
Distributed Testing of Concurrent Systems:
Vector Clocks to the Rescue ?

Hernán Ponce-de-León1, Stefan Haar1, and Delphine Longuet2

1 INRIA and LSV, École Normale Supérieure de Cachan and CNRS, France
ponce@lsv.ens-cachan.fr , stefan.haar@inria.fr
2 Univ Paris-Sud, LRI UMR8623, Orsay, F-91405

longuet@lri.fr

Abstract. The ioco relation has become a standard in model-based
conformance testing. The co-ioco conformance relation is an extension
of this relation to concurrent systems specified with true-concurrency
models. This relation assumes a global control and observation of the
system under test, which is not usually realistic in the case of physically
distributed systems. Such systems can be partially observed at each of
their points of control and observation by the sequences of inputs and
outputs exchanged with their environment. Unfortunately, in general,
global observation cannot be reconstructed from local ones, so global
conformance cannot be decided with local tests. We propose to append
time stamps to the observable actions of the system under test in order
to regain global conformance from local testing.

1 Introduction

The aim of testing is to execute a software system, the implementation, on a set
of input data selected so as to find discrepancies between actual behavior and
intended behavior described by the specification. Model-based testing requires a
behavioral description of the system under test. One of the most popular for-
malisms studied in conformance testing is that of input output labeled transition
systems (IOLTS). In this framework, the correctness (or conformance) relation
the system under test (SUT) and its specification must verify is formalized by the
ioco relation [1]. This relation has become a standard, and it is used as a basis
in several testing theories for extended state-based models: restrictive transition
systems [2, 3], symbolic transition systems [4, 5], timed automata [6, 7], multi-
port finite state machines [8].

Model-based testing of concurrent systems has been studied in the past [9–11],
but mostly in the context of interleaving, or trace, semantics, which is known to
suffer from the state space explosion problem. Concurrent systems are naturally
modeled as a network of finite automata, a formal class of models that can be
captured equivalently by safe Petri nets. Partial order semantics of a Petri net is

? This work was funded by the DIGITEO / DIM-LSC project TECSTES, convention
DIGITEO Number 2011-052D - TECSTES.

SUT

SUTTester 1 Tester 2

Tester 3

PCO1 PCO2

PCO3
Global
Tester

(a) (b)

Fig. 1. The global and distributed testing architectures.

given by its unfolding [12, 13]. Test case generation for concurrent systems based
on unfoldings has been studied in [14, 15]. In the same direction, we proposed
an extension of the ioco conformance relation to concurrent systems, called co-
ioco, using both interleaving and partial order semantics [16]. We developped
a full testing framework for co-ioco [17], but in this work, concurrency is only
interpreted as independence between actions: actions specified as independent
cannot be implemented by interleavings. We introduced a new semantics for
unfoldings [18], allowing some concurrency to be implemented by interleavings,
while forcing other concurrency to be preserved. The kind of concurrency we
consider in this article arises from the distribution of the system, for this reason
we restrict to partial order semantics only.

Our previous work [16–18] assume a global tester which controls and observes
the whole system (see Fig. 1.a). If the system is distributed, the tester interacts
with every component, but the observation of such interaction is global. When
global observation of the system cannot be achieved, the testing activity needs
to be distributed. In a distributed testing environment (see Fig. 1.b), the testers
stimulate the implementation by sending messages on points of control and ob-
servation (PCOs) and partially observe the reactions of the implementation on
these same PCOs. It is known that, in general, global traces cannot be recon-
structed from local observations (see for example [19]). This reduces the ability
to distinguish different systems. There are three mainly investigated solutions
to overcome this problem: (i) the conformance relation needs to be weaken con-
sidering partial observation [8, 20]; (ii) testers are allowed to communicate to
coordinate the testing activity [21]; (iii) stronger assumptions about the imple-
mentations are needed. In this paper, we follow the third approach and assume
that each component has a local clock.

Related Work. According to these three directions, the following solutions have
been proposed for testing global conformance in distributed testing architectures.

(i) Hierons et al. [8] argue that when the SUT is to be used in a context
where the separate testers at the PCOs do not directly communicate with one
another, the requirements placed on the SUT do not correspond to traditional
implementation relations. In fact, testing the SUT using a method based on a
standard implementation relation, such as ioco, may return an incorrect verdict.
The authors of [8] consider different scenarios, and a dedicated implementation
relation for each of them. In the first scenario, there is a tester at each PCO,

and these testers are pairwise independent. In this scenario, it is sufficient that
the local behavior observed by a tester is consistent with some global behavior
in the specification: this is captured by the p-dioco conformance relation. In
the second scenario, a tester may receive information from other testers, and the
local behaviors observed at different PCOs could be combined. Consequently,
a stronger implementation relation, called dioco, is proposed. They show that
ioco and dioco coincide when the system is composed of a single component,
but that dioco is weaker than ioco when there are several components. Similar
to this, Longuet [20] studies different ways of globally and locally testing a
distributed system specified with Message Sequence Charts, by defining global
and local conformance relations. Moreover, conditions under which local testing
is equivalent to global testing are established under trace semantics.

(ii) Jard et al. [21] propose a method for constructing, given a global tester,
a set of testers (one for each PCO) such that global conformance can be achieved
by these testers. However, they assume that testers can communicate with each
other in order to coordinate the testing activity. In addition, they consider the
interaction between testers and the SUT as asynchronous.

(iii) Bhateja and Mukund [22] propose an approach where they assume each
component has a local clock and they append tags to the messages generated
by the SUT. These enriched behaviors are then compared against a tagged ver-
sion of the specification. Hierons et al. [23] make the same assumption about
local clocks. If the clocks agree exactly then the sequence of observations can be
reconstructed. In practice the local clocks will not agree exactly, but some as-
sumptions regarding how they can differ can be made. They explore several such
assumptions and derive corresponding implementation relations. In this article,
we also assume local clocks, but we use partial order semantics.

Contribution. The aim of this paper is to propose a formal framework for the dis-
tributed testing of concurrent systems from network of automata specifications,
without relying on communications between testers. We show that some, but
not all, situations leading to non global conformance w.r.t co-ioco can be de-
tected by local testers without any further information of the other components;
moreover we prove that, when vector clocks [24, 25] are used, the information
held by each component suffices to reconstruct the global trace of an execution
from the partial observations of it at each PCO, and that global conformance
can thus be decided by distributed testers.

The paper is organized as follows. Section 2 recalls basic notions about net-
work of automata and Petri nets, while Section 3 introduces their partial order
semantics. Section 4 introduces the testing hypotheses and our co-ioco confor-
mance relation. Finally, in Section 5, we distribute the testing architecture and
show how global conformance can be achieved locally using time stamped traces.

2 Model of the System

A sound software engineering rule for building complex systems is to divide the
whole system in smaller and simpler components, each solving a specific task.

p1

p2

p3

?i1

c12

!o1

A1

q1

q2 q3

q4

?i2
?i3

c12

!o2

c23

A2

r1

r2

r3

?i4

c23

!o3

A3

Fig. 2. Network of automata composed of 3 components.

This means that, in general, complex systems are actually collections of simpler
components running in parallel. We use automata to model local behaviors, while
global behaviors are modeled by networks of automata. We show that networks
of automata are captured equivalently by Petri nets where explicit representation
of concurrency avoids the state space explosion produced by interleavings.

Network of Automata. We consider a distributed system composed of n com-
ponents that communicate with each other synchronizing on communication
actions. The local model of a component is defined as a deterministic finite au-
tomaton (Q,Σ,∆, q0), where Q is a finite set of states, Σ is a finite set of actions,
∆ : Q × Σ → Q is the transition function and q0 ∈ Q is the initial state. We
distinguish between the controllable actions ΣIn (inputs proposed by the envi-
ronment), the observable ones ΣOut (outputs produced by the system), and com-
munication actions ΣC (invisible for the environment), i.e. Σ = ΣIn]ΣOut]ΣC .
Several components can communicate over the same communication action, but
we assume that observable actions from different components are disjoint,3 i.e.
components only share communication actions.

Example 1. Fig. 2 shows a network of automata with three components A1, A2

and A3. Input and output actions are denoted by ? and ! respectively. Compo-
nents A1 and A2 communicate by synchronizing over c12 while A2, A3 do it over
c23. Components A1 and A3 do not communicate.

I/O Petri Nets. A net is a tuple N = (P ,T ,F) where (i) P 6= ∅ is a set of places,
(ii) T 6= ∅ is a set of transitions such that P∩T = ∅, (iii) F ⊆ (P×T)∪(T×P)
is a set of flow arcs. A marking4 is a set M of places which represents the
current “state” of the system. Let In and Out be two disjoint non-empty sets
of input and output labels respectively. A labeled Petri net is a tuple N =
(P ,T ,F , λ,M0), where (i) (P ,T ,F) is a finite net; (ii) λ : T → (In]Out) labels
transitions by input/output actions; and (iii) M0 ⊆ P is an initial marking.
Denote by TIn and TOut the input and output transition sets, respectively;

3 Action a from component Ai is labeled by ai if necessary.
4 We restrict to 1-safe nets.

that is, TIn , λ−1(In) and TOut , λ−1(Out). Elements of P ∪ T are called
the nodes of N . For a transition t ∈ T , we call •t = {p | (p, t) ∈ F} the
preset of t, and t• = {p | (t, p) ∈ F} the postset of t . These definitions can be
extended to sets of transitions. In figures, we represent as usual places by empty
circles, transitions by squares, F by arrows, and the marking of a place p by

black tokens in p. A transition t is enabled in marking M , written M
t−→, if

∀p ∈ •t , M (p) = 1. This enabled transition can fire, resulting in a new marking

M ′ = (M \•t) ∪ t•. This firing relation is denoted by M
t−→ M ′. A marking

M is reachable from M0 if there exists a firing sequence, i.e. transitions t0 . . . tn

such that M0
t0−→ M1

t1−→ . . .
tn−→ M . The set of markings reachable from M0 is

denoted R(M0).
N is called deterministically labeled iff no two transitions with the same

label are simultaneously enabled, i.e. for all t1, t2 ∈ T and M ∈ R(M0) we have

(M
t1−→ ∧ M

t2−→ ∧ λ(t1) = λ(t2))⇒ t1 = t2. Deterministic labeling ensures
that the system behavior is locally discernible through labels, either through
distinct inputs or through observation of different outputs.

When testing reactive systems, we need to differentiate situations where the
system can still produce some outputs and those where the system cannot evolve
without an input from the environment. Such situations are captured by the
notion of quiescence [26]. A marking is said quiescent if it only enables input

transitions, i.e. M
t−→ implies t ∈ TIn.

From Automata to Nets. The translation from an automaton A = (Q,Σ,∆, q0)
to a labeled Petri net NA = (P ,T ,F , λ,M0) is immediate: (i) places are the
states of the automaton, i.e. P = Q; (ii) for every transition (si, a, s

′
i) ∈ ∆ we

add t to T and set •t = {si}, t• = {s′i} and λ(t) = a; (iii) the initial state is the
only place marked initially, i.e. M0 = {q0}.

The joint behavior of a system composed of automata A1, . . . , An is modeled
by NA1

× · · · × NAn where × represents the product of labeled nets [27] and
we only synchronize on communication transitions (which are invisible for the
environment and thus labeled by τ). As different components are deterministic
and they only share communication actions, the net obtained by this product
is deterministically labeled. Product of nets prevents the state space explosion
problem, as the number of places in the final net is linear w.r.t the number
of components while product of automata produces an exponential number of
states. Product of nets naturally allows to distinguish its components by means
of a distribution [28]. A distribution D : P ∪ T → P({1, . . . , n}) is a function
that relates each place/transition with its corresponding automata. In the case
of communication actions, the distribution relates the synchronized transition
with the automata that communicate over it.

Example 2. Fig. 3 shows the net obtained from the automata in Fig. 2 and its
distribution D represented by colors. The transition corresponding to action ?i1
corresponds to the first component, i.e. D(?i1) = {1}, while communication
between A1 and A2 is converted into a single transition τ1 with D(τ1) = {1, 2}.

q1

?i2 ?i3

q2 q3

q4

!o2

p1

?i1

p2

τ1

p3

!o1

r1

?i4

r2

τ2

r3

!o4

NA1 ×NA2 ×NA3

Fig. 3. Distributed Petri net.

Proposition 1. For every component A and its corresponding net NA we have
∀t ∈ T : |•t| = 1. In the net obtained by the product between components, this
property is only violated by communication transitions. Therefore, any input or
output event is enabled by exactly one place.

Proof. Immediate from construction. ut

3 Partial Order Semantics

The partial order semantics associated to a Petri net is given by its unfolding
where execution traces are not sequences but partial orders, in which concurrency
is represented by absence of precedence. We recall here the basic notions.

3.1 Unfoldings of Petri Nets

The unfolding of a net [13] is an acyclic (and usually infinite) structure that
represents the behavior of a system by explicit representation of its branching.
Unfolding can be expressed by event structures in the sense of Winskel et al [29].
An input/output labeled event structure (IOLES) over an alphabet L = In]Out
is a 4-tuple E = (E,≤,#, λ) where (i) E is a set of events, (ii) ≤ ⊆ E × E is a
partial order (called causality) satisfying the property of finite causes, i.e. ∀e ∈
E : |{e′ ∈ E | e′ ≤ e}| <∞, (iii) # ⊆ E×E is an irreflexive symmetric relation
(called conflict) satisfying the property of conflict heredity, i.e. ∀e, e′, e′′ ∈ E :
e # e′ ∧ e′ ≤ e′′ ⇒ e # e′′, (iv) λ : E → (In] Out) is a labeling mapping. In
addition, we assume every IOLES E has a unique minimal event ⊥E .

An event structure together with a distribution form a distributed IOLES.
In such structures, we can distinguish events of different components, i.e. Ed ,
{e ∈ E | d ∈ D(e)} for d ∈ {1, . . . , n}. Such a distinction allows to project
the unfolding onto a single component by just considering the events in Ed,
and the restrictions of ≤,# and λ to Ed. The projection of an event structure to

?i1

τ

!o1

?i2 ?i3

!o2 ?i2 ?i3

?i4

τ

!o4

?i1

τ

!o1

?i2 ?i3

!o2

.

. . .

. . .

.

UA1×A2×A3

Fig. 4. Unfolding as an event structure.

component d ∈ {1, . . . , n} is denoted by Ed. We denote the class of all distributed
input/output labeled event structures over L by IOLES(L).

Example 3. Fig. 4 shows the initial part of the unfolding of the net NA1
×NA2

×
NA3 given as a distributed event structure with its distribution represented by
colors. As usual, we represent events by rectangles, causality by arrows and direct
conflict with dashed lines. As in the case of the net in Fig. 3, communication
events belong to more than one component.

The local configuration of an event e in E is defined as [e]E , {e′ ∈ E | e′ ≤ e},
and its set of causal predecessors is 〈e〉E , [e]\{e}. Two events e, e′ ∈ E are said
to be concurrent (e co e′) iff neither e ≤ e′ nor e′ ≤ e nor e # e′ hold; e, e′ ∈ E
are in immediate conflict (e1 #µ e2) iff [e1]×[e2]∩# = {(e1, e2)}. A configuration
of an IOLES is a non-empty set C ⊆ E that is (i) causally closed, i.e. e ∈ C
implies [e] ⊆ C, and (ii) conflict-free, i.e. e ∈ C and e#e′ imply e′ 6∈ C. Note
that we define, for technical convenience, all configurations to be non-empty; the
initial configuration of E , containing only ⊥E and denoted by ⊥E , is contained
in every configuration of E . We denote the set of all configurations of E by C(E).

Unfoldings are usually represented by a subclass of Petri nets called occur-
rence nets. Occurrence nets are isomorphic to event structures [29]: one can
easily forget about places of the net by adding conflict whenever two transitions
compete for a resource, i.e. their presets intersect. Most of the notions presented
in this paper are explained in terms of event structures since they facilitate the
presentation. However, for some technical notions, we will use the occurrence
net representation. For further details about occurrence nets, see [13].

Remark 1. As shown in Proposition 1, input and output transitions are enabled
by only one place in the net of a distributed system. The same is true for the
occurrence net representing the unfolding of such a net.

Remark 2. The notion of configuration can be defined directly over occurrence
nets. Thus, in a distributed system, every configuration C generates a marking
of the form C• = {q1, . . . , qn} where each place qd represents the current state
of component Ad.

3.2 Executions

We are interested in testing distributed systems where concurrent actions occur
in different components of the system. That is, the specifications we consider do
not impose any order of execution between concurrent events. Labeled partial
orders can then be used to represent executions of such systems.

Labeled Partial Orders. A labeled partial order (lpo) is a tuple lpo = (E,≤, λ)
where E is a set of events, ≤ is a reflexive, antisymmetric, and transitive relation,
and λ : E → L is a labeling mapping to a fix alphabet L. We denote the class
of all labeled partial orders over L by LPO(L). Consider lpo1 = (E1,≤1, λ1)
and lpo2 = (E2,≤2, λ2) ∈ LPO(L). A bijective function f : E1 → E2 is an
isomorphism between lpo1 and lpo2 iff (i) ∀e, e′ ∈ E1 : e ≤1 e

′ ⇔ f(e) ≤2 f(e′)
and (ii) ∀e ∈ E1 : λ1(e) = λ2(f(e)). Two labeled partial orders lpo1 and lpo2

are isomorphic if there exists an isomorphism between them. A partially ordered
multiset (pomset) is an isomorphism class of lpos. We will represent such a class
by one of its objects. Denote the class of all non empty pomsets over L by
POMSET (L).

The observable behavior of a system can be captured by abstracting the inter-
nal actions from the executions of the system. A pomset ω is the τ -abstraction of
another pomset µ, denoted by abs(µ) = ω, iff there exist lpoµ = (Eµ,≤µ, λµ) ∈ µ
and lpoω = (Eω,≤ω, λω) ∈ ω such that Eω = {e ∈ Eµ | λµ(e) 6= τ} and ≤ω and
λω are the restrictions of ≤µ and λµ to this set. Pomsets are observations; the
observable evolution of the system is captured by the following definition:

Definition 1. For E = (E,≤,#, λ) ∈ IOLES(L), ω ∈ POMSET (L) and
C,C ′ ∈ C(E), define5

C
ω

=⇒ C ′ , ∃lpo = (Eµ,≤µ, λµ) ∈ µ : Eµ ⊆ E\C,C ′ = C ∪ Eµ,
≤ ∩ (Eµ × Eµ) = ≤µ and λ|Eµ = λµ and abs(µ) = ω

C
ω

=⇒ , ∃C ′ : C
ω

=⇒ C ′

We can now define the notions of traces and of configurations reachable from
a given configuration by an observation. Our notion of traces is similar to that
of Ulrich and König [15].

Definition 2. For E ∈ IOLES(L), ω ∈ POMSET (L), C, C ′ ∈ C(E), define

traces(E) , {ω ∈ POMSET (L) |⊥E
ω

=⇒}
C after ω , {C ′ | C ω

=⇒ C ′}
5 The notation λ|E denotes the restriction of λ to the set E.

Note that for deterministically labeled I/O Petri nets, the corresponding
IOLES is deterministic and the set of reachable configurations is a singleton.

In a distributed system, global observation of the whole system is not avail-
able in general, i.e. the system is partially observed. This partial observation is
captured by the projection of a global execution onto one of its component. As in
the case of event structures, the projection of an execution only considers events
belonging to a single component and restricts ≤ and λ to it. The projection of
an execution ω onto component Ad is denoted by ωd.

4 Testing Framework for I/O Petri Nets

4.1 Testing Hypotheses

We assume that the specification of the system under test is given as a network
of deterministic automata A1, . . . , An over alphabet L = In]Out, whose global
behavior is given by the distributed I/O Petri net N = NA1 × · · · × NAn . To
be able to test an implementation against such a specification, we make a set
of testing assumptions, the first one being usual in testing. See [17, 18] for more
details on these assumptions.

Assumption 1 The behavior of the SUT can be modeled by a distributed I/O
Petri net over alphabet L.

In order to detect outputs depending on extra inputs, we also assume that
the specification does not contain cycles of outputs actions, so that the number
of expected outputs after a given trace is finite.

Assumption 2 The net N has no cycle containing only output transitions.

Third, in order to allow the observation of both the outputs produced by
the system and the inputs it can accept, markings where conflicting inputs and
outputs are enabled should not be reachable.6 Such markings prevent from ob-
serving the inputs enabled in a given configuration, which we will see is one of
the key points of our conformance relation.

Assumption 3 The unfolding of the net N has no immediate conflict between
input and output events, i.e. ∀e1 ∈ EIn, e2 ∈ EOut : ¬(e1 #µ e2).

4.2 Conformance Relation

A formal testing framework relies on the definition of a conformance relation to
be satisfied by the SUT and its specification. Our conformance relation is defined
in terms of the inputs refused and the outputs produced by the system.

6 Gaudel et al [3] assume a similar property called IO-exclusiveness.

In partial order semantics, we need any set of outputs to be entirely produced
by the SUT before we send a new input; this is necessary to detect outputs
depending on extra inputs. For this reason we define the expected outputs from
a configuration C as the pomset of outputs leading to a quiescent configuration.
Such a configuration always exists, and must be finite by Assumption 2.

The notion of quiescence is inherited from nets, i.e. a configuration C is
quiescent iff C

ω
=⇒ implies ω ∈ POMSET (In). By abuse of notation we denote

by δ the pomset reduced to only one event labeled by δ, and assume as usual

that quiescence is observable by this pomset, i.e. C is quiescent iff C
δ

=⇒.

Definition 3. For E ∈ IOLES(L), C ∈ C(E), the outputs produced by C are

outE(C) , {!ω ∈ POMSET (Out) | C !ω
=⇒ C ′ ∧ C ′

δ
=⇒} ∪ {δ | C δ

=⇒}.

The ioco theory assumes input enabledness of the implementation [1], i.e. in
any state of the implementation, every input action is enabled. By constrast, we
do not make this assumption, which is not always realistic [2, 3], and extend our
conformance relation to consider refusals of inputs. For further discussion about
the consequences of dropping the input-enabledness assumption, see [18].

Definition 4. For E ∈ IOLES(L) and C ∈ C(E), the possible inputs in C are

possE(∅) , POMSET (In)

possE(C) , {?ω ∈ POMSET (In) | C ?ω
=⇒}

Remark 3. We intend our conformance relation to be conservative w.r.t ioco for
systems with just one component. In order to compare the possible inputs of the
specification with those of the SUT after a trace that cannot be executed in the
SUT, we define possE(∅) as the set of all possible inputs. To overcome the same
problem, Gaudel et al [3] consider only traces of the specification that can also
be executed in the implementation.

Consider a given marking C• = {q1, . . . , qn} and a configuration Cd of a
component Ad with d ∈ {1, . . . , n} such that C•d = {qd}. An event which is not
enabled in Cd cannot be enabled in C. The following result is central and will
help proving that global conformance can be achieved by local testers.

Proposition 2. Let C (Cd) be a configuration of a distributed system (of the
system component Ad) with the corresponding cut C• = {q1, . . . , qn} (C•d =
{qd}). Then:

1. if ?i 6∈ possEd(Cd), then ?i 6∈ possE(C),
2. if !o 6∈ outEd(Cd), then for all !ω ∈ outE(C) we have !ωd 6= !o.

Proof. If an input or output event is not enabled in configuration Cd, then by
Remark 1, there is no token in condition qd. This absence prohibits such an event
to be part of an execution of any larger configuration (w.r.t set inclusion). ut

Notice the distinction between possible inputs and produced outputs. When-
ever the system reaches a configuration C that enables input actions in every
component, i.e. ?id ∈ possEd(Cd) for all d ∈ {1, . . . , n}, from the global point of
view, not only ?i1 co . . . co ?in is possible for the system, but also every single
input, i.e. ?id ∈ possE(C). The same is not true for produced outputs. Consider
a system that enables output !od in component Ad, leading to a quiescent con-
figuration in Ad, i.e. !od ∈ outEd(Cd). If other components also enable outputs
actions, !od 6∈ outE(C) as the global configuration after !od is not quiescent.

Our co-ioco conformance relation for labeled event structures can be infor-
mally described as follows. The behavior of a correct co-ioco implementation
after some observations (obtained from the specification) should respect the fol-
lowing restrictions: (1) the outputs produced by the implementation should be
specified; (2) if a quiescent configuration is reached, this should also be the case
in the specification; (3) any time an input is possible in the specification, this
should also be the case in the implementation. These restrictions are formalized
by the following conformance relation.

Definition 5 ([17]). Let S and I be respectively the specification and imple-
mentation of a distributed system; then

I co-ioco S ⇔ ∀ω ∈ traces(S) :
possS(⊥ after ω) ⊆ possI(⊥ after ω)
outI(⊥ after ω) ⊆ outS(⊥ after ω)

Non conformance of the implementation is given by the absence of a given
input or an unspecified output or quiescence in a configuration of the implemen-
tation. In a distributed system, a configuration defines the local state of each
components as shown in Remark 2. Thus, non conformance of a distributed
system is due to one of the following reasons:

(NC1) An input which is possible in a state of a component in the specification
is not possible in its corresponding state in the implementation,

(NC2) A state of a component in the implementation produces an output or is
quiescent while the corresponding state of the specification does not,

(NC3) The input (resp. output) actions that the configuration is ready to ac-
cept (resp. produce) are the same in both implementation and specification,
but they do not form the same partial order, i.e. concurrency is added or
removed.

The next section shows how we can detect these situations in a distributed
testing environment.

5 Global Conformance by Distributed Testers

The co-ioco framework assumes a global view of the distributed system. In
practice this assumption may not be satisfied and we can only observe the system
partially, i.e. only the behavior of a local component in its PCO is observed. In a

distributed testing environment, we place a local tester at each PCO. In a pure
distributed testing setting, these testers cannot communicate with each other
during testing, and there is no global clock. We propose here a method allowing
to decide global conformance by the conformance of every single component.

5.1 Local Testing

The last section described the three possible reasons for which a system may not
conform to its specification. Non-conformance resulting from (NC1) and (NC2)
can be locally tested under co-ioco by transforming each component into a net.

Theorem 1. If S and I are, respectively, the specification and implementation
of a distributed system, then I co-ioco S implies that for every d ∈ {1, . . . , n},
Id co-ioco Sd.

Proof. Assume there exists d ∈ {1, . . . , n} for which ¬(Id co-ioco Sd), then
there exists σ ∈ traces(Sd) such that one of the following holds:

– There exists ?i ∈ possSd(⊥ after σ), but ?i 6∈ possId(⊥ after σ). Consider
the global trace ω = 〈?i〉S which enables ?i in S, i.e. ?i ∈ possS(⊥ after ω).
As ?i is not possible in Id, by Proposition 2 we have ?i 6∈ possI(⊥ after ω),
and therefore ¬(I co-ioco S).

– There exists !o ∈ outId(⊥ after σ) such that !o 6∈ outSd(⊥ after σ). Con-
sider the global trace ω = 〈!o〉I which enables !o in I, i.e. there exists
!ω ∈ outI(⊥ after ω) such that !ωd = !o. As !o is not enabled in Sd, by
Proposition 2 we know that !o cannot be enabled after ω in S. Therefore,
!ω 6∈ outS(⊥ after ω) and ¬(I co-ioco S).

– δ ∈ outId(⊥ after σ), while δ 6∈ outSd(⊥ after σ). Let Cd be the configu-
ration reached by component Ad of the implementation after σ and denote
C•d = {qd}. Consider ω such that it leads the implementation to a quiescent
configuration C with qd ∈ C• (such configuration always exists by Assump-
tion 2); we have δ ∈ outI(⊥ after ω). As the reached configuration in Sd
is not quiescent, it enables some output and δ 6∈ outS(⊥ after ω), therefore
¬(I co-ioco S). ut

The simplest kind of conformance relations that we can obtain in a dis-
tributed architecture are those that only consider the observation of the system
executions at each PCO without any further information. Such kind of relations
include p-dioco [8], where the local behavior need to be consistent only with
some global behavior. Stronger relations can be obtained if consistency between
local observations is considered, as in the case of dioco [8] where local behav-
iors must be projections of the same global behavior. However, even this kind
of relations do not test the dependencies between actions occurring on different
components. Relations that assume global observation are usually stronger, as
it is shown by the implication ioco ⇒ p-dioco or by the theorem above.

Example 4. Consider a component A′2 where inputs ?i2 and ?i3 are not possible
before this component synchronizes with A1 and therefore they cannot occur

q1

q2

q3q4

c12

?i3?i2

!o2 c23

A′2

τ

?i2 ?i3

!o2

τ

?i3!i2

. . .

.

UA′
2

?i1

τ

!o1 ?i2 ?i3

!o2?i1

τ

!o1 ?i3!i2

. . .

.

UA1×A′
2×A3

Fig. 5. Non conformant implementation.

before ?i1 occurs in A1. Let I = A1×A′2×A3 and S = A1×A2×A3. Component
A′2, its unfolding and the unfolding of I are shown in Fig. 5. Component A′2
conforms to A2 as every possible input and produced outputs are implemented
(only the order of synchronization events change, but those are not observable).
Therefore, I2 co-ioco S2 and clearly, as co-ioco is reflexive, I1 co-ioco S1 and
I3 co-ioco S3. In addition, the local behaviors ?i1!o1?i1!o1 and ?i2!o2?i2 from
components A1 and A′2, respectively, are projections of the same global behavior
in S, even if the causalities between components are not preserved. The co-
ioco relation preserves causalities between actions in different components: the
possible input of the specification ?i1 co ?i2 ∈ possS(⊥) is not possible in the
implementation, the actions are the same, but there is extra causality between
them, i.e. ?i1?i2 ∈ possI(⊥). We can conclude that ¬(I co-ioco S) even if every
component of the implementation conforms to the specification w.r.t co-ioco
and local behaviors are projections of the same global behavior.

5.2 Adding Time Stamps

The example above shows that global conformance cannot always be achieved
by local testers that do not communicate between themselves. This is exactly
what happens in situation (NC3). However, as components of the implementa-
tion need to synchronize, we propose to use such synchronization to interchange
some information that allows the testers to recompute the partial order between
actions in different components using vector clocks [24, 25].

We assume each component Ad has a local clock that counts the number of
interactions between itself and the environment, together with a local table of the
form [td1, . . . , t

d
n] with information about the clocks of every component (informa-

tion about other components may not be updated). Each time two components
communicate via synchronization, their local tables are updated.

We add the information about the tables to the model, i.e. events of the
unfolding are tuples representing both the actions and the current values of the

?i1[1, 0, 0]

τ[1, 1, 0]

!o1[2, 1, 0]

?i2[0, 1, 0] ?i3 [0, 1, 0]

!o2 [1, 2, 0]

?i1[3, 1, 0]

τ[3, 3, 0]

!o1[4, 3, 0]

?i2[1, 3, 0] ?i3 [1, 3, 0]

!o2 [3, 4, 0]

. . .

. . .

.

U ts
A1×A2×A3

?i1[1, 0, 0]

τ[1, 0, 0]

!o1[2, 0, 0] ?i2[1, 1, 0] ?i3 [1, 1, 0]

!o2[1, 2, 0]?i1[3, 0, 0]

τ[3, 2, 0]

!o1[4, 2, 0] ?i3 [3, 3, 0]!i2[3, 3, 0]

. . .

.

U ts
A1×A′

2×A3

Fig. 6. Part of the time stamped unfolding S and I′.

table. The unfolding structure allows to compute such tables very efficiently:
when event e occurs in Ad, the value of the clock j in the table of Ad is equal
to the number of input and outputs events from component j in the past of e,
i.e. tdj =| [e] ∩ (EInj] EOutj) |. The unfolding algorithm [13] can be modified to

consider time stamps as it is shown in Algorithm 1.7 The behavior of system E
where time stamps are considered is denoted by Ets.

Example 5. Consider the time stamped unfolding U tsA1×A2×A3
on Fig. 6. The first

occurrence of action !o1 is stamped by [2, 1, 0], meaning that it is the second
interaction with the environment in component A1, and at least there was one
interaction between the environment and component A2 before the occurrence of
!o1. The information of component A2 is propagated to the table of component
A1 after their synchronize over the first occurrence of τ .

The global trace of an execution of the system can be reconstructed from the
local traces of this execution observed in PCOs using the information provided
by time stamps.

Example 6. Consider Fig. 7 and the time stamped local traces σ1 and σ2 of the
first and second components. From event (!o2, 1, 2, 0), we know that at least one
event from the first component precedes !o2, and as ?i1 is the first action in this
component, we can add the causality (?i1, 1, 0, 0) ≤ (!o1, 1, 2, 0) as shown in the
partial order ω.

Given two time stamped LPOs ωi = (Ei,≤i, λ1) and ωj = (Ej ,≤j , λ2), their
joint causality is given by the LPO ωi + ωj = (Ei] Ej ,≤ij , λ1] λ2) where for
each pair of events e1 = (a, ti1, . . . , t

i
n) ∈ Ei and e2 ∈ Ei] Ej , we have

e2 ≤ij e1 ⇔ e2 ≤i e1 ∨ |[e2]j | ≤ tij
7 PE(B) are the events that can be added to the unfolding based on the current prefix,

see [13] for more details.

Algorithm 1 Time stamped unfolding algorithm

Require: A I/O Petri net N = (T, P, F,M0, λ) where M0 = {s1, . . . , sn} and a distri-
bution D : T ∪ P → {1, . . . , n}.

Ensure: The time stamped unfolding of N
1: B := (s0, ∅), . . . , (sk, ∅)
2: E = ∅
3: pe := PE(B)
4: while pe 6= ∅ do
5: choose an event e = (t, •t) in pe
6: for d ∈ {1, . . . , n} do
7: td(e) := |{(t′, •t′) ∈ E | D(t′) = d ∧ λ(t) 6= τ}|+ 1
8: end for
9: append to E the event e× t1(e)× · · · × tn(e)

10: for every place s in t• add to B a condition (s, e)
11: pe := PE(B);
12: end while
13: return (B,E)

In other words, e2 globally precedes e1 either if they belong to the same compo-
nent and e2 locally precedes e1 or if e2 is the kth event in component j and e1
is preceded by at least k events in component j according to time stamps.

When communication between components is asynchronous, a configuration
C is called consistent if for every sending message in C, its corresponding receive
message is also in C. Mattern [24] shows that consistent configurations have
unambiguous time stamps; hence global causality can be reconstructed from
local observations in an unique way. Under synchronous communication, the
send and receive actions are represented by the same event, and therefore every
configuration is consistent.

Proposition 3. When the communication between components is synchronous,
the partial order obtained by + is unique.

Proof. Since every configuration is consistent, the result is immediate [24]. ut

(?i1, 1, 0, 0)

(!o1, 2, 1, 0)

(?i1, 3, 1, 0)

(!o1, 4, 3, 0)

σ1

(?i2, 0, 1, 0)

(!o2, 1, 2, 0)

(?i2, 1, 3, 0)

(!o2, 3, 4, 0)

σ2

(?i1, 1, 0, 0)

(!o1, 2, 1, 0)

(?i1, 3, 1, 0)

(!o1, 4, 3, 0)

(?i2, 0, 1, 0)

(!o2, 1, 2, 0)

(?i2, 1, 3, 0)

(!o2, 3, 4, 0)

ω

Fig. 7. From local traces to partial orders using time stamps.

Non conformance coming from (NC3) can be detected by testing the time
stamped system in a distributed way.

Theorem 2. If S and I are, respectively, the specification and implementa-
tion of a distributed system, then ∀d ∈ {1, . . . , n} : Itsd co-ioco Stsd implies
I co-ioco S.

Proof. Assume Itsd co-ioco Stsd for every d ∈ {1, . . . n}. Let ω ∈ traces(S) and
consider the following situations:

– If ?ω ∈ possS(⊥ after ω), then for every d there exists a time stamped
input (?id, t

d
1, . . . , t

d
n) ∈ possStsd (⊥ after ωd) such that ?ωd = ?id and ?ω =

?i1 + · · ·+ ?in. As for all d, we have Itsd co-ioco Stsd , then (?id, t
d
1, . . . , t

d
n) ∈

possItsd (⊥ after ωd). By Proposition 3, ?ω ∈ possI(⊥ after ω).

– If !ω ∈ outI(⊥ after ω), then for every d there exists a time stamped out-
put (!od, t

d
1, . . . , t

d
n) ∈ outItsd (⊥ after ωd) such that !ωd = !od and !ω =

!o1 + · · ·+ !on. As every component of the implementation conforms to its
specification, we have (!od, t

d
1, . . . , t

d
n) ∈ outStsd (⊥ after ωd). By Proposi-

tion 3, we have !ω ∈ outS(⊥ after ω).
– If δ ∈ outI(⊥ after ω), let C be the configuration reached by the implemen-

tation after ω and denote C• = {q1, . . . , qn}. Configuration C is quiescent, so
is each configuration Cd such that C•d = {qd} and δ ∈ outItsd (⊥ after ωd).

Since Itsd co-ioco Stsd for each d, we have δ ∈ outStss (⊥ after ωd). This
implies that the local configurations of the specification do not enable any
output; by Remark 1, there is no output enabled in the global configuration
and δ ∈ outS(⊥ after ω).

These three cases allow us to conclude that I co-ioco S. ut

From a global test case to local test cases. We have shown that global confor-
mance can be achieved by distributed testers. However testers need to consider
time stamp information which cannot be computed locally. The test case gen-
eration algorithm that we proposed for concurrent systems [17] can easily be
adapted to consider the time stamped unfolding presented in this article. The
global test case obtained is a distributed IOLES and can therefore be projected
to each component to obtain a distributed test case, i.e. a set of local test cases.

?i1[1, 0, 0]

τ[1, 1, 0]

!o1[2, 1, 0]

?i2 [0, 1, 0]

!o2 [1, 2, 0]

?i3 [1, 3, 0]

T

?i1[1, 0, 0]

!o1[2, 1, 0]

?i2[0, 1, 0]

!o2[1, 2, 0]

?i3[1, 3, 0]

T1 T2

Fig. 8. Initial part of a global test case and its projections.

Example 7. Fig. 8 shows the initial part of global time stamped test case (re-
stricted to components A1 and A2) and its projections T1, T2 over those compo-
nents. These local test cases are supposed to be executed in parallel.

Consider the incorrect implementation U tsA1×A′
2×A3

. If ?i2 is sent to A2 before

?i1 in A1, the implementation refuses the input and we detect the non confor-
mance. However, as there is no interaction between T1 and T2, it can be the
case that ?i2 is always sent after ?i1 and this refusal is never detected. If this
is the case, after sending ?i1, the implementation produces !o1 with time stamp
[2, 0, 0] which is not the time stamp expected by T1. Thus, non conformance is
also detected.

We gave a sound and exhaustive test set for co-ioco [17]. The set of dis-
tributed test cases obtained by projecting global test cases of this complete test
set naturally is also complete for co-ioco by Theorem 2. Therefore, it allows to
decide global conformance w.r.t. co-ioco by distributed testing, with indepen-
dent local testers.

6 Conclusion

We presented a distributed testing framework for concurrent systems specified as
networks of automata or, equivalently, as 1-safe Petri nets. The co-ioco confor-
mance relation introduced in our previous work is put into a distributed testing
architecture, where nets are distributed, observation of the system is partial, and
global configurations are represented by the collection of local states of compo-
nents. When the implementation is equipped with local clocks, a global test case
can be constructed adapting the test generation algorithm for co-ioco for han-
dling time stamps. Global test cases can be projected into local test cases, which
allow to achieve global conformance via conformance of local components.

This approach considers synchronous communication. Future work includes
the extension to asynchronous communication not only between components,
but also between the testers and the SUT.

References

1. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence.
Software - Concepts and Tools 17(3) (1996) 103–120

2. Heerink, L., Tretmans, J.: Refusal testing for classes of transition systems with
inputs and outputs. In: FORTE. Volume 107 of IFIP Conference Proceedings.,
Chapman & Hall (1997) 23–38

3. Lestiennes, G., Gaudel, M.C.: Test de systèmes réactifs non réceptifs. Journal
Européen des Systèmes Automatisés 39(1-2-3) (2005) 255–270

4. Faivre, A., Gaston, C., Le Gall, P., Touil, A.: Test purpose concretization through
symbolic action refinement. In: TestCom. Volume 5047 of LNCS., Springer (2008)
184–199

5. Jéron, T.: Symbolic model-based test selection. ENTCS 240 (2009) 167–184

6. Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Formal
Methods in System Design 34(3) (2009) 238–304

7. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.:
Testing real-time systems using UPPAAL. In: Formal Methods and Testing. Vol-
ume 4949 of LNCS., Springer (2008) 77–117

8. Hierons, R.M., Merayo, M.G., Núñez, M.: Implementation relations for the dis-
tributed test architecture. In: TestCom. Volume 5047 of LNCS., Springer (2008)
200–215

9. Hennessy, M.: Algebraic Theory of Processes. MIT Press (1988)
10. Peleska, J., Siegel, M.: From testing theory to test driver implementation. In:

FME. (1996) 538–556
11. Schneider, S.: Concurrent and Real Time Systems: The CSP Approach. 1st edn.

John Wiley & Sons, Inc., New York, NY, USA (1999)
12. McMillan, K.L.: A technique of state space search based on unfolding. Formal

Methods in System Design 6(1) (1995) 45–65
13. Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding

algorithm. In: TACAS. Volume 1055 of LNCS., Springer (1996) 87–106
14. Jard, C.: Synthesis of distributed testers from true-concurrency models of reactive

systems. Information & Software Technology 45(12) (2003) 805–814
15. Ulrich, A., König, H.: Specification-based testing of concurrent systems. In:

FORTE. Volume 107 of IFIP Conf. Proc., Chapman & Hall (1998) 7–22
16. Ponce de León, H., Haar, S., Longuet, D.: Conformance relations for labeled event

structures. In: Tests and Proofs. Volume 7305 of LNCS., Springer (2012) 83–98
17. Ponce de León, H., Haar, S., Longuet, D.: Unfolding-based test selection for con-

current conformance. In: ICTSS. Volume 8254 of LNCS., Springer (2013) 98–113
18. Ponce de León, H., Haar, S., Longuet, D.: Model based testing for concurrent

systems with labeled event structures. http://hal.inria.fr/hal-00796006 (2012)
19. Bhateja, P., Gastin, P., Mukund, M., Kumar, K.N.: Local testing of message

sequence charts is difficult. In: FCT. Volume 4639 of LNCS. (2007) 76–87
20. Longuet, D.: Global and local testing from message sequence charts. In: SAC,

Software Verification and Testing track, ACM (2012) 1332–1338
21. Jard, C., Jéron, T., Kahlouche, H., Viho, C.: Towards automatic distribution

of testers for distributed conformance testing. In: FORTE. Volume 135 of IFIP
Conference Proceedings., Kluwer (1998) 353–368

22. Bhateja, P., Mukund, M.: Tagging make local testing of message-passing systems
feasible. In: SEFM, IEEE Computer Society (2008) 171–180

23. Hierons, R.M., Merayo, M.G., Núñez, M.: Using time to add order to distributed
testing. In: FM. Volume 7436 of LNCS. (2012) 232–246

24. Mattern, F.: Virtual time and global states of distributed systems. In: Parallel
and Distributed Algorithms, North-Holland (1989) 215–226

25. Fidge, C.J.: Timestamps in Message-Passing Systems that Preserve the Partial
Ordering. In: 11th Australian Computer Science Conference, University of Queens-
land, Australia (1988) 55–66

26. Segala, R.: Quiescence, fairness, testing, and the notion of implementation. Infor-
mation and Computation 138(2) (1997) 194–210

27. Winskel, G.: Petri nets, morphisms and compositionality. In: Applications and
Theory in Petri Nets. (1985) 453–477

28. van Glabbeek, R.J., Goltz, U., Schicke-Uffmann, J.W.: On distributability of Petri
nets - (extended abstract). In: FoSSaCS. Volume 7213 of LNCS. (2012) 331–345

29. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains,
part I. Theoretical Computer Science 13 (1981) 85–108

