s, t and ac-
tion a, with δ1(s, a, t) = 0.9, δ1(s, a, s) = 0.1, and δ1(t, a, s) = 1 for the first
environment, and δ2(s, a, t) = 0.1, δ2(s, a, s) = 0.9, and δ2(t, a, s) = 1 for the
second environment. Now, at state s, repeating the action a a large number of
times, and looking at the generated history, one can guess with arbitrarily high
confidence the current environment. However, no strategy can guess the envi-
ronment with certainty. If, we rather set δ1(s, a, t) = 1, and δ2(s, a, s) = 1, then
an observed history uniquely determines the current environment.

For the general SSP-ME problem, there is an algorithm for an approximate

version of the above problem, namely the ε-gap problem. For any ε > 0, a
procedure for the ε-gap SSP-ME problem answers Yes if the SSP-ME problem
has a solution; it answers No if the SSP-ME problem has no solution when each
αi is replaced with αi − ε; and answers either Yes or No otherwise. Intuitively,
such a procedure gives a correct answer on positive instances, and on instances
that are clearly too far (by ε) to be satisfiable. However, there is an uncertainty
zone of size ε on which the answer is not guaranteed to be correct. The algorithm
is based on a reduction to the first order theory of the reals (see [20]).

Theorem 7. The SSP-ME problem and the ε-gap SSP-ME are NP-hard. For

any ε > 0, there is a procedure for the ε-gap SSP-ME problem.

Additional results. In [21], we restricted our study to MDPs with two envi-
ronments, and considered reachability, safety, and parity objectives. We proved
these problems to be decidable in polynomial time for almost-sure and limit-sure



conditions. The general quantitative case, i.e., arbitrary satisfaction probabilities
is shown to be NP-hard already for two environments and MDPs with no cycles
other than self-loops. We gave a doubly exponential-space procedure to solve the
ε-gap problem for reachability. We are currently studying the exact complexity
of the case of arbitrary number of environments.

7 Conclusion

Through this paper, we gave an overview of classical approaches to the quanti-
tative evaluation of strategies in MDPs, and presented three recent extensions
that increase the modeling power of that framework. We chose to illustrate them
through application to the stochastic shortest path problem. We hope this helps
in understanding and comparing the different approaches. Let us sum up.

Given a weighted MDP modeling a stochastic shortest path problem, a first
natural question is to find a strategy that minimizes the expected sum of weights
to target. This is the SSP-E problem. Optimizing the average behavior of the
controller is interesting if the process is to be executed a great number of times,
but it gives no guarantee on individual runs, which may perform very badly.
For a risk-averse controller, it may be interesting to look at the SSP-P problem,
which asks to maximize the probability that runs exhibit an acceptable perfor-
mance. When one really wants to ensure that no run will have an unacceptable
performance, it is useful to resort to the SSP-G problem, which asks to optimize
the worst-case performance of the controller.

In recent works, we introduced three related models that may be used to
synthesize strategies with richer performance guarantees. First, if one reasons
using the SSP-G problem, he may obtain a strategy which is sub-optimal on
average while using the SSP-E problem gives no worst-case guarantee. With the
framework of beyond worst-case synthesis, developed in [5,4], and presented here
as the SSP-WE problem, we can build strategies that provide both worst-case
guarantees and good expectation. Second, we are interested in describing rich
constraints on the performance profile of strategies in multi-dimensional MDPs.
To that end, we extended the SSP-P problem to the SSP-PQ problem, which
handles multi-constraint percentile queries [19]. Those queries are particularly
useful to characterize trade-offs between, for example, the length of a journey
and its cost. Third and finally, we have discussed another extension of the SSP-P
problem that models some uncertainty about the stochastic model of the envi-
ronment which is defined in the MDP through the transition function. With the
SSP-ME problem, we are able to analyze multi-environment MDPs and synthe-
size strategies with guarantees against all considered environments [21,20].
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