
The Regular Viewpoint on PA-Processes

D. Lugiez

1

and Ph. Schnoebelen

2

1

Lab. d'Informatique de Marseille, Univ. Aix-Marseille & CNRS URA 1787,

39, r. Joliot-Curie, 13453 Marseille Cedex 13 France

email: lugiez@lim.univ-mrs.fr

2

Lab. Sp�eci�cation & V�eri�cation, ENS de Cachan & CNRS URA 2236,

61, av. Pdt. Wilson, 94235 Cachan Cedex France

email: phs@lsv.ens-cachan.fr

Abstract. PA is the process algebra allowing non-determinism, sequen-

tial and parallel compositions, and recursion. We suggest a view of PA-

processes as tree languages.

Our main result is that the set of (iterated) predecessors of a regular set

of PA-processes is a regular tree language, and similarly for (iterated)

successors. Furthermore, the corresponding tree-automata can be built

e�ectively in polynomial-time. This has many immediate applications

to veri�cation problems for PA-processes, among which a simple and

general model-checking algorithm.

Introduction

Veri�cation of In�nite State Processes is a very active �eld of research today in

the concurrency-theory community. Of course, there has always been an active

Petri-nets community, but researchers involved in process algebra and model-

checking really became interested into in�nite state processes after the proof that

bisimulation was decidable for normed BPA-processes [BBK87]. This prompted

several researchers to investigate decidability issues for BPP and BPA (with

or without the normedness condition) (see [CHM94,Mol96,BE97] for a partial

survey).

From BPA and BPP to PA: BPA is the \non-determinism + sequential compo-

sition + recursion" fragment of process algebra. BPP is the \non-determinism +

parallel composition + recursion" fragment. PA (from [BEH95]) combines both

and is much less tractable. A few years ago, while more and more decidability

results for BPP and BPA were presented, PA was still beyond the reach of the

current techniques. Then R. Mayr showed the decidability of reachability for PA

processes [May97c], and extended this into decidability of model-checking for PA

w.r.t. the EF fragment of CTL [May97b]. This was an important breakthrough,

allowing Mayr to successfully attack more powerful process algebras [May97a]

while other decidability results for PA were presented by him and other re-

searchers (e.g. [Ku�c96,Ku�c97,JKM98,HJ98]).
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A �eld asking for new insights: The decidability proofs from [May97b] (and the

following papers) are certainly not trivial. The constructions are quite complex

and hard to check. It is not easy to see in which directions the results and/or

the proofs could be adapted or generalized without too much trouble. Probably,

this complexity cannot be avoided with the techniques currently available in the

�eld. We believe we are at a point where it is more important to look for new

insights, concepts and techniques that will simplify the �eld, rather than trying

to further extend already existing results.

Our contribution: In this paper, we show how tree-automata techniques

greatly help dealing with PA. Our main results are two Regularity Theorems,

stating that Post

�

(L) and Pre

�

(L), the set of con�gurations reachable from

(resp. allowing to reach) a con�guration in L, is a regular tree language when L

is, and giving simple polynomial-time constructions for the associated automata.

Many important consequences follow directly, including a simple algorithm for

model-checking PA-processes.

Why does it work ? The regularity of Post

�

(L) and Pre

�

(L) could only be

obtained after we had the combination of two main insights:

1. the tree-automata techniques that have been proved very powerful in several

�elds (see [CKSV97]) are useful for the process-algebraic community as well.

After all, PA is just a simple term-rewrite system with a special context-

sensitive rewriting strategy, not unlike head-rewriting, in presence of the

sequential composition operator.

2. the syntactic congruences used to simplify notations in simple process alge-

bras help one get closer to the intended semantics of processes, but they

break the regularity of the behavior. The decidability results are much sim-

pler when one only introduces syntactic congruences at a later stage. (Be-

sides, this is a more general approach.)

Plan of the paper: We start with our de�nition of the PA algebra (x 1). Then

we recall what are tree automata and how sets of PA processes can be seen

as tree languages (x 2). This allows proving that Post

�

(L) and Pre

�

(L) are

regular when L is a regular set of PA terms (x 3). We then extend these re-

sults by taking labels of transitions into account (x 4) and showing how tran-

sitions \modulo structural congruence" are handled (x 5). Finally we consider

the important applications in model-checking (x 6). Several proofs are omited

for lack of space. They can be found in the longer version of this paper at

http://www.lsv.ens-cachan.fr/Publis/RAPPORTS LSV.

Related work: The set of all reachable con�gurations of a pushdown automa-

ton form a regular (word) language. This was proven in [B�uc64] and extended

in [Cau92]. Applications to the model-checking of pushdown automata have been

proposed in [FWW97,BEM97].

�

! over PA terms is similar to the transitive closure of relations de�ned

by ground rewrite systems. Because the sequential composition operator in PA
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implies a certain form of pre�x rewriting, the ground tree transducers of Dauchet

and Tison [DT90] cannot recognize

�

!. It turns out that

�

! can be seen as a

rational tree relation as de�ned by Raoult [Rao97].

Regarding the applications we develop for our regularity theorems, most have

been suggested by Mayr's work on PA [May97c,May97b] and/or our earlier work

on RPPS [KS97a,KS97b].

1 The PA process algebra

1.1 Syntax

Act = fa; b; c; : : :g is a set of action names.

Var = fX;Y; Z; : : :g is a set of process variables.

E

PA

= ft; u; : : :g is the set of PA-terms, given by the following abstract syntax

t; u ::= 0 j X j t:u j t k u

where X is any process variable from Var . Given t 2 E

PA

, we write Var(t) the

set of process variables occurring in t and Subterms(t) the set of all subterms of

t (t included).

A guarded PA declaration is a �nite set � = fX

i

a

i

! t

i

j i = 1; : : : ; ng of

process rewrite rules. Note that the X

i

's need not be distinct.

We write Subterms(�) for the union of all Subterms(t) for t a right- or a left-

hand side of a rule in �, and let Var(�) denotes Var \ Subterms(�), the set of

process variables occurring in�.�

a

(X) denotes ft j there is a rule \X

a

! t" in �g

and �(X) is

S

a2Act

�

a

(X). Var

?

def

= fX 2 Var j �(X) = ?g is the set of vari-

ables for which � provides no rewrite.

In the following, we assume a �xed Var and �.

1.2 Semantics

A PA declaration � de�nes a labeled transition relation!

�

� E

PA

�Act�E

PA

.

We always omit the � subscript when no confusion is possible, and use the

standard notations and abbreviations: t

w

! t

0

with w 2 Act

�

, t

k

! t

0

with k 2 N,

t

�

! t

0

, t!, : : : !

�

is inductively de�ned via the following SOS rules:

t

1

a

! t

0

1

t

1

k t

2

a

! t

0

1

k t

2

t

1

a

! t

0

1

t

1

:t

2

a

! t

0

1

:t

2

X

a

! t

(X

a

! t) 2 �

t

2

a

! t

0

2

t

1

k t

2

a

! t

1

k t

0

2

t

2

a

! t

0

2

t

1

:t

2

a

! t

1

:t

0

2

IsNil(t

1

)

The second SOS rule for sequential composition is peculiar: it uses a syntactic

predicate, \IsNil(t

1

)", as a side condition checking that t

1

cannot evolve any-

more, i.e. that t

1

is terminated. Indeed, our intention is that the t

2

part in t

1

:t

2

only evolves once t

1

is terminated.
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The IsNil(: : : ) predicate is inductively de�ned by

IsNil(t

1

k t

2

)

def

= IsNil(t

1

) ^ IsNil(t

2

); IsNil(0)

def

= true;

IsNil(t

1

:t

2

)

def

= IsNil(t

1

) ^ IsNil(t

2

); IsNil(X)

def

=

�

true if �(X) = ?,

false otherwise.

It is indeed a syntactic test for termination, and we have

Lemma 1. The following three properties are equivalent:

1. IsNil(t) = true,

2. t 6! (i.e. t is terminated),

3. Var(t) � Var

?

.

1.3 Structural equivalence of PA terms

Several works on PA and related algebras only consider processes up-to some

structural congruence. PA itself usually assumes an equivalence � de�ned by

the following equations:

(C

k

) t k t

0

� t

0

k t

(A

k

) (t k t

0

) k t

00

� t k (t

0

k t

00

)

(A

:

) (t:t

0

):t

00

� t:(t

0

:t

00

)

(N

1

) t:0 � t

(N

2

) 0:t � t

(N

3

) t k 0 � t

(N

4

) 0 k t � t

� respects the behaviour of process terms. However, we do not want to identify

PA terms related by � !

Our approach clearly separates the behavior of E

PA

(the ! relation) and

structural equivalence between terms (the � relation). We get simple proofs

of results which are hard to get in the other approach because the transition

relation and the equivalence relation interact at each step.

In the following, we study �rst the! relation. Later (x 5) we combine! and

structural equivalence and show how it is possible to reason about \PA-terms

modulo �". In e�ect, this shows that our approach is also more general since we

can de�ne the \modulo �" approach in our framework.

2 Tree languages and PA

We shall use tree automata to recognize sets of terms from E

PA

.

2.1 Regular tree languages and tree automata

We recall some basic facts on tree automata and regular tree languages. For more

details, the reader is referred to any classical source (e.g. [CDG

+

97,GS97]).

A ranked alphabet is a �nite set of symbols F together with an arity function

� : F ! N. This partitions F according to arities: F = F

0

[ F

1

[ F

2

[ � � � . We
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write T (F) the set of terms over F and call them �nite trees or just trees. A tree

language over F is any subset of T (F).

A (�nite, bottom-up) tree automaton (a \TA") is a tuple A = hF ; Q; F;Ri

where F is a ranked alphabet, Q = fq; q

0

; : : :g is a �nite set of states, F � Q

is the subset of �nal states, and R is a �nite set of transition rules of the form

f(q

1

; : : : ; q

n

) 7�! q where n � 0 is the arity �(f) of symbol f 2 F . TA's with

"-rules also allow some transition rules of the form q 7�! q

0

.

The transition rules de�ne a rewrite relation on terms built on F [Q (seeing

states from Q as nullary symbols). This works bottom-up. We write t

A

7�! q

when t 2 T (F) can be rewritten (using any number of steps) to q 2 Q and say t

is accepted by A if it can be rewritten into a �nal state of A. We write L(A) for

the set of all terms accepted by A. Any tree language which coincide with L(A)

for some A is a regular tree language. Regular tree languages are closed under

complementation, union, etc.

An example: Let F be given by F

0

= fa; bg, F

1

= fgg and F

2

= ffg. There is a

TA, A

even g

, accepting the set of all t 2 T (F) where g occurs an even number of

times in t. A

even g

is given by Q

def

= fq

0

; q

1

g, R

def

= fa 7�! q

0

; b 7�! q

0

; g(q

0

) 7�!

q

1

; g(q

1

) 7�! q

0

; f(q

0

; q

0

) 7�! q

0

; f(q

0

; q

1

) 7�! q

1

; f(q

1

; q

0

) 7�! q

1

; f(q

1

; q

1

) 7�!

q

0

g and F

def

= fq

0

g. Let t be g(f(g(a); b)). A

even g

rewrites t (deterministically)

as follows:

g(f(g(a); b)) 7�! g(f(g(q

0

); q

0

)) 7�! g(f(q

1

; q

0

)) 7�! g(q

1

) 7�! q

0

:

Hence t 7�! q

0

2 F so that t 2 L(A

even g

).

The size of a TA A, denoted by jAj, is the number of states of A augmented

by the size of the rules of A where a rule f(q

1

; : : : ; q

n

) 7�! q has size n + 2.

Notice that, for a �xed F where the largest arity is m, jAj is in O(jQj

m+1

).

A TA is deterministic if all transition rules have distinct left-hand sides (and

there are no "-rule). Our earlier A

even g

example was deterministic. Given a non-

deterministic TA, the classical subset construction yields a deterministic TA

accepting the same language (this construction involves a potential exponential

blow-up in size).

Telling whether L(A) is empty for some TA A can be done in time O(jAj).

Telling whether a given tree t is accepted by a given A can be done in time

polynomial in jAj+ jtj.

A TA is completely speci�ed (also complete) if for each f 2 F

n

and q

1

; : : : ; q

n

2

Q, there is a rule f(q

1

; : : : ; q

n

)! q. By adding a sink state and the obvious rules,

any A can be extended into a complete TA accepting the same language.

2.2 Some regular subsets of E

PA

E

PA

, the set of PA-terms, can be seen as a set of trees, i.e. as T (F) for F given

by F

0

= f0; X; Y; : : :g (= f0g [Var) and F

2

= f:; kg.

We begin with one of the simplest languages in E

PA

:
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Proposition 2. For any t, the singleton tree language ftg is regular, and a TA

for ftg needs only have jtj states.

The set of terminated processes is also a tree language. Write L

?

for ft 2 E

PA

j

IsNil(t)g. An immediate consequence of Lemma 1 is

Proposition 3. L

?

is a regular tree language, and a TA for L

?

needs only have

one state.

3 Regularity of Post

�

(L) and Pre

�

(L) for a regular

language L

Given a set L � E

PA

of PA-terms, we let Pre(L)

def

= ft j 9t

0

2 L; t ! t

0

g and

Post(L)

def

= ft j 9t

0

2 L; t

0

! tg denotes the set of (immediate) predecessors (resp.

successors) of terms in L. Pre

+

(L)

def

= Pre(L)[Pre(Pre(L))[� � � and Post

+

(L)

def

=

Post(L)[Post(Post(L))[� � � contain the iterated predecessors (resp. successors).

Similarly,Pre

�

(L) denotes L[Pre

+

(L) and Post

�

(L) is L[Post

+

(L), also called

the reachability set.

In this section we prove the regularity of Pre

�

(L) and Post

�

(L) for a regular

language L. Pre

�

(L) and Post

�

(L) do not take into account the labels accom-

panying PA transitions, but these will be considered in section 4.

For notational simplicity, given two states q; q

0

of a TA A, we denote by

�

k

(q; q

0

) (resp. �

:

(q; q

0

) any state q

00

such that q k q

0

A

7�! q

00

(resp. q:q

0

A

7�! q

00

),

possibly using "-rules.

3.1 Regularity of Post

�

(L)

First, we give some intuition which helps understanding the construction of a

TA A

Post

�

accepting Post

�

(L).

Let us assume � contains X ! r

1

and Y ! r

2

, and that r

1

is terminated.

Starting from t

1

= X:Y , there exists the transition sequence t

1

! t

2

! t

3

illustrated in �gure 1.

r

1

r

1

r

2

Y

:

X Y

: :

t

1

t

2

t

3

Fig. 1. An example sequence: X:Y ! r

1

:Y ! r

1

:r

2
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We want to build A

Post

�

, a TA that reads t

3

(i.e. r

1

:r

2

) bottom-up and sees

that it belongs to Post

�

(L). For this, the TA has to recognize that t

3

comes from

t

1

(i.e. X:Y ) and check that t

1

is in L.

1. A

Post

�

must recognize that r

1

(resp. r

2

) is the right-hand side of a rule X !

r

1

(resp. Y ! r

2

). Therefore we need an automaton A

�

which recognizes

such right-hand sides.

2. The automaton A

Post

�

works on t

3

but must check that t

1

is in L. Therefore

we need an automaton A

L

accepting L. A

Post

�

mimicks A

L

but it has ad-

ditional rules simulating rewrite steps: once r

1

has been recognized (by the

A

�

part), the computation may continue as if X were in place of r

1

. The

same holds for r

2

and Y .

3. The transition between t

2

and t

3

is allowed only if r

1

is terminated. Therefore

we need an automaton A

?

to check whether a term is terminated.

4. A non-terminated term is allowed to the left of a \:" when no transition has

been performed to the right. Therefore we use a boolean value to indicate

whether rewrite steps have been done or not.

These remarks lead to the following construction.

Ingredients for A

Post

�

: Assume A

L

is an automaton recognizing L � E

PA

.

A

Post

�

is a new automaton combining several ingredients:

{ A

?

is a completely speci�ed automaton accepting terminated processes (see

Proposition 3).

{ A

L

is a completely speci�ed automaton accepting L.

{ A

�

is a completely speci�ed automaton recognizing the subterms of �. It

has all states q

s

for s 2 Subterms(�). We ensure \t

A

�

7�! q

s

i� s = t"

by taking as transition rules 0 7�! q

0

if 0 2 Subterms(�), X 7�! q

X

if

X 2 Subterms(�), q

s

k q

s

0

7�! q

sks

0
(resp. q

s

:q

s

0

7�! q

s:s

0

) if s k s

0

(resp.

s:s

0

) belongs to Subterms(�). In addition, the automaton has a sink state q

?

and the obvious transitions so that it is a completely speci�ed automaton.

{ The boolean b records whether rewrite steps have occurred.

States of A

Post

�

: The states of A

Post

�

are 4-uples (q

?

2 Q

A

?

; q

L

2 Q

A

L

; q

�

2

Q

A

�

; b 2 ftrue; falseg) where Q

:::

denotes the set of states of the relevant au-

tomaton.

Transition rules of A

Post

�

: The transition rules are:

type 0: all rules of the form 0 7�! (q

?

; q

L

; q

�

; false) s.t. 0

A

?

7�! q

?

, 0

A

L

7�! q

L

and

0

A

�

7�! q

�

.

type 1: all rules of the form X 7�! (q

?

; q

L

; q

�

; false) s.t. X

A

?

7�! q

?

, X

A

L

7�! q

L

,

and X

A

�

7�! q

�

.

type 2: all "-rules of the form (q

?

; q

0

L

; q

s

; b

0

) 7�! (q

?

; q

L

; q

X

; true) s.t. X ! s

is a rule in � and X

A

L

7�! q

L

.
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type 3: all rules of the form

(q

?

; q

L

; q

�

; b) k (q

0

?

; q

0

L

; q

0

�

; b

0

) 7�! (�

k

(q

?

; q

0

?

); �

k

(q

L

; q

0

L

); �

k

(q

�

; q

0

�

); b _ b

0

)

type 4a: all rules of the form

(q

?

; q

L

; q

�

; b):(q

0

?

; q

0

L

; q

0

�

; false) 7�! (�

:

(q

?

; q

0

?

); �

:

(q

L

; q

0

L

); �

:

(q

�

; q

0

�

); b).

type 4b: all rules of the form

(q

?

; q

L

; q

�

; b):(q

0

?

; q

0

L

; q

0

�

; b

0

) 7�! (�

:

(q

?

; q

0

?

); �

:

(q

L

; q

0

L

); �

:

(q

�

; q

0

�

); b _ b

0

) s.t.

q

?

is a �nal state of A

?

.

This construction ensures the following lemma, whose complete proof is given

in the full version of this paper.

Lemma 4. For any t 2 E

PA

, t

A

Post

�

7�! (q

?

; q

L

; q

�

; b) i� there is some u 2 E

PA

and some p 2 N such that u

p

! t, u

A

L

7�! q

L

, u

A

�

7�! q

�

, (b = false i� p = 0) and

t

A

?

7�! q

?

.

If we now let the �nal states of A

Post

�

be all states (q

?

; q

L

; q

�

; b) s.t. q

L

is a

�nal state of A

L

, then A

Post

�

accepts a term t i� u

�

! t for some u accepted by

A

L

i� t belongs to Post

�

(L). We get our �rst main result:

Theorem 5. (Regularity of Post

�

(L))

(1) If L is a regular subset of E

PA

, then Post

�

(L) is regular.

(2) Furthermore, from a TA A

L

recognizing L, is it possible to construct (in

polynomial time) a TA A

Post

�

recognizing Post

�

(L). If A

L

has k states, then

A

Post

�

needs only have O(k:j�j) states.

Notice that a TA for Post

+

(L) can be obtained just by requiring that the �nal

states have b = true as their fourth component.

3.2 Regularity of Pre

�

(L)

Assume we have a TA A

Pre

�

recognizing Pre

�

(L). If we consider the same se-

quence t

1

! t

2

! t

3

from Fig. 1, we want A

Pre

�

to accept t

1

if t

3

is in L.

The TA must then read t

1

, imitating the behaviour of A

L

. When A

Pre

�

sees a

variable (say, X), it may move to any state q of A

L

that could be reached by

some t 2 Post

�

(X). This accounts for transitions fromX, and of course we must

keep track of the actual occurences of transitions so that they do not occur in

the right-hand side of a \:" when the left-hand side is not terminated.

This leads to the following construction:

Ingredients for A

Pre

�

: Assume A

L

is an automaton recognizing L � E

PA

.

A

Pre

�

is a new automaton combining several ingredients:

{ A

?

is a completely speci�ed automaton accepting terminated processes (see

Proposition 3).

{ A

L

is the automaton accepting L.

{ The boolean b records whether some rewriting steps have been done.
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States of A

Pre

�

: A state of A

Pre

�

is a 3-tuple (q

?

2 Q

A

?

; q

L

2 Q

A

L

; b 2

ftrue; falseg) where Q

:::

denotes the set of states of the relevant automaton.

Transition rules of A

Pre

�

: The transition rules of A

Pre

�

are de�ned as follows:

type 0: all rules of the form 0 7�! (q

?

; q

L

; false) s.t. 0

A

?

7�! q

?

and 0

A

L

7�! q

L

.

type 1a: all rules of the form X 7�! (q

?

; q

L

; true) s.t. there exists some u 2

Post

+

(X) with u

A

?

7�! q

?

and u

A

L

7�! q

L

.

type 1b: all rules of the formX 7�! (q

?

; q

L

; false) s.t. X

A

?

7�! q

?

and X

A

L

7�! q

L

.

type 2: all rules of the form (q

?

; q

L

; b) k (q

0

?

; q

0

L

; b

0

) 7�! (�

k

(q

?

; q

0

?

); �

k

(q

L

; q

0

L

); b_

b

0

).

type 3a: all rules of the form (q

?

; q

L

; b):(q

0

?

; q

0

L

; b

0

) 7�! (�

:

(q

?

; q

0

?

); �

:

(q

L

; q

0

L

); b_

b

0

) s.t. q

?

is a �nal state of A

?

.

type 3b: all rules of the form (q

?

; q

L

; b):(q

0

?

; q

0

L

; false) 7�! (�

:

(q

?

; q

0

?

); �

:

(q

L

; q

0

L

); b).

This construction allows the following lemma, whose complete proof is given in

the full version of this paper.

Lemma 6. For any t 2 E

PA

, t

A

Pre

�

7�! (q

?

; q

L

; b) i� there is some u 2 E

PA

and

some p 2 N such that t

p

! u, u

A

?

7�! q

?

, u

A

L

7�! q

L

and (b = false i� p = 0).

If we now let the �nal states of A

Pre

�

be all states (q

?

; q

L

; b) s.t. q

L

is a

�nal state of A

L

, then t

�

! u for some u accepted by A

L

i� A

Pre

�

accepts t

(this is where we use the assumption that A

?

is completely speci�ed). This is

summarized by the next theorem.

Theorem 7. (Regularity of Pre

�

(L))

(1) If L is a regular subset of E

PA

, then Pre

�

(L) is regular.

(2) Furthermore, from an automaton A

L

recognizing L, is it possible to construct

(in polynomial time) an automaton A

Pre

�

recognizing Pre

�

(L). If A

L

has k

states, then A

Pre

�

needs only have 4k states.

Proof. (1) is an immediate consequence of Lemma6. Observe that the regularity

result does not need the �niteness of � (but Var(�) must be �nite).

(2) Building A

Pre

�

e�ectively requires an e�ective way of listing the type

1a rules. This can be done by computing a product of A

X

, an automaton

for Post

+

(X), with A

?

and A

L

. Then there exists some u 2 Post

+

(X) with

u

A

?

7�! q

?

and u

A

L

7�! q

L

i� the the language accepted by the �nal states

f(q

X

; q

?

; q

L

) j q

X

a �nal state of A

X

g is not-empty. This gives us the pairs

q

?

; q

L

we need for type 1a rules. Observe that we need the �niteness of � to

build the A

X

's. �

Actually, the

�

! relation between PA-terms is a rational tree relation in the

sense of [Rao97]. This entails that Pre

�

(L) and Post

�

(L) are regular tree lan-

guages when L is. Raoult's approach is more powerful than our elementary con-

structions but it relies on complex new tools (much more powerful than usual

9



TA's) and does not provide the straightforward complexity analysis we o�er.

Moreover, the extensions we discuss in section 4 would be more di�cult to ob-

tain in his framework.

3.3 Applications

Theorems 5 and 7 already give us simple solutions to veri�cation problems over

PA: the reachability problem asks, given t, u (and�), whether t

�

! u. The bound-

edness problem asks whether Post

�

(t) is �nite. They can be solved in polynomial

time just by looking at the TA for Post

�

(t). Variant problems such as \can we

reach terms with arbitrarily many occurences of X in parallel ?" can be solved

equally easily.

4 Reachability under constraints

In this section, we consider reachability under constraints, that is, reachability

where the labels of transitions must respect some criterion. Let C � Act

�

be

a (word) language over action names. We write t

C

! t

0

when t

w

! t

0

for some

w 2 C, and we say that t

0

can be reached from t under the constraint C. We

extend our notations and write Pre

�

[C](L), Post

�

[C](L), : : : with the obvious

meaning.

Observe that, in general, the problem of telling whether t

C

! (i.e. whether

Post

�

[C](t) is not empty) is undecidable for the PA algebra even if we assume

regularity of C

1

. In this section we give su�cient conditions over C so that

the problem becomes decidable (and so that we can compute the C-constrained

Pre

�

and Post

�

of a regular tree language).

Recall that the shu�e w k w

0

of two �nite words is the set of all words one

can obtain by interleaving w and w

0

in an arbitary way.

De�nition 8. f(C

1

; C

0

1

); : : : ; (C

m

; C

0

m

)g is a (�nite) seq-decomposition of C i�

for all w;w

0

2 Act

�

we have

w:w

0

2 C i� (w 2 C

i

; w

0

2 C

0

i

for some 1 � i � m):

f(C

1

; C

0

2

); : : : ; (C

m

; C

0

m

)g is a (�nite) paral-decomposition of C i� for all w;w

0

2

Act

�

we have

C \ (w k w

0

) 6= ? i� (w 2 C

i

; w

0

2 C

0

i

for some 1 � i � m):

1

E.g. by using two copies a; a of every letter a in some �, and by using the regular

constraint C

def

= (a

1

:a

1

+ � � �+ a

n

:a

n

)

�

#:#, we can state with \(t

1

k t

2

)

C

! ?" that

t

1

and t

2

share a common trace ending with #. This can be used to encode the

(undecidable) empty-intersection problem for context-free grammars.
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The crucial point of the de�nition is that a seq-decomposition of C must apply to

all possible ways of splitting any word in C. It even applies to a decomposition

w:w

0

with w = " (or w

0

= ") so that one of the C

i

's (and one of the C

0

i

's)

contains ". Observe that the formal di�erence between seq-decomposition and

paral-decomposition comes from the fact that w k w

0

, the set of all shu�es of w

and w

0

may contain several elements.

De�nition 9. A family C = fC

1

; : : : ; C

n

g of languages over Act is a �nite

decomposition system i� every C 2 C admits a seq-decomposition and a paral-

decomposition only using C

i

's from C . A language C is decomposable if it appears

in a �nite decomposition system.

Not all C � Act

�

are decomposable, e.g. (ab)

�

is not. It is known that

decomposable languages are regular and that all commutative regular languages

are decomposable. (Write w � w

0

when w

0

is a permutation of w. A commutative

language is a language C closed w.r.t. �). Simple examples of commutative

languages are obtained by considering the number of occurrences (rather than

the positions) of given letters: for any positive weight function � given by �(w)

def

=

P

i

n

i

jwj

a

i

with n

i

2 N, the set C of allw s.t. �(w) = k (or �(w) < k, or �(w) > k,

or �(w) = k mod k

0

) is a commutative regular language, hence is decomposable.

However, a decomposable language needs not be commutative: �nite lan-

guages are decomposable, and decomposable languages are closed by union, con-

catenation and shu�e.

Theorem 10. (Regularity)

For any regular L � E

PA

and any decomposable C, Pre

�

[C](L) and Post

�

[C](L)

are regular tree languages.

Proof.The construction is similar to the constructions forPre

�

(L) and Post

�

(L).

See the full version of the paper. �

5 Handling structural equivalence of PA-terms

In this section we show how to take into account the axioms (A

:

); (C

k

); (A

k

) and

(N

1

) to (N

4

) (from section 1.3) de�ning the structural equivalence on E

PA

terms.

Some de�nitions of PA consider PA-terms modulo�. This viewpoint assumes

that a PA-term t really denotes an equivalence class [t]

�

, and that transitions are

de�ned between such equivalence classes, coinciding with a transition relation

we would de�ne by

[t]

�

a

! [u]

�

def

, 9t

0

2 [t]

�

; u

0

2 [u]

�

s.t. t

0

a

! u

0

: (1)

This yields a new process algebra: PA

�

.
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In our framework, we can de�ne a new transition relation between PA-terms:

t

a

) t

0

i� t � u

a

! u

0

� t

0

for some u; u

0

, i.e. [t]

�

a

! [u]

�

. We adopt the usual

abbreviations

�

),

k

) for k 2 N, etc.

Seeing terms modulo � does not modify the observable behaviour because

of the following standard result:

Proposition 11. � has the transfer property, i.e. it is a bisimulation relation,

i.e. for all t � t

0

and t

a

! u there is a t

0

a

! u

0

with u � u

0

(and vice versa).

Proof. Check this for each equation, then deal with the general case by using

congruence property of � and structural induction over terms, transitivity of

� and induction over the number of equational replacements needed to relate t

and t

0

. Observe that IsNil is compatible with �. �

Proposition 12. t

k

) u i� t

k

! u

0

for some u

0

� u.

The reachability problem solved by Mayr actually coincides with \reacha-

bility modulo �" or \reachability through

�

)". Our tree automata method can

deal with this, as we now show.

5.1 Structural equivalence and regularity

(A

:

), (C

k

) and (A

k

) are the associativity-commutativity axioms satis�ed by :

and k. We call them the permutative axioms and write t =

P

u when t and u are

permutatively equivalent.

(N

1

) to (N

4

) are the axioms de�ning 0 as the neutral element of : and k. We

call them the simpli�cation axioms and write t & u when u is a simpli�cation

of t, i.e. u can be obtained by applying the simpli�cation axioms from left to

right at some positions in t. Note that& is a (well-founded) partial ordering. We

write. for (&)

�1

. The simpli�cation normal form of t, written t#, is the unique

u one obtains by simplifying t as much as possible (no permutation allowed).

Such axioms are classical in rewriting and have been extensively studied [BN98].

� coincide with (=

P

[ & [ .)

�

. Now, because the permutative axioms com-

mute with the simpli�cation axioms, we have

t � t

0

i� t& u =

P

u

0

. t

0

for some u; u

0

i� t# =

P

t

0

#: (2)

Lemma 13. For any t, the set [t]

=

P

def

= fu j t =

P

ug is a regular tree language,

and an automaton for [t]

=

P

needs only have m:(m=2)! states if jtj = m.

Note that for a regular L, [L]

=

P

(and [L]

�

) are not necessarily regular.

The simpli�cation axioms do not have the nice property that they only allow

�nitely many combinations, but they behave better w.r.t. regularity. Write [L]

&

for fu j t& u for some t 2 Lg, [L]

.

for fu j u& t for some t 2 Lg, and [L]# for

ft# j t 2 Lg.

12



Lemma 14. For any regular L, the sets [L]

&

, [L]

.

, and [L]# are regular tree

languages. From an automaton A recognizing L, we can build automata for these

three languages in polynomial time.

Corollary 15. \Boundedness modulo �" of the reachability set is decidable in

polynomial-time.

Proof. Because the permutative axioms only allow �nitely many variants of any

given term, Post

�

(L) contains a �nite number of non-� processes i� [Post

�

(L)]#

is �nite. �

We can also combine (2) and lemmas 13 and 14 and have

Proposition 16. For any t, the set [t]

�

is a regular tree language, and an au-

tomaton for [t]

�

needs only have m:(m=2)! states if jtj = m.

Now it is easy to prove decidability of the reachability problem modulo �: t

�

) u

i� Post

�

(t)\ [u]

�

6= ?. Recall that [u]

�

and Post

�

(t) are regular tree-languages

one can build e�ectively. Hence it is decidable whether they have a non-empty

intersection.

This gives us a simple algorithm using exponential time (because of the size

of [u]

�

). Actually we can have a better result

2

:

Theorem 17. The reachability problem in PA

�

, \given t and u, do we have

t

�

) u ?", is NP-complete.

Proof. NP-hardness of reachability for BPP's is proved in [Esp97] and the proof

idea can be reused in our framework (see long version).

NP-easiness is straightforward in the automata framework. We have t

�

) u i�

t

�

! u

0

for some u

0

s.t. u

0

# =

P

u#. Write u

00

for u

0

# and note that ju

00

j � juj.

A simple NP algorithm is to compute u#, then guess non-deterministically a

permutation u

00

, then build automata A

1

for [u

00

]

&

and A

2

for Post

�

(t). These

automata have polynomial-size. There remains to checks whether A

1

and A

2

have a non-empty intersection to know whether the required u

0

exists. �

6 Model-checking PA processes

In this section we show a simple approach to the model-checking problem which

is an immediate application of our main regularity theorems. We do not con-

sider the structural equivalence � until section 6.3, where we show that the

decidability results are a simple consequence of our previous results.

2

First proved in [May97c]
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6.1 Model-checking in E

PA

We consider a set Prop = fP

1

; P

2

; : : :g of atomic propositions. For P 2 Prop,

Let Mod (P ) denotes the set of PA processes for which P holds. We only con-

sider propositions P such that Mod(P ) is a regular tree-language. Thus P could

be \t can make an a-labeled step right now", \there is at least two occurences

ofX inside t", \there is exactly one occurence ofX in a non-frozen position", : : :

The logic EF has the following syntax:

' ::= P j :' j ' ^ '

0

j EX' j EF'

and semantics

t j= P

def

, t 2Mod (P );

t j= :'

def

, t 6j= ';

t j= ' ^ '

0

def

, t j= ' and t j= '

0

;

t j= EX'

def

, t

0

j= ' for some t! t

0

;

t j= EF'

def

, t

0

j= ' for some t

�

! t

0

:

Thus EX' reads \it is possible to reach in one step a state s.t. '" and EF' reads

\it is possible to reach (via some sequence of steps) a state s.t. '".

De�nition 18. The model-checking problem for EF over PA has as inputs: a

given �, a given t in E

PA

, a given ' in EF. The answer is yes i� t j= '.

We now extend the de�nition of Mod to the whole of EF: Mod (')

def

= ft 2 E

PA

j

t j= 'g, we have

Mod (:') = E

PA

�Mod (') Mod (EX') = Pre

+

(Mod (')

Mod(' ^ '

0

) = Mod (') \Mod('

0

) Mod (EF') = Pre

�

(Mod (')

(3)

Theorem 19. (1) For any EF formula ', Mod (') is a regular tree language.

(2) If we are given tree-automata A

P

's recognizing the regular sets Mod(P ), then

a tree-automaton A

'

recognizing Mod (') can be built e�ectively.

This gives us a decision procedure for the model-checking problem: build an

automaton for Mod(') and check whether it accepts t. Observe that computing

a representation of Mod (') is more general than just telling whether a given

t belongs to it. Observe also that our results allow model-checking approches

based on combinations of forward and backward methods (while Theorem 19

only relies on the standard backward approach.)

The above procedure is non-elementary since every nesting level of nega-

tions potentially induces an exponential blowup. Actually, negations in ' can be

pushed towards the leaves and only stop at the EF's, so that really the tower of

exponentials depend on the maximal number of alternations between negations

and EF's in '. The procedure described in [May97b] is non-elementary and today

the known lower bound is PSPACE-hard.
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6.2 Model-checking with constraints

We can also use the constraints introduced in section 4 to de�ne an extended EF

logic where we now allow all hCi' formulas for decomposable C. The meaning is

given byMod (hCi')

def

= Pre

�

[C](Mod(')). This is quite general and immediately

include the extensions proposed in [May97b].

6.3 Model-checking modulo �

The model-checking problem solved in [May97b] considers the EF logic over

PA

�

.

In this framework, the semantics of EF-formulas is de�ned over equivalence

classes, or equivalently, using the

a

) relation and only considering atomic propo-

sitions P s.t. Mod (P ) is closed under �.

But if the Mod(P )'s are closed under �, then t j= ' in PA i� t j= ' in

PA

�

(a consequence of Proposition refprop-equiv-transfer), so that our earlier

tree-automata algorithm can be used to solve the model-checking problem for

PA

�

. We can also easily allow constraints like in the previous section.

Conclusion

In this paper we showed how tree-automata techniques are a powerful tool for the

analysis of the PA process algebra. Our main results are two general Regularity

Theorems with numerous immediate applications, including model-checking of

PA with an extended EF logic.

The tree-automata viewpoint has many advantages. It gives simpler and more

general proofs. It helps understand why some problems can be solved in P-time,

some others in NP-time, etc. It is quite versatile and we believe that many

variants of PA can be attacked with the same approach.

We certainly did not list all possible applications of the tree-automata ap-

proach for veri�cation problems in PA. Future work should aim at better under-

standing which problems can bene�t from our TA viewpoint and techniques.

Acknowledgments We thank H. Comon and R. Mayr for their numerous sugges-
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