
Shrinktech: A Tool for the Robustness Analysis
of Timed Automata

Ocan Sankur

LSV, ENS Cachan & CNRS, France.
sankur@lsv.ens-cachan.fr

Abstract. We present a tool for the robustness analysis of timed au-
tomata, that can check whether a given time-abstract behaviour of a
timed automaton is still present when the guards are perturbed. The
perturbation model we consider is shrinking, which corresponds to in-
creasing lower bounds and decreasing upper bounds in the clock guards
by parameters. The tool synthesizes these parameters for which the given
behaviour is preserved in the new automaton if possible, and generates a
counter-example otherwise. This can be used for 1) robustness analysis,
and for 2) deriving implementations under imprecisions.

1 Introduction

Timed Automata and Robustness. Timed automata [3] are a well-established
formal model for real-time systems. They can be used to model systems as finite
automata, while using, in addition, a finite number of clocks to impose timing
constraints on the transitions. Timed automata are, however, abstract models,
and therefore make unrealistic assumptions on timings, such as perfect continuity
of clocks, infinite-precision time measures and instantaneous reaction times. An
important amount of work has been done in the timed automata literature to
endow timed automata with a realistic semantics. The works [14] and [10] showed
that perturbations on clocks, either imprecisions or clock drifts, and regardless
of how small they are, may yield additional qualitative behaviours in some timed
systems. On the other hand, assuming bounds on the reaction times can disable
desired behaviours [8, 1]. These observations mean that there is a need for checking
the robustness of timed automata models, that is, whether the behaviour of a given
timed automaton is preserved in presence of small perturbations. Robustness is
an important property of critical embedded systems [12], since it requires that
the system will behave correctly when the environment’s behaviour deviates
slightly from the assumptions.

Clock Imprecisions and Shrinking. A prominent approach to model impreci-
sions in timed automata, initiated in [11], consists in introducing imprecisions in
the model by syntactically enlarging all guards, that is, turning a guard x ∈ [a, b]
into x ∈ [a−∆, b+∆] for some parameter ∆ > 0. Model-checking algorithms on
timed automata have been revisited in order to take into account such impreci-
sions (see e.g. [10, 6]). These algorithms check whether any really new behaviour
appears when timing constraints are relaxed by a small (parameterized) amount.

Recently we studied the dual notion of robustness, which consists in checking
whether any behaviour is lost when the guards are shrunk, that is tightened by

a small (parameterized) amount. More precisely, shrinking means converting a
guard x ∈ [a, b] into x ∈ [a+ δ, b− δ] for some δ > 0. In [15], we showed that one
can decide whether all guards can be shrunk –by possibly different amounts, so
that the resulting timed automaton can still time-abstract simulate the original
automaton. In this case, one can also synthesize these shrinking parameters for
each atomic guard. By checking shrinkability of timed automata, one ensures
that the behaviour of the automaton does not depend on exact timings, or on
its ability to take the transitions on the boundaries of the guards. A shrinkable
timed automaton preserves all its behaviours when, for instance, task execution
times are shorter than the worst-case, and waiting times are longer than the
best-case. One can also detect unrealistic runs, including Zeno runs [15]. We
believe that shrinkability complements the robustness approach based on guard
enlargement of [11, 10].

Shrinkability can also be used for deriving implementations with imprecise
clocks. In fact, if the guard x ∈ [a, b] is shrunk into x ∈ [a + δ, b − δ], then
under imprecisions à la [11], this guard becomes x ∈ [a + δ −∆, b − δ + ∆] ⊆
[a, b], where the inclusion holds whenever ∆ < δ. Hence, the behaviours of a
shrunk timed automaton with bounded imprecisions (i.e. guard enlargement)
are entirely included in the behaviours of the initial timed automaton. Further,
using shrinkability, one can synthesize parameters δ for each guard, so that the
resulting automaton still contains some useful time-abstract behaviour.

2 Shrinkability

Let us define shrinkability more formally. We assume that the reader is familiar
with the syntax and semantics of timed automata, and refer to [3] for details.
We only need the following definitions. Given a finite clock set C, an atomic
guard is an expression of the form x ≤ k | x ≥ k | x− y ≤ k | x− y ≥ k, where
x, y ∈ C and k ∈ Z. A guard is a conjunction of atomic guards. The shrinking of
an atomic guard g by δ, denoted by 〈g〉−δ is defined as follows.

〈k ≤ x〉−δ = k + δ ≤ x, 〈x ≤ l〉−δ = x ≤ l − δ,
〈k ≤ x− y〉−δ = k + δ ≤ x− y, 〈x− y ≤ l〉−δ = x− y ≤ l − δ.

Note that the only variables that appear in timed automata are clocks. Discrete
variables with bounded domains can be considered, but we assume these are
encoded in the locations.

Let A be a timed automaton, and let I be the vector of the atomic guards
of A. Given a vector δ of nonnegative rational numbers indexed by I, we denote
by A−δ, the automaton obtained from A by shrinking each atomic guard by
the corresponding element of δ. We are going to write the vector δ as kδ for an
integer vector k and rational δ. This is always possible since we are interested in
rational parameters. Figure 1 is an example of shrinking.

We are interested in shrinking the atomic guards of a given timed automaton
by positive values, while preserving some of the behaviours. We only consider
timed automata with non-strict guards; in fact, using strict guards makes little
sense when one is interested in shrinking (or enlarging) the guards [10]. We also
assume that the edges have distinct labels, since we are interested in comparing

`1 `2 `3
1≤x,y≤3 ∧ 0≤x−y≤2, y:=0

a

1≤x≤4 ∧ x−y≤3

b

c

`1 `2 `3

1+2δ≤x≤3−δ ∧ 1+δ≤y≤3−2δ
δ≤x−y≤2−2δ, y:=0

a

1+δ≤x≤4−δ ∧ δ≤y
∧ x−y≤3−δ

b

c

Fig. 1. A timed automaton A (above) and its shrinking A−kδ (below). Timed automa-
ton A−kδ can time-abstract simulate A for all δ ∈ [0, 1

6
] ([15]).

two timed automata that have the same underlying structure. The problem is
formulated as follows:

Definition 1 (Shrinkability). Given a timed automaton A, and a finite au-
tomaton F such that F vta A, decide whether for some δ > 0, F vta A−δ.

In this definition, vta denotes time-abstract delay simulation. We say that A is
shrinkable w.r.t. F if the above condition is satisfied. Thus, shrinkability requires
that some behaviour F , that is included in the initial model A, should be still
possible in the shrunk automaton. When F is the region graph of A [3], or a
time-abstract bisimulation quotient [16], shrinkability implies that the shrunk
automaton can time-abstract simulate the original automaton. In this case, we
say that A is simply shrinkable. Shrinkability w.r.t. F is decidable in polynomial
time if F is part of the input; shrinkability is decidable in exponential time, if
the time-abstract bisimulation graph is not given. The vector δ can be computed
in the same time complexity.

The present tool builds on the theoretical results presented in [15]. There,
we show that given a finite automaton F , the shrinking parameter of each
atomic guard can be expressed as a function of the other parameters using only
maximization and sum. The problem is then reduced, in polynomial time, to
solving nonlinear fixpoint equations in the max-plus algebra. We gave in [15],
graph-based algorithms to solve these equations. Appendix A explains by a simple
example why some timed automata are not shrinkable.

Partial shrinkability. Although we defined shrinkability by requiring that
all atomic guards should be shrunk by a positive amount, one can relax this
condition and shrink only some of the guards; our algorithms are valid also in
this case. In our experiments, we shrunk all the guards but equality constraints.

3 The tool shrinktech

We present the tool shrinktech that analyzes the shrinkability of timed automata
and synthesizes shrinking parameters. Given a network of timed automata, the
tool either finds a counter-example to shrinkability, such as a path or a cycle that
cannot be executed by any shrinking of the automaton, whatever the value of δ’s
are, or outputs a shrinking of the timed automata that witnesses the shrinkability.

Figure 3 shows an overview of the tool. To check the shrinkability of a timed
automaton, the user can either provide a finite automaton F , or let shrinktech

Network of
timed automata
(Kronos format)

shrinktech

Finite automaton F
(Aldebaran format)

Shrunk timed automata
Parameter δ

Parameterized simulator sets

Counter-example:
path or cycle

Visualization
(graphviz)

opt
ion

al

(kr
ono

s)

shrinkable

not shrinkable

Fig. 2. Overview of shrinktech.

compute the full finite bisimilarity graph using Kronos1. Note that if the full
bisimilarity graph is too big, one can also try to shrink with respect to a portion
of it, or with respect to a randomly generated trace. This is to be compared
with bounded model-checking, which is useful for detecting bugs, but also for
“partially” proving the correctness of a system. The tool comes with scripts to
compute the bisimilarity graph, extract some (random) portion of it, and generate
random executions.

The tool shrinktech can be used for several kinds of systems modelled by
timed automata. We believe it can be used mainly for two purposes:

1. Robustness analysis, to find out whether the behaviour of the system is
preserved when the time bounds are disturbed (shrunk). This analysis com-
plements the robustness checking by enlarging the guards as in [11, 2]. This can
for instance help to detect unrealistic executions such as Zeno or other conver-
gence phenomena, but also timing anomalies in scheduling problems (see [5]).

2. Deriving implementation from timed automata. As explained above, the
behaviour of a shrunk timed automaton is included in that of the initial
model in presence of imprecisions. So lower and upper bounds on the delays
can be “shrunk” in the implementation to guarantee that these will be
respected despite imprecisions. In fact, we proved in [15] that shrinkable
timed automata can be implemented in a concrete semantics with imprecise
clocks and reaction times.

Implementation details and availability. The tool is implemented in C++
and the source code has about 5Klocs. It uses the Uppaal DBM library 2, and
implements a parameterized extension of this data structure, introduced in [15].
The input formats are (networks of) timed automata in the Kronos format, and
finite automata in the Aldebaran format3. The tool Kronos can be plugged in
the tool-chain in order to compute the finite time-abstract bisimilarity graph of
a given timed automaton, to be used as the finite automaton F . Shrinktech is

1 Kronos is a model-checker for timed automata [7], that can minimize the region graph
of a timed automaton as described in [16]. It is available at http://www-verimag.

imag.fr/DIST-TOOLS/TEMPO/kronos/
2 http://people.cs.aau.dk/~adavid/UDBM/
3 This is a graph description format of the CADP tool suite, also used by Kronos.

See http://www.inrialpes.fr/vasy/cadp/

open source software and is distributed under GNU General Public Licence 3.0.
It is freely available at: http://www.lsv.ens-cachan.fr/Software/shrinktech

4 Experimental Results

We used shrinktech on several case studies found in the literature. The table 1
summarizes the results. The Lip Synchronization Protocol has been the subject
of robustness analysis (by guard enlargement) before [13]. This is an algorithm
that synchronizes video and sound streams that arrive in different frequencies.
The model is not shrinkable neither for video frames arriving in exact frequency,
nor for those arriving within a bounded interval. Observe that the model is
shrinkable w.r.t. a small subgraph with 501 nodes, but it is not shrinkable w.r.t.
the whole graph which has 4484 nodes. Shrinkable models include Philips Audio
Retransmission protocol [9], and some asynchronous circuit models. We were
able to analyze Fischer’s Mutual Exclusion Protocol upto 4 agents; while for
5 agents we could only partially analyze w.r.t. a randomly generated trace.
The non-shrinkability of most models is due to equality constraints. In fact,
although we only shrink non-punctual guards, some behaviours may still disappear
immediately, however small the shrinking parameter is (see Appendix A).

Note that some of these models were designed at a level of abstraction where
imprecisions were not taken into account. So, our results do not necessarily imply
that these systems are not robust, but rather that the present models are not
good for direct implementation. This is best illustrated in the Latch Circuit
models, where the exact model that extensively uses equalities is not shrinkable,
but its relaxation to intervals is. Notice also how most of the circuit models,
which define bounds on stabilization times are shrinkable.

Table 1. The column sim-graph is the number of states and the number of transitions
of the finite automaton F w.r.t. which the shrinkability is checked. An asterisk indicates
bounded shrinkability, where only a subgraph of the time-abstract bisimulation graph
(given by a BFS) or a random trace was used. The tests were performed on an Intel
Xeon 2.67 GHz. All models are available on the tool’s website.

Model states trans clocks sim-graph time shrinkable
Lip-Sync Prot. (Exact) 230 680 5 4000/8350* (subgraph) 9s No
Lip-Sync Prot. (Interval) 230 680 5 501/1282* (subgraph) 9s Yes*
Lip-Sync Prot. (Interval) 230 680 5 4484/48049 28s No
Philips Audio Prot. 446 2097 2 437/2734 46s Yes
Root Contention Prot. 65 138 6 500/3455* (subgraph) 7s No
Train Gate Controller 68 199 11 952/8540 34s No
Fischer’s Protocol 3 152 464 3 472/4321 20s Yes
Fischer’s Protocol 4 752 2864 4 4382/65821 310min Yes
Fischer’s Protocol 5 3552 16192 5 10000/10000* (trace) 42s Yes*
And-Or Circuit 12 20 4 80/497 1.3s Yes
Flip-Flop Circuit 22 34 5 30/64 0.9s Yes
Latch Circuit (Interval) 32 77 7 105/364 1.6s Yes
Latch Circuit (Exact) 32 77 7 100/331 0.6s No

Our approach depends on the computation of the finite automaton F , thus
it is limited by the feasability of this computation. To deal with this problem,
one could consider adapting the algorithm of [16] to compute on-the-fly some
bounded part of the graph. To be able to treat even larger systems, we will
consider extending the theoretical results of [15], in order to use under- and
over-approximations of the automaton F , and refine these by counter-examples.

5 Related Work

Existing verification tools for timed automata may be used for non-parameterized
robustness checking by modeling explicitly the imprecisions, at the cost of in-
creasing the size of the models [2]. The semi-algorithm of HyTech was used to
synthesize guard enlargement parameters in timed automata in [11]. An extension
of Uppaal for robustness against guard enlargement was used in [13]; this feature
is no longer available in Uppaal. Note that shrinkability cannot be solved by
existing model-checkers for timed automata since we are interested in parameter
synthesis so as to ensure time-abstract simulation. Other similar work includes
(the undecidable problem of) parameter synthesis in timed automata, where
guards are written using parameters, and one tries to find the valuations for
which the system satisfies some specification, as in [4]. This is difficult to realize
due to the large number of parameters (upto millions) and the time-abstract
simulation condition we consider. Robustness against large decreases in task
execution times using simulation was considered in [1].

References

1. Tesnim Abdellatif, Jacques Combaz, and Joseph Sifakis. Model-based implementa-
tion of real-time applications. In EMSOFT’10, p. 229–238. ACM, 2010.

2. Karine Altisen and Stavros Tripakis. Implementation of timed automata: An issue
of semantics or modeling? In FORMATS’05, LNCS 3829, p. 273–288. Springer.

3. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, April 1994.

4. Étienne André, Laurent Fribourg, Ulrich Kühne, and Romain Soulat. IMITA-
TOR 2.5: A tool for analyzing robustness in scheduling problems. In FM’12, LNCS
7436. Springer, 2012.

5. Patricia Bouyer, Nicolas Markey, and Ocan Sankur. Robust reachability in timed
automata: A game-based approach. In ICALP’12, LNCS 7392, p. 128–140. Springer.

6. Patricia Bouyer, Nicolas Markey, and Ocan Sankur. Robust model-checking of
timed automata via pumping in channel machines. In FORMATS’11, LNCS 6919,
p. 97–112. Springer, 2011.

7. Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tripakis, and
Sergio Yovine. Kronos: A model-checking tool for real-time systems. In CAV’98, p.
546–550. Springer, 1998.

8. Franck Cassez, Thomas A. Henzinger, and Jean-François Raskin. A comparison
of control problems for timed and hybrid systems. In HSCC’02, LNCS 2289, p.
134–148. Springer, March 2002.

9. C. Daws and S. Yovine. Two examples of verification of multirate timed automata
with kronos. In RTSS’95, p. 66–75. IEEE Computer Society Press, 1995.

10. Martin De Wulf, Laurent Doyen, Nicolas Markey, and Jean-François Raskin. Robust
safety of timed automata. FMSD, 33(1-3):45–84, December 2008.

11. Martin De Wulf, Laurent Doyen, and Jean-François Raskin. Almost ASAP semantics:
From timed models to timed implementations. Formal Aspects of Computing,
17(3):319–341, 2005.

12. Thomas A. Henzinger and Joseph Sifakis. The embedded systems design challenge.
In FM’06, LNCS 4085, p. 1–15, Hamilton, Canada, 2006. Springer.

13. Piotr Kordy, Rom Langerak, and Jan Willem Polderman. Re-verification of a lip
synchronization protocol using robust reachability. In FMA, p. 49–62, 2009.

14. Anuj Puri. Dynamical properties of timed automata. Discrete Event Dynamic
Systems, 10(1-2):87–113, January 2000.

15. Ocan Sankur, Patricia Bouyer, and Nicolas Markey. Shrinking timed automata. In
FSTTCS’11, LIPIcs 13, p. 90–102. Leibniz-Zentrum für Informatik, 2011.

16. Stavros Tripakis and Sergio Yovine. Analysis of timed systems using time-abstracting
bisimulations. Form. Methods Syst. Des., 18(1):25–68, January 2001.

A Example: Non-shrinkability

Non-shrinkability of timed automata can be due either to the disappearance of a
finite behaviour, or that of an infinite behaviour. We illustrate the first kind of
non-shrinkability here; the next section gives an example to the second one.

Let us describe a simple system that is not shrinkable. We consider the timed
automaton A2 of Fig. 3. The system has to give a feedback (fb) at least every 2
time units, through the self-loop on `0. At any time, it can receive a message m,
which it can transfer to another system after a delay of at least 1 and at most 2.
In fact, let us assume that the target system only listens between this time
interval. If the message is sent too early or too late, it will be lost. In addition,
while the system is in the state `1 preparing for transferring the message, it can
decide to send the message to a buffer by realizing the btransfer action as long
as x ≤ 1. The sytem may also receive a dupplicate (m′) of the message while
1 ≤ x ≤ 2.

`0

`1

fb,y≤2,y:=0

m
y≤2
x:=0

transfer,1≤x≤2∧y≤2btransfer,x≤1∧y≤2

m′,1≤x≤2,y≤2

Fig. 3. Timed automaton A2.

A good implementation must only transfer the message when x ∈ [1 + δ, 2− δ]
for a safe δ > 0, and should always give the feedback when y ≤ 2− δ. Hence it
makes sense to do shrinkability analysis on this system to check whether any
significant behaviour is lost under shrinking.

To simplify the discussion, we will only concentrate on a simple behaviour
of A2, and summarize it as the timed automaton A3 of Fig. 4. Here, A3 consists
of the unfolding of A2 for two transitions from `1. By investigating the state space
of A2, one can see that it contains a branching: at `1, both btransfer and transfer
actions are available. The state space is illustrated in Fig. 5 (on the left). On the
other hand, under any shrinking, the branching btransfer and transfer is disabled
(the right of Fig. 5). This means that a controller that waits for the repetition
of the message before making the decision between btransfer and transfer is not
robust. Therefore, the timed automaton A3 (hence A2) is not shrinkable w.r.t.
its own time-abstract behaviour. Note however that the shrunk automaton does
contain the behaviours m ·m′ · transfer and m ·m′ · btransfer so if the branching is
not important, one can eliminate the branching in the time-abstract bisimulation
quotient and prove shrinkability w.r.t. this smaller finite automaton.

... `1 `0
m′,1≤x≤2∧y≤2

btransfer,x≤1∧y≤2

transfer,1≤x≤2 ∧ y≤2

Fig. 4. Timed automaton A3, modelling a part of A2.

Non-shrinkability is not always due to a finite path that is disabled because of
shrinkings. In the next section, we give an example of a timed automaton whose
shrinkings cannot simulate a cycle of the bisimilarity graph, but can simulate
any finite unfolding of it.

x

y

1 2

1

2

m′
btr

ans
fer

transfer
x

y

1 2

1

2

m′

transfer

Fig. 5. The figure on left illustrates the behaviour in the original timed automaton,
while on the right, the behaviour of the shrunk automaton is given. The red area is the
guard of btransfer, while the blue area is the guard of transfer. The thick black segment
is a set of states reachable after the action m′. From this set, both actions transfer and
btransfer are available in the original timed automaton, while the latter is disabled in
the shrunk automaton. Hence, the branching disappears under any shrinking.

B Using shrinktech

Simple usage We explain here how to use the shrinktech tool on a simple
example. We would like to check whether the timed automaton A3 of Fig. 6
below is shrinkable.

This automaton can be described in Kronos timed automaton format as given
in Fig. 7. Assuming Kronos is installed on the system, the simplest way to check
shrinkability is the following:

> shrinktech automaton.tg
[...]
Starting shrinkability analysis on files automaton.tg and automaton.aut
Warning: Some edges have equality constraints and will not be shrunk (see log file)

Timed automaton is NOT SHRINKABLE. Counter-example generated in automaton.log and automaton.png

Shrinktech first calls kronos (the output is omitted) to compute the time-
abstract bisimulation graph of the timed automaton into automaton.aut. It
then answers that the automaton is not shrinkable. Note also that a warning is
generated since not all guards were shrunk (shrinktech shrinks all the guards but
equality constraints). The counter-example, that is a subgraph of automaton.aut
that cannot be simulated by any shrinking of automaton.tg is generated and it
is shown in Fig. 7 (this is the file automaton.png). The analysis reveals that the
cycle BC cannot be simulated in the shrunk automaton, whatever the values of
the shrinkings are. In fact, for any shrinking, the cycle can be taken only a finite
number of times after which the automaton is blocked.

When the program terminates, the file automaton.log contains the text
representation of the counter-example, also other useful information such as the
shrunk guards and the parameterized simulation sets. The counter-example is
also generated as a dot file in automaton.dot, and a PNG image is generated in
automaton.png provided that Graphviz is installed on the system.

Note that shrinktech works (when necessary) on a copy of the given timed
automaton (the default value is ta.tg) because it adds annotations to the edge
labels. One can change this file name by passing -out myfile.tg as argument
to the program.

With a custom finite automaton One can also give a custom finite automaton
automaton1.aut as an input to the program. For instance, one can try to unfold
the loop BC several times to check whether some shrinking of A3 can at least
simulate a finite number of iterations. Consider the finite automaton of Fig. 8.
This automaton can be simulated by automaton.aut, thus also by A3 (note that
the timed automaton must be able to simulate the given finite automaton; an
error will be generated otherwise). See also the --gentrace option in Section B.1
to randomly generate such a trace.

One can run shrinktech providing both the timed automaton and the finite
automaton:

> shrinktech automaton.tg automaton1.aut
Starting shrinkability analysis on files automaton.tg and automaton1.aut
Warning: Some edges have equality constraints and will not be shrunk (see log file)

Timed automaton is SHRINKABLE.

Run again with --simulator_sets option to compute solution.
See automaton.log for details.

This time the automaton is shrinkable with respect to the given finite au-
tomaton. By default, shrinktech does not compute the simulator sets of the
shrunk automaton, i.e. the set of states of the shrunk timed automaton that

`0 `1 `2
x=1

A,y:=0

y≥2,y:=0
B

x≤2,x:=0
C

Fig. 6. Timed automaton A3.

#states 3
#trans 2
#clocks 2
X
Y

state: 0
invar: TRUE
trans:
X = 1 => A; RESET{Y}; goto 1

state: 1
invar: TRUE
trans:
X <= 2 => B; RESET{X}; goto 2

state: 2
invar: TRUE
trans:
Y >= 2 => C; RESET{Y}; goto 1

des(0,10,6)
(0, "A",1)
(0, "A",2)
(1, "B",3)
(1, "B",4)
(1, "B",5)
(3, "C",1)
(3, "C",2)
(4, "C",2)
(5, "C",1)
(5, "C",2)

Fig. 7. The Kronos timed automaton file automaton.tg (on the left), the time-abstract
bisimulation graph automaton.aut generated with Kronos, and the counter-example
generated by shrinktech (on the right). Nodes are labelled by i(Loc: j) where i is the
node of the given automaton F and j is the unique location of the timed automaton
that corresponds to this node i. Edges are labelled by the edge labels of the timed
automaton.

des(0,7,8)
(0, "A",1)
(1, "B",2)
(2, "C",3)
(3, "B",4)
(4, "C",5)
(5, "B",6)
(6, "C",7)

Fig. 8. Finite automaton automaton1.aut

can simulate each state of the finite automaton. But this can be done using the
--simulator sets option. In this case, the log file will contain the description of
the simulator sets. The log file will also report an upper bound on δ below which
the simulation holds. Furthermore, a shrinking of the given timed automaton is
generated in a local folder named shrunk.

Here is an excerpt from the log file.

------------------ PARAMETERIZED SHRUNK SIMULATOR SETS ----------------------
-- Substituting delta = 0 gives the simulator sets of the original automaton

Simulator set of the finite automaton node(0)
0 +(p[0])delta <= X <= 1 -(p[2])delta and
0 +(p[1])delta <= Y and
X - Y <= 1 -(p[3])delta

Simulator set of the finite automaton node(1)
0 +(p[4])delta <= X <= 2 -(p[6])delta and
0 +(p[5])delta <= Y and
X - Y <= 2 -(p[7])delta

[...]

These describe the set of (parameterized) states that can simulate the nodes 0
and 1 of the finite automaton. Here, p[i]’s are positive integers to be determined
by shrinkability analysis. The log file also contains an instantiation of these
simulator sets for the parameter values computed by shrinktech and for the
largest possible δ:

------------------------- DISCRETE SOLUTION --------------------------
-- Scaling factor: 100
--
Discrete simulator set of the finite automaton node(0)
X <= 100 and
X - Y <= 99

Discrete simulator set of the finite automaton node(1)
X <= 199 and
X - Y <= 194

[...]

Note that we scale here the constants so that we only have to deal with
integers, instead of floating point numbers.

See also Section B.1 for additional tools and scripts that can be helpful to
extract a finite automaton.

Using multiple files In Kronos timed automaton format, several components
communicating by synchronization can be given to describe one large system. In
this case, one can simply give shrinktech the list of all the components:

> shrinktech component1.tg component2.tg componentK.tg

In this case, shrinktech will invoke Kronos to compute the product, and
then to compute the bisimulation graph. By default, the product automaton will
be written in ta.tg and shrinkability analysis will be run on this file. One can
modify this target file using the option -out target.tg.

B.1 Command-line Options and Additional Tools

--aut When run with this option, shrinktech will only compute the product of
the given timed automata (if more than one is given), and output the time-abstract
bisimilarity graph. The output file can be specified using -out target.aut; the
default is ta.aut. This feature uses Kronos.

--simulator sets This option tells shrinktech to compute all simulator sets
of the shrunk timed automaton, if the given timed automaton is shrinkable. The

shrunk timed automata will also be written in a local directory ‘shrunk’ in case
of shrinkability. This option is disabled by default since it is not always needed.

--shrink This option is used to syntactically shrink a given timed automa-
ton. When called shrinktech --shrink automaton.tg 100, the program will
multiply all constants by 100 and shrink the guards by 1. This is equivalent
to shrinking by 1/100; but the time scale is changed so that all constants are
integers. By default, the file is output as automaton-shrunk.tg, but another
target file can be specified with -out automaton2.tg.

--gentrace Generates a trace, in form of a finite automaton, by a random simu-
lation of the given timed automaton. When called with shrinktech --gentrace

automaton.tg 1000, this option will output in standard output a random trace
of length 1000. One can then either direct this to a file, or specify an output file
by -out automaton.aut.

graph extractor This is a Python script that can extract a subgraph of a
given graph, using DFS or BFS, either deterministically or randomly. The options
-dfs, -randdfs and -bfs can be used for this purpose. Run the program without
arguments for usage.

Note that CADP can also be useful for instance to check bisimulation, minimize
or visualize finite automata (http://www.inrialpes.fr/vasy/cadp/).

C Presentation

The tool demonstration will start by presenting timed automata and robustness
issues with its semantics. We will explain how behaviours disappear under
shrinking by an example similar to one in Section A. The presentation will then
be based on the following scheduling example in order to illustrate the purpose
of shrinkability checking. Consider the model in Fig. 9. This timed automaton
models a specification for a system in which an event is generated at least every
2 time units (the component on the left), and at most an event is consumed
every 2 time units (the component in the middle). The communication is ensured
by a bounded FIFO channel, modelled as a finite aumaton (on the right). Let us
consider the instantiation of this system for N = 1.

Can we refine this system so that no error occurs (i.e. the location err is
never visited)? The answer is yes: one can replace both inequalities x ≤ 2 and
y ≥ 2 by equalities. One can then show that location err is not reachable in the
resulting system (for N = 1).

How about robustness? Intuitively, in order to obtain the above refinement,
we need to take all transitions “at the last moment”, that is, at the boundaries of
the guards. This may not be a desirable refinement due to robustness concerns.
Shrinkability analysis shows that there is no refinement that avoids the boundaries
of the guards. In fact, the timed automaton of Fig. 9 can time-abstract simulate
the timed automaton of Fig. 6. But we already saw that the latter is not shrinkable.

In our presentation, we will also give a short summary of previous work on
different notions of robustness, and the approaches that were adopted to check
robustness in case studies in the literature.

`1 `2 `3

err

x ≤ 2, gen, x := 0 y ≥ 2, con, y := 0

i > 0, con, i--

i < N, gen, i++

i = N, gen

Fig. 9. A timed automaton modelling a producer-consumer system, given as a network
of timed automata with a bounded integer variable i which is initially 0 (Our definition
of timed automata and the Kronos timed automata format do not contain discrete
variables. But these can be easily encoded by a finite automaton. See for instance, the
Lip Sync case study).

