
Untimed Language Preservation in Timed
Systems ?

Ocan Sankur

LSV, CNRS & ENS Cachan, France
sankur@lsv.ens-cachan.fr

Abstract. Timed automata are a model that is extensively used in for-
mal verification of real-time systems. However, their mathematical se-
mantics is an idealization which assumes perfectly precise clocks, but
does not correspond to real hardware. In fact, it is known that impreci-
sions, however small they may be, may yield extra behaviours. Several
works concentrated on a relaxation of the semantics of timed automata
to model the imprecisions of the clocks. Algorithms were given, first for
safety, then for richer linear-time properties, to decide the robustness of
timed systems, that is, the existence of a bound on the imprecisions un-
der which the system satisfies a given property. In this work, we study
a stronger notion of robustness: we show how to decide whether the un-
timed language of a timed automaton is preserved under small enough
imprecisions, and provide a bound on the imprecision parameter.

1 Introduction

Timed automata [2] are a well established model in real-time systems design.
These allow the modeling, model-checking and synthesis of systems with tim-
ing constraints, and several mature tools are today available. Implementing such
mathematical models on physical machines is an important step in practical ver-
ification, and it is a challenging problem in timed systems. In fact, it is known
that perturbations on clocks, however small they may be, can lead to a dif-
ferent semantics than the mathematical semantics in timed automata [15,11]
(see Fig. 1 below). One way of modelling these perturbations is to enlarge all the
guards, that is to transform any timing constraint of the form “x ∈ [a, b]” into
“x ∈ [a − ∆, b + ∆]” for some parameter ∆ > 0. In fact, the resulting seman-
tics is an overapproximation of a concrete implementation semantics, called the
program semantics studied in [12], which corresponds to the execution of timed
automata by a simple microprocessor with a digital clock. An important problem
is then to determine whether a given timed automaton is implementable, that
is, whether its implementation is correct with respect to a given property, in a
fast enough hardware. For this purpose, robust model-checking, which asks for
the existence of a parameter ∆ under which the resulting enlarged semantics is

? This work has been partly supported by projects DOTS (ANR-06-SETI-003) and
ImpRo (ANR-10-BLAN-0317)

correct, was proven decidable for safety properties [15,11] and for richer linear-
time properties [8,9]. If robust model-checking succeeds, then the given timed
automaton is implementable in a fast enough hardware in the sense of [12].

In this work, we study a stronger notion of robustness which requires un-
timed language equivalence between the original and the enlarged automaton
for some value of the parameter ∆. We call such timed automata language ro-
bust. In particular, if a timed automaton is language robust, then any (untimed)
language based property (such as linear-time properties) proven for JAK will be
preserved in JA∆K for small enough ∆, hence also in the program semantics
mentioned above. We show that language robustness is decidable in EXPSPACE
for general timed automata, and we identify a class for which it can be decided
in PSPACE. Note that the high complexity of our algorithm in the general case is
not surprising, since deciding untimed language inclusion for timed automata is
already EXPSPACE-complete [10]. In order to establish our results, we revisit the
results of [11] and generalize these to a more general setting, taking into account
the untimed languages (Section 4). Then, we prove a Ramsey-like combinatorial
theorem on directed paths, which has an independent interest (Section 5). The
proof of the main result (Section 6) combines these independent results.

Related work A closely related line of work considers clock drifts, where clocks
can have different rates [15,12,11,3,13] (this is equivalent to enlargement under
some assumptions [11]). A solution based on modelling the perturbations using
timed automata was suggested in [1], but their approach suffer from the fact
that the verification results obtained in some platform may not hold in a faster
(or more precise) platform (this holds in our setting, see Subsection 2.3). Other
notions of robustness have been investigated, mainly to remove “isolated” or
“unlikely” behaviours using topological and probabilistic methods (e.g. [14,5]),
but these do not make the link with physical implementations.

2 Preliminaries

2.1 Timed Automata

A labelled timed transition system (LTTS) is a tuple (S, s0, Σ,→), where S is
the set of states, s0 ∈ S the initial state, Σ a finite alphabet, and → ⊆ S× (Σ ∪
R≥0)× S the transition relation.

Given a finite set of clocks C, we call valuations the elements of RC≥0. For a
subset R ⊆ C and a valuation v, we write v[R← 0] for the valuation defined by
v[R← 0](x) = v(x) for x ∈ C\R and v[R← 0](x) = 0 for x ∈ R. Given d ∈ R≥0,
the valuation v + d is defined by (v + d)(x) = v(x) + d for all x ∈ C. We extend
these operations to sets of valuations in the obvious way. For two valuations u
and v, we let d∞(u, v) = maxx∈C |u(x)− v(x)|.

Given a clock set C, a guard is a formula generated by the grammar ΦC ::=
k ≤ x | x ≤ k | ΦC ∧ ΦC , where k ranges over Q≥0 and x over C. We define
the enlargement of a guard by ∆ ∈ Q≥0 as 〈k ≤ x〉∆ = k − ∆ ≤ x, and

〈x ≤ k〉∆ = x ≤ k+∆, for x, y ∈ C and k ∈ Q≥0. The enlargement of a guard g,
denoted by 〈g〉∆, is obtained by enlarging all atomic formulas.

A valuation v satisfies a guard g, denoted v |= g, if all formulas are satisfied
when each x ∈ C is replaced by v(x).

Definition 1. A timed automaton A is a tuple (L, C, Σ, l0, E), consisting of
finite sets L of locations, C of clocks, Σ of labels, E ⊆ L×ΦC ×Σ× 2C ×L of
edges, and l0 ∈ L, the initial location. An edge e = (l, g, σ,R, l′) is also written

as l
g,σ,R−−−→ l′, where g is called the guard of e.

A timed automaton A is integral if all constants that appear in its guards
are integers. For any ∆ ∈ Q≥0, A∆ will denote the timed automaton where all
guards are enlarged by ∆. We will refer to finite automata with no clocks as
untimed automata.

Definition 2. The semantics of a timed automaton A = (L, l0, C, Σ,E) is an
LTTS denoted by JAK, over alphabet Σ, whose state space is L×RC≥0. The initial
state is (l0,0), where 0 denotes the valuation where all clocks have value 0.

Transitions are defined as (l, v)
τ−→ (l, v + τ) for any state (l, v) and τ ≥ 0,

(l, v)
σ−→ (l′, v′), for any edge l

g,σ,R−−−→ l′ in A such that v |= g and v′ = v[R← 0].

A run of JAK is a finite or infinite sequence ρ = (qi, τi, σi)i≥0 where qi is a state

of JAK, τi ∈ R≥0 and σi ∈ Σ, such that for each i ≥ 0, qi
τi−→ q′i

σi−→ qi+1 for some
state q′i. A run is initialized if q0 = (l0,0). A trace is a word in Σ∗ ∪Σω. We say
that the above run ρ follows the trace σ0σ1 . . ., which is denoted by tr(ρ). We
define (ρ)i = qi, the i-th state of ρ, and first(ρ) = q0 its first state. If ρ is finite,
then we denote by last(ρ) its last state. We denote by ρi...j the run defined by ρ
between states of indices i and j. Let L(JAK) denote the set of (untimed) traces
of the initialized finite and infinite runs of JAK. For any state q of JAK, L(JAK, q)
will denote the traces of the runs that start at q. The length of a finite run ρ is
the length of its trace, and is denoted by |ρ|.

`0 `1 `2 `3
a,x=1

y:=0

y≥2,y:=0
a

x≤2,x:=0
b

x=0∧y=2
c

Fig. 1. The following is an example run of the above automaton: (`0, 0, 0)
1−→

(`1, 1, 1)
a−→ (`1, 1, 0)

0.9−−→ (`1, 1.9, 0.9)
b−→ (`2, 0, 0.9)

1.4−−→ (`2, 1.4, 2.3)
a−→ (`1, 1.4, 0).

It can be seen that location `3 is not reachable in the runs of JAK. In fact, L(JAK) =
(ab)∗ + (ab)∗a+ (ab)ω. See [15].

We define the usual notion of regions and region automaton [2]. Consider an
integral timed automaton A with clock set C. Let K be the largest constant that

appears in its guards. For any (l, u), (l′, v) ∈ L × RC≥0, we let (l, u) ' (l, v) if,
and only if, l = l′ and

either bu(x)c = bv(x)c or u(x), v(x) > K, ∀x ∈ C,
and frac(u(x)) = 0 ⇐⇒ frac(v(x)) = 0, ∀x ∈ C,
and frac(u(x)) < frac(u(y)) ⇐⇒ frac(v(x)) < frac(v(y)), ∀x, y ∈ C,

where frac(·) denotes the fractional part. The equivalence class of a state (l, v)
for the relation ' is denoted by reg((l, v)) = {(l, u) | (l, u) ' (l, v)}, and called
a region of A. Note that our definition of regions includes locations. It is known
that ' has finite index [2]. For any region r, let r denote its topological closure.
A region is bounded if it is a bounded subset of L×RC≥0. One can associate to A,
a finite (untimed) automaton R(A), called the region automaton, whose states
are the regions of A, and which has an edge of label σ ∈ Σ from region r to r′

whenever q
d−→ q′′

σ−→ q′ in JAK for some d ≥ 0 and q ∈ r and q′ ∈ r′. A path
of R(A) is a sequence π = (ri, σi)i≥0 where ri is a region and σi ∈ Σ, such that
for each i ≥ 0, R(A) has an edge from ri to ri+1 with label σi. The i-th state of
path π is denoted by (π)i. Path π is initialized if r0 = reg((l0,0)). The trace of π
is the word σ0σ1 . . ., which is denoted by tr(π). The set of traces of the finite or
infinite paths of R(A) is denoted by L(R(A)). A finite path π = (ri, σi)0≤i≤n
is a cycle if r0 = rn. A run ρ = (qi, τi, σi)i≥0 of JAK follows a path (ri, σ

′
i)i≥0

of R(A) if qi ∈ ri and σi = σ′i for all i ≥ 0. It is known that for any path π of
R(A), there is a run of JAK that follows π, starting from any state in first(π)
and conversely. In particular, L(R(A)) = L(JAK) [2].

2.2 Restrictions on Timed Automata

Following [11,15], we defined timed automata with closed and rectangular guards
(that is, we do not have diagonal constraints such as k ≤ x − y ≤ l). We also
assume that all clocks are bounded above by some constant M . Considering
closed guards is natural in our setting, since we are interested in the behaviour
of the systems under positive enlargement. Assuming rectangular guards and
bounded clocks is not restrictive in terms of expressiveness, but has an effect
on the size of the models ([7]). As in [11,15,4], the only real restriction is the
following. We consider timed automata where all clocks are reset at least once
along any cycle of the region automaton; these are called progress cycles. A
sufficient condition for a timed automaton to have only progress cycles is that
any cycle of the underlying finite automaton resets all clocks at least once ([4]).

Although we prove our results for general timed automata with progress
cycles, we also identify a subclass for which we improve the complexity of the
problem we study. We call a timed automaton concise if its region automaton is
deterministic (that is, from all states of the region automaton, there is at most
one outgoing edge per label)1.

1 It would actually suffice to define conciseness by requiring that all states that satisfy
the guards of edges with the same label to be language-equivalent (that the same

2.3 Robustness

By definition of the enlargement, we have L(JA∆K) ⊆ L(JA∆′K) for any ∆ ≤ ∆′,
and in particular L(JAK) ⊆ L(JA∆K) for any ∆ ≥ 0. We are interested in the
inverse inclusion, which does not always hold as we also noted in the introduction.
In fact, if A denotes the timed automaton given in Figure 1, then for any ∆ > 0,
all long enough words in (ab)∗c belong to L(JA∆K) but not to L(JAK) ([11]). (In
fact location `3 is reachable in JA∆K iff ∆ = 0). Intuitively, this is due to the
fact that at each cycle ab, the imprecisions can add up in JA∆K, and the values
of the clocks can deviate from what they can normally be in JAK.

Definition 3 (Language-robustness). A timed automaton A is language-
robust if there exists ∆ > 0 such that L(JAK) = L(JA∆K).

Informally, A is language-robust if JA∆K has no extra behaviour than JAK for
some ∆ > 0, in terms of untimed language. Observe that whenever L(JA∆K) ⊆
L(JAK), we also have L(JA∆′K) ⊆ L(JAK) for any ∆′ < ∆. This is a desirable
property, called “faster is better” [12,1], which means that once we prove the
correctness of the system for some ∆, it remains correct on any faster platform.

3 Main Result

Theorem 1. Let A be any timed automaton with progress cycles, and W the
size of its region automaton. Let K = W if A is concise, and K = 2W otherwise,
and fix any N0 ≥ 15 ·W · |C|2 · 2(|C|+1)2 · (K + 1)2. Then, there exists ∆ > 0 such
that L(JA∆K) = L(JAK) if and only if L(JA 1

N0

K) = L(JAK).

Our main result, that is, the decidability of language-robustness is a di-
rect corollary of the previous theorem. In fact, A 1

N0

can be transformed into

a (language-)equivalent integral automaton by multiplying all constants by N0.
We will denote by R(A 1

N0

) the region automaton of the corresponding integral

timed automaton. We can then check whether R(A 1
N0

) and R(A) recognize the

same untimed language. We obtain the following complexity results.

Corollary 1. For concise timed automata with progress cycles, language robust-
ness can be decided in PSPACE. For general timed automata with progress cycles,
language robustness can be decided in EXPSPACE. 2

Proof. Consider a concise timed automaton A, and let R(A) denote its region
automaton. Let R(A)c denote the complement of R(A), which is not bigger than
R(A) by hypothesis. Then, one can decide whether L(A 1

N0

) ∩ L(R(A)c) 6= ∅ in

untimed language is recognized). In fact, in this case, the region automaton can be
made deterministic by leaving one (arbitrary) edge per label at each state.

2 Note that in the original paper in MFCS 2011, the EXPSPACE result was stated
in this corollary as 2EXPTIME, with an incorrect proof. The present proof is the
corrected version.

polynomial space. In fact, the states of both R(A 1
N0

) and R(A)c can be encoded

in polynomial space (for 1
N0

given by the theorem for concise A). Then, the
usual non-deterministic procedure (e.g. [2]) that guesses an accepting path in
the product of these can be carried out in polynomial space.

For general timed automata, we describe a non-deterministic exponential
space algorithm to decide L(R(A 1

N0

)) 6⊆ L(R(A)). Observe that R(A) can be

complemented using the subset construction, and that each state in the com-
plemented automaton has exponential size (since there are exponentially many
regions). Let us call the deterministic complement automaton R(A)c. The algo-
rithm consists in guessing a path in R(A 1

N0

) while, in parallel, simulating the

path inR(A)c. This can be done in exponential space since a state ofR(A 1
N0

) can

be represented in exponential space. The algorithm accepts if the simulating set
becomes empty, and otherwise rejects after a doubly exponential number of steps.
In fact, L(R(A 1

N0

)) 6⊆ L(R(A)) is equivalent to L(R(A 1
N0

)) ∩ L(R(A)c) 6= ∅,
and in this case, the intersection contains a word of size at most doubly ex-
ponential, since the product automaton has this size. Consider now the gen-
eral case. We give a non-deterministic exponential space algorithm to decide
L(R(A 1

N0

)) 6⊆ L(R(A)). Observe that R(A) can be complemented using the

subset construction, and that each state in the complemented automaton has
exponential size (since there are exponentially many regions). Let us call the com-
plement automatonR(A)c. The algorithm consists in guessing a path inR(A 1

N0

)

while, in parallel, simulating the same path in the (deterministic) automaton
R(A)c. This can be done in exponential space since a state of R(A 1

N0

) can be

represented in exponential space. The algorithm accepts if the simulating set be-
comes empty, and otherwise rejects after a doubly exponential number of steps.
In fact, L(R(A 1

N0

)) 6⊆ L(R(A)) is equivalent to L(R(A 1
N0

)) ∩ L(R(A)c) 6= ∅,
but then this intersection contains a word of size at most doubly exponential,
since the product automaton has this size. ut

In the rest of this paper, we present the proof of Theorem 1. We start with
a study of the properties of enlarged timed automata (Section 4), and some
combinatorial results (Section 5), then give the proof (Section 6).

4 Properties of the Semantics Under Enlargement

Let us fix a timed automaton A with C > 0 clocks. We start with the following
result, which is a direct corollary of Lemma 3.14 we proved in [17]. It states that
for any ∆ > 0, the trace of any run of JA∆K of length less then O(b 1

∆c) can
be followed in R(A) too. An immediate implication is that if the length of the
runs are fixed a priori, then a small enough enlargement has no effect on the
behaviour of timed automata (in terms of untimed language). Figure 2 illustrates
the construction of the following lemma.

Lemma 1 ([17]). Fix any n ∈ N and ∆ > 0 such that ∆ ≤ 1
5nC2 . Let ρ be

any run of JA∆K. Then, for all 1 ≤ i0 ≤ |ρ|, there exists a region, denoted

by H(ρ, i0, n), included in reg((ρ)i0), such that for all regions r ⊆ H(ρ, i0, n),
there is a path π of R(A) over the trace tr(ρi0...min(i0+n,|ρ|)), with (π)1 = r and

(π)j ∩H(ρ, i0 + j − 1, n) 6= ∅ for all 1 ≤ j ≤ |π|.

We are now interested in “long” or infinite runs. In [11], it is shown that
for some timed automaton A (e.g. the one in Fig. 1) some regions that are not
reachable in JAK become entirely reachable in JA∆K, for any ∆ > 0 (See also [15]
for a similar analysis under clock drifts). An analysis of the behaviour of JA∆K
shows that this is due to the accumulation of the “error” of ∆ along some cycles
of the region automaton. They give a characterization of those cycles of R(A)
which cause this behaviour and get a decision procedure for safety properties. In
this section, we revisit the analysis of the cycles of R(A) under enlargement, and
prove the same results in a slightly more general setting. Roughly, we show that,
the states that are reachable in JA∆K by repeating a single cycle are also reach-
able by repeating particular sets of cycles in any order. Our proofs follow [11].

A state whose valuation has integer components is called a vertex. For any
region r, we denote by V (r) the set of vertices of r. Given a cycle π from a
region r, we define the relation ν(π) ⊆ V (r)× V (r), the vertex map of π, where
(q, q′) ∈ ν(π) if and only if there is a run in JAK, from q to q′ following π.

H(ρ, 1, n)

(ρ)1

H(ρ, j, n)

(ρ)j

ρ′

π

Fig. 2. A run ρ of JA∆K. The leftmost tri-
angle represents reg((ρ)1), and the right-
most one reg((ρ)j) (their corners, edges
and interiors are subregions). By Lemma 1,
there is a region H(ρ, 1, n) such that start-
ing from any region in H(ρ, 1, n), one can
construct a path π of length n (the red
dashed curve) such that (π)j intersects
H(ρ, j, n) for all j.

Note that for all q ∈ V (r), there
exists at least one q′ ∈ V (r) such
that (q, q′) ∈ ν(π), and q′′ ∈ V (r)
such that (q′′, q) ∈ ν(π) by the well-
known properties of regions ([11]).
Two cycles π1 and π2 are equivalent
if first(π1) = first(π2) and ν(π1) =
ν(π2). Let π be a cycle of R(A) start-
ing at some region r. For any k >
0, we let Vπ,k = {q ∈ V (r) |
(q, q) ∈ ν(π)k}. This is the set
of vertices q ∈ first(π) for which
there are runs following πk that start
and end at q. We define the con-
vex hull of the union of these sets
as Lπ = convex-hull(

⋃
k>0 Vπ,k). It is

clear from the definition of Lπ that
Lπ = Lπ′ for any equivalent cycles π
and π′. The main result of this sec-
tion is the following lemma, which generalizes Theorem 23 in [11] (see also
Lemma 7.10 in [15]).

Lemma 2. Let π1, . . . , πp be equivalent cycles of R(A) that start in region r,
and consider any ∆ > 0. Then, there exists k > 0 such that for any q, q′ ∈ r,
and any word w ∈ {π1, . . . , πp}k there is a run in JA∆K from q to q′ on word w.

To prove this lemma, we first show that Lπ1
is backward and forward reach-

able in JAK, from any point of r, by iterating at least C times any of the equiv-

alent cycles in any order (Lemma 5), and that any pair of points in Lπ1
can be

connected by a run of JA∆K, again by iterating these cycles (Lemma 7).
A natural property of runs of timed automata is that convex combinations

of two runs yield a run over the same word, as shown in the following lemma.
We denote λ(l, v) = (l, λv) where λ ∈ R≥0, v is a valuation and l a location.

Lemma 3 ([11, Lemma 24], and [15, Lemma 7.1]). Let π be a path in R(A),
and let ρ and ρ′ be runs in JAK that follow π. Then for all λ ∈ [0, 1], there ex-
ists a run ρ′′ of JAK following π, such that (ρ′′)i = λ(ρ)i + (1 − λ)(ρ′)i for all
1 ≤ i ≤ n. ut

The following proposition provides a bound on the number of vertices of
regions. It also implies that from each region, there is a finite number of cycles
with pairwise distinct vertex maps. Remember that all clocks are bounded above
by some constant, so we only need to consider bounded regions.

Lemma 4 ([11, Lemma 14]). Any bounded region has at most C+1 vertices.
Any point u ∈ RC≥0 is a convex combination of the vertices of reg(u). ut

The following lemma states that, Lπ is backward and forward reachable from
any state of first(π), by repeating at least C times cycles equivalent to π.

Lemma 5. Let π1, . . . , πp be equivalent cycles of R(A), that all start in region
state r, and fix any q ∈ r. Then, for any k ≥ C and any path w ∈ {π1, . . . , πp}k,
there exists q1, q2 ∈ Lπ1

and runs ρ1 and ρ2 of JAK that follow w, such that
first(ρ1) = q and last(ρ1) = q1; and first(ρ2) = q2 and last(ρ2) = q.

Proof. We first prove the statement when q is a vertex. As we already noted
above, for all v ∈ V (r), there exists at least one v′ ∈ V (r) such that (v, v′) ∈
ν(π1), and the number of vertices is at most C+1 by Lemma 4, so by repeating C
times any cycles among π1, . . . , πp, we get a sequence of vertices v1, . . . , vC+1

such that (vi, vi+1) ∈ ν(π1). But then, vi = vj for some i < j, thus we have
vi, vi+1, . . . , vj ∈ Lπ1

. Now, we can extend the sequence v1 . . . vj to k vertices by
repeating the cycle vivi+1 . . . vj . Clearly, this run can be constructed following
any path w since πi’s are equivalent.

Consider now an arbitrary point q in r. By Lemma 4, q can be written as a
convex combination of the vertices of r. Let v1, . . . , vm denote the vertices of r,
and λ1, . . . , λm ≥ 0 be such that λ1 + . . .+ λm = 1 and q = λ1v1 + . . .+ λmvm.
As we showed above, for any vi, there is a run in JAK that follows w, from vi to
some vertex v′i ∈ Lπ1 . Lemma 3 yields the desired run. ut

Lemma 6. Let π1, . . . , πp be equivalent cycles in R(A). Then there exists m > 0
such that for all paths w ∈ {π1, . . . , πp}m, and for all q ∈ Lπ1

, there is a run ρ
in JAK from q to q, following w.

Proof. By definition of Lπ1 , any z ∈ Lπ1 is a convex combination of a set of
vertices vi in Lπ1

. But, for any vertex vi ∈ Lπ1
, there exists mi > 0 such that

(vi, vi) ∈ ν(π1)mi . So, there exists m > 0 such that (vi, vi) ∈ ν(π1)m for all
1 ≤ i ≤ k. Now, the convex combination of these runs yield the desired run
from q to q, by Lemma 3. ut

The following lemma shows that any pair of states in Lπ can be connected
by a run in JA∆K.

Lemma 7 ([11, Lemma 29]). Let π be a cycle of R(A) that starts in region r
and let q ∈ Lπ ∩ r. Then for any ∆ > 0, and any q′ ∈ r such that d∞(q, q′) ≤ ∆

2 ,
there is a run, in JA∆K, from q to q′ following π. ut

Proof (of Lemma 2). By Lemma 5, repeating at least C times the cycles π1, . . . , πp
suffices to reach some point q1 ∈ Lπ1

. The same lemma provides a point q2 ∈ Lπ1

which is backward reachable from q′ by repeating C times any of these cycles.
It follows from the definition of regions that for any pair of points q1, q2 that
belong to a same region, one can find points q1 = u0, u1, . . . , uN = q2 in r where
N = d 1

∆e such that d∞(ui, ui+1) ≤ ∆
2 for all 0 ≤ i ≤ N − 1. Let m > 0 be the

bound provided by Lemma 6. Now, q2 can be reached from q1, by a run over any
word {π1, . . . , πp}mN by Lemma 7 (applied N times to pairs (ui, ui+1)). ut

5 Some Combinatorial Tools

In this section, we prove a Ramsey-like theorem for colored directed paths, which
gives a lower bound on the length of monochromatic subpaths contained in
these (Subsection 5.1). This improves, by an exponential, the result provided by
a direct application of Ramsey’s theorem [16]. In Subsection 5.2, we give a simple
property on untimed finite automata accepting ultimately universal languages.

5.1 A Ramsey-like Theorem for Directed Paths

A directed graph is a pair G = (V,E) where V is a finite set of nodes and
E ⊆ V × V , is the set of edges. A graph G is complete if for all i, j ∈ V either
(i, j) ∈ E or (j, i) ∈ E. A graph is a linearly-ordered complete graph, if for some
(strict) linear order ≺ on V , (i, j) ∈ E iff i ≺ j. The degree of a node v is
d(v) = |{u | (v, u) ∈ E or (u, v) ∈ E}|. Two nodes u and v are connected in
the graph G if there exists a sequence u = s0, s1, . . . , sk = v of nodes such that
(si, si+1) ∈ E or (si+1, si) ∈ E for all 0 ≤ i ≤ k − 1. A graph is connected if all
its nodes are connected. A subgraph of G = (V,E) is a graph (V ′, E′) such that
V ′ ⊆ V and E′ ⊆ E. A connected component is a maximal connected subgraph.
A directed path of G is a sequence of nodes v1, . . . , vn such that (vi, vi+1) ∈ E
for all 1 ≤ i ≤ n− 1, and its length is n. A r-coloring of a graph G = (V,E) is a
function E → {1, . . . , r} that associates to each edge a color from {1, . . . , r}. A
path is monochromatic if all its edges are assigned the same color.

Our result is based on the following theorem from [6].

Theorem 2 ([6]). Let G be a connected directed graph over n nodes such that,
for some h, every node v satisfies d(v) ≥ h. Then G contains a directed path of
length min(n, h+ 1). ut

The main result of this subsection is the following theorem.

Theorem 3. Let G = (V,E) be a linearly-ordered complete graph over n nodes
given with an r-coloring of its edges. Then G contains a monochromatic directed
path of length b

√
n/r − 2c − 1.

Proof. Fix h = b
√
n/r − 2c − 1. For each 1 ≤ i ≤ r, define subgraph Gi which

contains exactly the edges colored by i. Then, for each Gi, define G′i by removing
any node v (and any edge containing v) whose degree in Gi is less than h. In
G′i, any node has either none or at least h edges of color i. Let G′ be the union
of all G′i’s. To define G′, we remove at most (h − 1)rn edges (h − 1 edges per
color and node). Thus, G′ has at least

(
n
2

)
− (h − 1)rn edges. Then, one of

the G′i’s has at least
(
n
2

)
/r − (h − 1)n edges, say G′i0 . We show that G′i0 has

a connected component C with at least
√

(n− 1)/r − 2(h− 1) nodes. In fact,
consider a graph with N nodes and M edges. Let K denote the number of
nodes of the largest connected component. Since there are at most N connected
components, each of them containing at most

(
K
2

)
edges, we get that M ≤ N

(
K
2

)
,

which implies
√

2M/N ≤ K. Applying this to G′i0 , we get the desired connected
component C. Now, by construction of G′i0 , all nodes of C have degree at least
h in C (in fact, by maximality, all edges of G′i0 adjacent to the nodes of C are
also included in C). Then, by Theorem 2, C contains a directed path of length
at least min(

√
(n− 1)/r − 2(h− 1), h). But the first term of the min is greater

than or equal to h by the choice of h. So, there is a directed path of length at
least b

√
n/r − 2c − 1 in G′i0 , and this is a monochromatic path in G. ut

5.2 Ultimately Universal Languages

Let Σ denote a finite alphabet. We call a regular language L ⊆ Σ∗ ultimately
universal if there exists k ≥ 0 such that

⋃
l≥kΣ

l ⊆ L.

Lemma 8. Let L be an ultimately universal language recognized by a determin-
istic untimed automaton with n locations. Then

⋃
l≥n−1Σ

l ⊆ L.

6 Proof of the theorem

Fix any timed automaton A with C ≥ 1 clocks. Let W denote the number
of regions of A. Let D denote a deterministic untimed automaton such that
L(D) = L(R(A)) (say, obtained by minimization), and letK denote the size ofD,

which is at most 2W (K ≤W ifA is concise). We letM = 2(C+1)2
(
(K + 1)2 + 2

)
,

n ≥WM and fix any ∆0 ≤ 1
5nC2 . The theorem states that if L(JAK) = L(JA∆K)

for some ∆ > 0, then L(JAK) = L(JA∆0
K). The only interesting case is when ∆ <

∆0 since otherwise L(JAK) ⊆ L(JA∆0
K) ⊆ L(JA∆K) and the theorem follows. So

let us suppose that L(JAK) = L(JA∆K) for some ∆ < ∆0. Let ρ be a run of
JA∆0K. We will show that tr(ρ) ∈ L(D) = L(JAK), which will prove the theorem.

Lemma 9. Any path π of R(A) of length at least n can be factorized as π =
π1τ1τ2 . . . τK−1π2 where π1, π2 are paths, and τi’s are equivalent cycles.

A∆0 : ρ
1 αi αi+1

D : γ
αi1

A∆ : ρ′

1 βi

π1 τ1 τ2 . . . τK-1

(ρ′)βi+1

(γ)αi+1

π1 τ1 τ2 . . . τK-1

Fig. 3. An induction step in the proof of Theorem 1. First, ρ′ is extended following
path π1τ1τ2 . . . (shown in red dashed line), and for any long enough repetition of
cycles τ1, . . . , τK , H(ρ, αi+1, n) (shown in pink filled circle) can be reached. Then, γ is
extended to (γ)αi+1 (shown in green loosely dotted line).

Proof. Since n ≥ W ·M , by the Pigeon-hole principle, π contains a factor t =
t1 . . . tM such that first(t1) = first(tj) for all j. We apply Theorem 3 to get a
further factorization of t. Consider a directed graph of the usual linear order
< over {1, . . . ,M}. To each edge (j, k) of the graph, where j < k, we assign
as color, the vertex map ν(tjtj+1 . . . tk). The number of colors is then bounded

by 2(C+1)2 . Applying Theorem 3, we get that t contains a factor τ1 . . . τK−1,
where τ1 = tj1tj1+1 . . . tj2 , τ2 = tj2tj2+1 . . . tj3 , . . . , τK−1 = tjK−1

. . . tjK , for some
j1 < j2 < . . . < jK , such that ν(τ1) = ν(τj) for all 1 ≤ j ≤ K. ut

Lemma 10. Let π = π1τ1τ2 . . . τK−1π2 be a path of R(A) where π1 and π2 are
paths and τi’s are equivalent cycles. Then, there exists k0 > 0 such that for all
q ∈ first(π), q′ ∈ last(τK−1), k ≥ k0, and any word w ∈ tr(π1) · (tr(τ1) + . . . +
tr(τK−1))k, there is a run ρ′ of JA∆K over w with first(ρ) = q and last(ρ) = q′.

The previous lemma follows from Lemma 7. We are now ready to prove our
main theorem. The reader may follow the proof in Figure 3.

Proof (of Theorem 1). Consider ρ and the constants as defined above, and notice
that ∆0 ≤ 1

N0
. Let H(ρ, i, n) be the regions given by Lemma 1 for all i ≥ 0. We

will inductively construct the desired run γ of D with tr(γ) = tr(ρ). At step i
of the induction, we will define γαi...αi+1

for some increasing sequence (αi)i≥0
with α0 = 1. When constructing γ, we will also construct an auxiliary run ρ′ of
JA∆K in parallel, defining ρ′βi...βi+1

at each step i, for some increasing sequence

(βi)i≥0 with β0 = 1, and ensuring that (ρ′)βi ∈ H(ρ, αi, n) and L(JA∆K, (ρ′)βi) ⊆
L(D, (γ)αi) for all i ≥ 0.

– For i = 0, since ρ is an initialized run, we have (ρ)1 = (l0,0) so H(ρ, 1, n) =
reg(()l0,0). We have α0 = β0 = 1, (ρ′)1 = (l0,0) and (γ)1 is the initial state of
D. We have L(JA∆K, ρ′1) ⊆ L(D, γ1) by hypothesis.

– For any i ≥ 1, suppose by induction that γ is defined between indices 1 and
αi and that ρ′βi ∈ H(ρ, αi, n). We will choose αi+1 > αi and βi+1 > βi, and first

define ρ′βi...βi+1
such that (ρ′)βi+1

∈ H(ρ, αi+1, n), then define γαi...αi+1
. Let π

be the path of R(A) which starts at reg((ρ′)βi), given by Lemma 1 for the run

ραi...|ρ|. If ρ is finite and |ρ| − αi ≤ n, then D has a run from γαi on word tr(π)
(since L(JA∆K, ρ′αi) ⊆ L(D, γαi)) and we are done. Suppose now that ρ is either
infinite, or |ρ| − αi > n. Then |π| = n, and by Lemma 9, π can be decomposed
into π = π1τ1 . . . τK−1π2 where τi’s are equivalent cycles. We let αi+1 > αi such
that last(τK−1) is the (αi+1 − αi)-th state of π. JA∆K has a run from (ρ′)βi to
some z ∈ first(τ1) following π1 (in fact, (ρ′)βi ∈ first(π1)). By construction of

π, there exists z′ ∈ H(ρ, αi+1, n) ∩ last(τK−1) 6= ∅, and by Lemma 10, for any
k ≥ k0 and any word w ∈ (tr(τ1)+ . . .+ tr(τK−1))k, there is a run, in JA∆K, from
z to z′ following trace w. Let ρ′′(w) denote the run thus constructed from (ρ′)βi
to z′ on tr(π1) · w. We let βi+1 s.t. ρ′βi...βi+1

(w) = ρ′′(w) for an arbitrary w.

Now, D has a run from (γ)αi to some state q0 over trace tr(π1) because
L(JA∆K, (ρ′)βi) ⊆ L(D, (γ)αi). Let D′ denote the finite untimed automaton ob-
tained from D by designating q0 as the initial state, and all states qf such that
L(JA∆K, z′) ⊆ L(D, qf) for some w ∈ (tr(τ1) + . . .+ tr(τK−1))k, k ≥ k0, as final
states. There is at least one final state because L(D) = L(JA∆K) and D is deter-
ministic. Let there be an edge in D′ with label tr(τi) from state q to q′ whenever
there is a path in D from q to q′ over word tr(τi). Observe that D′ is still deter-
ministic. Since ρ′′(w) is defined for any w ∈ (tr(τ1)+ . . .+tr(τK−1))k, k ≥ k0, D′,
defined over alphabet {tr(τ1), . . . , tr(τK−1)}, is ultimately universal. But then,
by Lemma 8, D′ accepts any word in {tr(τ1), . . . , tr(τK−1)}K−1, and in particular
tr(τ1 . . . τK−1). Therefore, there is a run in D from (γ)αi to some state (γ)αi+1

following tr(τ1 . . . τK−1), which satisfies L(JA∆K, (ρ′)βi+1
) ⊆ L(JAK, (γ)αi+1

). ut

Acknowledgement. I am grateful to Patricia Bouyer and Nicolas Markey for
useful discussions on earlier versions of this paper.

References

1. K. Altisen and S. Tripakis. Implementation of timed automata: An issue of seman-
tics or modeling? In FORMATS’05, LNCS 3829, p. 273–288. Springer, 2005.

2. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

3. R. Alur, S. La Torre, and P. Madhusudan. Perturbed timed automata. In HSCC’05,
LNCS 3414, p. 70–85. Springer, 2005.

4. E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed
automata. In In Proc. Symposium on System Structure and Control, p. 469–474.
Elsevier, 1998.

5. C. Baier, N. Bertrand, P. Bouyer, Th. Brihaye, and M. Größer. Probabilistic and
topological semantics for timed automata. In FSTTCS’07, LNCS 4855, p. 179–191.
Springer, 2007.

6. J. Bermond, A. Germa, M. Heydemann, and D. Sotteau. Longest paths in digraphs.
Combinatorica, 1:337–341, 1981.

7. P. Bouyer and F. Chevalier. On conciseness of extensions of timed automata.
Journal of Automata, Languages and Combinatorics, 10(4):393–405, 2005.

8. P. Bouyer, N. Markey, and P.-A. Reynier. Robust model-checking of linear-time
properties in timed automata. In LATIN’06, LNCS 3887, p. 238–249. Springer,
2006.

http://dx.doi.org/10.1007/978-3-540-31954-2_5
http://dx.doi.org/10.1007/BF02579454

9. P. Bouyer, N. Markey, and P.-A. Reynier. Robust analysis of timed automata via
channel machines. In FoSSaCS’08, LNCS 4962, p. 157–171. Springer, 2008.

10. R. Brenguier and O. Sankur. Hardness of untimed language universality. Submitted,
2011.

11. M. De Wulf, L. Doyen, N. Markey, and J.-F. Raskin. Robust safety of timed
automata. Formal Methods in System Design, 33(1-3):45–84, 2008.

12. M. De Wulf, L. Doyen, and J.-F. Raskin. Almost ASAP semantics: From timed
models to timed implementations. Formal Aspects of Computing, 17(3):319–341,
2005.

13. C. Dima. Dynamical properties of timed automata revisited. In FORMATS’07,
LNCS 4763, p. 130–146. Springer Berlin / Heidelberg, 2007.

14. V. Gupta, Th. A. Henzinger, and R. Jagadeesan. Robust timed automata. In
HART’97, LNCS 1201, p. 331–345. Springer, 1997.

15. A. Puri. Dynamical properties of timed systems. Discrete Event Dynamic Systems,
10(1-2):87–113, 2000.

16. F. P. Ramsey. On a problem in formal logic. Proc. London Math. Soc. (3), 30:264–
286, 1930.

17. O. Sankur. Model-checking robuste des automates temporisés via les machines à
canaux. Master’s thesis, Ecole Normale Supérieure, 2010.

http://dx.doi.org/10.1007/978-3-540-75454-1_11
http://dx.doi.org/10.1112/plms/s2-30.1.264

	Untimed Language Preservation in Timed Systems

