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Abstract. In this paper, we address the formal characterization of tar-
gets triggering cellular trans-differentiation in the scope of Boolean net-
works with asynchronous dynamics. Given two fixed points of a Boolean
network, we are interested in all the combinations of mutations which
allow to switch from one fixed point to the other, either possibly, or in-
evitably. In the case of existential reachability, we prove that the set of
nodes to (permanently) flip are only and necessarily in certain connected
components of the interaction graph. In the case of inevitable reachabil-
ity, we provide an algorithm to identify a subset of possible solutions.

1 Introduction

In the field of regenerative medicine, an emerging way to treat patients is to
reprogram cells, leading, for instance, to tissue or neuron regeneration. Such a
challenge has become realistic after first experiments have shown that some of
the cell fate decisions can be reversed [15]. Whereas the cells go through several
multipotent states before reaching a differentiated state, the differentiation pro-
cess can be inversed, producing induced pluripotent stem cells (iPSCs) from an
already differentiated cell. By using a distinct differentiation path, this allows to
”transform” the type of a cell. Alternatively, it is also possible to directly perform
a trans-differentiation without necessarily going (back) through a multipotent
state [9,7].

In the aforementioned work, the de- and trans-differentiation has been achieved
by targeting specific genes, that we refer to as Reprogramming Determinants
(RDs), through the mediation of their transcription factors [15,6].

The computational prediction of RDs requires to assess multiple features of
the cell dynamics and the reprogramming strategy, such as the impact of the kind
of perturbations (persistent versus temporary) and of their order; the nature of
targeted cell type (differentiated/pluripotent), and the desired inevitability of
their reachability (fidelity); the nature and duration of the triggered cascade of
regulations (efficiency); and finally, the RD robustness with respect to initial
state heterogeneity among cell population, and with respect to uncertainties in
the computational model.



So far, no general framework allows to efficiently encompass those features to
systematically predict best combinations of RDs in distinct cellular reprogram-
ming events.

In this paper, we address the identification of RDs from Boolean Networks
(BNs) which model the dynamics of gene regulation and signalling networks. The
state of the components (or nodes) of the networks are represented by Boolean
variables, and the state changes are specified by Boolean functions which asso-
ciate the next state of nodes, given the (binary) state of their regulators [16,2].
BNs are well suited for an automatic reasoning on large biological networks where
the available knowledge is mostly about activation and inhibition relations[1].
Such activation/inhibition relations between components form a signed directed
graph, that we refer to as the Interaction Graph.

In this work, we make the assumption that the differentiated cellular states
correspond to the attractors of the dynamics of the computational model, i.e.,
the long-run behaviours. In the scope of BNs, those attractors can be of two
kinds: either a single state (referred to as a fixed point), or a terminal cyclic
behaviour.

The relationship between the IG of BNs and the number of their attractor
has been extensively studied [2,13,14]. However, little work exists on the char-
acterization of the perturbations which trigger a change of attractor. Currently,
most of RDs prediction are performed using statistical analysis on expression
data in order to rank candidate transcription factors [3,12,10]. Whereas based
on network models, those approaches do not allow to derive a complete set of
solution for the reprogramming problem. In [6], the authors developed a heuris-
tic to derive candidate RDs from a pure topological analysis of the interaction
graph: the RDs are selected only in positive cycles that have different values
in the started and target fixed points. However, there is no guarantee that the
derived RDs can actually lead to a change of attractor in the asynchronous dy-
namics of the Boolean networks, and neither that the target fixed point is the
only one reachable. Finally, [8] gives a formal characterization of RDs subject
to temporal mutations which trigger a change of attractor in the synchronous
semantics of conjunctive Boolean networks.

Contribution This work relies on model checking and reachability analysis, that
have been proved useful and successful in previous studies[1,11].

Given a BN, all of whose attractors are fixed points, given an initial fixed
point and a target fixed point, we provide a characterization of the candidate
RDs (set of nodes) with respect to the interaction graph and for two settings of
cellular reprogramming:

– with a permanent perturbation of RDs, the target fixed point becomes reach-
able in the asynchronous dynamics of the BN;

– with a permanent perturbation of RDs, the target fixed point is the sole
reachable attractor in the asynchronous dynamics of the BN.

For the first case, we prove that all the RDs are distributed among particular
strongly connected components of the interaction graph, and we give algorithms



to determine them in both settings. In the second case, we prove that only some
of them are distributed among strongly connected components of the interaction
graph. We provide an algorithm to identify possible combination of permanent
perturbations leading to inevitable reachability of the target fixed point. Whereas
the algorithm may miss some solutions, all returned solutions are correct.

Outline Section 2 gives the definitions and basic properties of BNs and of their
asynchronous dynamics. The formalization of the BN reprogramming problem
with permanent perturbations of nodes is established in Sect. 3. Section 4 states
the main results on the characterization of RDs with respect to the interaction
graph of BNs. An algorithm to enumerate all RDs by exploiting this character-
ization is given in Sect. 5. Finally, 6 discusses the results and sketches future
work.

Notations

Given a finite set I, 2I is the power set of I, |I| the cardinality. Given a positive
integer n, [n] = {1, . . . , n}.

Given a Boolean state x ∈ {0, 1}n and set of indexes I ⊂ [n], x̄I is the
state where x̄i

I = xi if i /∈ I and x̄i
I = 1 − xi if i ∈ I. Similarly, given

x, y ∈ {0, 1}n, x[xI=yI ] denotes the state where for all i ∈ I, (x[xI=yI ])i = yi
and for all i /∈ I, (x[xI=yI ])i = xi

2 Background

In this section, we give the formal definition of Boolean networks, their interac-
tion graph and transition graph in the asynchronous semantics. Finally, we recall
the main link between their attractors and the positive cycles in their interaction
graph.

2.1 Definitions

Boolean Network (BN): A BN is a finite set of Boolean variables, each of them
having a Boolean function. This function is a logical Boolean function depending
from the network’s variables and determining the next state of the variable.

Definition 1 (Boolean Network (BN)). A Boolean Network is a function f
such that:

f : {0, 1}n → {0, 1}n

x = (x1, ..., xn) 7→ f(x) = (f1(x), ..., fn(x))



Example 1. An example of BN of dimension 3 (n = 3) is

f1(x) = x3 ∨ (¬x1 ∧ x2)

f2(x) = ¬x1 ∨ x2

f3(x) = x3 ∨ (x1 ∧ ¬x2)

Interaction Graph: To determine the RDs, we rely on a simplification of the
interactions between the genes, and of the concentrations. A gene will either
be active or inhibited. Gene interactions are simplified likewise, a gene either
activates or inhibits another gene, and we ignore time scales. With this in mind,
an interaction graph (Def.2) can be build: genes are the vertices, and the inter-
actions are the oriented arcs, labelled either + or −, if it is an activation or an
inhibition.

Definition 2 (Interaction Graph). An interaction graph is noted as G =
(V,E), with V being the vertex set, and E being the directed, signed edge set,
E ⊂ (V × V × {−,+})

A cycle between a set of nodes C ⊆ V is said positive (resp. negative) if and
only if there is an even (odd) number of negative edges between those nodes.

An interaction graph can also be defined as an abstraction of a Boolean
network: the functions are not given and not always known, but if a vertex u is
used in the function fv, there is an edge from u to v, negative if fv(x) contains
¬xu and positive if it contains xu.

Definition 3 (Interaction Graph of a Boolean network (G(f))). An in-
teraction graph can be obtained from the Boolean network f : the vertex set is [n],
and for all u, v ∈ [n] there is a positive (resp. negative) arc from u to v if fvu(x) is
positive (resp. negative) for at least one x ∈ {0, 1}n (For every u, v ∈ {1, ..., n},
the function fvu is the discrete derivative of fv considering u, defined on {0, 1}n
by : fvu(x) := fv(x1, .., xu−1, 1, xu+1, .., xn)− fv(x1, .., xu−1, 0, xu+1, .., xn)).

Given an interaction graph G = (V,E), and one of its vertex u ∈ V , Pu

denotes the set of ancestors of u, i.e., the vertices v for which there exists a
path in E from v to u. Similarly, pu is the set of the parents of u, i.e., v ∈ pu ⇒
(v, u, s) ∈ E. Furthermore, G[Pu] is the induced subgraph of G with Pu as vertex
set.

Fig. 1 gives an example of an interaction graph, which is also equal to G(f),
where f is the Boolean network of Ex.1.

Transition Graph: We model the dynamics of a Boolean network f by transi-
tions between its states x ∈ {0, 1}n. In the scope of this paper, we consider the
asynchronous semantics of Boolean networks: a transition updates the value of
only one vertex u ∈ [n]. From a single x ∈ {0, 1}n, one has different transitions
for each vertex u such that fu(x) 6= xu. This leads to the definition of the tran-
sition graph (Def. 4) where vertices are all the possible states {0, 1}n, and edges
correspond to asynchronous transitions.
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Fig. 1. Interaction graph of Ex.1 A ”normal” blue arrow means an activation, and a
”flattened” red arrow means an inhibition.

Definition 4 (Transition graph). The transition graph is the graph having
{0, 1}n as vertex set and the edges set {x → x̄{u} | x ∈ {0, 1}n, u ∈ [n], xu 6=
(f(x))u}. An existing path from x to y is noted x→∗ y.

Fig.2 gives the transition graph of the asynchronous dynamics of Boolean
network of Ex.1.
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Fig. 2. Transition graph of the Boolean network defined in Ex.1. We use shorter nota-
tions, 010 meaning that the node 1 has 0 as value, the node 2 has 1 as value, and the
node 3 has 0 as value. The attractors are boxed in magenta.

Attractors, Fixed point : BN’s Attractors are the terminal strongly connected
components of the transition graph, and can be seen as the long-term dynamics
of the system. Note that an attractor is always a set of states, but it can contain
either multiple distinct nodes, that is the system oscillate between multiple states
(cyclic attractor) or a unique point, i.e the system stays in the same state (fixed
point).



Definition 5 (Attractor).

S ⊆ {0, 1}n is an attractor⇔S 6= ∅ (1)

and ∀x ∈ S, ∀y ∈ {0, 1}n \ S, x 6→ y (2)

and ∀x ∈ S, S \ x does not verify (2) (3)

If |S| = 1 then S is a fixed point. Otherwise S is a cyclic attractor.

Given a BN f , FP(f) ⊆ {0, 1}n denotes the set of its fixed points (∀x ∈
FP(f), f(x) = x).

Example 2. The BN of Ex.1 has 3 attractors that correspond to the 3 terminal
strongly connected components of Fig.2: {010, 110} (cyclic attractor), {101} and
{111} (fixed points).

2.2 On the link between attractors and the interaction graph

Theorem 1 is a conjecture by René Thomas [16] that has been since demonstrated
for Boolean and discrete networks [2,17]: if a Boolean network has multiple
attractors then its interaction graph necessarily contains a positive cycle. In the
case of multiple fixed points, any pair of fixed point differ at least on a set of
nodes forming a positive cycle.

Theorem 1 (Thomas’ first rule). If G = (V,E) has no positive cycles, then
f has at most one attractor. Moreover, if f has two distinct fixed points x and y,
then G has a positive cycle between vertices C ⊆ V such that xv 6= yv for every
vertex v in C.

We can also remark that for a vertex to stay at a value yv where y is a fixed
point, it only needs its ancestors to have the same values as in y.

Remark 1. ∀y ∈ FP(f), ∀u ∈ [n],∀z ∈ {0, 1}n, z verifying ∀j ∈ Pu, zj = yj , we have fu(y) =
yu = fu(z).

Proof. Let u be a vertex in [n]. f(u) only depends of the incoming arcs in u, so
it only depends of pu, which in turn depends on its parents. By induction, fu(y)
only depends of Pu, and so, if fu(y) = yu in G, then fu(y) = yu in G[Pu]. ut

3 Formalisation of the BN Reprogramming with
Permanent Perturbations

Given two fixed points x and y of Boolean network f , we want to identify sets of
nodes, referred to as Reprogramming Determinants (RDs), that when changed
in x enable to switch to y. As our theorems rely on the differences between the
fixed points, we chose to focus on fixed points solely. Further work will extend,
if possible, these theorems and algorithms to all kind of attractors. In the scope
of this paper, by ”change” we mean permanently set the vertex to a new fixed



value. If we ”change” u to 1 (resp. 0), then fu(x) = 1 (resp. 0) for all x. When
switching to y (by changing I) is possible, we have two cases : it either means
that y is reachable from x[xI=yI ] (existential reachability, Def. 6), or that y is the
only reachable fixed point from x[xI=yI ] (inevitable reachability, Def. 7). These
are two different approaches that we will both consider. To remove the temporal
aspect, we make all the changes at the same time (hence x[xI=yI ], otherwise an
order should be visible), and only watch if y is reachable. This also means that
there is no indication of how long it takes for y to be reached.

Definition 6 (Existential Reachability). With the boolean network F, a

function ERF can be defined as ERF : 22
[n]

, with ERF (x, y) 7→ v where v
is the set of all minimal vertex sets I such that x[xI=yI ] →∗ y.

Definition 7 (Inevitable Reachability). Similarly, a function IRF : 22
[n]

can be defined as IRF (x, y) 7→ w where w is the set of all minimal vertices sets
I such as ∀z ∈ {0, 1}n, x[xI=yI ] →∗ z ⇒ z →∗ y.

These two functions will give different results, and have different meanings,
as shown in the examble below.

Example 3. Let us consider the BN f of Fig.3 and its transition graph repro-
duced in Fig.4. f has 4 fixed points: 0000, 0001, 1100 and 1101. Let x = 0000
and y = 1100. Fixing the node {1} to 1 in x makes y reachable : 1100 (=y) is
reachable from x[x1=1] = 1000 with the Boolean network f ′ defined by f ′1(x) = 1
and f ′2 = f2, f ′3 = f3, f ′4 = f4. The transition graph of f ′, considering the first
node being active, corresponds to the left part of the transition graph in Fig.4.
One can then remark that y is not the only fixed point reachable: from 1000,
1101 is also reachable. If we also fix the node {4} to 0, y is the only reachable
fixed point from x[x1=1,x4=0] in the Boolean network f ′′ such that f ′′1 (x) = 1,
f ′′2 = f2, f ′′3 = f3, and f ′′4 (x) = 0.

Therefore, with the previous definitions, {1} ∈ ERF (0000, 1100) but {1} /∈
IRF (0000, 1100); and {1, 4} ∈ IRF (0000, 1100) but {1, 4} /∈ ERF (0000, 1100).
Moreover, we also have {1, 2} and {1, 3} ∈ IRF (0000, 1100).

f1(x) = x1

f2(x) = x1

f3(x) = x1 ∧ ¬x3

f4(x) = x3 ∨ x4

1

23

4

Fig. 3. A BN of dimension 4
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Fig. 4. Transition graph of the BN in Fig.3

4 Reprogramming Determinants and the SCCs of the
Interaction Graph

In this section, we show the link between the RDs and the Strongly Connected
Components (SCCs) of the interaction graph of the Boolean network f . Our
results make the assumption that all the attractors of f are fixed points (no
cyclic attractors).

4.1 SCC Ordering

To switch from x to y, we want to change the value of each vertex u that has
different values for x and y (xu 6= yu) and to prevent each vertex v that verifies
xv = yv from changing value. We know that changing the value of a vertex can
have an impact on other vertices, but we also know that it will only impact its
descendants.

So, if a vertex has a different value in x and y but none of its ancestors do,
then it is necessary to change this vertex. So, to know which vertices need to
be changed first, the best way is to order them, with a topological order for
example. Of course, if there are loops, an order is impossible to determine, we
have to reduce all SCCs to single ”super-vertices” to achieve it. In the remaining
of this paper, we will consider SCCs which contain at least one positive cycle,
because they are known to change between fixed points (Theor.1), we call O the
SCC set that contains all such SCCs. Reducing the graph to its SCCs makes
possible to rank them from 1 to k with any topological order, noted ≺: for all
i, j ∈ [k], j > i⇒ Oj 6≺ Oi.

Let C0 be the set {Oi ∈ O | @Oj , Oj ≺ Oi}, and recursively define slices
CK = {Oi ∈ (O \

⋃
l∈{1,..,K−1} Cl) | @Oj , Oj ≺ Oi}. Given the definition of

the slices, for all topological orders, the slice set will be the same. The slices are
numbered from 1 to c.

From this order, we know which SCCs need to be impacted, still, SCCs ranked
lower in the hierarchy need not be impacted by the change in their ancestors



(see ex.5) The relation ≺ only gives an order to make the changes, from which
one can determine if further changes are needed.

Example 4. Showing that only using the topological order is not sufficient.

f1(x) = ¬x2

f2(x) = ¬x1

f3(x) = x1 ∨ x2

f4(x) = x2 ∧ ¬x3

f5(x) = x4 ∨ x5

3

1 2

4 5

Fig. 5. BN preventing changes in the lower SCC

Any algorithm that only used the topological order without computing the
reachable fixed points would not suffice, as the example from Fig.5 shows : the
switch from the fixed point 01100 to 10101 would be computed by just modifying
{1}, but in fact {4} will always be fixed at 0, because {4} is always inhibited by
{3}, so {5} needs to be changed too.

4.2 SCC Filtering

Whether we want y to be the only reachable attractor, or merely to be one
of potential several such attractors, the ordering from the previous part is the
same, but the filtering will differ.

Theorem 2. If a vertex u such as xu 6= yu and u is not in a positive cycle, then
modifying u’s ancestors is sufficient to modify u.
More generally, to switch from x to y, modifying only those strongly connected
components that contain at least a positive cycle is sufficient.

Proof. Let u be a vertex such that xu 6= yu and u does not lie in a positive cycle.
If u is in a negative cycle, the incoming arc from the cycle is irrelevant : given
that x and y are fixed points and that u has a distinct value in each, the negative
cycle does not change u’s value. Given that u is not in a positive cycle, u is not in
a SCC (or not relevant if it is in a negative cycle). That means that none of the
ancestors are descendants of u. Let z be the state where all of Pu (u’s ancestors)
have the same value that in y. By the remark from Sect.2, for all v ∈ G[Pu], we
have fv(z) = zv = yv. So, either fu(z) = yu, and the theorem is proven, either
fu(z) 6= yu, then, by Theor.1, u is in a positive cycle, contradiction. ut

By recursion over the first part, modifying all the SCCs that contain positive
cycles so their vertices have the same value as in y modifies all their children,
and then all the children of their children, and so on, until the whole graph has
the same values as y. ut



Selecting the SCCs will differ with the two methods. It relies on the same
base, searching the higher SCC that should have its values modified and that is
not already selected. ”Modified” means that all the values of the SCC are fixed
to their values in y. The set of the selected SCCs is S.

4.3 SCC Filtering for Existential Reachability

We consider the RDs for the BN reprogramming with Existential Reachability.
We give an algorithm to identify different sets of SCCs for which the mutation
in the initial fixed point ensure the reachability of the target fixed point. We will
prove that the identified combination of SCCs is complete and minimal.

Basically, the algorithm reviews linearly the SCC slices according to ≺ and
adds the minimal combinations of SCCs to S that are different in y and the fixed
points reachable from x[xS=yS ]:

1. S := ∅
2. For i ranging from 1 to c:

– T := ∅
– ∀s ∈ P (Ci) such that s minimal
∃z ∈ {0, 1}n, zCi\s = yCi\s, x[xI=yI |I∈S] →∗ z, T := T ∪ s.

– S := S×̄T .

With ×̄ being a product and union : for a set I of subsets I1, .., Ik and a set
J1, .., Jl, this product ×̄ is defined by : I×̄J = {I1∪J1, .., I1∪Jl, I2∪J1, ...., Ik∪Jl}

Complexity : In the worst case, the above algorithm perform c× 2l reachability
checks (PSPACE-complete [5]), where l is the size of the largest slice.

Existence of a solution and proof of correctness : Forcing all SCCs of such prob-
lem that differ on x and y to have the same value as in y is one solution. In
the worst case, that is what the algorithm will find. Since the algorithm tests
reachability, and a solution exists, it will find one.

Example 5. We apply the algorithm on the BN of Fig.6 with x = 00000 and
y = 11011.

1. S := ∅
2. C1: s minimal ⇔ s = {1}
3. S := S×̄{1} = {{1}}
4. C2: s minimal ⇔ s = ∅ 3

5. S := S×̄∅ = {{1}}.

We now prove the completeness of the algorithm and the minimality of the
returned sets of SCCs (Theorem 3) and that any RDs in ER(x, y) is spans only
and necessarily in one of the set of SCCs identified by the algorithm (Theorem 4).

3 with the path 10000 → 10100 → 10110 → 11110 → 11111 (and the fixed point is
the next step, → 11011 but there is no need to go further than 11111.)



f1(x) = x1

f2(x) = x1

f3(x) = x1 ∧ ¬x2

f4(x) = x3 ∨ x4

f5(x) = x2 ∨ x5

1

23

4 5

C1

C2

Fig. 6. BN of dimension 5 (left) with its interaction graph (right). Slices are enclosed
in boxes. C1 = {{1}}, C2 = {{4}, {5}}.

Theorem 3. S only contains minimal SCC sets, and S is complete.

Proof. Minimality : Inside every slice, the SCCs are totally independant one
another. Moreover, given the order exploiting, we can deduce that the sum of
the minima on each slice is the minimum on the whole graph. ut

Completeness : Let I be a minimal SCC set such as x[xJ=yJ |J∈I] →∗ y,
then, for every slice Ci, I ∩Ci is minimal, since once all the SCCs in a slice can
be changed to the way they are in y, we can always choose the path that allows
this change. Hence I ∈ S. ut

Theorem 4. ∀c ∈ ER(x, y), ∃I ∈ S, ∀u ∈ c, ∃scc ∈ I, u ∈ scc.

Proof. Let c be a vertex set in ER(x, y) and u one of the vertices. If u 6∈ O, then
c is not minimal, by Theorem 2. If for all I ∈ S, u is in o ∈ (O \ I) then there
exists a path such that changing o’s ancestors makes o’s change possible, and
the ancestors need to be changed as well, by construction of I. So c \ u would
have the same effect, and c would not be minimal. If u 6∈ o, then there exists
I ∈ S and scc ∈ I, such as u ∈ scc. ut

4.4 SCC Filtering for Inevitable Reachability

We now give an algorithm to identify a set of SCCs for which the mutation in
the initial fixed point is sufficient to ensure the Inevitable Reachability of the
target fixed point.

The algorithm computes all reachable fixed points from x with the SCCs in
S modified, and find the one, z, that has the lower SCC (in the ranking given by
≺) in which a vertex u is such that zu 6= yu. As we are looking for all reachable
fixed points, this will always return the same SCC (even if the order is only
partial), thus allowing the algorithm to be deterministic. We add this SCC to
S, and repeat until y is the only reachable fixed point.

1. S := ∅
2. While ∃z ∈ FP(f), z 6= y, x[xI=yI |I∈S] →∗ z



– S := S ∪ {Oi}, with
i = mina∈{1,..,k}(a | ∃z ∈ FP(f), zOa

6= yOa
, x[xI=yI |I∈S] →∗ z)

If two (or more) SCCs A and B are such that they are differently ordered in
two distinct orders, then A has no influence on B and neither has B on A. Then,
the algorithm will select both SCCs if neither are impacted by the previous
changes, so the order does not matter.

Existence of a solution and proof of correctness : A solution is to fix all the SCCs
of the graph to their value in y. Since there exists a solution and the algorithm
tests if y is the only reachable point, and follows the order given by ≺, it will
end and find a solution.

Complexity : Computing all fixed points reachable is PSPACE-complete [4]. It
is used k times (number of SCCs) in the worst case.

Example 6. We apply the algorithm on the BN of Fig.7. with x = 00000 and
y = 11011. Starting from S := ∅, the only reachable fixed point is (0)00(0)(0)
(the SCCs fromO are parenthesized). The smallest SCC o such as x[xS=yS ],o 6= yo
is O1, so S := ∅ ∪ {O1} = {O1}. The reachable fixed points from x[xI=yI |I∈S] =
10000 are now: (1)10(1)(1) and (1)10(0)(1). The smallest SCC o such that
x[xS=yS ],o 6= yo is O3. We set S := S ∪ O3 = {O1,O3} and we obtain that
the only reachable fixed point from x[xI=yI |I∈S] = 10010 is (1)10(1)(1) which is
y. So the algorithm stops.

f1(x) = x1

f2(x) = x1

f3(x) = x1 ∧ ¬x2

f4(x) = x3 ∨ x4

f5(x) = x2 ∨ x5

1

23

4 5

O1

O3 O2

Fig. 7. BN of dimension 5 (left) with its interaction graph (right) on which the SCCs
containing positive cycles (O) are boxed.

Theorem 5. S is minimal.

Proof. If a set S1 exists such that S1 has a lower cardinal than S and modifying
S1 makes y the only reachable point, then we can reduce S1 to a subset of S.
Let s be a SCC in S \S1, thus there exists a fixed point z such that zs 6= ys and
by construction of S, z is reachable from x modified by S1. ut



We remark that, contrary to the case of Existential Reachability, the RDs
for Inevitable Reachability of the target fixed point are not necessarily in SCCs
containing positive cycles. Indeed, in Ex.3, we showed that IRF (x, y) can refer
to nodes that do not belong to O (such as the node 2 for the BN of Fig.3). But
we can also remark that if a RD v is not in a SCC containing a positive cycle,
then xv = yv.

Theorem 6. ∀v ∈ IR(x, y), xv 6= yv ⇒ ∃scc ∈ O, v ∈ scc

Proof. Let v ∈ IR(x, y) such that for all scc ∈ O, v 6∈ scc. By Theor.1, if v is
such that xv 6= yv, then modifying the SCC in O is enough to modify v. But
v ∈ IR(x, y) and IR(x, y) is minimal, thus xv = yv. ut

5 Identifying Determinants within SCCs

We know that modifying all the SCCs selected is enough to switch from x to
y, but to reduce the genes selected, we could try to modify only some of the
vertices to achieve the same result. But, as dynamics are involved, there could
be unwanted changes (or wanted and unpredicted changes, in the case where we
want y to be reachable) in the descendants.

An idea could be to select the feedback vertex set of the SCC : by fixing the
vertices from this set, we effectively destroy every circle, thus the only reachable
state of the SCC is the one having the same values as y. This, however, does
not solve the problem : in Ex.7, {1} is the feedback vertex set, and we still have
the same issue. Moreover, it miss some of the possible solutions (modifying {2}
or {3} could work to change the whole SCC in Ex.7) or even dismiss the best
solution (in Ex.7, changing {3} makes y the only reachable fixed point and solves
the issue).

Example 7. Illustration of the problem with dynamics.

f1(x) = ¬x3 ∧ ¬x2

f2(x) = ¬x1

f3(x) = ¬x1

f4(x) = x2 ∧ ¬x1 ∧ ¬x3

f5(x) = x4 ∨ x5

1

2

3

4 5

Fig. 8. BN of dimension 5 (left) and its interaction graph (right)

We decide that x = 10000 and y = 01100, and 01101 = z, those are all
fixed points. Let’s suppose we want y to be the only fixed point reachable.
The algorithm will see that if the whole first SCC is modified {1, 2, 3}, y is



the only reachable fixed point. It could pick {1} to be modified, but instead of
00000→ 00100→ 01100, we can have

00000→ 01000→ 01010→ 01011→ 01111→ 01101

This leads to z being reachable by only modifying {1}, and so the algorithm
would be wrong.

This leaves to two kinds of approaches : either a way to modify the SCC so
that it does not impact its descendants can be found, either we need to select
the vertices to be modified in the SCC as a intermediary step in the process,
and redesign S as a list of vertices instead of a list of SCCs.

By exploiting the results of the preceding section, we show an algorithm to
compute a set of RDs which guarantees the Inevitable Reachability of the target
fixed point. The algorithm recursively picks a vertex u in the lowest SCC in
the order given by ≺ in O, and modify its associated function to become the
constant value yu. The interaction graph of the resulting Boolean network is a
sub-graph of the initial interaction graph, where all the input edges of the node
u have been removed. Hence, the SCC O1 is split in the new interaction graph. If
necessary, another vertex can be picked in the lowest SCC in the new interaction
graph:

RecursiveAlgorithm(f , rd) :

– If ∃z ∈ FP(f), x[xrd=yrd] →∗ z then :

• res = ∅
• i = mina∈{1,..,k}(a | ∃z ∈ FP(f), zOa 6= yOa , x[xI=yI |I∈S] →∗ z)

• For all u ∈ Oi :

∗ g := f with gu := yu
∗ res := res∪ RecursiveAlgorithm(g, rd×̄{u})

• return res

– else :

• return rd

Remark that the algorithm always find at least one solution: if the target fixed
point is not the only reachable fixed point, then there is at least one positive
cycle (and hence a SCC) which has a different state (and hence will be selected
by our algorithm).

Example 8. Applied to the BN of Fig.8 with x = 10000 and y = 01100, the
above algorithm returns, for instance, the RD {2, 5}: indeed, {2} belongs to
O1. When fixing f2 = 1, the new interaction graph has two SCCs with positive
cycles: {1, 3} and {5}. From the state 11000, two fixed points are reachable:
01100, 01101. Hence, because the SCC {1, 3} has the same values than in y in
those two fixed points, the next vertex in picked in the SCC {5}. Finally, from
the state 11001, y is the only reachable fixed point.



6 Discussion

This paper provides the first formal characterization of the Reprogramming De-
terminants (RDs) for switching from one fixed point to another in the scope of
the asynchronous dynamics of Boolean networks.

In the case of reprogramming with existential reachability of the target fixed
point, we prove that all the possible minimal RDs modify nodes in particu-
lar combinations of SCCs of the interaction graph of the Boolean network. We
give an algorithm to determine exactly those combinations of set of nodes. Our
characterizations rely on the verification of reachability properties.

In the case of reprogramming with inevitable reachability of the target fixed
point, we show that the RDs are not necessarily in SCCs. However, we provide
an algorithm which identifies RDs that guarantee the inevitable reachability by
picking nodes in appropriate SCCs. The algorithm relies on the enumeration of
reachable fixed points.

One of the main limitation of our algorithms is the numerous reachability
checks it needs to perform. Future work will consider methods and data struc-
tures for factorizing the exploration of the Boolean network dynamics.

The present work considered only permanent mutations: when a node is
mutated, it is assumed it keeps its mutated value forever (its local Boolean
function becomes a constant function). Considering temporary mutations, i.e.,
where the local Boolean function of mutated nodes is restored after some time,
is a challenging research direction: one should determine the ordering and the
duration of mutations, and the set of candidate mutations is a priori no longer
restricted to connected components, as it is the case for permanent mutations.
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boolean networks. March 2016.

9. Thomas Graf and Tariq Enver. Forcing cells to change lineages. Nature,
462(7273):587–594, dec 2009.

10. Junghyun Jo, Sohyun Hwang, Hyung Joon Kim, Soomin Hong, Jeoung Eun Lee,
Sung-Geum Lee, Ahmi Baek, Heonjong Han, Jin Il Lee, Insuk Lee, and et al. An
integrated systems biology approach identifies positive cofactor 4 as a factor that
increases reprogramming efficiency. Nucleic Acids Research, 44(3):1203–1215, Jan
2016.
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