
Design and Implementation of the Multiprocessor Bandwidth

Inheritance Protocol on Linux

Andrea Parri(a)

a.parri@sssup.it

Juri Lelli(a)

j.lelli@sssup.it

Mauro Marinoni(a)

m.marinoni@sssup.it

Giuseppe Lipari(a), (b)

giuseppe.lipari@lsv.ens-cachan.fr

(a) Scuola Superiore Sant’Anna, Pisa, Italy
(b) Ecole Normale Suprieure, Cachan, France

Abstract

The Multiprocessor Bandwidth Inheritance (M-BWI) is a synchronisation protocol for coordinating
mutually exclusive access to critical sections in multi-processor real-time systems. It combines resource
reservations techniques with the priority inheritance access protocol, so to guarantee temporal isolation
between non-interacting tasks and real-time execution. In the original paper, the authors proposed an
implementation in LITMUS-RT, a version of Linux specifically designed for research purposes.

In this paper we propose an implementation of the M-BWI protocol on the Linux OS augmented with
the SCHED DEADLINE patch. We describe the architecture of our implementation, highlighting the
problems we found and the possible solutions. We also run an extensive set of experiments for evaluating
the overhead of the proposed implementation.

1 Introduction and motivation

Demand for supporting real-time execution in GPOS
has substantially increased in the past years. Many
application require some sort of real-time execution,
e.g. real-time audio processing, multimedia process-
ing, telecommunication (routers, etc.) interactive
games, etc.

Therefore, many developers have tried to im-
prove the real-time proprties of the Linux OS by pro-
viding additional features. For example, the CON-

FIG PREEMPT RT patch [7] makes almost every
routine in the kernel preemptible, so to reduce the
blocking time that higher priority activities suffer in
the stock Linux kernel. To further reduce priority in-
version, the patch also introduces the priority inher-
itance protocol [19] for accessing mutually exclusive
critical sections in the kernel.

Parallel efforts have been directed to providing
alternative real-time scheduling policies in the ker-
nel, and in particular resource reservation [17] mech-
anisms. A resource reservation scheduler allows the
user to reserve a fraction of the computing resources

1



to a thread, so that the thread is guaranteed to al-
ways receive that amount of computation time. At
the same time, the thread cannot use more than re-
served. Hence, resource reservation mechanisms pro-
vide temporal isolation: each thread executes ap-
proximately as it were running on a slower dedi-
cated processor of speed equal to the reserved frac-
tion of the processor utilisation. One example of
such scheduling mechanism is the Constant Band-
width Server (CBS) [3], which has been implemented
in the SCHED DEADLINE patch [14] for the Linux
kernel. The basic idea is that each thread is assigned
a budget Q and a period P , and it is guaranteed to
receive up to Q units of computation every period P .

Unfortunately, resource reservation mechanisms
are incompatible with classical resource access pro-
tocols like priority inheritance. This has been shown
in [16]: if the budget is exhausted while the thread
is executing inside a critical section, the priority in-
version of blocked tasks can grow arbitrarily large.
The authors proposed an extension of the priority
inheritance protocol, called Bandwidth Inheritance
BWI [16], in which the thread that holds the lock
inherits not only the priority but also the budget of
the blocked tasks. The protocol has recently beed
extended to multi-processor systems, thus becom-
ing the Multi-processor Bandwidht Inheritance (M-
BWI) protocol [8], and it has been implemented in
LITMUS-RT [6], a research-oriented OS designed to
make it easy to implement and evaluate new schedul-
ing policies. However, LITMUS-RT is not particu-
larly optimized for use in production systems, and it
is not up-to-date with respect to current Linux OS
releases.

In this paper we propose an implementation
of the M-BWI protocol in Linux patched with
SCHED DEADLINE. We explain the architecture
and the practical aspects of our implementation.
Also, we present the problems that we encountered,
and a few solutions to them. Finally, we present the
evaluation of the overhead introduced by the proto-
col.

2 Related Work

As discussed in the introduction, as lot of real-time
enhancements to Linux have been proposed in the
past. Among the many, we wish to cite LITMUS-
RT [6], a patch to the Linux kernel proposed by
researchers at the University of North Caroline at
Chapel Hill, that makes it easy to implement new
scheduling algorithms. The patch is mostly used
in research laboratories for comparing different real-

time scheduling policies.

The concept of bandwidth inheritance has been
proposed in [16], but also independently by re-
searchers at the Technical University of Dresden in
their real-time micro-kernel DROPS [2, 12]. The idea
is to let the task inherit not only the priority but also
the budget.

Inheritance can be effectively implemented in
single processor systems using the concept of shadow
task, or proxy execution. The first has been proposed
in the SHARK kernel [9] for seamlessly implement-
ing the priority inheritance policy when combining
different scheduling policies. The same implementa-
tion can be used as a basis for implementing BWI;
however it cannot easily be extended to multi-core
systems.

3 Background

3.1 SCHED DEADLINE

SCHED DEADLINE is a new scheduling class for
the Linux scheduler. It implements the Earliest
Deadline First (EDF) real-time scheduling algorithm
and uses the Constant Bandwidth Server (CBS) re-
source reservation scheduling technique to provide
temporal isolation, among non interacting tasks.

SCHED DEADLINE can handle:

- periodic tasks (typical in real-time and control
applications;

- sporadic tasks (typical in soft real-time and
multimedia applications;

- aperiodic tasks.

Scheduling entities of this scheduling class corre-
spond to CBS servers. Each server includes original
and actual scheduling parameters, basically runtime
and deadline. The former are copied in when the
user sets a task to use SCHED DEADLINE policy,
the latter are initialized with original values and then
continuosly updated during task execution. Actual
runtime is decremented with HZ frequency and repre-
sents remaining runtime for the current job of a task,
actual deadline is updated following CBS rules and
corresponds to a job absolute deadline (used to per-
form EDF scheduling among active tasks instances).

Several events can happen during a task execu-
tion, the following is a non exhaustive list that is
also useful to introduce terminology for the rest of
the paper:

2



- runtime overrun, happens if the current job ex-
ceeds its allowed runtime → the active server
is throttled (see below) and the amount of over-
run is accounted for the next job instance;

- deadline miss, similar to the previous case, if
deadlines are set equal to periods no throttling
is required;

- server throttling, can happen as a result of the
previous cases, the server is stopped (throttled)
and a timer is set to fire at the replenishment
instant (next server period);

- runtime replenishment, actual runtime is re-
filled and actual deadline is set as current clock
plus relative deadline (original).

3.2 Model of a critical section

Tasks can access shared memory using mutually ex-
clusive semaphores, often referred to as mutexes.
The portion of code in a task between a lock and
an unlock operation on a mutex is called critical sec-
tion. If a task needs to enter a critical section, it
may be blocked by the fact that another task has
already locked the corresponding mutex: this latter
task is called lock owner, or lock holder. In real-time
systems it is important to compute for how long, in
the worst case, a task may remain blocked on a lock.

A priority inversion happens when a task is
blocked by a low priority task. Without a proper
protocol to control access to critical sections, the du-
ration of the priority inversion may become too long,
or even unbounded; for this reason, the priority in-
heritance protocol [18] (PIP) has been proposed as a
simple and effective way to reduce priority inversion.
According to the PIP, when a task is blocked on a
lock, the lock owner inherits the highest between its
priority and the priorities of the blocked tasks. In
this way, it cannot be preempted by medium prior-
ity tasks, thus reducing the blocking time.

Other protocols have been proposed as improve-
ments over the PIP, notably the priority ceiling pro-
tocol [10], and the stack resource policy [4]. However,
as we will briefly discuss in the following, such pro-
tocols are not adequate for use in open systems.

3.3 Open Systems

An open real-time system is a real-time system where
tasks can be dynamically created and destroyed at
any time. In contrast, in a closed system, the devel-

oper knows the number of tasks in the system and
their parameters at design time.

In a closed system, a real-time analysis is per-
formed off-line to guarantee that all tasks will meet
all deadlines under all conditions. Naturally, closed
systems can take advantage from the fact that ev-
erything is known at design time, including the code
of the tasks. Therefore the system scheduling algo-
rithm and the access protocol can be optimised for
the specific system.

In an open system, instead, we do not know any-
thing about the tasks at design time. Linux can be
considered as an example of open system: non-real-
time tasks (threads or processes) can be dynamically
created at any instant. If we want to apply a similar
approach to real-time systems on Linux, we must re-
quire the user to specify at least some parameters to
the scheduling algorithm, so to check and guarantee
real-time execution.

Therefore an admission control test must be
performed on-line to make sure that all admitted
tasks will indeed meet their deadlines. Accord-
ing to the resource reservation framework, and to
the SCHED DEADLINE scheduling algorithm, the
new task requires a percentage of the computational
bandwidth in the form of a budget Q and a period
P . If task passes the admission control, the system
guarantees that it will receive at least Q units of
time every period P . An admission control test is
nothing else than a schedulability analysis test that
checks that the new incoming task maintains the sys-
tem schedulable.

One example of admission control test for the
EDF+CBS algorithm on single processor systems
consists in checking that the total required band-
width does not exceed the available bandwidth: in
formula,

∑
i
Qi

Pi
≤ 1.

When considering also mutex semaphores and
critical section, the analysis becomes more complex,
as it is now necessary to compute the maximum
blocking time for each task. To compute the maxi-
mum blocking time, it is necessary to know the du-
ration of the critical sections of all the tasks in the
system. Once the blocking time has been computed,
an example of admission control test for EDF is the
following

∀i,
∑

Dj≤Di

Qj

Pj

+
Bi

Pi

≤ 1.

In an open system, however, it is not possible
to ask the user to specify too many detailed infor-
mation on every task, otherwise the system becomes
too difficult to use and manage. In fact, typically

3



in a open system tasks with different levels of crit-
icality may coexist, and asking detailed and precise
information on non-critical task may make the job of
the developer/user too difficult. Also, notice that an
error in the specification of the blocking times may
compromise the schedulability of the whole system
(i.e. any task can miss its deadline).

3.4 Combining resource reservations

and critical sections

When trying to combine resource reservations with a
resource access protocol, we need to solve two prob-
lems. The first problem is concerned with how to
take into account blocking time in the admission con-
trol formula, as described in the previous section.

The second problem is concerned with handling
the situation that occurs when a task is in a critical
section and its budget is exhausted. In that case,
the scheduler algorithm throttles the task (i.e. sus-
pends it) until the next period, when the budget is
recharged to its maximum value. However, another
task blocked on the semaphore must also wait for
the budget to recharge. Therefore, the worst case
blocking time may become very large.

An example of such situation is depicted in Fig-
ure 1, where task τ1 suffers a long blocking time from
τ3 whose budget is exhausted at time t = 4 while in
a critical section on mutex M.

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

τ3
L(M)

M

L(M)

M

U(M)

M

U(M)

FIGURE 1: A task exhaust its budget while
in a critical section, thus increasing the blocking
time of another task.

We want to avoid this problem. At the same
time, we would like to avoid the necessity to compute
the blocking time of non critical tasks, and maintain
the useful property of temporal isolation. So, the
goals for our resource access protocol are the follow-
ing

1. We shall not require the user to specify any pa-
rameter to run the task, other that the desired
budget and period (Q,P );

2. Temporal protection: the performance of a task
(i.e. its ability to meet its deadline) shall

depend only on its parameters (Q,P ), on its
worst-case execution time and period, and on
the duration of the critical sections of the tasks
with which it interacts;

3. If we do know the worst-case execution times
(and duration of critical sections) of the task
and of all interacting tasks, it must be possible
to compute (Q,P ) such that the task will meet
its deadline.

4. We want to do this on multi-core systems as
well.

3.5 Interacting tasks

What do we mean with interacting tasks? In the
simplest case, we say that two tasks interact when
they access a critical section with the same mutex.
However, since critical sections can be nested within
each other, the general case is a little more complex.

A blocking chain from a task τi to a task τj is a
sequence of alternating tasks and semaphores:

Hi,j = {τi → Ri,1 → τi,1 → Ri,2 → . . . → Ri,ν → τj}

such that τj is the lock owner on semaphore Ri,ν and
τi is blocked on Ri,1. As an example, consider the
blocking chain H1,3 = {τ1 → R1 → τ2 → R2 → τ3},
in which τ3 accesses R2, τ2 accesses R2 with a cs
nested inside cs on R1, τ1 accesses R1.

We say that a task τj interferes with task τi
only if a blocking chain from τi to τj exists. We say
that task τi is independent of, or temporally isolated
from τj when there exist no blocking chain from τi to
τj . We would like to maintain the temporal isolation
property:

The ability of a task to meet its deadlines
depends only on its worst-case computa-
tion time and arrival pattern, its assigned
budget and period, and the duration of
the critical sections in the blocking chains
starting from τi.

3.6 The M-BWI protocol

We informally describe here the rules of the algo-
rithm. A more complete and detailed description
can be found in [8].

• When a task is blocked on a mutex we have
several cases:

4



– if the lock-owner is itself blocked, the
blocking chain is followed until a non-
blocked lock-owner is found;

– if the lock-owner is executing on another
processor, the blocking task actively waits
for the lock owner to release the mutex;

– if the lock-owner is not executing, then it
inherits the budget and scheduling dead-
line of the blocked task

• Therefore, when holding the lock on a mutex, a
task can have a list of pairs (budget,deadline)
that it can use; it will always execute consum-
ing the budget of the earliest deadline pair.

• When a task releases the mutex, it will discard
the pairs of (budget,deadline) of the blocked
tasks from its list.

Rather than going through a formal analysis of
the protocol, we will present here one example that
demonstrate how the protocol works. In Figure 2 we
show the schedule produced by three tasks scheduled
on 2 processors with migration. All of them access
the same mutex M1. At time t = 5 tasks τA and
τB are executing on the two processors, and task τC
is the lock-owner but it is not executing. At time
t = 6 τB attempts to lock the mutex, so τC is woken
up and inherits the budget and the deadline of τB,
while this is blocked. At time t = 9 also τA attempts
to lock the mutex, and since the lock owner is already
executing on another processor, it starts a spin loop
actively waiting for the mutex to be unlocked. At
time t = 14 τC releases the lock, and the protocol
uses a FIFO policy to wake up blocked tasks, so it
wakes up τB. Finally, when at time t = 18 τB also re-
leases the lock, τA stops its active waiting and starts
to execute its critical section.

0 2 4 6 8 10 12 14 16 18 20 22 24 26

τA

τB

τC

A A

L(M )

A1

U(M )

A

BBB

L(M )

C1 C1

U(M )

B1

U(M )

B

C C C1

L(M )

C

FIGURE 2: Example of M-BWI: τA, τB, τC ,
executed on 2 processors, that access only mutex
M1.

Given a task τi, the total amount of time that
other tasks execute consuming the budget Qi and
that τi must actively wait for a lock release, is called
interference time Ii. It is possible to compute an

upper bound to the interference Ii by analysing all
blocking chains starting from τi. In the general case
of nested critical sections, the algorithm is rather
complex: we remand the interested reader to [8] for
more information.

The algorithm has two important properties:

• It guarantees temporal isolation: a task
cannot receive interference from independent
tasks;

• It is possible to compute an upper bound on
interference, therefore it is possible to assign
the budget Qi to a task such that it will meets
all its deadlines.

4 Implementation

Our implementation consists of about 300 lines
of codes applied on top of Linux 3.10-rc1, with
SCHED DEADLINE Version 8.

Besides SCHED DEADLINE, the work pre-
sented here is strongly based on Linux’s current im-
plementation of the Priority Inheritance (PI) algo-
rithm. For this reason, we first proceed with a (in-
complete) review of Linux’s PI design and imple-
mentation (see also [1]), and then with the detailed
description of our contribution. The reader which
already knows about Linux’s PI infrastructure may
want to skip the next subsection.

The terms task and process are used interchange-
ably in this document.

4.1 Priority Inheritance in Linux

4.1.1 Basic structures

In the following discussion, we will be adopting the
following terminology:

Mutex. A mutex semaphore which is shared by the
processes and by which processes may interact
and synchronise. The mutex structure contains
a pointer to the owner of the mutex. If the mu-
tex is not owned, this pointer is set to NULL.1

PI chain. It is the same as the blocking chain de-
fined in Section 3.5, i.e. an alternating series of
mutexes and processes such that each process
in the chain is blocked on the next mutex in the
chain (if any), and it is the owner the previous

1Linux actually implements a more involved mechanism that considers “Pending Ownership” and “Lock Stealing”.

5



one in the chain (if any). The PI chain causes
processes to inherit priorities from a previous
process that is blocked on some of its mutexes.

Lock. A spin-lock that is used to protect parts of the
PI algorithm. These locks disable preemption
on UP and prevents multiple CPUs from en-
tering critical sections simultaneously on SMP.

Waiter. A structure, stored on the stack of a
blocked task, that holds a pointer to the pro-
cess, as well as the mutex that the task is
blocked on. It also contains the node structures
to place the task in the right place within the
PI chains. More on this below.

Top waiter The highest priority process waiting on
a mutex.

Top PI waiter The highest priority process wait-
ing on one of the mutexes that a specific pro-
cess owns.

Since a process may own more than one mutex,
but can never be blocked on more than one, PI chains
can merge at processes. Also, since a mutex may
have more than one process blocked on it, but never
be owned by more than one, we can have multiple
chains merge at mutexes.2

In order to store the PI chains, Linux adopts two
priority-sorted linked lists:

Waiter list. Every mutex keeps track of all the
waiters that are blocked on it by storing them
in its waiter list. This list is protected by a
lock called wait lock. Since no modification of
the waiter list is done in an interrupt context,
the wait lock can be taken without disabling
interrupts.

PI list Each process stores the top waiters of the
mutexes that are owned by the process in its
PI list. Note that, in general, this list does not
hold all the waiters that are blocked on these
mutexes. The list is protected by a lock called
PI lock. This lock may also be taken in in-
terrupt context, so when locking the PI lock,
interrupts must be disabled.

The top of the task’s PI list is always the highest
priority task that is waiting on a mutex that is owned
by the task. So if the task has inherited a priority, it
will always be the priority of the task that is at the
top of this list.

4.1.2 Priority adjustments

In the implementation of the priority inheritance pro-
tocol, there are several different locations in the code
where a process must adjust its priority. With the
help of the PI list it is rather easy to know what need
to be adjusted; we now describe in more detail the
main functions involved in this process.

The function that is responsible for adjusting the
priority of a given task is __rt_mutex_adjust_prio.

The function first obtains the priority that the
task should have, that is either the task’s own nor-
mal priority, or the priority of a higher priority pro-
cess that is waiting on a mutex owned by the task.
By the above discussion, this is simply a matter of
comparing the priority of the top PI waiter’s with
the task’s normal priority. The function then exam-
ines the result, and if this does not match the task’s
current priority, the task’s scheduling class methods
are called to implement the actual change in priority.

Note that __rt_mutex_adjust_prio can either in-
crease or decrease the priority of the task. In the
case that a higher priority process has just blocked
on a mutex owned by the task, the function would
increase (or boost) the task’s priority. But if a higher
priority task were for some reason to leave the mutex
(e.g., timeout or signal), this same function would de-
crease (or unboost) the priority of the task. This is
because the PI list always contains the highest pri-
ority task that is waiting on a mutex owned by the
task.

When the function __rt_mutex_adjust_prio is
performed on a task, the nodes of the task’s waiter
are not updated with the new priority, therefore this
task may not be in the proper locations in the waiter
list of the mutex the task is blocked on and in the
PI list of the corresponding owner. The function
rt_mutex_adjust_prio_chain solves all this: it walks
along the PI chain originating from the task, and
updates nodes and priorities of each process it finds.

The PI chain walk can be a time-consuming; for
this reason, rt_mutex_adjust_prio_chain not only de-
fines a maximum lock depth, but it also only holds at
most two different locks at a time, as it walks the PI
chain (this means that the state of the PI chain can
change while in rt_mutex_adjust_prio_chain). When
the function is called no locks is held. Then, roughly,
a loop is entered where:

1. the PI lock of the task is taken to prevent more
changes to its PI list;

2The maximum depth of the PI chain is not dynamic and can actually be defined by an static analysis of the code.

6



2. if the task is not blocked on a mutex, the loop
is exited (we are at the top of the PI chain);
otherwise the wait lock of the mutex is taken
to update the task’s node location in the wait
list;

3. the PI lock of the task is released, and the PI
lock of the mutex’s owner is taken to update
the task’s node location in the PI list of the
new process;

4. the PI lock of the previous owner and the wait
lock of the mutex are released; a new iteration
of the loop is started where the previous owner
will be the next task to be processed.

4.2 The implementation of BWI

The majority of our modifications (and of the dif-
ficulties we found, see below) consists in the in-
tegration of the SCHED DEADLINE patch de-
scribed in section 3.1, with Linux’s PI infrastruc-
ture described in section 4.1. Indeed, at this time
SCHED DEADLINE only implements an approxi-
mated version of deadline-inheritance, in which the
relative deadlines of the tasks are inherited but with-
out control on the corresponding bandwidths; on
the other hand, the implementation of PI was de-
signed and optimised for fixed-priority tasks, hypoth-
esis which can not be assumed for tasks scheduled
with SCHED DEADLINE policy. In the course of
our work, we have tried to keep at the minimum
the modifications to original data structures in Linux
and in SCHED DEADLINE, and to maintain the
original functions’ semantics.

4.2.1 Structures

As mentioned in section 4.1, Linux implements the
waiter and the PI lists using priority-sorted linked
lists. These are linked lists suitable to sort processes
with fixed priorities; unlike ordinary lists, the head
of this list is a different element than the nodes of
the list. On the other hand, the version of deadline-
inheritance which comes with SCHED DEADLINE
replaces these priority-sorted linked lists with red-
black trees ordered by (absolute) deadline.

Our implementation adopts these structures to
store chains of tasks and mutexes (that we will con-
tinue to call PI chains) so that it can keep the list
of servers that a task can inherit sorted accordingly.
By caching the left-most node of the tree, it takes
O(1) to retrieve the highest priority (earliest dead-
line) task in the list, as for Linux’s priority-sorted
linked-lists.

A pointer of type sched_dl_entity (the schedul-
ing entity for SCHED DEADLINE task) has been
added to each sched_dl_entity structure. This
pointer, named bwi, is required to store the effec-
tive scheduling parameters (deadline and capacity)
of a SCHED DEADLINE task, and it will point ei-
ther to the task’s default scheduling entity or, if a
waiter with earlier deadline exists in the task’s PI
list, to the scheduling entity of the task’s top PI
waiter. In either cases, we will called the schedul-
ing entity pointed by bwi the inherited scheduling
entity or the inherited server.

We note that this terminology is not completely
consistent with the one in [13], even if the net re-
sult is the same. In the original presentation, each
process “inherits” all the servers in its PI list, and it
can executes in any of them; the CBS algorithm will
then select the server (and the only runnable task
within the server) with the earliest deadline. For
the scope of this document, the inherited server, or
the inherited scheduling parameters, will be this last.
The difference in the terminology is mainly due to
the fact that nor Linux neither SCHED DEADLINE
provide us with a server structure, and to the fact
that SCHED DEADLINE stores the server parame-
ters in the scheduling entity of the task.

4.2.2 Functions

Linux resorts to the PI’s logic (priority adjust-
ments and chain walks) each time an event oc-
curs that can possibly result in a PI chain mod-
ification. Common examples are the blocking of
a task on a mutex, the release of a mutex, or
the explicit call to a system call that can mod-
ify the priority and the scheduling class of a task
(sched_setscheduler, sched_setparam). This remains
true in the case of BWI for SCHED DEADLINE
tasks: priority adjustments and chain walks are nec-
essary when the CBS algorithm modifies the dead-
line of a server, i.e. at each capacity replenishment
and each deadline update. For this reason, our im-
plementation modifies the method enqueue_task of
the SCHED DEADLINE scheduling class, where up-
dates and replenishments can happen, in order to fire
those adjustments.

Even if the logic underlying the chain walks and
the priority adjustments remains similar to the one
in Linux’s PI, these modifications presented a few
challenges.

(IRQ safety.) As mentioned in section 4.1, Linux
does not disable interrupts before taking wait locks,
because it never modifies the waiter lists in interrupt

7



context. This is not true for SCHED DEADLINE
tasks under BWI, since replenishments do happen in
timers interrupt context.

To solve this issue, our implementation disable
interrupts before entering the corresponding critical
section and re-enable them after after leaving that.
Since not all the critical section are within the scope
of a functions, it was necessary to add a field in the
mutex structure, in order to store the status of the
interrupts.

(Wake-ups in chain walks.) Consider the chain
Ri → τi and the arrival of a new task τj that blocks
on Ri:

τj → Ri → τi.

Linux begins updating this chain starting from τj .
As described in section 4.1, τj ’s PI lock is taken to
prevent additional modification to its PI list; then
Ri’s wait lock is taken to insert τj ’s waiter structure
in Ri’s wait list. Finally, τj ’s PI lock is released,
but keeping Ri’s wait lock, to continue with the next
task (and its PI lock) in the chain, τi. Due to this
fine-grained locking mechanism, nothing prevents τi
from releasing the mutex at this time: in this case
(i.e. if it is found that Ri has no owners at this
time), the chain walk needs to be interrupted and
τj , Ri’s top waiter, woken up (i.e., enqueue back to
its runqueue). Since this is happening before τj ’s
waiter structure had been freed, the enqueue of τj
will generate a deadlock on Rj ’s wait lock (when fir-
ing the chain walk starting from τj (Rj ’s wait lock
being already locked before the wakeup).

Our implementation detects this situation from
the status of the task to be enqueued: if the task is
waking up, the enqueue will only pursue the updat-
ing on the task’s deadline and capacity (if needed),
without firing a useless chain walk.

(Concurrent chain walks.) The triggering of
chain walks and of the corresponding priority ad-
justments during the enqueueing of a task, may gen-
erate other deadlock situations, in case of concur-
rent chain walks. This is due to the fact that the
method enqueue_task of any Linux’s scheduling class
must hold the PI lock of the task that it is to be
enqueued, and the runqueue’s lock (the runqueue in
which we are going to enqueue the task, nested in-
side the task’s PI lock). Our implementation does
not break these rules, because releasing any of these
locks would have inevitably changed the semantics
of the method.

To see the problem, consider a situation similar
to the one above, in which a task τi is executing in
the server inherited from τj (that is, τj has an ear-
lier deadline than τi and τj is blocked on a mutex

Ri owned by τi). In this situation, τi consumes τj ’s
capacity and a replenishment is required when τi de-
pletes it: in the enqueue_task (of task τi) the chain
from τj is walked (τi had its scheduling parameters
modified). In this case, the arrival of a new task τk
blocking on Ri will fire a second chain walk,

τj → Ri → τi
ր

τk

that can deadlock with the first:

• (in the chain from τj) τi (enqueue_task) and
τj ’s PI locks held, take Ri’s wait lock;

• (in the chain from τk) Ri’s wait lock held, take
τi’s PI lock.

There are several solutions to this problem. The
simplest, even if not the most rigorous one, is prob-
ably to detect the contention on one of these locks,
and to just give up after a certain number of re-
tries. This is the solution that we adopted in our
implementation, where we allow the chain walk in
the enqueue to fail, eventually. Clearly, any correct
solution will need to modify either the locking order
(e.g. by releasing τi’s PI lock, and so the runqueue’s
lock!) or the locking granularity in the chain walk
(e.g., by using a single lock per chain).

As already mentioned, our implementation mod-
ifies all the methods of the SCHED DEADLINE
class to use the effective scheduling parameters of the
task. In particular, the method update_curr_task

, where the execution of the current server is ac-
counted to its capacity, now acts on the inherited
server (if any). Also, the functions push_dl_task,
pull_dl_task, and the methods of the cpudl heap
structure have been modified to act on the inher-
ited server (if any), so that global scheduling for
SCHED DEADLINE is available in SMPs ([15], see
section 4.3).

4.3 Issues with clustered scheduling

In order to improve schedulability in multi-core sys-
tems, the Linux kernel provides a mechanism to
set an affinity mask defining on which CPUs each
task could execute. This approach improves perfor-
mances by using application-specific information like
the pattern of cache accesses or the use of specific
devices. Recently, Gujarati et al.[11] demonstrated
that job-level scheduling algorithms based on arbi-
trary processor affinity (APA) outperforms global,
clustered, and partitioned approaches. However, in-
tegrate affinities inside the M-BWI protocol is not

8



straightforward because is not yet clear what hap-
pens when a lock owner inherits the affinities of a
blocked task.

Inheriting only the bandwidth and not the affin-
ity from a blocked task could jeopardise the temporal
isolation, as shown in Figure 3. In this case, tasks τ1
and τ3 can execute only on CPU0 while τ2 is assigned
exclusively to CPU1. At time t = 2, task τ2 blocks
on the mutex owned by τ1, which inherits the band-
width and the deadline continuing its execution on
CPU0. When task τ3 arrives at time t = 3 it cannot
preempt τ1 because of job priorities (d2 < d3 < d1),
but τ2 has not been considered in the schedulability
analysis of CPU0 thus leading to a deadline miss in
t = 11.

0 2 4 6 8 10 12 14

τ1

τ2

τ3

L(R) U(R)

0 0 0 0

L(R) U(R)

1 1

1

FIGURE 3: Deadline miss caused by a task
inheriting bandwidth and deadline but not affin-
ity from a blocked task.

Inheriting the affinity mask together with dead-
line and buffer is not enough to solve the problem, as
shown by the example described in Figure ?? where
tasks τ1 can execute only on CPU0 while τ2 and τ3
are assigned exclusively to CPU1. At time t = 2,
task τ2 tries to acquire the lock owned by τ1 which
consequently migrates from CPU0 to CPU1. When
the task τ3 is activates at time t = 3 it preempts τ1
which cannot execute till t = 7 even if its originally
assigned CPU is idle, generating a deadmiss for task
τ2.

0 2 4 6 8 10 12 14

τ1

τ2

τ3

L(R) U(R)

0 0 1 1 0

L(R) U(R)

1 1

1

The above examples show that our implemen-
tation of BWI (and similarly, Linux’s implementa-
tion of PI) does not extend to the case of clustered
scheduling.

Brandenburg ([5]), proposed the Migratory Pri-
ority Inheritance protocol for clustered scheduling,
and proved results of its optimality in terms of
maximum PI-blocking for Job-Level-Fixed-Priority
scheduling (JLFP). Under migratory priority inheri-
tance, whenever a job J is not scheduled (but ready)
and there exists a job Ji waiting for J to release a
resource such that Ji is eligible to be scheduled in its
assigned cluster, J migrates to Ji’s cluster (if nec-
essary) and assumes Ji’s priority. The idea is that
jobs should inherit (both the priority and the affinity
mask) only when they “have to”. However it is not
yet clear how to extend this idea to the not-JLFP
context, and how to implement it within the Linux
kernel.

5 Evaluation

5.1 Experimental setup

We ran experiments on an Intel R©Core2TM quad-core
machine (Q6600) with 4GB of RAM and running at
2.4GHz.

Runtime validation consisted of executing two
synthetic benchmarks. The first implements a sim-
ple situation in which two tasks share a resource pro-
tected by a mutex, and a third one, independent from
the other two, is periodically activated to check if the
inheritance mechanism works. The second executes
a similar configuration on an SMP system.

Runtime overheads were instead measured run-
ning another benchmark, called (rt-app3). Us-
ing this application we simulated a real-time peri-
odic load consisting of multiple SCHED DEADLINE
threads sharing resources protected by mutexes.

5.2 Runtime validation

We performed simple tests to validate the implemen-
tation. In the first test two threads are run that
operate on the same mutex (denoted as A). A third
thread has nothing to do with the first two, its only
intent is to demonstrate that BWI mechanism (when
enabled) works properly. All threads are restricted
to execute on the same CPU.

3https://github.com/gbagnoli/rt-app
4Execution diagrams in this section are created through the KernelShark (https://lwn.net/Articles/425583/) utility from

execution traces extracted from the kernel via ftrace (Documentation/trace/ftrace.txt).

9



Figure 4 shows a visual representation4 of a run
when BWI mechanism is disabled. Threads τ1 and
τ3 share a resource for which mutual exclusion is
achieved through the use of a mutex. Both threads
are periodic with periods of, respectively, 24ms and
72ms (deadline are set equal to periods). τ1 executes,
entirely inside the critical section, for 8ms every pe-
riod, τ3 has an execution time of 24ms, of which
20ms are spent inside the critical section. τ2 has
no critical section and executes for 8ms every 24ms.
Thread τ3 is the first to be activated, after a while it
acquires the mutex (L(A) in the figure). Then τ1 is
woken up, tries to lock the same mutex and blocks
on A queue, waiting for τ3 to release it. Since it has a
shorter deadline than τ3, when τ2 is activated it pre-
empts τ3 causing unexpected delay inside the criti-
cal section. τ3 can only resume execution once τ2’s
job has finished. When τ3 releases the mutex (U(A))
τ1 executes inside the critical section and then both
threads’ jobs complete.

Same configuration is run with BWI mechanism
enabled and is depicted in Figure 5. In this case,
when τ1 is activated and blocks on mutex A, τ3 can
start executing in τ1’s server (highest priority server
among τ3 waiters) and this is highlighted with a
darker blue shade in the figure. Since τ3 has in-
herited also τ1’s deadline, when τ2 arrives it doesn’t
immediately preempt τ3. Mutex owner is actually
preempted only when τ1’s server budget is exhausted
and its deadline postponed (τ2’s deadline becoming
the earliest), event Rep(S1) in the figure. After that
the execution proceeds like in the previous situation.

The second test is performed on a 2 CPUs sys-
tem. Two tasks (τ1 and τ3) share a resource pro-
tected by a M-BWI enabled mutex A (we omit the
standard case for brevity) and are free to execute on
every CPU. Other two tasks (τ2 and τ4) are pinned
each one on a different CPU and are independent
from the others and between themselves (they are
thought to create interference). Figure 6 zooms in
a particular execution window. A job of task τ3 ar-
rives on CPU1 and gets scheduled, τ3 acquires mutex
A and enters the critical section. A few instants af-
ter a job of τ1 arrives, τ1 tries to acquire mutex A

and blocks, donating its server to τ3. The interest-
ing part comes when τ4 is activated. Having an ear-
liest deadline than τ3’s original one, τ4 should have
preempted it, but its execution is delayed until τ3 re-
leases mutex A and is consequently deboosted. After
this instant of time execution continues with original
parameters. Without the M-BWI mechanism work-
ing τ3 would have been preempted inside the critical
section by τ4, delaying τ1 execution.

5.3 Overheads measurements

We measured runtime overheads comparing execu-
tion of the same benchmark with the BWI mech-
anism activated, with simple deadline inheritance,
and against the stock fixed priority Linux scheduler.
Similarly to Brandenburg [5]’s evaluation, on each
core, we launched four tasks with periods 1ms, 25ms,
100ms, 1000ms and execution time of 0.1ms, 2ms,
15ms, 600ms. The one-millisecond tasks did not ac-
cess any shared resources. All other tasks shared the
same lock (in groups of three, i.e., one lock for each
core) with an associated maximum critical section
length of 1ms, and each of their jobs acquired the
lock once.

We ran the task set once using the stock Linux
scheduler (SCHED FIFO with priority inheritance
enabled, called pi in what follows), once using the
original SCHED DEADLINE implementation (dead-
line inheritance, dl) and once with the M-BWI mech-
anism enabled (bwi), for 60 seconds each. Although
the same task sets can be run with priority inher-
itance mechanisms turned off, we don’t report fig-
ures coming from that configurations here as they
are hardy comparable to cases when priority inheri-
tance (or BWI) is enabled. In fact, execution paths
inside the kernel are completely different, and unre-
lated functions get called, thus making the compari-
son of little interest for the present discussion.

Figure 7 reports measurements of kernel func-
tions, obtained using ftrace, that could be ill-
affected by the mechanism implementation:

a) schedule(), scheduler core, it decides which
task to run next and performs the context
switch;

b) do futex(), sys futex() system call entry
point;

c) enqueue task dl()/enqueue task rt(), en-
queue a task, respectively, on the dl or the rt
runqueues;

d) rt mutex slowlock(), work required to ac-
quire a mutex;

e) rt mutex slowunlock(), work required to re-
lease a mutex.

Results show that overheads of dl (yellow,
oblique lines, boxes) and bwi (red boxes) are compa-
rable. Differences between bwi and pi (blue, small
circles, boxes) measurements remain in the same or-
der of magnitude (even if bwi doubles pi in some
case). These differences can be ascribed to the

10



t_1

t_2

t_3

L(A)

L(A)

U(A)

U(A)

FIGURE 4: Two task (τ1 and τ3) sharing one resource (protected by a normal mutex). A third
independent task (τ2) arrives and preempts τ3 even if τ1’s server has higher priority than τ2’s.

t_1

t_2

t_3

L(A)

L(A)

U(A)

U(A)

S1

Rep(S1)

FIGURE 5: Two task (τ1 and τ3) sharing one resource (protected by a BWI-enabled mutex). A
third independent task (τ2) has to wait τ1’s server replenishment event to start executing.

slightly higher complexity of bwi implementation,
but also to the fact that tasks interactions can be
modified by scheduling the same taskset using differ-
ent scheduling policies (in this can have an impact
on runtime overheads).

a b c d e0

20

40

60

80

100

du
ra
tio

n 
(u
s)

bwi
dl
pi

FIGURE 7: Kernel functions durations
(in µs) from a run on a real machine.

We have then modified the previous example in
order to create longer PI chains: a new task with
period 2000ms and execution time 700ms, and two
more mutexes were added to the above taskset. Like
in the previous example, there is a task that does not
use any resource; no task accesses more than two mu-
texes, but the resulting PI chain can reach a depth
of 4:

τ1 → R1 → τ2 → R2 → τ3 → R3 → τ4

We replicated this taskset 3 times for a total of 15
tasks, due to bandwidth contraint. The results dis-
played in Figure 8 show that the effect of the chain’s
depth contributes in an equivalent amount for the
three implementations.

a b c d e0

20

40

60

80

100

du
ra
tio

n 
(u
s)

bwi
dl
pi

FIGURE 8: Kernel functions durations
(in µs) with nested critical sections, from a
run on a real machine.

6 Conclusions

In this paper we presented an implementation of
the M-BWI protocol in the Linux kernel with the
SCHED DEADLINE patch. We tried to be as ad-
herent as possible to the original implementation of
the priority inheritance protocol in Linux and to the
SCHED DEADLINE patch by minimising the num-
ber of modifications. The overhead of our implemen-

11



t_1

t_2

t_3

L(A)

t_4

L(A)

S1

FIGURE 6: System with two CPUs. Two task (τ1 and τ3) sharing one resource (protected by a
BWI-enabled mutex). Other two independent tasks (τ2 and τ4) are pinned each one on a different
CPU.

tation is only slightly larger than the typical over-
head of the PI with SCHED FIFO. We also believe
that such overhead can be reduced by a careful op-
timisation of the code.

As future work, we are investigating the prob-
lems that we encountered when trying to inherit
the affinity mask of the lock-owner task. We be-
lieve that to overcome such difficulties it is neces-
sary to rethink the current implementation of the
SCHED DEADLINE patch, by introducing the con-
cept of server as a separate scheduling entity in the
implementation.

References

[1] “Documentations/rt-mutex.txt,
Documentation/rt-mutex-design.txt,”
http://www.kernel.org.

[2] “DROPS The Dresden Real Time Operating
System Project.”

[3] L. Abeni and G. Buttazzo, “Integrating Mul-
timedia Applications in Hard Real-Time Sys-
tems,” in Proc. 19th IEEE Real Time Systems
Symposium, 1998.

[4] T. P. Baker, “Stack-based scheduling for real-
time processes,” Real-Time Syst., vol. 3, no. 1,
pp. 67–99, Apr. 1991.

[5] B. B. Brandenburg, “A fully preemptive mul-
tiprocessor semaphore protocol for latency-
sensitive real-time applications,” in Proceedings
of 25th Euromicro Conference on Real-Time
Systems (ECRTS 2013), July 2013, pp. 292–302.

[6] J. M. Calandrino, H. Leontyev, A. Block,
U. C. Devi, and J. H. Anderson, “Litmus-
rt: A testbed for empirically comparing

real-time multiprocessor schedulers,” in Pro-
ceedings of the 27th IEEE International Real-
Time Systems Symposium, ser. RTSS ’06.
Washington, DC, USA: IEEE Computer So-
ciety, 2006, pp. 111–126. [Online]. Available:
http://dx.doi.org/10.1109/RTSS.2006.27

[7] “Real-time linux wiki,”
https://rt.wiki.kernel.org/index.php/Main Page,
Oct. 2013, latest accessed on 10 Oct. 2013.

[8] D. Faggioli, G. Lipari, and T. Cucinotta,
“Analysis and implementation of the multipro-
cessor bandwidth inheritance protocol,” Real-
Time Systems, vol. 48, pp. 789–825, 2012,
10.1007/s11241-012-9162-0.

[9] P. Gai, L. Abeni, M. Giorgi, and G. Buttazzo,
“A new kernel approach for modular real-time
systems development,” in Real-Time Systems,
13th Euromicro Conference on, 2001., 2001, pp.
199–206.

[10] J. B. Goodenough and L. Sha, “The Pri-
ority Ceiling Protocol: A Method for Min-
imizing the Blocking of High-Priority Ada
Tasks,” Carnegie-Mellon University, Tech. Rep.
CMU/SEI-88-SR-4, March 1988.

[11] A. Gujarati, F. Cerquerira, and B. B.
Brandenburg, “Schedulability analysis of the
linux push and pull scheduler with arbi-
trary processor affinities,” in Proceedings of
the 25th Euromicro conference on Real-time
systems, ser. ECRTS13. IEEE Computer So-
ciety, 2013, pp. 69–79. [Online]. Available:
http://dx.doi.org/10.1109/ECRTS.2013.18

[12] H. Härtig, R. Baumgartl, M. Borriss,
C. Hamann, M. Hohmuth, F. Mehnert,
L. Reuther, S. Schönberg, and J. Wolter,
“DROPS: OS support for distributed multime-
dia applications,” in Proc. 8th ACM SIGOPS
European Workshop, Sep. 1998.

12



[13] G. Lamastra, G. Lipari, and L. Abeni, “A band-
width inheritance algorithm for real-time task
synchronization in open systems,” in Real-Time
Systems Symposium, 2001. (RTSS 2001). Pro-
ceedings. 22nd IEEE, dec. 2001, pp. 151 – 160.

[14] J. Lelli, G. Lipari, D. Faggioli, and T. Cu-
cinotta, “An efficient and scalable implemen-
tation of global edf in linux,” in Proceedings
of the 7th International Workshop on Operat-
ing Systems Platforms for Embedded Real-Time
Applications (OSPERT 2011), Porto, Portugal,
7 2011.

[15] ——, “An efficient and scalable implementation
of global edf in linux,” in Proceedings of the
International Workshop on Operating Systems
Platforms for Embedded Real-Time Applications
(OSPERT), 2011 2011.

[16] G. Lipari, G. Lamastra, and L. Abeni, “Task
synchronization in reservation-based real-time
systems.” IEEE Trans. Computers, vol. 53,
no. 12, pp. 1591–1601, 2004.

[17] R. Rajkumar, K. Juvva, A. Molano, and
S. Oikawa, “Resource Kernels: A Resource-
Centric Approach to Real-Time and Multimedia
Systems,” in Proc. Conf. on Multimedia Com-
puting and Networking, January 1998.

[18] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Pri-
ority inheritance protocols: An approach to
real-time synchronization,” in IEEE Transac-
tions on Computers, vol. 39, 1990, pp. 1175–
1185.

[19] ——, “Priority inheritance protocols: An ap-
proach to real-time synchronization,” IEEE
Transactions on Computers, vol. 39, no. 9,
September 1990.

13


