
Decomposition of TrPTL formulas

Rapha�el Meyer and Antoine Petit

LSV, URA 2236 CNRS, ENS de Cachan,

61, av. du Pr�es. Wilson, F-94235 Cachan Cedex

Abstract. Partial orders based veri�cations methods are now well de-

veloped. In this framework, several suitable logics have already been

de�ned. We focus on this paper on the logic TrPTL, as de�ned by Thi-

agarajan, for which models are the well known (in�nite) Mazurkiewicz

traces. We study the case where the alphabet is not connected. Our main

theoretical result is that any TrPTL formula can be decomposed in an

e�ective way as the disjunction of formulas on the connected compo-

nents. Note that this result can be viewed as a direct logical counterpart

of the famous Mezei's theorem on recognizable sets in a direct product

of free monoids.

Finally, we show that our result can also be of practical interest. Pre-

cisely, we exhibit families of formulas for which the use of our decom-

position procedure decreases the complexity of the decision procedure of

satis�ability.

1 Introduction

The industrial and economic need of correct software has increased the inter-

est on researches on speci�cation and veri�cation of sequential and distributed

programs. In order to express properties of these programs, several logics have

been de�ned, among which the famous Propositional linear time Temporal Logic

(PTL) of Pnueli has to be mentioned [Pnu77]. These logics have been interpreted

for a long time on in�nite sequences describing the program behaviors. In the

case of distributed programs, techniques allowing to verify a property for just

one representative sequential behavior of each partially ordered computation is

a subject of active research (see e.g. [KP92,GW94]).

An alternative way to treat the distributed programs is to represent theirs be-

haviors directly by partial order based models. Among the possible models,

Mazurkiewicz traces [Maz77] play a central role. Indeed, the theory of traces

is very well developed (see e.g [Die90,DR95]) and strongly related to other par-

tial order based formalisms such as Petri nets or event structures. Moreover

recognizable languages of in�nite traces have been characterized from algebraic,

automata and logical points of view [GP92,EM93,GPZ94], extending the classi-

cal theory of in�nite words [Tho90].

In a natural way, several logics directly interpreted over traces or partial order

based models have been proposed [Pen88,LRT92,MT92,PK95]. Unfortunately,

these logics do not have natural automata counterparts. This motivated the

work of Thiagarajan to de�ne the logic TrPTL as a natural extension of PTL

to be interpreted on in�nite traces. Using automata techniques, the satis�ability

problem for TrPTL turns out to be decidable [Thi94,MT96]. A major open

question on this logic is to know whether it is as expressive as the extension of

the �rst-order logic FO(<) to traces proposed by Thomas [Tho89] and studied

also in [EM93].

We focus in this paper of the decomposition of TrPTL formulas in the case where

the underlying dependent alphabet is not connected. Our main theoretical result

claims that any TrPTL formula can be decomposed in an e�ective way as the

disjunction of formulas on the connected components. Note that this result can

be seen as a direct logical counterpart of the famous Mezei's theorem [Ber79]

on recognizable sets in a direct product of free monoids. However, it is not a

consequence since, as recalled above, the equivalence between TrPTL and �rst-

order logic FO(<) is still an open problem.

Finally, we show that our result can also be of practical interest. Precisely, we

exhibit families of formulas for which the use of our decomposition procedure

decreases the complexity of the decision procedure of satis�ability. Note that,

obviously, we can not expect to decrease time in the worst case with any such

decomposition.

The paper is organized as follows. In Section 2, we briey recall the basis on

dependence graphs and TrPTL logic. We give our main decomposition theo-

rem in Section 3. In order to prove this theorem, we introduce a new operator

which can be viewed as a \reset" of the con�guration. When dealing with initial

equivalence of formulas, we prove that this operator does not increase the power

of TrPTL. Section 4 is dedicated to the proof of the main theorem. Finally,

we show in Section 5 how our theoretical result can be of practical interest for

decreasing the complexity procedure of satis�ability in some suitable cases, and

give our conclusion in Section 6.

2 TrPTL

We recall in this section the needed bases on traces and on the TrPTL logic (see

[DR95] and [Thi94,MT96] for more complete presentations on these subjects).

Let P = f1; : : : ; kg be a set of processes, each process i 2 P having a local

alphabet �

i

of actions. We may have �

i

\ �

j

6= ;, some actions involving

di�erent processes. Let � =

S

k

i=1

�

i

be the global alphabet of actions. Each

action a 2 � can be mapped to the set pr(a) = fi 2 P j a 2 �

i

g of the process

it involves. Upon the alphabet �, a reexive and symmetrical relation D �

� � �, called the dependence relation, is de�ned in the natural following way:

D = f(a; b) 2 � � � j pr(a) \ pr(b) 6= ;g. This relation expresses the fact that

two actions which involve a common process can not be executed simultaneously,

and are therefore dependent. The complementary relation I = (� � �) nD is

called the independence relation induced by D upon �.

2.1 In�nite traces

An in�nite trace is a (equivalence class up to isomorphism of) dependence

graph(s), that is to say a �-labelled partially-ordered graph F = (E;�; �) sat-

isfying the following conditions:

{ E is a countable set of vertices;

{ � is a partial order relation on E; we shall write e <� e

0

(covering relation)

i� e < e

0

and 8e

00

, e � e

00

� e

0

implies e = e

00

or e

00

= e

0

;

{ � is an (labelling) application from E to �;

{ 8e 2 E, #e = fe

0

2 E j e

0

� eg is a �nite set;

{ 8e; e

0

2 E, (�(e); �(e

0

)) 2 D implies e � e

0

or e

0

� e;

{ 8e; e

0

2 E; e <� e

0

implies (�(e); �(e

0

)) 2 D.

Let F = (E;�; �) be a dependence graph. The set E is called the set of events

of F , and the partial order relation � is called the causality relation (e � e

0

meaning that event e occurs before event e

0

in F). Let E

i

= fe 2 E j �(e) 2 �

i

g

be the set of events relative to process i. A con�guration of a dependence graph

F is a �nite set of events which respects the causality relation. More formally,

c is a con�guration of F i� c is a �nite subset of E such that #c = c, where

c =

S

e2c

e. Let C

F

be the set of all con�gurations of F . The notion of

con�guration is a set-theoretical translation of the one of pre�x. For instance,

the null pre�x of a trace corresponds to the ; con�guration.

A transition relation between con�gurations of a dependence graph is de�ned in

the following way:

8c; c

0

2 C

F

; 8e 2 E; (c =)

e

F

c

0

), (c

0

= c [feg and e 62 c)

For every con�guration c of F , one can de�ne the i-view of c, denoted by #

i

(c):

#

i

(c) =#(c \E

i

). Obviously, #

i

(c) is also a con�guration.

2.2 Syntax and semantics of TrPTL

In order to express and verify properties on traces, we shall use the TrPTL logic

de�ned by Thiagarajan [Thi94]. This logic TrPTL is built up from a countable

set AP = fp; q; : : :g of atomic propositions indexed by the processes, the boolean

connectives _ and :, and two temporal operators O

i

(which is local "next-time"

operator), and U

i

(which is a local "until" operator).

The syntax of TrPTL is de�ned in the following way:

�

TrPTL

::= p(i) j :� j � _ � j O

i

� j �U

i

� where p 2 AP and i 2 P:

A model for TrPTL is a pair M = (F; V), where F is a dependence graph

and V an evaluation function from C

F

into (}(AP))

k

, k being the number of

processes. Intuitively, for any con�guration c and any process i, V (c)[i] is the

set of atomic propositions veri�ed by process i at con�guration c. In order to

keep the distributive aspect of the model, we assume that the following locality

condition is veri�ed:

c =)

e

F

c

0

^ �(e) = a) 8i 62 pr(a) ; V (c)[i] = V (c

0

)[i]

That is to say, when an action a is being executed, the values of atomic propo-

sitions concerning processes not involved in this action can not be modi�ed.

LetM = (F; V) be a model and c a con�guration of this model. The satis�ability

of a formula � of TrPTL at c in model M , denoted by c j=

M

�, is de�ned

inductively as follows:

{ c j=

M

p(i) i� p 2 V (c)[i];

{ c j=

M

:� i� c 6j=

M

�;

{ c j=

M

� _ � i� c j=

M

� or c j=

M

�;

{ c j=

M

O

i

� i� 9e 2 E

i

j#e j=

M

� and (c \E

i

) �#e \E

i

= (c \E

i

) [feg;

{ c j=

M

�U

i

� i� 9c

0

2 C

F

j c � c

0

and #

i

(c

0

) j=

M

�, and 8c

00

2 C

F

, if

#

i

(c) �#

i

(c

00

) �#

i

(c) then #

i

(c

00

) j=

M

�.

The formula p(i), read "p at i", is satis�ed if p is part of the atomic propositions

provided by V for process i in con�guration c. We denote by � ^ � the formula

:(:�_:�).We shall also use > = p_:p, and ? = :>. The O

i

operator is a local

"next time" operator. The semantics of O

i

� is that there exists a next i-view

and that, at this i-view, � is satis�ed. The U

i

operator is an "until" operator

restricted to events of E

i

.

A formula � is said satis�able if there exists a modelM = (F; V), and a con�g-

uration c 2 C

F

such that c j=

M

�. A formula � is said root-satis�able if there

exists a modelM such that ; j=

M

�.

The interest of the TrPTL logic lies mainly on the following result due to Thi-

agarajan [Thi94].

Theorem 1. The satis�ability problem for TrPTL formulas is decidable. It can

be decided in time 2

O(max(m

2

log(m);n)m)

, where n is the size of the formula, and

m the number of di�erent processes mentioned in it.

3 Decomposition theorem

On this paper, we focus on the case where the dependence alphabet is not con-

nected. In this case, the dependence alphabet (�;D) is the disjoint union of two

dependence alphabets (�

A

; D

A

) and (�

B

; D

B

) that is to say � = �

A

[�

B

,

�

A

\�

B

= ; and D = D

A

[D

B

. We will say in the sequel that �

A

and �

B

are

components of �. A component �

A

is said connected if the graph of (�

A

; D

A

) is

connected. It is easy to show that for every process i, all the actions of �

i

belong

to the same component of �. We can thus de�ne P

A

= fi 2 P j �

i

� �

A

g and

P

B

= fi 2 P j �

i

� �

B

g.

For any subset Q of P (and in particular for P

A

and P

B

), we can now de�ne

in a natural way a corresponding subset of TrPTL formulas, using syntactical

restrictions, in the following way:

De�nition 2. Let Q � P . We denote by TrPTL(Q) the least subset of TrPTL

formulas built from elementary formulas p(i), the connectives : and _, and the

operators O

i

and U

i

with the constraint i 2 Q.

Two formulas � and are said equivalent, denoted by � � , if for every model

M and con�guration c of that model, it holds: c j=

M

� i� c j=

M

 . In a similar

way, � and are said initially equivalent, denoted by � �

i

 , if for every model

M , it holds: ; j=

M

� i� ; j=

M

 .

Our main result is that every TrPTL formula can be e�ectively decomposed

into an initially equivalent boolean combination of formulas of TrPTL(P

A

) and

formulas of TrPTL(P

B

). As a �rst step we study the case of the equivalence. To

this purpose, we need to de�ne a new temporal operator, denoted by R for Reset,

which semantics is: c j=

M

R� i� ; j=

M

�. Intuitively, this Reset operator allows

us to go back in time by getting rid of the current con�guration and continuing

the semantic interpretation from the initial con�guration.

With the help on this new operator, we can de�ne the following class of TrPTL

formulas:

De�nition 3. A TrPTL formula is called a separated formula if there exist

formulas

A

and

0

A

of TrPTL(P

A

), and formulas

B

and

0

B

of TrPTL(P

B

)

such that

 =

A

^R

0

A

^

B

^R

0

B

We can now state the decomposition theorem related to equivalence of TrPTL

formulas.

Theorem 4. Let (�;D) be a non connected dependence alphabet such that � =

�

A

[�

B

, �

A

and �

B

being distinct components of �. Every TrPTL formula

on (�;D) is equivalent to a disjunction of separated formulas. Moreover, these

formulas can e�ectively be constructed from .

As a direct corollary of this result, using the fact that Reset operators disappear

when dealing with initial equivalence, we obtain a decomposition theorem related

to initial equivalence:

Theorem 5. Let (�;D) be a non connected dependence alphabet such that � =

�

A

[�

B

, �

A

and �

B

being distinct components of �. Every TrPTL formula

 on (�;D) is initially equivalent to a disjunction of formulas

A

^

B

, where

A

belongs to TrPTL(P

A

), and

B

belongs to TrPTL(P

B

).

By an immediate induction, we get the following corollary when dealing with

the connected components of the alphabet (�;D):

Corollary 6. Let (�;D) be a non connected dependence alphabet such that � =

S

l

j=1

�

j

, the �

j

being the distinct connected components of �. Denote by P

j

the set of processes i such that �

i

� �

j

. Every TrPTL formula on (�;D) is

initially equivalent to a disjunction of formulas

1

^

2

^ : : : ^

l

, where for all

j,

j

belongs to TrPTL(P

j

).

Note that this result can be seen as a direct logical counterpart of the famous

Mezei's theorem [Ber79] on recognizable sets of product of free monoids since, as

we recalled in the introduction, the equivalence between TrPTL and �rst-order

logic FO(<) is still an open problem.

The following section is dedicated to the proof of Theorem 4.

4 Proofs

In order to prove Theorem 4, we will �rst focus on the distributivity of the

temporal operators upon the boolean connectives. The following equivalences

follow easily from the de�nitions of the temporal operators.

Proposition 7. Let , and � be TrPTL formulas, and let i 2 P , the following

equivalences hold:

O

i

(_) � O

i

() _O

i

()

O

i

(^) � O

i

() ^O

i

()

(^) U

i

� � (U

i

�) ^ (U

i

�)

 U

i

(_ �) � (U

i

) _ (U

i

�)

Now we shall focus on the non-connected aspect of the alphabet �. Let E

A

=

fe 2 E j �(e) 2 �

A

g and E

B

= fe 2 E j �(e) 2 �

B

g. Every dependence graph

F = (E;�; �) on (�;D) can thus be decomposed in two dependence graphs

F

A

= (E

A

;�; �) and F

B

= (E

B

;�; �) on (�

A

; D

A

) and (�

B

; D

B

) respectively.

For every con�guration c of C

F

, we de�ne the con�gurations c

A

and c

B

induced

on the two components, and then it holds: c = c

A

[c

B

, where the union is to be

taken over graphs. Remark that c

A

and c

B

are con�gurations of F .

Proposition 8. Let i 2 P

A

and let c be a con�guration of a model M , then:

{ c j=

M

p(i), c

A

j=

M

p(i)

{ c j=

M

O

i

�, c

A

j=

M

O

i

�

{ c j=

M

�U

i

� , c

A

j=

M

�U

i

�

Proof. It su�ces to notice that since i 2 P

A

, we have E

i

� E

A

, and hence

c \E

i

= c

A

\E

i

. �

With the help of the previous proposition, we can extend the distributivity of

the temporal operators to some particular cases:

Proposition 9. Let i 2 P

A

, let � and � be TrPTL formulas, let �

A

and �

B

be

TrPTL(P

A

) formulas, and let �

B

and �

B

be TrPTL(P

B

) formulas. Then the

following equivalences hold:

1. O

i

�

B

� O

i

>^R �

B

2. O

i

(R �) � O

i

>^R �

3. � U

i

(�

A

^ �

B

^R �) � � U

i

�

A

^R (�

B

^ �)

4. (�

A

_ �

B

) U

i

�

A

� (�

A

U

i

�

A

) _ (R �

B

^ >U

i

�

A

)

Proof. We shall only focus on the proof of equivalence 4, which gives a good idea

of what the other proofs could look like. Let c be a con�guration of a modelM .

We use the following notation: S

i

(max(c \ E

i

)) is the set of all E

i

-events that

are greater than or equal to the greatest E

i

-event appearing in con�guration

c. Now, c j=

M

(�

A

_ �

B

) U

i

�

A

i� there exists e 2 S

i

(max(c \ E

i

)), such that

#e j=

M

�

A

, and for all e

0

2 S

i

(max(c \ E

i

)), if e

0

< e then #e

0

j=

M

�

A

_ �

B

.

Since #e

0

� E

A

, Proposition 8 shows that #e

0

j=

M

�

A

_ �

B

i� #e

0

j=

M

�

A

or ; j=

M

�

B

, which is equivalent to c j=

M

R �

B

. Thus, if c j=

M

R �

B

then

we just need to check that c j=

M

> U

i

�

A

; otherwise, we have to check that

c j=

M

�

A

U

i

�

A

. This leads to the equivalence between c j=

M

(�

A

_ �

B

) U

i

�

A

and c j=

M

(�

A

U

i

�

A

) _ (R �

B

^ > U

i

�

A

). �

We can now prove our main theorem, that is the decomposition of TrPTL

formulas:

Proof (of Theorem 4). We prove the theorem by induction on the length of the

formula .

{ If j j= 1, then = p(i). We can assume, without loss of generality, that

i 2 P

A

. Then it su�ces to write as p(i) ^R>^>^R>, since R> � >.

{ If j j> 1, several cases occur, depending on the nature of :

1. If = � _ �, the conclusion is trivial: it su�ces to use the induction

hypothesis on � and �.

2. If = :�, we use the induction hypothesis, then we make intensive use

of some easy combinatorial properties and of the fact that the operators

: and R commute to put things in the right form.

3. If = O

i

�, we use the induction hypothesis, then we use the distribu-

tivity of O

i

upon _ and ^, and the equivalences 1 and 2 of Proposition 9.

4. If = � U

i

�, we can also assume that i 2 P

A

. Using the induction

hypothesis, � is shown to be equivalent to a disjunction of separated

formulas. Using the distributivity of U

i

upon _, can be written as an

equivalent disjunction of formulas like � U

i

(�

A

^ R �

0

A

^ �

B

^ R �

0

B

).

Denote by � U

i

�

sep

this last formula. Using equivalence 3 of Propo-

sition 9, we show the equivalence between � U

i

�

sep

and � U

i

�

A

^

R (�

0

A

) ^ R (�

B

^ �

0

B

). Now, using the induction hypothesis on �, we

have: � �

W

d

�

k=1

�

A;k

^ R �

0

A;k

^ �

B;k

^ R �

0

B;k

. This can be written as

� �

V

K�f1;::: ;d

�

g

(�

A;K

_ �

B;K

), where �

A;K

=

W

k2K

(�

A;k

^ R �

0

A;k

).

Hence �U

i

�

A

is equivalent to

V

K�f1;::: ;d

�

g

((�

A;K

_�

B;K

)U

i

�

A

). Using

equivalence 4 of Proposition 9, we show that c j=

M

(�

A;K

_�

B;K

)U

i

�

A

i� c j=

M

((>U

i

�

A

)^R�

B;k

) _�

A;K

U

i

�

A

. By de�nition �

A;K

is equal

to

W

k2K

(�

A;k

^R �

0

A;k

), which is equivalent to

V

L�K

(�

A;L

_R �

0

A;L

),

where �

A;L

=

W

l2L

�

A;l

and �

0

A;L

=

W

l62L

�

0

A;l

, using the distributivity

of I upon _. Thus, �

A;K

U

i

�

A

is equivalent to

V

L�K

(�

A;L

_R�

0

A;L

)U

i

�

A

,

also equivalent to

V

L�K

((�

A;L

U

i

�

A

)_(>U

i

�

A

^R�

0

A;L

)). Replacing the

previous results in �U

i

�

A

, one can rewrite this formula as a big boolean

combination of separated formulas. But disjunctions of separated for-

mulas are stable under negation, and hence under boolean combination.

Thus �U

i

�

A

, and then �U

i

�, can be written as equivalent disjunctions

of separated formulas, which concludes the proof of the theorem. �

5 Application to veri�cation of TrPTL formulas

The proof of Theorem 4 has shown that decomposing a TrPTL formula can

lead to combinatorial explosions, especially when dealing with negations and U

i

operators. In order to avoid this explosion, we can de�ne a subclass of TrPTL

formulas for which the separation procedure is actually e�cient.

Recall that if a formula is of size n and involves m di�erent process, then the

satis�ability problem for this formula is in time 2

O(max(m

2

log(m);n)m)

.

Let �

s

be the least set of TrPTL formulas satisfying the following conditions:

1. p(i) 2 �

s

for all p 2 PA and all i 2 P .

2. If �; � 2 �

s

, then �_ � 2 �

s

.

3. If � 2 �

s

, then for all i 2 P , O

i

� 2 �

s

.

4. If � 2 TrPTL(P

A

), and � 2 �

s

, then � U

i

� 2 �

s

, for all i 2 P

A

.

5. If � 2 TrPTL(P

B

), and � 2 �

s

, then � U

i

� 2 �

s

, for all i 2 P

B

.

Note that the formulas:p(i) have been excluded only for sake of simplicity, since

they can be simulated by de�ning new atomic propositions.

The �

s

formulas, called separable formulas, can be decomposed as a disjunction

of separated formulas, without any risk of combinatorial explosion.

Proposition 10. Let be a �

s

formula of size n containing d disjunction oper-

ators, then can e�ectively be written as an equivalent conjuntion of d formulas

of size at most (n� d) not containing any _ operator.

Proof. Since it holds that O

i

(�_ �) � O

i

(�) _O

i

(�), and �U

i

(� _ �) � �U

i

� _

�U

i

�, we can move all the _ operators out of the temporal ones, which leads

immediatly to the conclusion. �

Now that we are dealing with formulas without _ operators, we consider the

following function de�ned inductively on these formulas (we write (i; j) 2 C

whenever i and j belong to the same connected component):

8i 2 P; �(p(i)) = p(i)

If (i; j) 2 C then: If (i; j) 62 C then:

�(O

i

p(j)) = O

i

p(j) �(O

i

p(j)) = O

i

>^Rp(j)

�(�U

i

p(j)) = �U

i

p(j) �(�U

i

p(j)) = � ^Rp(j)

�(O

i

O

j

�) = O

i

�(O

j

�) �(O

i

O

j

�) = O

i

>^ �(O

j

�)

�(O

i

(�U

i

�) = O

i

�(�U

i

�) �(O

i

(�U

i

�)) = O

i

>^ �(�U

i

�)

�(�U

i

(O

j

�)) = �U

i

(�(O

j

�)) �(�U

i

(O

j

�)) = � ^R(�(O

j

�))

�(�U

i

(�U

j

�) = �U

i

(�(�U

j

�)) �(�U

i

(�U

j

�)) = � ^R(�(�U

j

�))

Then it is easy to prove (by induction) the following:

Proposition 11. Let be a �

s

formula without any _ operator, then � �().

Example 12. Let = p(1)U

1

(O

1

(p(2)U

2

q(1))) with 1 2 P

A

and 2 2 P

B

. Then

�() = p(1)U

1

(O

1

>^R(p(2) ^Rq(1))).

Now, using �U

i

(�^R�) � �U

i

�^R�, O

i

(�^R�) � O

i

�^R�, and R(�^R�) �

R�^R�, we can easily transform �() into a separated formula.

Example 13. With the same formula as above, it holds that �() � p(1)U

1

(O

1

>)^

Rp(2) ^ Rq(1).

When dealing with initial equivalence, we can then remove all the R operators

from �(). This gives us a formula that is initially equivalent to . Intuitively, this

formula is built from by cutting in di�erent pieces whenever two temporal

operators relating to di�erent components occur successively.

Obviously no progress will be made in the worst case, for instance if we start

with a formula already in TrPTL(P

A

). But, in the best case, one can hope

to bound by the size of the subformulas by a constant, while the number of

processes involved can be divided by 2. Testing the root-sati�ability problem for

the subformulas can thus sometimes be done dramatically faster than the initial

problem for , depending on the structure of .

Example 14. Let = O

1

O

2

O

1

O

2

: : :O

1

O

2

p(2), with 1 2 P

A

and 2 2 P

B

.

Then can be decomposed as the initially equivalent formula O

1

> ^ O

2

p(2),

regardless of the size of .

6 Conclusion

By the time we had submitted this work, Thiagarajan and Walukiewicz [TW97]

have exhibed a new logic on traces, called LTrL, that is actually expressively

complete (i.e. equivalent to the �rst-order logic FO(<) on traces), but does not

have yet an elementary decision procedure, as opposed to TrPTL. Therefore

Mezei's theorem holds for LTrL-de�nable languages. Nevertheless, [TW97] does

not give any way to obtain an e�ective decomposition of LTrL formulas. Thus,

we shall extend the results of the present paper to this new logic LTrL in a

future version of this work.

References

[Ber79] J. Berstel. Transductions and context-free languages. Teubner Studienb�ucher,

1979.

[Die90] V. Diekert. Combinatorics on Traces. Number 454 in LNCS. Springer, 1990.

[DR95] V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scienti�c,

Singapore, 1995.

[EM93] W. Ebinger and A. Muscholl. Logical de�nability on in�nite traces. In A. Lin-

gas, R. Karlsson, and S. Carlsson, editors, Proc. of the 20th ICALP, Lund

(Sweden) 1993, number 700 in LNCS, pages 335{346. Springer, 1993.

[GP92] P. Gastin and A. Petit. Asynchronous automata for in�nite traces. In

W. Kuich, editor, Proc. of the 19th ICALP, Vienna (Austria) 1992, number

623 in LNCS, pages 583{594. Springer, 1992.

[GPZ94] P. Gastin, A. Petit, and W. Zielonka. An extension of Kleene's and

Ochma�nski's theorems to in�nite traces. Theoret. Comp. Sci., 125:167{204,

1994. A preliminary version was presented at ICALP'91, LNCS 510 (1991).

[GW94] P. Godefroid and P. Wolper. A partial approach to model checking. Inform.

and Comp., 110:305{326, 1994.

[KP92] S. Katz and D. Peled. Interleaving set temporal logic. Theoret. Comp. Sci.,

75:21{43, 1992.

[LRT92] K. Lodaya, R. Ramajunam, and P.S. Thiagarajan. Temporal logics for com-

municating sequential agents:I. Int. J. of Found. of Comp. Sci., 3(2):117{159,

1992.

[Maz77] A. Mazurkiewicz. Concurrent program schemes and their interpretations.

DAIMI Rep. PB 78, Aarhus University, Aarhus, 1977.

[MT92] M. Mukund and P.S. Thiagarajan. A logical characterization of well branching

event structures. Theoret. Comp. Sci., 96:35{72, 1992.

[MT96] M. Mukund and P.S. Thiagarajan. Linear time temporal logics over

Mazurkiewicz traces. In Proc. of the 21th MFCS, 1996, number 1113 in LNCS,

pages 62{92. Springer, 1996.

[Pen88] W. Penczek. A temporal logic for event structures. Fundamenta Informaticae,

XI:297{326, 1988.

[PK95] W. Penczek and R. Kuiper. Traces and logic. In V. Diekert and G. Rozenberg,

editors, The book of Traces, pages 307{381, 1995.

[Pnu77] A. Pnueli. The temporal logics of programs. In Proc. of the 18th IEEE FOCS,

1977, pages 46{57, 1977.

[Thi94] P.S. Thiagarajan. A trace based extension of linear time temporal logic. In

Proc. of the 9th LICS, 1994, pages 438{447, 1994.

[Tho89] W. Thomas. On logical de�nability of trace languages. In V. Diekert, edi-

tor, Proc. an ASMICS workshop, Kochel am See 1989, Report TUM-I9002,

Technical University of Munich, pages 172{182, 1989.

[Tho90] W. Thomas. Automata on in�nite objects. In J. v. Leeuwen, editor, Handbook

of Theoretical Computer Science, pages 133{191. Elsevier Science Publishers,

1990.

[TW97] P.S. Thiagarajan and I. Walukiewicz. An expressively complete linear time

temporal logic for Mazurkiewicz traces. In Proc. of LICS'97 (to appear), 1997.

