PRALINE: A Tool for Computing Nash
Equilibria in Concurrent Games

Romain Brenguier

Département d’informatique, Université Libre de Bruxelles (U.L.B), Belgium
LSV, CNRS & ENS Cachan, France
brenguier@lsv.ens-cachan.fr

Abstract. We present PRALINE, which is the first tool to compute Nash
equilibria in games played over graphs. We consider concurrent games:
at each step, players choose their actions independently. There can be
an arbitrary number of players. The preferences of the players are given
by payoff functions that map states to integers, the goal for a player is
then to maximize the limit superior of her payoff; this can be seen as a
generalization of Biichi objectives. PRALINE looks for pure Nash equi-
libria in these games. It can construct the strategies of the equilibrium
and users can play against it to test the equilibrium. We give the idea
behind its implementation and present examples of its practical use.

1 Introduction

In computer science, two-player games have been successfully used for solving
the problem of controller synthesis. Multiplayer games appear when we want to
model interaction between several agents, where each agent has its own prefer-
ence concerning the evolution of the global system. Think for instance of several
users behind their computers on a shared network. When designing a protocol,
maximizing the overall performance of the system is desirable, but if a deviation
can be profitable to the users, it should be expected that one of them takes
advantage of this weakness. This happened for example to the bit-torrent pro-
tocol where selfish clients became more popular. Such deviations can harm the
global performance of the protocol. In these situations, equilibrium concepts are
particularly relevant. These notions aim at describing rational behaviors. In a
Nash equilibrium, each agent plays in such a way that none of them can get a
better payoff by switching to another strategy.

In the context of controller synthesis, games are generally played on graphs.
The nodes of the graph represent the possible configurations of the system. The
agents take actions in order to move a token from one node to another. Among
those games, the simplest model is that of turn-based games, where in each state,
one player decides alone on which outgoing edge to take. The model we consider
is concurrent games, which is more expressive. For these games, in each state,
the players choose their actions independently and the joint move formed by
these choices determines the next state.

There has recently been a lot of focus on the algorithmic aspect of Nash
equilibria for games played on graphs [AITIT2]. Thanks to these efforts, the
theoretical bases are understood well enough, so that we have developed effective
algorithms [1I2]. We implemented them in PRALINE. Other tools exist which
can compute Nash equilibria for classical models, however this is the first tool to
compute Nash equilibria in games played on graphs. The tool PRISM-games [5]
can also analyse multiplayer games on graphs. In particular, it can generate an
optimal strategy for one player and can be used to check that a given strategy is
a Nash equilibrium. It can deal with randomized games, which PRALINE cannot,
however it is unable to generate Nash equilibria, as PRALINE does.

We give an overview of the features of PRALINE. First, we present the model
of games that is used, illustrated with examples. We also present the suspect
game transformation [3], which gives the idea of the underlying algorithm and
makes it possible to test the equilibrium by playing against it. We also ran some
experiments on the given examples to evaluate the performances of the tool. The
tool is available from http://www.lsv.ens-cachan.fr/Software/praline/|

2 Concurrent Games

The model of game we consider is concurrent games. These are played on a
graph which we call the arena of the game. A state of the game is a vertex of
the arena. At the beginning of a turn, each of the players chooses an action, and
the tuple of these actions defines a move. The next state of the game is given by
following the edge that goes from the current state and is labeled by this move,
and a new turn begins from that state. This is then repeated ad infinitum, to
define an infinite path on the graph, called a play. Players are assumed to see
the sequence of states, but not the actions played by other players.

An example of an arena is given in Fig. [2| If, for example, in state 1,0,1,0,
player p; chooses action 1 and player ps chooses action 0, the play follows the
edge labeled by the move 1,0 and the next state is 0,1,1,0. Then a new turn
begins. If both players keep on playing 0,0 forever, the system will stay in con-
figuration 0,1,1,0; this defines the play 1,0,1,0-(0,1,1 ,O)W.

To describe games with a big state space it is convenient to write small
programs which generate the arena, like the one in Fig. [Il Each state of the
arena corresponds to a possible valuation of the variables, the move function
describes the actions available in each state and the update function computes
the new state according to the actions of each player.

Ezample 1 (Medium Access Control). This example was first formalized from
the point of view of game theory in [8]. Several users share access to a wireless
channel. During each slot, they can choose to either transmit or wait for the next
slot. If too many users are emitting in the same slot, then they fail to send data.
Furthermore each attempt at transmitting costs energy to the players. They
have to maximize the number of successful attempts using the energy available
to them. We give in Fig. [I] a possible way to model this game in PRALINE. In

http://www.lsv.ens-cachan.fr/Software/praline/

this example the players are pl and p2. Their energy levels are represented by
variables energy1l and energy2, and variables trans1 and trans2 keep track of
the number of successful attempts. The players can always wait (represented by
the action 0), and if there energy is not zero they can transmit (represented by
action 1). The generated arena for an initial energy allowing only one attempt
for each player is represented in Fig. [2 The labels of the nodes correspond to
the valuation of the variables energyl, transi, energy2 and trans2.

VANV
move {

legal p1 0; 0.0 0.0
legal p2 0; ’ 1,0 ’
if (energyl > 0) legal p1 1; 1,0,0,1 0,1,0,1

if (energy2 > 0) legal p2 1;
}

update {

if (action p1 == 1)
energyl = energyl - 1;

1,0
if (action p2 == 1) —>(1,0,1,0 (O,Llﬁ)
energy2 = energy2 - 1; ‘s \\\::)
0,0

if (action p1 == 1 && action p2 == 0) 0,0
trans1 = trans1 + 1;

if (action p1 == 0 && action p2 == 1)
trans2 = trans2 + 1; 0,0

}
Fig.1: Part of the game file
“medium_access.game”

Fig. 2: Arena generated from this file.

3 Computing Nash Equilibria

The preference of a player p; is specified by a function payoff, which assigns an
integer to each state of the game. The payoff of a run is the limit superior of
this function, and the goal is to maximize it. This is a generalization of Biichi
objectives which can be specified with payoff either 0 or 1 for each state.

Ezample 2 (Power Control). This example is inspired by the problem of power
control in cellular networks. Game theoretical concepts are relevant for this
problem and Nash equilibria are actually used to describe rational behaviors
of agents [6/7]. We consider the situation where several phones are emitting over
a cellular network. Each agent p; can choose the emitting power pow, of his
phone. From the point of view of agent p;, using a stronger power results in a
better transmission, but it is costly since it uses energy, and it lowers the quality
of the transmission for the others, because of interferences. We model this game
by the arena presented in Fig. 3| for a simple situation with two players which at
each step can choose to increase or not their emitting power until they reach the

maximum level of 2. The payoff for player p; can be modeled by this expression
from [10]: payoff, = pﬁv i (1- 6_0'5%‘)L where ; is the signal-to-interference-
and-noise ratio for player p;, R is the rate at which the wireless system transmits

the information in bits per seconds and L is the size of the packets in bits.

To describe the rational behavior of the agents
in a non-zero-sum game, the concept that is most
commonly used is Nash equilibria [9]: a Nash
equilibrium is a choice of strategies (one for each
player), such that there is no player which can in-
crease her payoff, by changing her own strategy,
while the other players keep theirs unchanged.

The tool PRALINE looks for pure (i.e. non ran-
domized) Nash equilibria in the kind of games we
described. Note that a pure Nash equilibrium is
resistant to randomized strategies. On the other
hand the existence of a randomized Nash equilib-
rium with a particular payoff is undecidable [I2]. Fig 3: Arena of the power
If the game contains a (pure) Nash equilibrium control game
with some payoff payoff, for each player p;, then
PRALINE returns at least one Nash equilibrium
with payoff payoff, such that for every player p;,
payoff, > payoff,. For an overview of the Nash equilibrium, the tool can out-
put the shape of the solution. That is, the moves that are effectively taken by
the players if none of them deviates from the equilibrium. For example, in the
power control game, our tool gives two solutions, one Nash equilibrium with
payoff 110 for each player and another one with payoff 94 for each, their shapes
are represented in Fig. [f] and Fig. [§] respectively. For each solution, the tool
can also output a file containing the full strategies, represented as automata.
These automata are usually big: the first solution of the power control example
is implemented by an automaton containing 125 edges. They can be difficult to
analyze. A convenient way to look at the generated equilibrium, is to play the
suspect game against it. We now explain the suspect game construction, which
is the core of the implemented algorithm.

4 The Suspect Game

The idea behind the algorithm implemented is that of the suspect game, which
allows to think about Nash equilibria as winning strategies in a two-player turn-
based game [3]. This transformation makes it possible to use algorithmic tech-
niques from zero-sum games to synthesize Nash equilibria.

The suspect game is played between Eve and Adam. Eve wants the players to
play a Nash equilibrium, and Adam tries to disprove that it is a Nash equilibrium,
by finding a possible deviation that improves the payoff of one of the players.

11 0,0 11 m 11 0,0
0,0 \:1/ 2,2

Fig. 4: Shape of solution 1 Fig. 5: Shape of solution 2

In the beginning of the game all the players are considered suspect, since they
can potentially deviate from the equilibrium. Then Eve chooses a legal move
and Adam chooses some successor state. When the state chosen by Adam is the
state resulting from Eve’s move, we say that Adam obeys Eve, and the suspects
are the same than before. Otherwise we keep among the suspects those that can
unilaterally change their action from the one suggested by Eve to activate the
transition suggested by Adam. The game then continues from the state played
by Adam. Given the desired payoff, the outcome of the game is winning for Eve,
if all players that are ultimately suspect have a payoff inferior or equal to the
given one. There is a Nash equilibrium in the original game with payoff; for each
player p; if, and only if, there is a winning strategy for Eve such that when Adam
obeys the payoff is exactly payoff; for each player p; [3].

Using this transformation for the preferences under consideration, Eve’s ob-
jective can be expressed as a co-Biichi condition. This game can be solved in
polynomial time and we have indeed a polynomial time algorithm for Nash equi-
libria [2]. In order to understand how a Nash equilibrium is enforced, the tool
PRALINE allows the user to play against the winning strategy of Eve.

Ezample 2 (cont’d). We come back to the example of the power control game,
and the first solution, where players use a power of 1 and get a payoff of 110.
When we play against Eve in this game, she first suggests the move 1,1. If we
obey this move, the power of each players is raised to 1. Eve then plays 0, 0 as long
as we stay in this same state. If we continue to obey, the payoff will be 110 for
each player, which would make Eve win. If we want to find a deviation profitable
to one player we might want to raise the power of one of them. For instance,
if we change the power of the first one, then she is suspect in the next state
and her current payoff is 131. But then, Eve will suggest the move 0,1 whose
natural outcome is 2,2 which has a payoff of 94 for the first player. If we obey
this move we failed to improve our payoff, and we cannot change the next state
by changing only the action of the first player, so the game is lost for Adam.

5 Experiments and Conclusions

In order to show the influence of the size of the graph on the time taken to
compute Nash equilibria, we ran the tool on examples with different parame-
ters. The experimental results are given in Table [} they were obtained on a
PC with an Intel Core2 Duo processor at 2.8GHz with 4GB of RAM. We ob-
serve from these experiments that our prototype works well for games up to one
hundred states. The execution time then quickly increases. This is because the
algorithm as described in [2], requires computation of the winning regions in
a number of subgames that might be quadratic in the number of states of the
game. Computing winning regions takes quadratic time in itself.

PRALINE is the first tool to compute pure Nash equilibria in games played
on graphs. Experimental results are encouraging since we managed to synthesize
Nash equilibria for several examples. For future implementations, we hope to
improve the tool’s scalability by using symbolic methods.

Table 1: Experiments

Power Control

Players Emission Levels States Edges Solutions Time (sec.)

2 2 9 25 2 0.01
4 2 81 625 6 4.28
3 5 216 1331 83 64.50
6 2 729 15625 23 2700.97

Medium Access Control

Players Initial Energy States Edges Solutions Time (sec.)

2 2 14 35 1 0.02

3 2 100 347 1 0.69

3 4 1360 6303 1 160.22
References

1.

10.

11.

12.

P. Bouyer, R. Brenguier, and N. Markey. Nash equilibria for reachability objectives
in multi-player timed games. In CONCUR’10, LNCS 6269, p. 192—206. Springer,
2010.

P. Bouyer, R. Brenguier, N. Markey, and M. Ummels. Nash equilibria in concurrent
games with Biichi objectives. In FSTTCS’11, p. 375-386. Leibniz-Zentrum fir
Informatik, 2011.

P. Bouyer, R. Brenguier, N. Markey, and M. Ummels. Concurrent games with
ordered objectives. In FoSSaCS’12, LNCS. Springer, 2012.

K. Chatterjee. Two-player nonzero-sum w-regular games. In CONCUR’05, LNCS
3653, p. 413-427. Springer, 2005.

T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis. PRISM-games:
A model checker for stochastic multi-player games. In TACAS’13, LNCS 7795, p.
185-191. Springer, 2013.

A. MacKenzie, S. Wicker. Game theory and the design of self-configuring, adaptive
wireless networks. Communications Magazine, IEEE, 39(11):126-131, 2001.

A. MacKenzie, S. Wicker. Game theory in communications: Motivation, expla-
nation, and application to power control. In GLOBECOM’01, p. 821-826. IEEE,
2001.

A. MacKenzie, S. Wicker. Stability of multipacket slotted aloha with selfish users
and perfect information. IEEE INFOCOM, 3:1583-1590, 2003.

J. F. Nash, Jr. Equilibrium points in n-person games. Proc. National Academy of
Sciences of the USA, 36(1):48-49, 1950.

C. Saraydar, N. Mandayam, and D. Goodman. Pareto efficiency of pricing-based
power control in wireless data networks. In Wireless Communications and Net-
working Conference, 1999. WCNC. 1999 IEEE, p. 231-235. IEEE, 1999.

M. Ummels. The complexity of Nash equilibria in infinite multiplayer games. In
FoSSaCS’08, LNCS 4962, p. 20-34. Springer, 2008.

M. Ummels and D. Wojtczak. The complexity of Nash equilibria in limit-average
games. In CONCUR’11, LNCS 6901, p. 482-496. Springer, 2011.

	PRALINE: A Tool for Computing Nash Equilibria in Concurrent Games

