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Abstract. We consider here a variation of Vector Addition Systems
where one counter can be tested for zero, extending the reachability proof
by Leroux for Vector Addition System to our model. This provides an
alternate, and hopefully simpler to understand, proof of the reachability
problem that was originally proved by Reinhardt.

1 Introduction

Context Petri Nets, Vector Addition Systems (VAS) and Vector Ad-
dition System with control states (VASS) are equivalent well known
classes of counter systems for which the reachability problem is decid-
able ([11], [7], [10]). If we add to VAS the ability to test at least two
counters for zero, one obtains a model equivalent to Minsky machines,
for which all nontrivial properties are undecidable. The study of VAS
with a single zero-test transition (VAS0) began recently, and already a
reasonable number of results are known for this model. Reinhardt [13]
has shown that the reachability problem is decidable for VAS0 (as well
as for hierarchical zero-tests). Abdulla and Mayr have shown that the
coverability problem is decidable in [1] by using the backward procedure
of Well Structured Transition Systems [2]. The boundedness problem
(whether the reachability set is �nite), the termination and the reversal-
boundedness problem (whether the counters can alternate in�nitely often
between the increasing and the decreasing modes) are all decidable by us-
ing a forward procedure, a �nite but non-complete Karp and Miller tree
provided by Finkel and Sangnier in [5]. The decidability of the place-
boundedness problem, and more generally the possibility to compute a
�nite representation of the downward closure of the reachability set have
been shown by Bonnet, Finkel, Leroux and Zeitoun in [4] using the notion
of productive sequences.

The reachability problem The decidability of reachability for VAS
was originally solved by Mayr (1981, [11]) and Kosaraju (1982, [7]).
Lambert later simpli�ed these proofs (1992, [8]) while still using the
same proof techniques. Recently, Leroux gave another way to prove this
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problem, by using Presburger invariants and productive sequences ([9],
[10]).

The history of the reachability problem for VAS0 is shorter. The only
proofs are the di�erent versions of Reinhardt proof (original unpublished
manuscript in 1995 [12], then published in 2008 [13]), which is based on
showing that any expression representing a reachability problem can be
put in a "normal form" for which satis�ability is easy to solve. However,
the de�nition of the normal form is complex, and the proof of termination
of the algorithm reducing any expression to the normal form is di�cult
to understand. Since this publication, some new results were found by
reduction to reachability in VAS0, for example decidability of minimal
cost reachability in the Priced Timed Petri Nets of Abdulla and Mayr
[1], and the decidability of reachability in a restricted class of pushdown
counter automatas by Atig and Ganty [6].

Our contribution We propose here an alternate proof of reachability
in VAS0, using the principles Leroux introduced in [10]. The similar-
ity between our proof with Leroux' proof hopefully makes it easier to
understand.

2 Preliminaries

Sets N, Z, Q and Q≥0 refers respectively to non-negative integers, inte-
gers, rationals and non-negative rationals. We de�ne addition for X,Y ⊆
Qd by X + Y = {x+ y | x ∈ X, y ∈ Y } and multiplication for X ⊆ Qd,
Y ⊆ Q, K ∗X = {k ∗ x | x ∈ X, k ∈ K}. We also de�ne k ?X (k ∈ N) by
0?X = {0} and (k+1)?X = X+(k?X) and we generalize this notation
to K ⊆ N by K ? X =

S
k∈K(k ? X). A function f from Nd (resp. Qd

≥0)

to Nd
′
(resp. Qd

≥0) is linear if f(x+y) = f(x)+f(y) and for k ∈ N (resp.
k ∈ Q≥0), f(k ∗ x) = k ∗ f(x) We will also allow ourselves to shorten the
singleton {x} as x when the risk of confusion is low. X ⊆ Qd is a vector
space if QX ⊆ X and X +X ⊆ X. Finally, we de�ne Nd0 = {0} × Nd−1.

A set P ⊆ Qd is periodic if P+P ⊆ P . A setX ⊆ Nd is a �nitely generated
periodic set if there exists {x1, . . . , xn} ⊆ X, X = Nx1 +Nx2 + · · ·+Nxn.
A semilinear set (also called Presburger set) is a �nite union of sets bi+Xi
where bi ∈ Nd and Xi ⊆ Nd is a �nitely generated periodic set.

Relations A relation on X is a set R ⊆ X ×X. We will write x R y to
mean (x, y) ∈ R. Composition of relations on X is de�ned by R ◦ R′ =
{(x, y) ∈ X ×X | ∃z ∈ X, (x, z) ∈ R ∧ (z, y) ∈ R′}. We shorten R ◦ R′
as RR′ when there is no ambiguousity. R∗ is the transitive closure of R.
For R a relation on X and X ′ ⊆ X, we de�ne R(X ′) = {y ∈ X | ∃x ∈
X ′, (x, y) ∈ R}. A set X ′ ⊆ X is a R-forward invariant if R(X ′) ⊆ X ′.
We de�ne R−1 by R−1 = {(x, y) ∈ X ×X | (y, x) ∈ R}. A set X ′ ⊆ X is
a R-backward invariant if it is a R−1-forward invariant. Similarly, for f
a function from X to Y , we de�ne f(X ′) = {y ∈ Y | ∃x ∈ X ′, y = f(x)}.
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Words, Parikh Images Given a setX, the set of words overX is written
X∗. A word w ∈ X∗ is written a1a2 . . . an with ai ∈ X or optionallyQ

1≤i≤n ai. A language L is a subset of X∗. The concatenation of two
words w1, w2 ∈ X∗ is written w1w2 and we extend this notation to
languages by LL′ = {uv | u ∈ L, v ∈ L′}. NX is the set of functions
from X to N. For u ∈ X∗, the parikh image |u| ∈ NX is de�ned by
|u| (x) = 'number of x's in u'.

Orders, Well-orders An ordering � on a set X is a transitive, re�exive
and antisymmetric relation on X. The relation ≺ is de�ned by x ≺ y
i� x � y and x 6= y. An element x ∈ X is minimal if there exists no
x′ ∈ X, x′ ≺ x. � is a well-order on X if for all sequences (xi)i∈N with
xi ∈ X, there exists i < j with xi � xj . If X is well-ordered by �, then
all subsets of X have a �nite number of minimal elements. Common well-
orders are ≤ on N and ≤ on X × Y when X is well-ordered by ≤X , Y is
well-ordered by ≤Y and (x, y) ≤ (x′, y′) ⇐⇒ x ≤X x′∧y ≤Y y′. Hence,
if X is well-ordered by �, Xd is also well-ordered by the component-wise
ordering, that we will also write �.

Word embedding, Higman lemma If X is ordered by �, we de�ne
�emb (the word embedding order) on X∗ by ai . . . an �emb b1 . . . bp if
there exists a strictly increasing function ϕ from {1, . . . , n} to {1, . . . , p}
such that ∀i ∈ {1, . . . , n}, ai � bϕ(i). If � is a well-order on X, then
�emb is a well-order on X∗ (Higman's lemma)

3 Vector Addition Systems with one zero-test

3.1 Transition systems

De�nition 1. A Labelled Transition System (LTS) S is a tuple 〈X,A,→
〉 where X is the set of states, A is a set of transition labels and →⊆
X ×A×X is the transition relation.

We write x
a−→ x′ if (x, a, x′) ∈→, and we extend this notation to words

of A∗ by x
ε−→ x and x

uv−→ x′ if there exists x′′ ∈ X, x
u−→ x′′

v−→ x′. If

L ⊆ A∗, we de�ne x
L−→ y ⇐⇒ ∃u ∈ L, x u−→ y and we shorten x

A∗−−→ y
as x

∗−→ y. A transition sequence u ∈ A∗ is said �reable from x ∈ X if
there exists y ∈ X such that x

u−→ y.

3.2 Vector Addition Sytems

De�nition 2. A Vector Addition System (shortly: VAS) is a pair 〈A, δ〉
where A is a set of transition labels and δ a function from A to Zd. d is
called the dimension of the VAS.

A Vector Addition System V = 〈A, δ〉 induces a transition system ts(V) =
〈Nd, A,→〉 where → is de�ned by:

x
a−→ y ⇐⇒ y = x+ δ(a)

Reachability is already known to be decidable for VAS:
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Theorem 1. ([11], [7], [10]) If X and Y are Presburger sets and V a

VAS, one can decide whether {(x, y) ∈ X × Y | x ∗−→V y} is empty.

De�nition 3. A Vector Addition System with one zero-test (shortly:
VAS0) is a tuple 〈Az, δ, az〉 where (Az, δ) is a VAS and az ∈ A is the
special zero-test transition.

Vz = 〈Az, δ, az〉 induces a transition system ts(Vz) = 〈Nd, A,→〉 where
→ is de�ned by:

x
a−→ y ⇐⇒ y = x+ δ(a) a 6= az

x
az−→ y ⇐⇒


y = x+ δ(az)
x(1) = 0

The function δ is extended to parikh images by, for v ∈ NAz , δ(v) =P
a∈Az

δ(v(a)) and to words by, for u ∈ A∗z, δ(u) = δ(|u|). This means that

x
u−→ y =⇒ y = x+ δ(u).

The following statement explains a VAS0 is partially monotonic (the
proof is by an easy induction):

Proposition 1. Let x, y ∈ Nd with x ≤ y and x(1) = y(1). Then, if a
transition sequence u ∈ A∗z is �reable from x, u is �reable from y.

4 Proof structure

Let us try to summarize the proof structure of [10], that we will mimic.
The main idea is that if a relation has some properties, one can �nd a
witness of non-reachability. These required properties are given by the
notion of Petri set, which itself relies on the notions of polytope sets and
Lambert sets, that generalizes linear and semilinear sets. After having
given in section 4.1 the de�nitions of polytope, Lambert and Petri sets,
we will recall in section 4.2 some tools from [10], and especially the result
that if a relation is Petri, one can �nd a witness of non-reachability which
is a Presburger forward invariant.

Now, to prove that our reachability relation is Petri, we have to show
that each transition sequence (a run) can be associated a production
relation, such that (1) the runs ordered by inclusion of their production
relations is well-ordered and (2) these productions relations are polytope.
With a few additionnal assumptions, this means the reachability relation
can be written as a �nite sum and union of productions relations (the
relations associated to the minimal elements of the previously de�ned
well-order) and can be shown to be Petri. We will introduce our version
of these production relations in section 5 and prove the well-ordering in
section 6. Then, section 7 will show that these production relations are
polytopes and we will conclude in section 8.

Given the similarity between VAS and VAS0, we will reuse a lot of Ler-
oux' work. The later sections will focus on the changes between the two
proofs, with proofs that are either non-critical or mostly unchanged from
Leroux' paper available in the long version [3].
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4.1 Polytope, Lambert and Petri sets

A set C ⊆ Qd is conic if it is periodic and Q≥0C = C. A conic set is
�nitely generated if there exists a �nite set {c1, . . . , cn} ⊆ Q such that
C = Q≥0c1 + . . .+ Q≥0cn.

De�nition 4. ([10], De�nitions 4.1 and 4.6)
A periodic set P ⊆ Nd is polytope if Q≥0P is de�nable in FO(Q,+,≤
, 0, 1) (the �rst order logic on the speci�ed symbols). A set L ⊆ Nd is
Lambert if it is a �nite union of sets bi + Pi where bi ∈ Nd and Pi ⊆ Nd
is a polytope periodic set.

The stability of Lambert sets will be of importance in the sequel. We
have the following properties: (proofs of these statements are reasonably
direct, and available in [3]):

Proposition 2. Given L ⊆ Nd1 , L′ ⊆ Nd2 Lambert sets and k ∈ N:
1. For d1 = d2, L ∪ L′ is Lambert.
2. L× L′ is Lambert.
3. For d′1 < d1, {x ∈ Nd

′
1 | ∃y ∈ Nd1−d

′
1 , (x, y) ∈ L} is Lambert.

4. For d1 = d2, L+ L′ is Lambert.
5. k ? L is Lambert.
6. N ? L is polytope (more generally Lambert).
7. If δ is a linear function, then δ(L) is Lambert.

De�nition 5. ([10], De�nition 4.7)
A set X ⊆ Nd is Petri if for all Presburger sets S, S ∩X is Lambert.

4.2 Important results from Leroux

We recall in this section a few important results from [10].

For a set X ⊆ Qd, the closure of X, written X is de�ned by:

X = {l | ∀τ > 0, ∃x ∈ X, maxi(x− l)(i) < τ ∧maxi(l − x)(i) < τ}

We have this useful characterization of polytope sets, that we will use to
show that our production relation is polytope:

Theorem 2. ([10], Theorem 3.5)
A periodic set P ⊆ Nd is polytope if and only if the conic set (Q≥0P ) ∩ V
is �nitely generated for every vector space V ⊆ Qd

The second theorem needed is the one motivating Petri sets. A Petri
relation admits witnesses of non-reachability:

Theorem 3. ([10], Theorem 6.1)
Let R be a re�exive relation over Nd such that R∗ is Petri. Let X,Y ⊆ Nd
be two Presburger sets such that R∗ ∩ (X × Y ) is empty. There exists a
partition of Nd into a Presburger R-forward invariant that contains X
and a Presburger R-backward invariant that contains Y .
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And �nally, we will also need to use that the reachability relation of a
VAS is already known to be Petri:

Theorem 4. ([10], Theorem 9.1)
The reachability relation of a Vector Addition System is a Petri relation.

Since, given a VAS, we can add counters that increase each time a tran-
sition is �red, we can extend this result to include the parikh image of
transition sequences:

Corollary 1. Let V = 〈A, δ〉 be a VAS. Then, {(x, v, y) ∈ Nd×NA×Nd |
∃u, x u−→V y ∧ |u| = v} is a Petri set.

5 Production relations

For all the remaining sections, we will �x a VAS0 Vz = 〈Az, δ, az〉 of
dimension d. We consider the set A = Az\{az} and V = 〈A, δ|A〉 the

restriction of Vz to its non-az transitions. We have
∗−→ (or

A∗z−−→) the tran-

sition relation of Vz and
A∗−−→ the transition relation of V.

A run µ of Vz is a sequence m0.a1.m1.a2 . . . an.mn alternating markings
mi ∈ Nd and actions ai ∈ A such that for all 1 ≤ i ≤ n, mi−1

ai−→ mi.
m0 is called the source of µ, written src(µ) and mn is called the target
of µ, written tgt(µ). A run ρ of Vz is also a run of V if az doesn't appear
in ρ.

We recall the de�nitions of the productions relations for a VAS of [10],
adapted to our case by restricting the relation to runs that don't use the
zero-test.

� For a marking m ∈ Nd, −−−−→V,m ⊆ Nd × Nd is de�ned by:

x −−→
V,m

y ⇐⇒ ∃u ∈ A∗, m+ x
u−→ m+ y

� For a run ρ = m0.a1.m1 . . . an.mn of V, −−→ρ is de�ned by:

−−→
ρ =

−−−−−→
V,m0 ◦ −−−−−→V,m1 ◦ · · · −−−−−→V,mn

We also de�ne the production relation
−−−−−→
Vz,m ⊆ Nd × Nd of a marking

m ∈ Nd0 inside Vz by:

x −−−→
Vz,m

y ⇐⇒

∃u ∈ A∗z, m+ x

u−→ m+ y
x(1) = y(1) = 0

To extend the de�nition of a production relation to a run µ of Vz, we
consider the decomposition of µ = ρ0.az.ρ1 . . . az.ρp such that forall 1 ≤
i ≤ p, ρi is a run of V. In that case, we de�ne the production relation of
µ by:

−−→
µ =

−−−→
ρ0 ◦ −−−−−−−−→Vz ,tgt(ρ0) ◦ −−−→ρ1 ◦ · · · ◦ −−−−−−−−−−→Vz ,tgt(ρp−1) ◦ −−−→ρp

Proposition 3. For m ∈ Nd, m′ ∈ Nd0 and µ a run of Vz (a run V being
a special case),

−−−−→
V,m ,

−−−−−→
Vz,m′ and

−−→
µ are periodic.
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Proof: The result is easy for
−−−−→
V,m and

−−−−−→
Vz,m′ . We conclude by the

fact the composition of periodic relations is periodic.
�

One can prove by a simple induction on the length of µ (available in [3])
the following statement:

Proposition 4. For a run µ of Vz, we have:

(src(µ), tgt(µ)) +
−−→
µ ⊆ ∗−→

6 Well-orderings of production relations

For two runs µ, µ′, let us de�ne � by:

µ � µ′ ⇐⇒ (src(µ′), tgt(µ′)) +
−−−→
µ′ ⊆ (src(µ), tgt(µ)) +

−−→
µ

Our aim is to show that � is a well-order. To do that, we de�ne the order
E on runs of Vz in the following way:

� For ρ = m0.a1.m1 . . . ap.mp and ρ′ = m′0.a
′
1.m

′
1 . . . a

′
q.m

′
q runs of V

(ai, a
′
i ∈ A), we get the same de�nitions as in [10]:

m0.a1.m1 . . . ap.mp E m
′
0.a
′
1.m

′
1 . . . a

′
q.m

′
q ⇐⇒

8<:
m0 ≤ m′0
mp ≤ m′qQ

1≤i≤p(ai,mi) ≤emb
Q

1≤i≤q(a
′
i,m

′
i)

with (a,m) ≤ (a′,m′) ⇐⇒ a = a′ ∧m ≤ m′
� For µ = ρ0.az.ρ1 . . . az.ρp and µ

′ = ρ′0.az.ρ
′
1 . . . az.ρ

′
q runs of Vz (with

ρi, ρ
′
i runs of V), we have:

ρ0.az.ρ1 . . . az.ρp E ρ
′
0.az.ρ

′
1 . . . az.ρ

′
q ⇐⇒

8<:
ρ0 ≤ ρ′0
ρp ≤ ρ′qQ

1≤i≤p ρi E
emb Q

1≤i≤q ρ
′
i

Two applications of Higman's lemma gives us the following result:

Proposition 5. The order E is well.

Now, we only need to prove the following:

Proposition 6. For µ, µ′ runs of Vz, we have:

µ E µ′ =⇒ µ � µ′

Proof Sketch: The full proof is available in [3]. [10] already contains the
result for runs without the zero-test.
The idea is that our run can be decomposed in the following way, where
ϕi,j refers to "suppressed" sequences, and ρ′′i are greater than ρi for E.

Y
1≤k≤q

ρ′k = ρ′′0

0@ Y
1≤j≤n0

ϕ0,j

1A ρ′′1

0@ Y
1≤j≤n1

ϕ1,j

1A ρ′′2 · · ·

0@ Y
1≤j≤np−1

ϕp−1,j

1A ρ′′p
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Now, the outline of the proof is to base ourselves on Leroux' result for
runs without zero-tests, and to show that the productions of suppressed
sequences are included in

−−−−−−−−→
Vz,tgt(ρi) where ρi is the part of the run

before the suppressed sequence.

�

We can now combine propositions 5 and 6 to get:

Theorem 5. � is a well-order on runs of Vz.

7 Polytopie of the production relation

Note that the relation
−−→
µ is a �nite composition of relations

−−−−→
V,m (for

m ∈ Nd) and −−−−−→Vz,m (for m ∈ Nd0). To show that
−−→
µ is polytope, we

�rst recall two results from [10] regarding production relations:

Lemma 1. ([10], Lemma 8.2)

If R and R′ are two polytope periodic relations, then R ◦R′ is a polytope
periodic relation.

Theorem 6. ([10], Theorem 8.1)

For m ∈ Nd, −−−−→V,m is polytope.

These two results mean we only need to prove that
−−−−−→
Vz,m is a polytope

periodic relation for m ∈ Nd0.

Proposition 7. For m ∈ Nd0,
−−−−−→
Vz,m is polytope.

Proof: Theorem 2 shows that
−−−−−→
Vz,m is polytope if and only if the

following conic space is �nitely generated for every vector space V ⊆
Qd ×Qd:

(Q≥0
−−−−−→
Vz ,m ) ∩ V = Q≥0(

−−−−−→
Vz ,m ∩ V )

Let us de�ne V0 = (Nd0 × Nd0) ∩ V . We will re-use the idea of Leroux'
intraproductions, but by restricting them to Nd0. Let Qm,V = {y ∈ Nd0 |
∃(x, z) ∈ (m,m) + V0, x

∗−→ y
∗−→ z} and Im,V ⊆ {1, . . . , d} by i ∈

Im,V ⇐⇒ {q(i) | q ∈ Qm,V } is in�nite. Note that 1 6∈ Im,V , as for all
q ∈ Qm,V , q(1) = 0. An intraproduction for (m,V0) is a triple (r, x, s)
such that x ∈ Nd0 and (r, s) ∈ V0 with:

r −−−→
Vz,m

x −−−→
Vz,m

s

An intraproduction is total if x(i) > 0 for every i ∈ Im,V . The following
lemma can be proved exactly as Lemma 8.3 of [10] (a precise proof is
available in [3]):

Lemma 2. There exists a total intraproduction for (m,V0).

8



Now we de�ne N∞ = N∪{∞}, ordered by x <∞ for every x ∈ N. Given
a �nite set I ⊆ {1, . . . , d} and a marking m ∈ Nd, we denote by mI the
vector of Nd∞ de�ned by mI(i) =∞ if i ∈ I and mI(i) = m(i) otherwise.
We also de�ne the order≤∞ by x ≤∞ y if for all i, y(i) =∞ or x(i) = y(i)
(equivalently there exists I ⊆ {1, . . . , d}, xI = y). For a relation →, and
(x, y) ∈ Nd∞. We de�ne x→ x′ if there exists (m,m′) ∈ Nd, m ≤∞ x and
m′ ≤∞ x′ with m→ m′.
Let Q = {qIm,V | q ∈ Qm,V } and G the complete directed graph with
nodes Q whose edges from q to q′ are labeled by (q, q′). For w ∈ (Q×Q)∗,
we de�ne TProd(w) ⊆ NAz by:

TProd(ε) = {0Az}
TProd((q, q′)) =

n
|u| | ∃(x, x′) ∈ Nd0 × Nd0, x ≤∞ q, x′ ≤∞ q′, u ∈ azA∗ ∪A∗, x

u−→ x′
o

TProd(uv) = TProd(u) + TProd(v)

We de�ne the periodic relation Rm,V on V0 by r Rm,V s if:
1. r(i) = s(i) = 0 for every i 6∈ Im,V
2. there exists a cycle labelled by w in G on the state mIm,V and v ∈

TProd(w) such that r + δ(v) = s.

Lemma 3. The periodic relation Rm,V is polytope.

Proof: First, let's show that TProd((q, q′)) is Lambert for every (q, q′) ∈
Q×Q. We de�ne X1 = {(x′, y) ∈ Nd0×Nd0 | ∃x ≤∞ q, x

az−→ x′∧y ≤∞ q′}
and X2 = {(x, y) ∈ Nd0 × Nd0 | x ≤∞ q ∧ y ≤∞ q′} which are Presburger
sets. Because, Y = {(x′, v, y) ∈ Nd × NA × Nd | ∃u ∈ A∗, x′ u−→ y ∧ |u| =
v} is a Petri set (corollary 1), Y1 = Y ∩ (X1 × NA × Nd) and Y2 =
Y ∩ (X2×NA×Nd) are Lambert sets, and by projection (proposition 2),
TProd((q, q′)) =

`
|az|+ {u | ∃(x, y) ∈ Nd × Nd, (x, u, y) ∈ Y1}

´
∪ {u |

∃(x, y) ∈ Nd, (x, u, y) ∈ Y2} is Lambert.

Let P ⊆ NQ×Q be the Parikh image of the language L made of words
labelling cycles in G on the state mIm,V . L is a language recognized by
a �nite automaton, hence P is a Presburger set.
Now, let's show that R′m,V = {TProd(w) | w ∈ L} is a Lambert set. We
have:

R′m,V =

( P
a∈Q×Q

v(a) ? TProd(a) | v ∈ P

)
P is Presburger, hence there exists (di)1≤i≤p, (ei,j)1≤i≤p,1≤j≤ni with
di, ei,j ∈ NQ×Q and P =

S
i di +ΣjNei,j . This gives:

R′m,V =
S

1≤i≤p

S
v∈Np

P
1≤j≤ni

P
a∈Q×Q

(di + v(j) ∗ ei,j)(a) ? TProd(a)

=
S

1≤i≤p

P
a∈Q×Q

di(a) ? TProd(a) +
S

1≤i≤p

P
1≤j≤ni

S
k∈N

P
a∈Q×Q

(k ∗ ei,j)(a) ? TProd(a)

=
S

1≤i≤p

P
a∈Q×Q

di(a) ? TProd(a) +
S

1≤i≤p

P
1≤j≤ni

N ?

 P
a∈Q×Q

ei,j(a) ? TProd(a)

!
For all a ∈ Q×Q, we have seen that TProd(a) is Lambert. So because
Lambert sets are stable by addition, union and N?, (proposition 2), R′m,V
is Lambert.
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We de�ne VIm,V = {x ∈ Nd | ∀i 6∈ Im,V , x(i) = 0} and R′′m,V = {(r, r +

δ(x)) | r ∈ VIm,V ∧ x ∈ R
′
m,V } = {(r, r) | r ∈ VIm,V }+ {0}d × δ(R′m,V ).

By proposition 2, we have R′′m,V built from R′m,V by the image through
a linear function and the sum with a Presburger set, which means R′′m,V
is Lambert. But, R′′m,V is periodic, which means R′′m,V = N ? R′′m,V is
polytope. Finally, as proposition 2, gives us that polytope sets are stable
by intersection with vector spaces, Rm,V = R′′m,V ∩ V is polytope.

�

We will now show that our graph G is an accurate representation of the
reachability relation:

Lemma 4. Let w be the label of a path in G from m
Im,V
1 to m

Im,V
2 and

v ∈ TProd(w). Then, there exists u ∈ A∗z with |u| = v and (x, y) ∈
Nd0 × Nd0, x ≤∞ m

Im,V
1 and y ≤∞ m

Im,V
2 such that x

u−→ y.

Proof: We show this by induction on the length of w. Let w = w0(q, q
′)

where w0 is a path from m
Im,V
1 to m

Im,V
3 and (q, q′) is an edge from

m
Im,V
3 to m

Im,V
2 and v ∈ TProd(w0(q, q

′)). This means there exists
v1 ∈ TProd(w0), v2 ∈ TProd(q, q′) such that v = v1 + v2. By induction

hypothesis, there exists u1 ∈ Nd0 × Nd0, x′0 ≤∞ m
Im,V
1 and y′0 ≤∞ m

Im,V
3

such that x′0
u1−→ y′0 and |u1| = v1.

By de�nition of TProd((q, q′)), as v2 ∈ TProd((q, q′)), there exists x′1 ≤
m
Im,V
3 , y′1 ≤∞ m

Im,V
2 and u2 ∈ azA∗∪A∗ such that x′1

u2−→ y′1 and |u2| =
v2. Let z = max(y′0, x

′
1). We have z(1) = y′0(1) = x′1(1) = m3(1) = 0,

which gives us:

x′0 + (z − y′0)
u1−→ z

u2−→ y′1 + (z − x′1)

As zIm,V = y′0
Im,V = x′1

Im,V = m
Im,V
3 , we have (z − y′0) ≤∞ 0Im,V and

(z−x′1) ≤∞ 0Im,V , which allows us to de�ne x = x′0+(z−y′0) ≤∞ m
Im,V
1

and y = y′1 + (z − x′1) ≤∞ m
Im,V
2 . u = u1u2 completes the result.

�

We now show a lemma for the other direction:

Lemma 5. Let (m1,m2) ∈ Qm,V ×Qm,V with u ∈ A∗z such that m1
u−→

m2. There exists w ∈ (Q × Q)∗ label of a path from m
Im,V
1 to m

Im,V
2

such that |u| ∈ TProd(w).

Proof: Let u = u1azu2 . . . azun with ui ∈ A∗. We de�ne (xi)1≤i≤n,
xi ∈ Nd0 by:

m
u1−→ x1

azu2−−−→ x2
azu3−−−→ x3 · · ·

azun−−−→ xn = m2

We have for all i, xi ∈ Nd0, which leads that |u1| ∈ TProd((m
Im,V
1 , x

Im,V
1 ))

and for all i ∈ {1, . . . , n − 1}, |azun| ∈ TProd((x
Im,V
i , x

Im,V
i+1 )). Hence,

we can de�ne w = (m
Im,V
1 , x

Im,V
1 )(x

Im,V
1 , x

Im,V
2 ) . . . (x

Im,V
n−1 ,m

Im,V
2 ) and

we have |u| ∈ TProd(w).
�

Thanks to lemmas 4 and 5, we can now prove the following lemma exactly
in the same way as Lemma 8.5 of [10] (full proof in [3])
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Lemma 6. Q≥0Rm,V = Q≥0(
−−−−−→
Vz,m ∩ V0)

By lemma 3, Rm,V is polytope, hence Q≥0Rm,V is �nitely generated. We
have proven proposition 7.

�

Finally, as
−−→
µ is a �nite composition of elements of the form

−−−−→
V,m

and
−−−−−→
Vz,m , we have proven the following result:

Theorem 7. If µ is a run of Vz, then −−→µ is polytope.

8 Decidability of Reachability

We have now all the results necessary to show the following:

Theorem 8.
∗−→ is a Petri relation.

Proof Sketch: Similarly as in Theorem 9.1 of [10], one can show thanks
to proposition 4 and theorem 5 that for any (m,n) ∈ Nd×Nd and P ⊆ Nd
�nitely generated periodic set, there exists a �nite set B of runs of Vz
such that:

∗−→ ∩((m,n) + P ) =
[
µ∈B

(src(µ), tgt(µ)) + (
−−→
µ ∩ P )

Then, proposition 5 allows to conclude that
∗−→ is Petri. The full proof is

available in [3].
�

Because
“
azA

∗∪A∗−−−−−−→
”∗

=
A∗z−−→, we can now apply theorem 3 and get:

Proposition 8. If X and Y are two Presburger sets such that
A∗z−−→

∩(X×Y ) = ∅, then there exists a Presburger
azA

∗∪A∗−−−−−−→-forward invariant
X ′ with X ′ ∩ Y = ∅.

Now that we have shown the existence of such an invariant, we only need
to show that we are able to test whether a given set is an invariant:

Proposition 9. Whether a Presburger set X is a
azA

∗∪A∗−−−−−−→-forward in-
variant is decidable.

Proof: X is a forward invariant for
azA

∗∪A∗−−−−−−→ if and only if
az−→ (X) ⊆

X and
A∗−−→ (X) ⊆ X. Because

az−→ (X) is a Presburger set, the �rst
condition is decidable as the inclusion of Presburger sets, and the second

reduces to deciding whether
A∗−−→ ∩ (X × Nd\X) is empty, which is an

instance of the reachability problem in a VAS (Theorem 1).
�

By the propositions 8 and 9, reachability is co-semidecidable by enumer-
ating forward invariants, and as semidecidability is clear, we conclude:

Theorem 9. Reachability in VAS0 is decidable.
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