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ABSTRACT
We designed a system to infer the multimodal itineraries
traveled by a user from a combination of smartphone sensor
data (e.g., GPS, Wi-Fi, inertial sensors), personal informa-
tion, and knowledge of the transport network topology (e.g.,
maps, transportation timetables). The system operates with
a Multimodal Transport Network that captures the set of
admissible multimodal itineraries, i.e., paths of this network
with weights providing the statistics (expected time and vari-
ance) of the paths. The network takes into account public
transportation schedules. Our Multimodal Transport Net-
work is constructed from publicly available transport data of
Paris and its neighbourhoods published by different trans-
port agencies and map organizations. The system models
sensor uncertainty with probabilities, and the likelihood that
a multimodal itinerary was taken by the user is captured in
a Dynamic Bayesian Network. For this demonstration, we
captured data from users travelling over the Paris region who
were asked to record data for different trips via an Android
application. After uploading their data into our system, a set
of most likely itineraries is computed for each trip. For each
trip, the system displays recognized multimodal itineraries
and their estimated likelihood over an interactive map.

Introduction
The democratisation of connected and sensor-rich personal
mobile devices has increased the demand for context-aware
commercial applications taking advantage of the information
they are able to generate. Most prominent examples of such
applications are the smartphones’ navigational applications.
Modern smartphones can track the position of their carrier
using three independent radio networks: Satellite Navigaton
(GPS, GLONASS), Cellular and Wi-Fi networks. Embedded
inertial sensors (accelerometer and gyroscope) can be used
to enrich positional information via dead reckoning. And
more recently, inertial sensors have also been successfully
used in different activity recognition applications. Current
technology is far from taking full advantage of positional
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and inertial data to understand the users’ daily movements
in urban environments. The present system demonstrates
sophisticated techniques towards this goal.

We designed a system to infer the multimodal itineraries
traveled by a user from a combination of smartphone sensor
data, personal information and knowledge of the transport
network topology. The sensor data is recorded by users
over the course of a journey. The network topology can
be constructed from available geographic data and public
transport timetables. The system ultimately aims at two
modes of operations, each with distinct goals:

Offline mode After the data has been acquired, the system
determines the user’s location, mode of transport and
different transportation routes and lines taken over
the time of a travel. The expected result is a set of
candidate itineraries ranked by their likeliness.

Online mode In real time, the system determines the cur-
rent user’s location, mode of transportation and current
transportation route if applicable. It predicts the user’s
future movements, both in the short term (Is the user
going to grab a bicycle at the next bicycle-sharing sta-
tion?) and in terms of distant goals (Is the user going
to the office?).

This demonstration will most likely only feature the offline
mode. The work on the online mode will be probably too
preliminary to be demonstrated.

In such a setting, a key aspect is that of the available
knowledge. First, sensor data can be classified based on the
kind of knowledge they deliver (e.g. location, movement)
and its characteristics (e.g. frequency, accuracy). Then the
system has access to geographic data (roads, points of in-
terest), public transportation data (routes and schedules),
and finally historical traffic data (traffic jams, schedule de-
lays). These allow creating a Multimodal Transport Network.
The key notion is that of admissible multimodal itineraries
that are paths of this network with weights that give the
statistics (expected time and variance) of the paths. Finally,
the system may rely on the user’s personal knowledge such
as a history of past itineraries to bias the probabilities of
the different routes. Difficulties arise from lack of data (e.g.,
lack of positioning inside the metro) and from too much data
(e.g., combination of possibly conflicting localisation data,
overlapping public transportation lines).

For our demonstration, the Multimodal Transport Net-
work is constructed from publicly available transport data of
Paris and its neighbourhoods published by different transport
agencies and mapping organizations. In terms of transport



network heterogeneity, the region features a multitude of
modes for public transport: sub-urban train, metro, bus,
tram. These are spread over different transport agencies.
The region is also notable for its car-sharing and bike-sharing
systems. Smartphone data is recorded via an Android appli-
cation by multiple users travelling over the Paris region. We
demonstrate our system by displaying recognized multimodal
itineraries and their estimated likelihood for a single trip of
a single-user over an interactive map.

One contribution of our approach is an algorithm that
computes a set of most likely itineraries using a combination
of particle filtering [9, 10, 28] and a special path sampling
algorithm over a Dynamic Bayesian Network [20]. Figure 1
summarizes the different components of our system.

Related work
Activity recognition, that is concerned with determining the
actions and goal of one or several agents given a series of
observations on their actions and the environment, has gained
increased attention over the years in the fields of articial
intelligence, robotics, and ubiquitous computing. Our work
follows pioneering works published over the last ten years
on sensor-based activity recognition, for which accelerometer
based approaches are notable [3, 7, 15, 19, 22, 24]. More
recently, several researchers have been particularly concerned
with transport mode identification [14, 18, 25, 29, 30], for
which more general approaches can be devised. In these
approaches, we are only interested in determining whether
the user is currently stationary, walking, running, cycling or
in a motor vehicle. This technology is now available, via their
respective APIs, to developers of the two most widespread
smartphone platforms [1, 8].

In our setting, the requirement is to determine both trans-
port mode and traveled routes. To serve this purpose, and
provide context awareness to travel assistant technologies,
location-based activity tracking were developed, that use
positional information from an embedded GPS chip to track
the user’s most frequent locations, travel routines and routes
taken [2, 6, 16]. Location-based vehicle tracking has been
successfully used to generate accurate schedules and provide
information about traffic delays to the rest of the community
[4, 26, 27]. On the other hand, our interest is to provide a
single user with real-time itinerary-aware applications and
an accurate summary of one’s routines. To this respect, our
work is closely related to the literature in [6, 16], which uses
a combination of online activity recognition techniques and
location-based map-matching. However, these publications
do not distinguish overlapping public transportation routes
with different schedules and do not handle long periods of
missing GPS observations. Map matching, for which a survey
can be found in [23] with more recent results in [17, 21], is
concerned with matching a set of positional observations to
a path in a given road network. In our case, we cover a
more general problem that considers a multimodal transport
network. Our multimodal network adds two extra difficulties:
timetable management and the fact that two geographic
routes may belong to several transport modes and lines.

In itinerary detection, the use of a dynamic Bayesian
network is not new. It had to our knowledge never been
stressed as far as we do by considering richer transportation
data (multimodal distinguishing lines and timetables), with a
richer combination of user data: both positional sensors and
accelerometer. Another novelty is in the processing of zones

with long periods of time with missing GPS observations,
which happen frequently in high density urban areas, e.g.
with an underground transit system.

Sensor Data
We collected sensor measurements from multiple users equipped
with a smartphone and running a logging application. In
this section, we quickly overview the different types of sensor
measurements recorded in our experiments.

Absolute Positioning. Three different technologies are able
to pinpoint the smartphone’s position. They come with vary-
ing degrees of accuracy, from the most to the least accurate:
Satellite Navigation (GPS, GLONASS), Wi-Fi Networks and
Cellular Network. These sensors will raise positional events
the moment they get a new reading of where the smartphone
might be. We use the term location fix to refer to such events.
Metadata (signal quality, visible satellite count) is recorded
as well. We constrain geographic locations to a longitude and
latitude pair with no elevation information. Satellite Naviga-
tion, besides being the most accurate, is the only one capable
of providing speed and bearing as well. Absolute positioning
technologies are all characterized by being dependent on
wireless transmission of electromagnetic signals. Also, for
them to work, they require some kind of static almanac or
algorithm that accurately maps signal emitters to a position
on Earth or in space. We note that signal unavailability or
failure to determine one’s position is a very important piece
of information. In some cases, we could get a hint of where
the user might be, and in many, we will know where the user
cannot be.

Inertial. Most smartphones have an embedded accelerom-
eter, a gyroscope and a magnetometer sensor. Altogether
they provide information regarding the device’s movement
with respect to an earth’s bound frame of reference. Given
an initial starting point, orientation and velocity, and suf-
ficient sensor accuracy, the position of the smartphone can
be tracked over time. For transport mode detection, we
are mostly concerned by accelerometer measurements [14,
18, 25, 29]. However, since the accelerometer measures ac-
celeration within the device’s inertial frame, it is measured
with respect to the device’s orientation. Thus, ideally, one
needs to combine information from other sensors to derive
a geo-centric orientation. We will not further discuss gy-
roscope/magnetometer data. Mainly, we will consider that
accelerometer data has been augmented, when possible, with
gyroscope/magnetometer data. A system that performs this
augmentation (sensor-fusion) is found in [13].

Frequency of measurements. Location sensors do not nec-
essarily provide a location fix at the requested rate. For
example, Cellular/Wi-Fi Network Position sensors do not
necessarily raise fixes if they deem that the position of the
smartphone has not sufficiently changed provided the accu-
racy of their measurements. Satellite Navigation, which can
acquire fixes at 1 Hz irrespective of a position change, can
temporarily stop raising fixes if the received satellite signals
are not strong enough for a sufficient lapse of time.

Accelerometer and other low-level sensors are able to ac-
quire data at an almost fixed-rate, and are not subject to
interruptions under a wide array of circumstances. We can
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Figure 1: Overall picture: white rectangles are input geographic data, grey ones are user data, dark ones are derived models.
Rounded rectangles represent algorithms, and the diamond is the output.

expect such readings at a rate between 50 and 100 Hz. Sensor-
fused accelerometer in the geo-centric frame data is thus
expected at a rate of at least 50 Hz.

Recording of measurements. Measurements are retrieved
from multiple users equipped with an Android smartphone.
For privacy considerations, users are asked to press a “Start
logging” button at the start each trip, and they are asked to
press “Stop logging” at the end of it. During the trip, the
application runs in the background, listening to incoming sen-
sor data, and records it in tabular form. Each row represents
a single measurement, and is associated a timestamp. The
application produces different tabular files for each sensor
and type of measurement.

Parisian Multimodal Transport Network

Figure 2: Glimpse of the Parisian public transportation lines,
Paris 1er arrondissement

The Multimodal Transport Network is constructed with
data from various Web sources, including OpenStreetMap
(road and infrastructure), RATP & SNCF Open Data (public

Type of data Count
Roads > 10,000

Public transportation lines 375
Bike-sharing stations 1,227
Car-sharing stations 905

Table 1: Multimodal transport network: Paris and neighbor-
hoods

transportation), as well as Velib’ and Autolib’. We distin-
guish private transport modes (walking/running, cycling,
car, motorcycle) from public (bus, metro, tram, train). For
public transport modes, we distinguish different transporta-
tion lines (e.g. metro Line 1, Line 2, etc.). Our system is
able to construct “admissible multimodal itineraries” that
are paths of this network with weights that give the statis-
tics (expected time and variance) of the paths. Similar to
[30], mode transitions are only allowed in and out of human
transport modes (walking/running, cycling). Waiting times,
e.g. when waiting for a bus at the station, are considered
as well. Multimodal Transport Network takes into account
the time variability of traffic. As of now, this variability only
includes public transportation schedules. More information
will be introduced when it is available. For instance, the
multimodal transport network will tell (at a particular time
of a given day) the average time it would take (and variance)
to pick up a bike at the Marguerite de Navarre bike-sharing
station, drop it at Grands Boulevards and get on Line 9 of
metro.

Time variability of traffic is our first step towards modelling
uncertainty of complex events in the Multimodal Transport
Network. Link uncertainty, such as missing or modified roads
and public transportation lines, although frequent, is not
considered in this work. Table 1 shows some key figures of
our Multimodal Transport Network. Figure 2 overlays a view
of different public transportation lines over a map of Paris
at the time of the submission.

Multimodal Itinerary Matching
The system is able to compute the probability that a multi-
modal itinerary was taken. We model the probability that



Figure 3: Displaying the most likely itineraries. The itinerary
displayed on the map is highlighted in blue in the list.

a multimodal itinerary was taken via a Dynamic Bayesian
Network [20]. Based on probabilistic observational variables
and state transitions, one’s current itinerary is represented
in the Dynamic Bayesian Network through a state variable
that keeps tracks of one’s current location in the Multimodal
Transport Network. The model integrates a certain number
of priors, gathered from the training of local models, verified
in practice and extracted from knowledge in previous work
[2, 6, 14, 16, 25, 29, 30]. The system performs approximate
inference by keeping track of a belief state via particle filter-
ing [5, 9, 12, 16] with a special path sampling algorithm [6,
11].

Demonstration setting
For the demo, user data will be displayed in the form of a
list of trips.

For each trip, multiple inferred multimodal itineraries
will be displayed in a list, ranked by their likelihood with
respect to trip measurements. Selecting an itinerary will
overlay it on a map (Fig. 3). When the algorithm does not
succeed to infer precise portions of an itinerary, they will
be displayed as “grey zones”. Raw positional measurements
will be overlaid on the map as a baseline. When available, a
manually annotated ground truth itinerary may be overlaid

for comparison. To demonstrate that the system takes public
transportation schedules into account, we will show how an
artificially added time offset on raw data produces different
results.

Finally, we will display various per-user statistics: frequent
itineraries, average departure times and duration of travel.
When a user uses multiple itineraries for the same start and
endpoints, their statistics may be compared.
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