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Abstract Model-based testing has mainly focused on mod-
els where concurrency is interpreted as interleaving (like
the ioco theory for labeled transition systems), which may
be too coarse when one wants concurrency to be preserved
in the implementation. In order to test such concurrent sys-
tems, we choose to use Petri nets as specifications and de-
fine a concurrent conformance relation named co-ioco. We
present a test generation algorithm based on Petri net un-
folding able to build a complete test suite w.r.t our co-ioco
conformance relation. In addition we propose several cover-
age criteria that allow to select finite prefixes of an unfolding
in order to build manageable test suites.

1 Introduction

Model-based Testing. The aim of testing is to execute a soft-
ware system, the implementation, on a set of input data se-
lected so as to find discrepancies between actual behavior
and intended behavior described by the specification. The
testing process is usually decomposed into three phases: se-
lection of relevant input data, called a test suite, among the
possible inputs of the system; submission of this test suite to
the implementation, its execution; and decision of the suc-
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cess or the failure of the test suite submission, known as the
oracle problem.

Model-based testing requires a behavioral description of
the system under test. One of the most popular formalisms
studied in conformance testing is that of input output labeled
transition systems (IOLTS). In this framework, the correct-
ness (or conformance) relation the system under test (SUT)
and its specification must verify is formalized by the ioco
relation [23]. This relation has become a standard, and it is
used as a basis in several testing theories for extended state-
based models: restrictive transition systems [7,16], symbolic
transition systems [4,13], timed automata [15], multi-port fi-
nite state machines [10].

Different Semantics for Concurrency. Systems composed of
processes running in parallel are naturally modeled as a net-
work of finite automata, a formal class of models that can
be captured equivalently by safe Petri nets. Concurrency
in a specification can arise for different reasons. First, two
events may be physically localized on different processes,
and thus be “naturally” independent of one another; this dis-
tribution is then part of the system construction. Second, the
specification may not care about the order in which two ac-
tions are performed on the same process, and thus leave the
choice of their ordering to the implementation. Depending
on the nature of the concurrency specified in a given case,
and thus on the intention of the specification, the implemen-
tation relations have to allow or disallow ordering of concur-
rent events. The kind of systems that we consider is of the
first type, where concurrency comes from processes running
in parallel. Therefore, we want concurrency of the specifica-
tion to be preserved in the implementation.

We illustrate the need to preserve true concurrency (i.e.
independence of actions) by an example coming from the
field of security protocols. When designing a security pro-
tocol, an important property, named unlinkability, is to hide
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the information about the source of a message. An attacker
that can identify messages as coming from the same source
might use this information and thus threaten the privacy of
the user. It has been shown that the security protocol of the
French RFID e-passport is linkable, therefore anyone carry-
ing a French e-passport can be physically traced [1]. While
linkability can be interpreted as causality between messages,
concurrency interpreted as interleavings cannot be used to
model unlinkability. This property needs to be modeled us-
ing partial order semantics, and a correct implementation
must preserve the independence between messages.

Model-based Testing of Concurrent Systems. Model-based
testing of concurrent systems has been studied for a long
time [8,18,21], however it is most of the time studied in the
context of interleaving, or trace, semantics, which is known
to suffer the state space explosion problem. To avoid this
problem, non-interleaving models can be used for genera-
tion of test cases [9,11]. Ulrich and König [24] propose a
framework for testing concurrent systems specified by com-
municating labeled transition systems. The specification is
translated into a Petri net, and a complete prefix of its un-
folding is used to construct a behavior machine. The confor-
mance relation proposed in [24] is a generalization of trace
equivalence relation; their work does not include a test se-
lection procedure, or how the choice of complete prefix im-
pacts selection. Since our goal is to include conflict relations
as well, we will use event structures and their properties.

Haar et al [25,6] generalize the basic notions and tech-
niques of I/O-sequence based conformance testing via a gen-
eralized I/O-automaton model where partially ordered pat-
terns of input/output events are admitted as transition labels.
However, these models still maintain a sequential automaton
as the system’s skeleton, and include synchronization con-
straints, e.g. all events in the course of a transition must be
completed before any other transition can start.

Our Contribution. In order to enlarge the application do-
main, and add stronger benefits from concurrency modeling,
we have introduced in [19] a conformance relation named
co-ioco, as a generalization of ioco. This article is an exten-
sion of a paper published in ICTSS’13 [20]. In the original
paper, we extend the work of [19] with a conformance rela-
tion where actions specified as concurrent must occur inde-
pendently, on different processes, in any conformant imple-
mentation. Moreover we enlarge the conformance relation
in order to test for refusals instead of considering the usual
input-enabledness assumption on the implementation.

Besides the definition of a co-ioco conformance relation
handling true concurrency, we define in [20] the notion of
test case, we give sufficient properties for a test suite to be
sound (not reject correct systems) and exhaustive (not accept

incorrect systems), and we provide a test case generation al-
gorithm that builds a complete (i.e. sound and exhaustive)
test suite. We also propose a method to select a finite set of
relevant test cases covering as many behaviors as possible
(thus finding as many anomalies as possible). This selection
method relies on the choice of a finite prefixe of the unfold-
ing of the specification.

We extend here the work of [20] in two ways: we define
new testing criteria based on different notions of prefixes of
the unfolding; we propose a coverage measure that allows
to compare these criteria with respect to the coverage they
reach and their cost to reach it.

The testing approach we followed in this article is mostly
theoretical: we study the testing problem from a centralized
point of view, as a basis to the distributed testing problem.
The global conformance relation we defined is the relation
we want to still be able to test in a distributed way (with lo-
cal control and observation), and the global test cases are the
basis for the construction of distributed tests.

Outline. The paper is organized as follows. Section 2 recalls
basic notions about Petri nets, occurrence nets and labeled
event structures. Section 3 introduces our testing hypothe-
ses and our co-ioco conformance relation. In Section 4, we
define the notion of complete test suite, give sufficient con-
ditions for a test suite to be complete and an algorithm pro-
ducing such a test suite. In Section 5, we define different
selection criteria and adapt the complete finite prefix algo-
rithm of [3] to build a sound test suite satisfying a given
criterion. A comparison of these criteria concludes.

2 I/O Petri Nets and their Semantics

We choose to use Petri nets as specifications to have explicit
concurrency. The semantics associated to a Petri net is given
by its unfolding to an occurrence net, which can also be seen
as an event structure. We will present both notions since we
use them in different contexts in the following. The exe-
cution traces for this semantics are not sequences but par-
tial orders, which keep concurrency explicit. We recall here
these basic notions.

I/O Petri Nets. A net is a tuple N = (P ,T ,F ) where (i)
P 6= ∅ is a set of places, (ii) T 6= ∅ is a set of transitions
such that P ∩T = ∅, (iii) F ⊆ (P ×T )∪ (T ×P) is a set
of flow arcs. A marking is a multiset M of places, i.e. a map
M : P → N. A Petri net is a tuple N = (P ,T ,F ,M0),
where (i) (P ,T ,F ) is a finite net, and (ii) M0 : P → N is
an initial marking. Elements of P ∪ T are called the nodes
of N . For a transition t ∈ T , we call •t = {p | (p, t) ∈ F}
the preset of t, and t• = {p | (t, p) ∈ F} the postset of
t . In figures, we represent as usual places by empty cir-
cles, transitions by squares, F by arrows, and the marking
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Fig. 1 A travel agency example

of a place p by black tokens in p. A transition t is enabled
in marking M , written M

t−→, if ∀p ∈ •t , M (p) > 0.
This enabled transition can fire, resulting in a new mark-
ing M ′ = M − •t + t•. This firing relation is denoted by
M

t−→ M ′. A marking M is reachable from M0 if there
exists a firing sequence, i.e. transitions t0 . . . tn such that
M0

t0−→ M1
t1−→ . . .

tn−→ M . The set of markings reachable
from M0 (inN ) is denoted RN (M0) (we drop the subscript
referring toN when it is clear from the context). A Petri net
N = (P ,T ,F ,M0) is (1-)safe iff for all reachable mark-
ings M ∈ R(M0), M(p) ∈ {0, 1} for all p ∈ P .

Let I andO be two disjoint non-empty sets of input and
output labels, respectively. For a net N = (P ,T ,F ), a map-
ping λ : T → (I ] O) is called an I/O-labeling. Denote
by TI and TO the input and output transition sets, respec-
tively; that is, TI , λ−1(I) and TO , λ−1(O). An I/O
Petri net is a pair Σ = (N , λ), where N = (P ,T ,F ,M0)

is a 1-safe Petri net and λ : T → (I ] O) an I/O-labeling.
Σ is called deterministically labeled iff no two transitions
with the same label are simultaneously enabled, i.e. for all
t1, t2 ∈ T and M ∈ R(M0):

(M
t1−→ ∧ M

t2−→ ∧ λ(t1) = λ(t2))⇒ t1 = t2

Note that 1-safeness of the Petri net is not sufficient for
guaranteeing deterministic labeling. Deterministic labeling
ensures that the system’s behavior is locally distinguishable
through labels, either through distinct inputs or through ob-
servation of different outputs.

Example 1 Fig. 2 shows a schematic travel agency whose
behavior can be formally specified by the I/O Petri net pre-
sented in Fig. 2, where ? denotes input actions and ! output
ones. In this system, once the user has logged in (?login),
some data is sent to the server (!us data) and he can choose
an insurance (?ins) and a train ticket (?train) or a plane
ticket (?plane). If a plane ticket is chosen, its price is sent
to the user (!pricep). If a train ticket is selected, two kind of
prices can be proposed: a first class (!pricet 1) or a second
class one (!pricet 2). The insurance choice is followed by

t λ(t)
t1 ?login
t2 ?ins
t3 !pricei
t4 !datai
t5 !us data

t λ(t)
t6 ?train
t7 !pricet 1
t8 !pricet 2
t9 ?plane
t10 !pricep

t1

t5

t6

t7

t8

t9 t10

t2

t3

t4

Fig. 2 I/O Petri net of the travel agency

its price (!pricei ) and some extra data that is sent to the user
(!datai ).

When testing reactive systems, we need to differentiate
situations where the system can still produce some outputs
and those where the system can not evolve without an in-
put from the environment. Such situations are captured by
the notion of quiescence [22]. A marking is said quiescent
if it does not enable output transitions, i.e. M t−→ implies
t ∈ TI . The observation of quiescence is usually instru-
mented by timers. Jard and Jéron [12] present three different
kinds of quiescence: output quiescence when the system is
waiting for an input from the environment, deadlock when
the system can not evolve anymore, and livelock when the
system diverges by an infinite sequence of silent actions.

Occurrence Nets and Unfoldings. Occurrence nets can be
seen as Petri nets1 with a special acyclic structure that high-
lights conflict between transitions that compete for resources.
Formally, let N = (P ,T ,F ) be a net, < the transitive clo-
sure of F , and 6 the reflexive closure of<. We say that tran-
sitions t1 and t2 are in structural conflict, written t1#

ωt2, if
and only if t1 6= t2 and •t1 ∩ •t2 6= ∅. Conflict is inherited
along <, that is, the conflict relation # between transitions
a, b ∈ T is given by

a # b⇔ ∃ta, tb ∈ T : ta#
ωtb ∧ ta 6 a ∧ tb 6 b

Finally, the concurrency relation co holds between nodes
a, b ∈ P ∪ T that are neither ordered nor in conflict, i.e.
a co b⇔ ¬ (a 6 b) ∧ ¬ (a # b) ∧ ¬ (b < a).

Definition 1 A net ON = (B ,E ,G) is an occurrence net
if and only if

1. 6 is a partial order;
2. for all b ∈ B , |•b| ∈ {0, 1};
3. for all x ∈ B ∪ E , the set [x] = {y ∈ E | y 6 x} is

finite;
4. no self-conflict, i.e. there is no x ∈ B ∪ E such that
x#x;

5. ⊥∈ E is the only ≤-minimal node (event ⊥ creates the
initial conditions)

1 when one allows Petri nets to be infinite
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Call the elements of E events, those of B conditions.
A set of conditions is a co-set if its elements are pairwise
in co relation. A maximal co-set with respect to set inclu-
sion is called a cut. An ON can also be given as a tuple
(B,E\{⊥}, F, cut0), where cut0 = ⊥• is the set of mini-
mal conditions. Given an occurrence net ON = (B ,E ,G),
every ≤-closed set of events E′ ⊆ E induces a prefix with
conditions (•E ∪ E•).

Occurrence nets are the mathematical form of the partial
order unfolding semantics [3]. A branching process of a 1-
safe Petri netN = (N ,M0) is given by a pairΦ = (ON , ϕ),
where ON = (B ,E ,G) is an occurrence net, and ϕ : B ∪
E → P ∪ T is such that:

1. it is a homomorphism from ON to N , i.e.
– ϕ(B) ⊆ P and ϕ(E ) ⊆ T , and
– for every e ∈ E , the restriction of ϕ to •e is a bijec-

tion between the set •e in ON and the set •ϕ(e) in
N , and similarly for e• and ϕ(e)•;

2. the restriction of ϕ to cut0 is a bijection from cut0 to
M0; and

3. for every e1, e2 ∈ E , if •e1 = •e2 and ϕ(e1) = ϕ(e2)

then e1 = e2.

The unique (up to isomorphism) maximal (w.r.t prefixes)
branching process U = (ON U , ϕU ) of N is called the un-
folding of N .

I/O Labeled Event Structures. Occurrence nets give rise to
event structures in the sense of Winskel et al [17]; as usual,
we will use both the event structure and the occurrence net
formalism, whichever is more convenient. An input/output
labeled event structure (IOLES) over an alphabet L = I]O
is a 4-tuple E = (E,≤,#, λ) where (i) E is a set of events,
(ii) ≤ ⊆ E × E is a partial order (called causality) satis-
fying the property of finite causes, i.e. ∀e ∈ E : |{e′ ∈
E | e′ ≤ e}| < ∞, (iii) # ⊆ E × E is an irreflexive
symmetric relation (called conflict) satisfying the property
of conflict heredity, i.e. ∀e, e′, e′′ ∈ E : e# e′ ∧ e′ ≤ e′′ ⇒
e # e′′, (iv) λ : E → (I ] O) is a labeling mapping. In
addition, we assume every IOLES E has a unique minimal
event ⊥E . We denote the class of all input/output labeled
event structures over L by IOLES(L). Given event e, its
local configuration is [e] , {e′ ∈ E | e′ ≤ e}, and its set of
causal predecessors is 〈e〉 , [e]\{e}. Two events e, e′ ∈ E
are said to be concurrent (e co e′) iff neither e ≤ e′ nor
e′ ≤ e nor e # e′ hold; e, e′ ∈ E are in immediate conflict
(e1 #

µ e2) iff [e1]× [e2]∩# = {(e1, e2)}. A configuration
of an IOLES is a non-empty set C ⊆ E that is (i) causally
closed, i.e. e ∈ C implies [e] ⊆ C, and (ii) conflict-free, i.e.
e ∈ C and e#e′ imply e′ 6∈ C. Note that we define, for tech-
nical convenience, all configurations to be non-empty; the
initial configuration of E , containing only ⊥E and denoted
by ⊥E , is contained in every configuration of E . We denote

⊥
e ϕ(e) λ(e)
e1 t1 ?login
e2 t2 ?ins
e3 t3 !pricei
e4 t4 !datai
e5 t5 !us data
e6 t6 ?train
e7 t7 !pricet 1
e8 t8 !pricet 2
e9 t9 ?plane
e10 t10 !pricep

e1

e9

e10

e6

e7 e8

e2

e3

e4

e5

Fig. 3 Part of the unfolding of the PN from Fig. 2 represented as an
IOLES. Causality is represented by arrows and immediate conflict by
dashed lines.

the set of all the configurations of E by C(E) and the set of
maximal configurations (those that can not be extended) by
Ω(E).

Example 2 In the travel agency example, as can be seen in
Fig. 3, the data cannot be sent before the user logged in
(?login ≤ !us data) and the selections for a ticket and an
insurance can be done concurrently (?train co ?ins), but
only one ticket can be chosen (?train # ?plane). From the
conflict heredity property, only one ticket price is produced
(!pricet 1 # !pricep and !pricet 2 # !pricep). A transition
from the net is usually represented by several events in its
unfolding: other instances of t1 (?login) can be added to the
unfolding causally depending on e3, e4, e5 and either e7, e8
or e10 as it is shown in Fig 8.

Labeled Partial Orders. We are interested in testing dis-
tributed systems where concurrent actions occur in differ-
ent processes of the system. For this reason, we want to
keep concurrency explicit, i.e. implementations do not im-
pose any order of execution between concurrent events. La-
beled partial orders can then be used to represent executions
of such systems. A labeled partial order (lpo) is a tuple
lpo = (E,≤, λ) where E is a set of events, ≤ is a reflexive,
antisymmetric, and transitive relation, and λ : E → L is a
labeling mapping to a fix alphabet L. We denote the class
of all labeled partial orders over L by LPO(L). Consider
lpo1 = (E1,≤1, λ1) and lpo2 = (E2,≤2, λ2) ∈ LPO(L).
A bijective function f : E1 → E2 is an isomorphism be-
tween lpo1 and lpo2 iff (i) ∀e, e′ ∈ E1 : e ≤1 e

′ ⇔ f(e) ≤2

f(e′) and (ii) ∀e ∈ E1 : λ1(e) = λ2(f(e)). Two labeled
partial orders lpo1 and lpo2 are isomorphic if there exists
an isomorphism between them. A partially ordered multiset
(pomset) is an isomorphism class of lpos. We will represent
such a class by one of its objects. Denote the class of all non
empty pomsets over L by POMSET (L). The evolution of
the system is captured by the following definition: pomsets
are observations.
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⊥

?login

?train

!pricet 1

!us data?ins

ω1

⊥

?login

?ins

!pricei !datai

!us data

ω2

Fig. 4 Traces of the travel agency.

Definition 2 For E = (E,≤,#, λ) ∈ IOLES(L), ω ∈
POMSET (L) and C,C ′ ∈ C(E), define

C
ω

=⇒ C ′ , ∃lpo = (Eω,≤ω, λω) ∈ ω : Eω ⊆ E\C,
C ′ = C ∪ Eω,≤ ∩ (Eω × Eω) = ≤ω and
λ|Eω = λω

C
ω

=⇒ , ∃C ′ : C ω
=⇒ C ′

Example 3 Consider Fig. 2. Both ω1 and ω2 are partial or-
ders that respect the structure of the unfolding in Fig. 3.
Therefore we have ⊥ ω1=⇒ {⊥, e1, e2, e5, e6, e7} and ⊥ ω2=⇒
{⊥, e1, e2, e3, e4, e5}.

Remark 1 When the system is composed of a single pro-
cess, every configuration C generates a cut C• = {q} in the
unfolding where q represents the current state of the process.
In this case, Definition 2 and the definition of =⇒ for LTS
presented in [23] coincide.

We can now define the notions of traces and of configu-
rations reachable from a given configuration by an observa-
tion. Our notion of traces is similar to the one of Ulrich and
König [24].

Definition 3 For E ∈ IOLES(L), ω ∈ POMSET (L),
C,C ′ ∈ C(E), define

traces(E) , {ω ∈ POMSET (L) |⊥E
ω

=⇒}
C after ω , {C ′ | C ω

=⇒ C ′}

Remark 2 Note that for deterministically labeled I/O Petri
nets, every configuration of the corresponding IOLES can-
not enable two equally labeled events, i.e. the IOLES is de-
terministic and the set of reachable configurations is a sin-
gleton.

3 Testing Framework for IOPNs

Testing Hypotheses. We assume that the specification of the
system under test is given as a 1-safe and deterministically
labeled I/O Petri net Σ = (N , λ) over alphabet L = I ] O
of input and output labels. To be able to test an implemen-
tation against such a specification, we make a set of testing

assumptions. First of all, we make the usual testing assump-
tion that the behavior of the SUT itself can be modeled by
a 1-safe I/O Petri net over the same alphabet of labels. We
also assume as usual that the specification does not contain
cycles of outputs actions, so that the number of expected
outputs after a given trace is finite.

Assumption 1 The netN has no cycle containing only out-
put transitions.

Third, in order to allow the observation of both the out-
puts produced by the system and the inputs it can accept,
markings where conflicting inputs and outputs are enabled
should not be reachable. As a matter of fact, if conflicting
input and output are enabled in a given marking, once the
output is produced, the input is not enabled anymore, and
vice versa. Such markings prevent from observing the in-
puts enabled in a given configuration, which we will see is
one of the key points of our conformance relation. For this
reason, we restrict the form of the nets we consider via the
following assumption on the unfolding2:

Assumption 2 The unfolding of the net N has no imme-
diate conflict between input and output events, i.e. ∀e1 ∈
EI , e2 ∈ EO : ¬(e1 #µ e2).

Conformance Relation. A formal testing framework relies
on the definition of a conformance relation to be satisfied
by the SUT and its specification. In the LTS framework, the
ioco conformance relation compares the outputs and block-
ings in the implementation after a trace of the specification
to the outputs and blockings authorised after this trace in the
specification. Classically, the produced outputs of the sys-
tem under test are elements of O (single actions) and block-
ings are observable by a special action δ 6∈ L which repre-
sents the expiration of a timer.

By contrast, in partial order semantics, we need any set
of outputs to be entirely produced by the system under test
before we send a new input; this is necessary to detect out-
puts depending on extra inputs. Suppose two concurrent out-
puts o1 and o2 depending on input i1 and another input i2
depending on both outputs. Clearly, an implementation that
accepts i2 before o2 should not be considered as correct, but
if i2 is sent too early to the system, we may not know if
the occurrence of o2 depends or not on i2. For this reason
we define the expected outputs from a configuration C as
the pomset of outputs leading to a quiescent configuration.
Such a configuration always exists, and must be finite by
Assumption 1.

The notion of quiescence is inherited from nets, i.e. a
configuration C is quiescent if and only if C ω

=⇒ implies

2 Gaudel et al [16] assume a similar property called IO-
exclusiveness.



6 Hernán Ponce de León et al.

ω 6∈ POMSET (O). We assume as usual that quiescence
is observable by a special δ action, i.e. C is quiescent iff
C

δ
=⇒.

Definition 4 For E ∈ IOLES(L), C ∈ C(E), the outputs
produced by C are

outE(C) , {!ω ∈ POMSET (O) | C
!ω
=⇒ C ′ ∧ C ′

δ
=⇒}

∪ {δ | C δ
=⇒}

The ioco theory assumes the input enabledness of the
implementation [23], i.e. in any state of the implementation,
every input action is enabled. This assumption is made to
ensure that no blocking can occur during the execution of
the test until its end and the emission of a verdict. However,
as explained by Heerink [7] and Lestiennes and Gaudel [16]
even if many realistic systems can be modeled with such
an assumption, there remains a significant portion of real-
istic systems that can not be modeled as such. In order to
overcome these difficulties, Lestiennes and Gaudel enrich
the system model by refused transitions and a set of possi-
ble actions is defined in each state. Any possible input in a
given state of the specification should be possible in a cor-
rect implementation.

Definition 5 For E ∈ IOLES(L) and C ∈ C(E), the pos-
sible inputs in C are

possE(C) , {?ω ∈ POMSET (I) | C
?ω
=⇒}

Our co-ioco conformance relation for labeled event struc-
tures can be informally described as follows. The behavior
of a correct co-ioco implementation after some observations
(obtained from the specification) should respect the follow-
ing restrictions: (1) the outputs produced by the implemen-
tation should be specified; (2) if a quiescent configuration is
reached, this should also be the case in the specification; (3)
any time an input is possible in the specification, this should
also be the case in the implementation. These restrictions are
formalized by the following conformance relation3.

Definition 6 Let Ei, Es ∈ IOLES(L), then

Ei co-ioco Es ⇔ ∀ω ∈ traces(Es) :
posss(⊥ after ω) ⊆ possi(⊥ after ω)
outi(⊥ after ω) ⊆ outs(⊥ after ω)

When several outputs in conflicts are possible, our con-
formance relation allows implementations where at least one
of them is implemented. Extra inputs are allowed in any
configuration, but extra outputs, extra quiescence and extra
causality or concurrency are forbidden.

3 As we consider only deterministically labeled nets, by Remark 2,
(⊥ after ω) is always a singleton.

Tickets Server

?plane

!pricep
τ

!us data

S1

Tickets Server

?plane

!pricep

!us data

S2

Fig. 5 Message sequence charts showing two implementations of con-
currency.

Consider Fig. 5. In the ioco theory where concurrency
is interpreted as interleaving, the concurrency between out-
puts !pricep and !us data of system S2 would be described
allowing either !pricep before !us data or !us data before
!pricep . S1 would be a correct implementation w.r.t ioco
because one of the two possible orders between the out-
puts is observed (the τ action is unobservable), even if pro-
cess P2 interferes in the behavior of process P1 (!pricep de-
pends on !us data). We want to prevent implementations
like S1 introducing extra dependency between events speci-
fied as concurrent. Therefore actions specified as concurrent
must be implemented as such, meaning that they must occur
on different processes and must be independent from each
other. The co-ioco conformance relation detects this kind of
non conformant implementation. However, when there is no
concurrency in the system (the system is composed of a sin-
gle process), by Remark 1 we can conclude that ioco and
co-ioco coincide.

4 Complete Test Suites

A global test case is a specification of the tester’s behav-
ior during an experiment carried out on the SUT. It must be
controllable, i.e. the tester must not have choices to make
during the execution of the test. That is, tests must be deter-
ministic, and at any stage, the next input to be proposed by
the tester must be unique, i.e. there are no immediate con-
flicts between inputs. Finally, we require the experiment to
terminate, i.e. the resulting event structure must be finite.

Definition 7 A global test case is a finite deterministic IOLES
Et = (Et,≤t,#t, λt) where (EIt × EIt ) ∩#µ

t = ∅. A test
suite is a set of test cases.

As global test cases are defined as IOLES, concurrency
of the specification is preserved.

4.1 Test Execution

The success of a test is determined by the verdict associated
to the result of its execution on the system, pass or fail, the
pass verdict meaning that the result of the test is consistent
with the specification according to the conformance relation.
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The interaction between two systems is usually formal-
ized by their parallel composition. This composition assumes
that both systems are always prepared to accept an output
that the other may produce. In the sequential setting, it is as-
sumed that the implementation accepts any input the tester
can propose (input enableness of the implementation). Anal-
ogously, the tester should be able to synchronize with any
output the implementation may produce. Constructing an
event structure having such a property is almost impossi-
ble due to the fact that it should not only accept any output,
but also all the possible ways such an output could happen
(concurrently/sequentially with other outputs). In addition,
the parallel composition of nets [26] does not preserve con-
currency. We propose another approach to formalize the in-
teraction between the implementation and a test case.

Deadlocks of the parallel composition are used to give
verdicts about the test run in the sequential framework. Such
deadlocks are produced in the following situations: (1) the
implementation proposes an output or δ action that the test
case can not accept, (2) the test case proposes an input that
the implementation can not accept, or (3) the test case has
nothing else to propose (it deadlocks). The first two situa-
tions lead to a fail verdict and the last one to a pass one. For
having such verdicts, we will define the notion of blocking
in the test execution.

After observing a trace, the test execution can block be-
cause of an output or δ action the implementation produces.
This happens if after such an observation the test case can
not accept that action or if the reached configuration is not
quiescent, i.e. the implementation produces an output that
the test case is not prepared to accept.

Definition 8 Let i, t ∈ IOLES(L) be an implementation
and a test case respectively and ω ∈ POMSET (L), we
have blocksO(i, t, ω) ⇔ ∃x ∈ outi(⊥ after ω) : x 6∈
outt(⊥ after ω) with x ∈ POMSET (O) ∪ {δ}.

The other blocking situation happens when the test case
can propose an input that the implementation is not prepared
to accept.

Definition 9 Let i, t ∈ IOLES(L) be an implementation
and a test case respectively and ω ∈ POMSET (L), we
have blocksI(i, t, ω) ⇔ ∃?ω ∈ posst(⊥ after ω) :?ω 6∈
possi(⊥ after ω).

We can now define the verdict of the executions of a set
a test cases on an implementation based on the notions of
blockings.

Definition 10 Let i be an implementation, and T a test suite,
we have i fails T ⇔ ∃t ∈ T, ω ∈ traces(t) : blocksO(i, t, ω)
∨ blocksI(i, t, ω). If the implementation does not fail the
test suite, it passes it.

4.2 Completeness of the Test Suite

We expect our test suite to be sound, i.e. if the implementa-
tion fails the test, then it does not conform to the specifica-
tion. A test suite is exhaustive iff it contains, for every non
conforming implementation, a test that detects it. The exis-
tence of a complete (sound and exhaustive) test suite ensures
testability of the conformance relation, since success of the
SUT under such a test suite proves the conformance of the
SUT.

Definition 11 Let s be a specification and T a test suite,
then

T is sound
4⇔ ∀i : i fails T implies ¬(i co-ioco s)

T is exhaustive
4⇔ ∀i : i fails T if ¬(i co-ioco s)

T is complete
4⇔ ∀i : i fails T iff ¬(i co-ioco s)

The following theorem gives sufficient conditions for
having a sound test suite: each test must produce only traces
of the specification, and preserve all possible outputs for
each such trace.

Theorem 1 Let Es ∈ IOLES(L) and T a test suite such
that

1. ∀Et ∈ T : traces(Et) ⊆ traces(Es)
2. ∀Et ∈ T, ω ∈ traces(Et) : outs(⊥ after ω) ⊆ outt(⊥

after ω)

then T is sound for Es w.r.t co-ioco.

Assumption 1. in the theorem above guarantees that any
possible input in the test case is a possible input of the spec-
ification, i.e. posst(⊥ after ω) ⊆ posss(⊥ after ω).

Proof. T is sound for s w.r.t. co-ioco iff for every imple-
mentation i that fails the test suite, we have that it does not
conform to the specification. We assume i fails T and by
Definition 10 we have:

∃t ∈ T, ω ∈ traces(t) : blocksO(i, t, ω) ∨ blocksI(i, t, ω)

and at least one of the following cases holds:

1. the test execution blocks after ω because of an output
produced by the implementation:

∃t ∈ T, ω ∈ traces(t) : blocksO(i, t, ω)
implies {∗ Definition 8 ∗}

∃t ∈ T, ω ∈ traces(t) :
outi(⊥ after ω) 6⊆ outt(⊥ after ω)

implies {∗ Assumptions 1. and 2. ∗}
∃ω ∈ traces(s) :
outi(⊥ after ω) 6⊆ outs(⊥ after ω)

implies {∗ Definition 6 ∗}
¬(i co-ioco s)
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2. the test execution blocks after ω because of an input pro-
posed by the test case:

∃ω ∈ traces(t) : blocksI(i, t, ω)
implies {∗ Definition 9 ∗}

∃ω ∈ traces(t) :
posst(⊥ after ω) 6⊆ possi(⊥ after ω)

implies {∗ Assumption 1. twice ∗}
∃ω ∈ traces(s) :
posss(⊥ after ω) 6⊆ possi(⊥ after ω)

implies {∗ Definition 6 ∗}
¬(i co-ioco s)

ut
A test suite is exhaustive if each trace of the specification

appears in at least one test case.

Theorem 2 Let Es ∈ IOLES(L) and T a test suite such
that ∀ω ∈ traces(Es),∃Et ∈ T : ω ∈ traces(Et), then T is
exhaustive for Es w.r.t co-ioco.

Proof. We need to prove that if i does not conform to s then
i fails T . We assume ¬(i co-ioco s), then at least one of the
following two cases holds:

1. The implementation does not conform to the specifica-
tion because an output produced by the implementation
is not specified:

∃ω ∈ traces(s) :
∃x ∈ outi(⊥ after ω) : x 6∈ outs(⊥ after ω)

implies {∗ by the assumption, we choose t such that
ω ∈ traces(t) and x 6∈ outt(⊥ after ω) ∗}
∃t ∈ T, ω ∈ traces(t) :
∃x ∈ outi(⊥ after ω) : x 6∈ outt(⊥ after ω)

implies {∗ Definition 8 ∗}
∃t ∈ T, ω ∈ traces(t) : blocksO(i, t, ω)

implies {∗ Definition 10 ∗}
i fails T

2. The implementation does not conform to the specifica-
tion because an input from the specification is not possi-
ble in the implementation:

∃ω ∈ traces(s) : ∃?ω ∈ posss(⊥ after ω) :
?ω 6∈ possi(⊥ after ω)

implies {∗ Definition 5 ∗}
∃(ω·?ω) ∈ traces(s) :?ω 6∈ possi(⊥ after ω)

implies {∗ by the assumption, we choose t such that
(ω·?ω) ∈ traces(t) ∗}
∃t ∈ T : (ω·?ω) ∈ traces(t) and
?ω 6∈ possi(⊥ after ω)

implies {∗ Definition 5 ∗}
∃t ∈ T, ω ∈ traces(t), ?ω ∈ posst(⊥ after ω) :
?ω 6∈ possi(⊥ after ω)

implies {∗ Definition 9 ∗}
∃t ∈ T, ω ∈ traces(t) : blocksI(i, t, ω)

implies {∗ Definition 10 ∗}
i fails T

ut

4.3 Test Suite Generation

The algorithm below builds a global test case from an IOLES
by resolving immediate conflicts between inputs, while ac-
cepting several branches in case of conflict between outputs
(note that “mixed” immediate conflicts between inputs and
outputs have been ruled out by Assumption 2). At the end
of the algorithm, all such conflicts have been resolved in
one way, following one fixed strategy of resolution of im-
mediate input conflicts; the resulting object, the test case, is
thus one branching prefix of the IOLES. In order to cover
the other branches, the algorithm must be run several times
with different conflict resolution schemes, to obtain a test
suite that represents every possible event in at least one test
case. Each such scheme can be represented as a lineariza-
tion of the causality relation that specifies in which order
the events are selected by the algorithm. By the above, we
need to be sure that the collection of linearizations that we
use considers all resolutions of immediate input conflict, i.e.
is rich enough such that there is a pair of linearizations that
reverses the order in a given immediate input conflict.

Definition 12 Fix E ∈ IOLES(L), and letL be a set of lin-
earizations of ≤. Then L is an immediate input conflict sat-
urated set, or iics set, for E iff for all e1, e2 ∈ EI such that
e1#

µe2, there exist R1,R2 ∈ L with ∀e ∈ [e1] : eR1e2
and ∀e ∈ [e2] : eR2e1.

Algorithm 1 Test Case Construction
Require: A finite and deterministically labeled E = (E,≤,#, λ) ∈
IOLES(L) such that ∀e ∈ EI , e′ ∈ EO : ¬(e#µe′) and a
linearizationR of ≤

Ensure: A test case Et such that
∀ω ∈ traces(Et) : outEt(⊥ after ω) = outE(⊥ after ω)

1: Et := ∅
2: Etemp := E
3: while Etemp 6= ∅ do
4: em := min

R
(Etemp)

5: Etemp := Etemp \ {em}
6: if ({em} × EIt ) ∩#µ = ∅ ∧ 〈em〉 ⊆ Et then
7: Et := Et ∪ {em}
8: end if
9: end while

10: ≤t := ≤ ∩ (Et × Et)
11: #t := # ∩ (Et × Et)
12: λt := λ|Et
13: return Et = (Et,≤t,#t, λt)

Proposition 1 Let L be an iics set for E , and T the test suite
obtained using Algorithm 1 with L. Then every event e ∈ E
is represented by at least one test case Et ∈ T .
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Proof Let T be the test suite obtained by the algorithm and
L and suppose e is not represented by any test case in T .
We have then that for every Et ∈ T either (i) e ∈ EI and
{e}×EIt ∩#µ 6= ∅ or (ii) [e] 6⊆ Et. If (i), we have that there
exists e′ ∈ EIt such that e#µe′ and e′R1e (whereR1 is the
linearization used to build Et). By Definition 12 we know
there exist R2 ∈ L such that ∀e′′ ∈ [e] : e′′R2e

′ and then
we can useR2 to construct E ′t ∈ T such that e is represented
by E ′t which leads to a contradiction. If (ii), then there exists
e′ ∈ [e] such that {e′} × EIt ∩#µ 6= ∅ and the analysis is
analogous to the one in (i). ut

Note that the size of L and hence of T can be bounded
by the number of input events in immediate conflict, i.e.
|T | ≤ 2K, where K = |#µ ∩ (EI × EI)|. Note that in
the case where several input events are two by two in im-
mediate conflict, we need fewer test cases than one per pair.
For example if e1 #µe2, e2 #µe3 and e3 #µe1, we only
need three linearizations, each having a different event ei
preceding the two others whose order does not matter, and
therefore only three cases. Moreover, for any pair of concur-
rent events e co e′, the order in which they appear in any
R ∈ L is irrelevant; it suffices therefore to have in L only
one representative for any class of permutations of some set
of pairwise concurrent events in E . Therefore, the size of L
and thus of T depends on the degree of input conflict in E
and not on the degree of concurrency. It is known that such
a performance is characteristic of methods based on partial
order unfoldings.

⊥

e1

e6

e7 e8

e2

e3

e4

e5

(a)

⊥

e1

e9

e10

e2

e3

e4

e5

(b)

Fig. 6 Two test cases build using the IOLES in Fig. 3 and Algorithm 1.

Example 4 The test cases (a) and (b) in Fig. 6 can be ob-
tained using Algorithm 1 and any linearizationsR1,R2 such
that e6R1e9 and e9R2e6.

Let PREF(E) be the set of all prefixes of E , we show
now that Algorithm 1 is general enough to produce a com-
plete test suite from it.

Theorem 3 From PREF(E) and an iics set L for E , Algo-
rithm 1 yields a complete test suite T .

Proof Soundness: By Theorem 1 we need to prove: (1) the
traces of every test case are traces of the specification; (2)
every output of the specification after a trace are preserved in
the test case. (1) Trace inclusion is immediate as the test case
is a prefix of the unfolding of the specification. (2) For a test
Et and ω ∈ traces(Et), if an output in outs(⊥ after ω) is not
in outt(⊥ after ω), it means either that it is in conflict with
an input in Et, which is impossible as inputs and outputs can
not be in conflict, or that its past is not already in Et, which
is impossible since ω is a trace of Et.

Exhaustiveness: By Theorem 2 we need to prove that ev-
ery trace is represented in at least one test case. Clearly, for
all ω ∈ traces(Es) there exists at least one complete prefix
c ∈ PREF(E) such that ω ∈ traces(c). By Proposition 1
we can find R ∈ L such that this trace remains in the test
case obtained by the algorithm, i.e. ∃t ∈ T : ω ∈ traces(t).

ut

5 Coverage Criteria for Labeled Event Structures

In the ioco framework and its extensions, the selection of test
suites is achieved by different methods. Tests can be built in
a randomized way from a canonical tester, which is a com-
pletion of the specification representing all the authorized
and forbidden behaviors [23]. Closer to practice is the se-
lection of tests according to test purposes, which represent
a set of behaviors one wants to test [12]. Another method,
used for symbolic transition systems for instance, is to un-
fold the specification until a certain testing criterion is ful-
filed, and then to build a test suite covering this unfolding.
Criteria for stopping the unfolding can be a given depth or
state inclusion for instance [5].

5.1 Prefixes as Testing Criteria

The dynamic behavior of a Petri net is entirely captured by
its unfolding, but this unfolding is usually infinite. There are
several different methods of truncating an unfolding. The
differences are related to the kind of information about the
original unfolding one wants to preserve in the prefix.

The finite prefix algorithm depends on the notion of cut-
off event: how long the net is unfolded. Our aim is to use
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Algorithm 2 The quiescent closure of a finite prefix algo-
rithm
Require: A 1-safe I/O Petri net Σ = (T, P, F,M0, λ) where M0 =
{s1, . . . , sk}, and a cut-off predicate on events

Ensure: A finite prefix EΘ of the unfolding E of Σ such that
∀ω ∈ traces(EΘ) : outEΘ (⊥ after ω) = outE(⊥ after ω)

1: EΘ := (s0, ∅), . . . , (sk, ∅)
2: pe := PE(EΘ)
3: cut-off := ∅
4: while pe 6= ∅ do
5: choose an event e = (t, B) in pe
6: if [e] ∩ cut-off = ∅ then
7: append to EΘ the event e and a condition (s, e) for every

place s in t•

8: pe := PE(EΘ);
9: if e is a cut-off event of EΘ then

10: cut-off := cut-off ∪ {e}
11: end if
12: else
13: pe := pe\{e}
14: end if
15: end while
16: pe := PE(EΘ)
17: while pe ∩ TO 6= ∅ do
18: choose an event e = (t, B) in pe ∩ TO

19: append to EΘ the event e and a condition (s, e) for every place
s in t•

20: pe := PE(EΘ);
21: end while
22: return EΘ

such a prefix to build test cases, therefore obtaining a finite
prefix can be seen as defining a testing criterion.

As in [3], we implement a branching process of an I/O
Petri net Σ as a list of nodes. A node is either a condition or
an event. A condition is a pair (s, e), where s is a place of Σ
and e its preset. An event is a pair (t, B), where t is a tran-
sition in Σ, and B is its preset. The possible extensions of a
branching process β are the pairs (t, B) where the elements
of B are pairwise in co relation, t is such that ϕ(B) = •t

and β contains no event e satisfying ϕ(e) = t and •e = B.
We denote the set of possible extensions of β by PE(β).

As it is shown above, if the information about the pro-
duced outputs (and quiescence) is preserved in the test cases,
we can prove the soundness of the test suite. Hence we aim
at truncating the unfolding following a specific criterion,
while preserving information about outputs and quiescence.
In order to preserve this information, we follow [5] and mod-
ify the finite prefix algorithm adding all the outputs from the
unfolding that the prefix enables. As there exists no cycles of
outputs in the original net, this procedure terminates, yield-
ing a finite prefix. The procedure to compute the quiescent
closure of a finite prefix (denoted by EΘ) is described by
Algorithm 2.

The algorithm is parametric on the cutting criterion: if
we change the notion of cutting event, the finite prefix ob-
tained is different.

All-Paths-of-Length-n-Criterion. The first cut-off notion we
present depends on the height of an event, defined as the
length of the longest causality chain containing this event. It
defines a selection criterion similar to the criterion “all paths
of length n” defined in [5].

Definition 13 For a branching process Fin, define the height
of an event e in Fin recursively by

H(⊥) , 0

H(e) , 1 + max
e′<e

(H(e′))

Definition 14 Let Fin be a branching process. An event e is
an n-cut-off event iffH(e) = n.

This criterion allows us to build test cases that cover all
paths of length n. However, the pertinent length n to be cho-
sen is up to the tester.

The behavior of the system described by the specifica-
tion consists usually of infinite traces. However, in practice,
these long traces can be considered as a sequence of (finite)
“basic” behaviors. For example, the travel agency offers few
basic behaviors: (1) interaction with the server; (2) selection
of insurance; and (3) selection of tickets. Any “complex” be-
havior of the agency is built from such basic behaviors. The
longest length of these basic behaviors can be chosen as a
pertinent length to unfold (see Example 6).

Inclusion Criterion. From the observation that a specifica-
tion generally describes a set of basic behaviors that eventu-
ally repeat themselves, another natural criterion consists in
covering the cycles of the specification. We define a criterion
allowing to cover each basic behavior once, using a proper
notion of complete prefix.

We say that a branching process β of an I/O Petri net Σ
is complete if for every reachable marking M there exists a
configuration C in β such that:

1. Mark(C) =M (i.e. M is represented in β), and
2. for every transition t enabled by M there exists C ∪
{e} ∈ C(β) such that e is labeled by t.

The following notion corresponds to the inclusion crite-
rion where each cycle in unfolded once.

Definition 15 Let Fin be a branching process. An event e is
an inclusion cut-off event iff Fin contains an event e′ ≤ e

such that Mark([e′]) = Mark([e]).

Note that the completeness of a prefix does not imply
that the information about outputs and quiescence is pre-
served, so Algorithm 2 still is necessary to build its quies-
cent closure.

Example 5 Consider Fig. 7, we have that Fin is complete,
but the expected outputs are not part of the prefix. We expect
that o1 is produced by the system after i2 and i4, i.e. outE(⊥
after (i2 · i4)) = {o1}, but this is not the case in Fin, i.e.
o2 6∈ outFin(⊥ after (i2 · i4)) = {δ}.
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i1 i3 i2 i4
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⊥
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o1

Fin

⊥

i1 i3 i2 i4

o1 o1

EΘ

Fig. 7 I/O Petri net Σ, part of its unfolding E , a complete finite prefix
Fin and its quiescent closure EΘ .

It has been proved that the prefix obtained in [3] is com-
plete, therefore such result also holds for the prefix obtained
by our algorithm when we consider the inclusion criterion.
However the notion of n-cut-off event needed for the “all
paths of length n” criterion does not guarantee completeness
(it may be the case that not every marking is represented in
the prefix).

k-inclusion Criterion. A natural extension of the previous
criterion consists in unfolding each cycle several times. We
present below the k-inclusion criterion which together with
Algorithm 2 leads to a complete prefix unfolding each cycle
k times and preserving outputs and quiescence.

Definition 16 Let Fin be a branching process. An event e
is a k-inclusion cut-off event iff Fin contains a family of k
events {ei}i≤k such that ei ≤ e and Mark([ei]) = Mark([e]).

Obviously a 1-inclusion cut-off event is an inclusion cut-
off event in the sense of Definition 15.

S1

S2

⊥

e1

e9

e10

e6

e7 e8

e2

e3 e4 e5

e1 e1 e1

e5 e5 e5

Fig. 8 All-paths-of-length-n criterion.

Example 6 (Determining length n to fulfill the inclusion cri-
terion)

Consider the unfolding of the travel agency in Fig. 8.
The nodes in grey in set S1 are those marked as 1-inclusion
cut-off, meaning that the prefix ending with these nodes ful-
fills the 1-inclusion criterion. As all these events have the
same height 4, this prefix also fulfills the “all paths of length
4” criterion. Finally we obtain the quiescent closure adding
nodes of set S2 in order to preserve outputs.

The following result is central and will help proving sound-
ness of the test suites proposed below.

Theorem 4 Let E ∈ IOLES(L) and EΘ the quiescent clo-
sure of its finite prefix obtained either by the k-inclusion or
the “all paths of length n” criterion. Then

1. traces(EΘ) ⊆ traces(E)
2. ∀ω ∈ traces(EΘ) : outEΘ (⊥ after ω) = outE(⊥ after ω)

Proof 1) is immediate since EΘ is a prefix of E . Since only
the outputs produced after the traces of EΘ are considered,
2) follows by its construction. ut

The test suites constructed based on the k-inclusion or
the “all paths of length n” criterion are sound:

Theorem 5 Let Σs be the specification of a system and Es
the IOLES of its unfolding. Any test suite constructed using
Algorithm 1 and EΘs as an input is sound for Es w.r.t co-ioco.

Proof By Theorem 1 we need to prove that any trace of a
test case Et is a trace of Es (which is trivial as Et is a prefix
of EΘs and therefore of Es) and that outputs and quiescence
produced after any trace ω of such a test are preserved. The
events of EΘs that are added to Et are all the events whose
past is already in Et and which are not in immediate conflict
with an input. An output cannot be in immediate conflict
with an input by Assumption 2, so all the outputs whose
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past is already in Et are added. So all the outputs from EΘs
after a trace ω are preserved and by Theorem 4 we have
∀ω ∈ traces(Et) : outt(⊥ after ω) = outs(⊥ after ω). ut

Example 7 The IOLES of Fig. 3 is a complete prefix of the
unfolding of the net in Fig. 2 and can be obtained using Al-
gorithm 2. We saw in Example 4 how to build test cases that
cover such a complete prefix. Thus the test cases of Fig. 6
form a sound test suite that covers the specification accord-
ing to our inclusion criterion.

Remark 3 Let us note that we lose completeness of the test
suite we build by selecting test cases from the original com-
plete test suite. While in a model-checking context, finite
prefixes have been shown to contain enough information to
verify global properties [2], in a testing context, it is impos-
sible for a finite test suite to be complete with respect to
a specification containing infinite behaviors. Since the im-
plementation is not known, we do not have any information
about its space state, therefore we can only assume that any
incorrect behavior will occur in a finite path of the system.

5.2 Comparing Different Criteria

The notion of cut-off presented in [3] is more general that
ours and depends on the notion of an adequate order. An
adequate order ≺ is a well-founded partial order on the fi-
nite configurations of the unfolding that refines set inclu-
sion and is preserved by extensions, i.e. if C1 ≺ C2 and
Mark(C1) = Mark(C2) then C1 ∪ E ≺ C2 ∪ E for all fi-
nite extensions E. An event e is marked as a cut-off if there
exists a configuration C in the prefix such that C ≺ [e]

and Mark(C) = Mark([e]). Adequate orders lead usually
to smaller prefixes which is something desirable in model
checking, but this not always the case for testing.

Example 8 Consider Fig. 9: (a) is a net; (b) the pre-
fix obtained with an adequate order ≺r presented in [3]
and adding the corresponding outputs; (c) the prefix ob-
tained by our 1-inclusion criterion. Prefix (b) is smaller
than (c), however it is of less quality w.r.t. its ability to
detect bugs. Consider a non conformant implementation
that accepts ?b1 followed by !d1 and then deadlocks, i.e.
possi(⊥ after ?b1!d1) = {} while posss(⊥ after ?b1!d1) =

{?a2, ?b2}. The test suite that we obtain from (b) is
T1 = {?b1!c1, ?b1!d1, ?a1!d1, ?a1!c1?b2, ?a1!c1?a2} which
passes the implementation, i.e. non conformance is not de-
tected. Let T2 be the test suite obtained from (c) and Al-
gorithm 1, then ?b1!d1?a2 ∈ T2 and we have a test case
that makes the test execution fail, i.e. non conformance is
detected.

We need therefore a way to compare the testing power
of different prefixes. We can follow the k-inclusion crite-
rion and consider the number of times a marking is present

?a1 ?b1

!c1 !d1

?a2 ?b2

(a)

⊥

a11 b11

c11 d11 c21 d21

a12 b12

(b)

⊥

a11 b11

c11 d11 c21 d21

a12 b12 a22 b22 a32 b32 a42 b42

(c)

Fig. 9 Complete prefixes with adequate orders.

as a measure for the quality of the test suite, however this
does not consider the “cost” of producing such test suite: as
it is shown in Fig. 9, our prefixes can be exponentially big-
ger than those constructed using adequate orders. We need
therefore to balance between the testing power and the size
of the prefix. As it is shown in Fig. 10, the size in which each
branch increases for obtaining a certain k-inclusion is not al-
ways the same. If we want to increase k-inclusion by adding
!r1, we need to make new copies of p2 and then only two
new events (those corresponding to ?a1 and ?b1) need to be
added. However if we also want to increase the inclusion by
adding !r2, 14 events (those presented in Fig. 9(c)) need to
be added. This kind of explosion is one of the disadvantages
of unfoldings, however there exist other ways to unfold the
net to avoid such kind of explosion (see for example [14]).

We define the coverage of a configuration to be mea-
sured by the number of times its corresponding marking is
represented in any proper subset:

Cov(C) , |{C ′ ⊂ C | Mark(C) = Mark(C ′)}|

In order to take into account the “cost” of building a larger
prefix to increase the coverage of a configuration, we define
the quality of a configuration C in a given prefix Fin to be
its coverage divided by the number of events of the prefix:

Q(C) , Cov(C)
|Fin|

Finally, the quality of a prefix will be the smallest quality of
its maximal configurations.
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p2

?a1 ?b1

!r1

!c1 !d1

?a2 ?b2

!r2

Fig. 10 Exponential grow of unfoldings.

Definition 17 Let Fin be a finite prefix of the unfolding, we
define the quality of Fin as

Q(Fin) , min
C∈Ω(Fin)

Q(C)

In Fig. 10 we can see that the quality of configurations
where !r2 is unfolded are smaller than those that unfold !r1
(as they contain more events). Therefore the quality of the
finite prefixes (and that of the test cases obtained from it)
does not depend on how many times we unfold transition
!r1, but on the number of times we unfold !r2.

6 Conclusion and Future Work

We have presented a testing framework and a test generation
algorithm for true concurrency specifications of distributed
and concurrent systems. Our test selection criteria are based
on the quiescent closure of finite prefixes of the unfolding of
the specification; they allow to select, among all possible test
cases, those covering all paths of length n or those traversing
each basic behavior a certain number of times.

Let us point out that the testing approach we followed
in this article is mostly theoretical, since concurrency is not
easily observable at a global point of view. We defined the
notions of test case and execution of a test case from a global
point of control and observation, where concurrency is al-
ways kept explicit. However, in practice, such global test
cases are not meant to be actually executed globally. They
would rather be projected onto the different processes to be
executed locally, in order to make the observation of con-
currency possible. Our approach here is to study the testing
problem from a centralized point of view, as a basis to the
distributed testing problem: the global conformance relation
we defined is the relation we want to still be able to test in
a distributed way (with local control and observation), and
the global test cases are the basis for the construction of dis-
tributed tests.

In practice, the global control and observation assump-
tion may not be satisfied and we can only observe the system

partially, i.e. only the behavior of a local process is observed.
In a distributed testing environment, a local tester interacts
with each process. If we are in a pure distributed testing set-
ting, there is no global clock. We are currently studying un-
der which assumptions global conformance can be decided
by the conformance of every single process. Another pos-
sibility is to weaken the conformance relation to consider
a distributed architecture as it is in the case of the dioco
framework of Hierons et al. [10] for multi-port IOTS.

Future technical studies include the question whether it
is possible to drop assumptions 1 and 2 under a bounded fair-
ness assumption, meaning that in a given configuration, all
the different events will eventually occur if the experiment
is repeated a bounded number of times. However under such
an assumption, controllability of test cases must be ensured
during their construction.
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