
Ele
troni
 Notes in Theoreti
al Computer S
ien
e 52 No. 1 (2001)

URL: http://www.elsevier.nl/lo
ate/ent
s/volume52.html 20 pages

An Automata-Theoreti
 Approa
h to the

Rea
hability Analysis of RPPS Systems

A. Labroue

1

and Ph. S
hnoebelen

2

Laboratoire Sp�e
i�
ation & V�eri�
ation,

ENS de Ca
han & CNRS UMR 8643,

61 av. Pdt. Wilson, F-94235 Ca
han Cedex, Fran
e

Abstra
t

We show how the tree-automata te
hniques proposed by Lugiez and S
hnoebelen

apply to the rea
hability analysis of RPPS systems. Using these te
hniques requires

that we express the states of RPPS systems in a tailor-made pro
ess rewrite system

where rea
hability is a relation re
ognizable by �nite tree-automata.

Keywords: veri�
ation of in�nite-state systems, pro
ess algebra, rea
ha-

bility analysis, tree automata, model
he
king.

1 Introdu
tion

This paper is
on
erned with the veri�
ation of RPPS systems (for Re
ur-

sive Parallel Program S
hemes), an abstra
t model introdu
ed in [13,15℄ that

models the
ontrol
ow of programming languages with re
ursive
oroutines.

As shown in, e.g., [9,10℄, the rea
hability analysis of su
h models has impor-

tant appli
ations in the stati
 analysis of programming languages with parallel

onstru
ts.

While RPPS systems
an be seen as some kind of Petri nets with nested

markings (the viewpoint adopted in [13,15℄), we argue that it is worthwhile to

see them as an in�nite-state pro
ess algebra (or pro
ess rewrite system). This

approa
h is very a
tive (see [4℄ for a re
ent survey of a
hievements), partly

be
ause it ta
kles a wide range of veri�
ation problems (bisimulation
he
k-

ing, temporal logi
 model
he
king, et
.), and also partly be
ause there exist

several interesting pro
ess algebras (with quite di�erent expressive power) ob-

tained by simple synta
ti
 restri
tions on the allowed rewrite rules [20,18℄.

1

Email: labroue�lsv.ens-
a
han.fr

2

Email: phs�lsv.ens-
a
han.fr

2001 Published by Elsevier S
ien
e B. V.

Labroue and S
hnoebelen

Tree automata

Re
ently [17℄ showed how rea
hability problems for the PA pro
ess algebra

3

ould be solved simply and elegantly via tree-automata te
hniques. Beyond

the use of tree-automata, the approa
h heavily relies on an important idea:

one should not
onsider pro
ess terms modulo any of the usual stru
tural

ongruen
es. These
ongruen
es make pro
ess notations mu
h lighter, and

bring them
loser to the intended semanti
s, but they hide regularity and are

not really
ompatible with the tree-automata approa
h.

The tree-automata approa
h to PA is further developed in [16℄ where it

is shown that the rea
hability relation between PA pro
esses is an e�e
tively

re
ognizable relation, whi
h gives de
idability of the �rst-order transition logi

over PA.

Our
ontribution

In this paper, we investigate whether the Lugiez & S
hnoebelen approa
h to

PA
an be made to work for RPPS systems.

There are three main results in the paper. First we design RPA, a pro
ess

rewrite system that en
odes RPPS systems in a
arefully
hosen way. Then

we prove that rea
hability between RPA terms is a re
ognizable relation: we

use alternating tree-automata for a more dire
t proof. Finally, we show how

rea
hability between RPPS markings
an be redu
ed to rea
hability questions

between RPA terms, ending with a dire
t automata-theoreti
 algorithm. As

a
orollary, we obtain a proof of NP-
ompleteness for rea
hability between

RPPS markings.

The diÆ
ulties in this work
ome from the fa
t that natural ways of en
od-

ing RPPS markings in a pro
ess-algebrai
 notation make it hard to de�ne
or-

responding transitions via SOS (for Stru
tural Operational Semanti
s, see [1℄)

rules without losing the re
ognizability theorem we aim at. In parti
ular, we

see no way of using the PA pro
ess algebra for this task.

Related works

Previous de
idability results on RPPS [13,15℄ relied on more ad-ho
 tableaux

methods or the well-stru
ture of RPPS [11℄. These results were weaker than

what we o�er in se
tion 7.

The use of re
ognizable sets of
on�gurations for symboli
 model
he
king

has re
ently been
alled \Regular model
he
king" in [3℄. This approa
h is

weaker (but more pra
ti
al) sin
e it does not require that iterated su

essors

or prede
essors of a set of states form an e�e
tively
omputable re
ognizable

language: only immediate prede
essors or su

essors are handled (sometimes,

the transitive
losure of loops
an be handled).

There exist several other systems for whi
h the rea
hability relation is

3

A fragment allowing re
ursive de�nitions mixing sequential and parallel
omposition,

without syn
hronization [2℄.

2

Labroue and S
hnoebelen

re
ognizable: it is semilinear for BPP [8℄, de�nable in the additive theory

of reals for timed automata [7℄, a re
ognizable relation between words for

some string rewrite systems [5℄ in
luding pushdown pro
esses (see [14℄ for

appli
ations to �-
al
ulus model
he
king). Our approa
h di�ers in two points:

re
ognizability is in a tree-automata framework, and it requires that we invent

a new pro
ess algebra in whi
h to en
ode RPPS systems.

Plan of the paper

We �rst re
all RPPS s
hemes (Se
tion 2) before we introdu
e RPA (Se
tion 3)

and show how to en
ode RPPS s
hemes faithfully (Se
tion 4). Then we re
all

the basi
 tree-automata notions (Se
tion 5) we need to prove our main theorem

(Se
tion 6) and explain the pra
ti
al impli
ations (Se
tion 7). A �nal se
tion

explains how rea
hability between RPPS markings
an be solved in NP with

tree automata.

2 Re
ursive-parallel program s
hemes

RPPS systems were introdu
ed as an abstra
t model for RP programs: we

refer the reader to [13,15℄ for motivations and examples. Here we present the

formal model without justi�
ation.

2.1 The stru
ture of RPPS systems

A = fa; b; : : :g is a set of a
tion names that does not
ontain the spe
ial

a
tions
all, wait, and end. We write

~

A (ranged over by �; �; : : :) for A [

f
all; wait; endg.

q

0

q

1

q

2

q

3

q

4

q

5

q

6

q

7

q

8

q

9

all

all

a

b

wait

a

end

wait

end

Fig. 1. A s
heme

A s
heme is a �nite rooted graph G = hQ; q

0

;�i where

�

Q is a �nite set of nodes,

�

q

0

2 Q is the initial node,

3

Labroue and S
hnoebelen

�

� is the labeled
ow fun
tion that maps any node q to a tuple in (A�Q)[

(f
allg �Q�Q) [(fwaitg �Q) [fendg.

� has a
lumsy mathemati
al appearan
e but is graphi
ally easy to un-

derstand: every node is followed by in general one node, sometimes a pair

of nodes or no node at all. For example, the system depi
ted in Fig. 1 has

�(q

0

) = ha; q

1

i;�(q

1

) = h
all; q

2

; q

6

i; : : : ;�(q

9

) = end.

2.2 Behavioral semanti
s

The behavioral semanti
s of G is given via an in�nite labeled transition

system M

G

. Informally, a state of M

G

is a multiset of nodes (denoting the

urrent
ontrol states of
on
urrent pro
esses) organized with a father-son

relationship (relating a pro
ess with the father pro
ess that spawned it via a

all instru
tion). The
orresponding formal de�nition is given below, and

we refer to [13,15℄ for more intuitions.

Formally, the set of hierar
hi
al states (also, \markings", or \states")

of a system G is the least set M(G) s.t. for any n nodes (not ne
essarily

distin
t) q

1

; : : : ; q

n

of G, and hierar
hi
al states s

1

; : : : ; s

n

2 M(G) the

multiset s = f(q

1

; s

1

); : : : ; (q

n

; s

n

)g is in M(G)

4

. In parti
ular, ; 2 M(G).

We use the
ustomary notations \s + s

0

", \s � s

0

", : : : to denote sum,

in
lusion, : : : of multisets and hen
e of hierar
hi
al states. Below we write

(q; s) for the singleton multiset f(q; s)g. The size jsj of a state is given by

jf(q

i

; s

i

) j i = 1; : : :gj

def

=

P

i=1;:::

(1 + js

i

j).

We now formally de�ne what are the transitions !� M(G)�

~

A�M(G)

between hierar
hi
al states: ! is the least set of triples (s; a; s

0

), written

s

a

�! s

0

, satisfying the following rules:

a
tion: if �(q) = (a; q

0

) then (q; s)

a

�! (q

0

; s) for all s, (Ga)

end: if �(q) = end then (q; s)

end

�! s for all s, (Ge)

all: if �(q) = (
all; q

0

; q

00

) then (q; s)

all

�! (q

0

; s+ (q

00

; ;)) for all s, (G
)

wait: if �(q) = (wait; q

0

) then (q; ;)

wait

�! (q

0

; ;), (Gw)

paral1: if s

�

�! s

0

then s+ s

00

�

�! s

0

+ s

00

for all s

00

, (Gp1)

paral2: if s

�

�! s

0

then (q; s)

�

�! (q; s

0

) for all q 2 Q. (Gp2)

Rules paral1 and paral2 for parallelism express that any a
tivity s

�

�! s

0

an still take pla
e when brothers are present (i.e. in some s + s

00

) or when

a parent is present (i.e. in some (q; s)). The wait rule states how we
an

4

A hierar
hi
al state of the form s = f(q

1

; s

1

); : : : ; (q

n

; s

n

)g has n
ompletely indepen-

dent
on
urrent a
tivities. One su
h a
tivity, say (q

i

; s

i

), is the invo
ation of a
oroutine

(
urrently in state/node q

i

) together with its family of
hildren invo
ations (the s

i

part).

4

Labroue and S
hnoebelen

only perform a wait statement in state q if the invoked
hildren are all ter-

minated (and then not present anymore). The other rules state how
hildren

invo
ations are
reated and kept around.

Finally, M

G

is hM(G);

~

A;!; s

0

i where the initial state is s

0

def

= (q

0

; ;).

Example 2.1 (q

0

; ;)

a

�! (q

1

; ;)

all

�! (q

2

; (q

6

; ;))

�! (q

2

; (q

7

; ;))

all

�!

(q

2

; (q

8

; (q

6

; ;)))

b

�! (q

3

; (q

8

; (q

6

; ;))) � � � is an exe
ution sequen
e of the sys-

tem M

G

asso
iated with the s
heme of Fig. 1.

As the wait rule shows, nodes that
an only be exited via a wait step

behave
onditionally: we denote by Q

?

the set of the states q of Q su
h that

�(q) = (wait; q

0

) for some q

0

, while Q

!

denotes Q nQ

?

.

3 The pro
ess algebra RPA

We now de�ne RPA, a pro
ess algebra designed to en
ode RPPS s
hemes.

3.1 RPA terms

We assume a s
heme G = hQ; q

0

;�i is �xed and
onsider the set Const

def

=

Q [f0g ranged over by
; : : : T

G

, the set of RPA terms, or just \terms",

ranged over by t; u; v; : : : is given by the following syntax:

t; u ::=
 j t I u:

For t a term, we write State(t) the set of all nodes from Q that o

ur in t.

The size of t, denoted jtj, is the number of symbols in t, given by j
j

def

= 1 and

jt I uj

def

= 1 + jtj+ juj.

RPA terms are binary trees but the left- and right-hand sides do not play

the same rôle, so that it is more natural to see them as
ombs with some

from Const at the deep left end, and a list of subterms on the right of the

spine (see example on Fig. 2). This motivates introdu
ing the
onvenient

abbreviation \
 I

n

(u

1

; : : : ; u

n

)", de�ned indu
tively by
 I

0

() = 0 and

 I

n

(u

1

; : : : ; u

n

) =

�

 I

n�1

(u

1

; : : : ; u

n�1

)

�

I u

n

. We only use the \I

n

"

abbreviation with a
 2 Const in the left-hand side.

u

1

u

n�1

u

n

I

I

I

.

.

.

.

.

.

Fig. 2.
 I

n

(u

1

; : : : ; u

n

)

5

Labroue and S
hnoebelen

A (guarded) RPA de
laration is a �nite set � � Q �

~

A � Const � T

G

of

rules, written fq

i

�

�!

�

i

; t

i

j i = 1; : : : ; ng. The q

i

's need not be distin
t. For

te
hni
al
onvenien
e, we require that all q 2 Q appear in the left-hand side

of at least one rule.

3.2 Semanti
s

Let A
t

def

=

~

A � f!; ?g. For
onvenien
e, we write �

!

and �

?

rather than (�; !)

and (�; ?). A de
laration � de�nes a labeled transition �!� T

G

� A
t � T

G

,

given by the following SOS rules:

R1

q

�

!

�! q

0

I t

if (q

�

�!

�

q

0

; t) 2 � and q 2 Q

!

R3

t

�

!

�! t

0

u I t

�

!

�! u I t

0

R2

q

�

?

�! q

0

I t

if (q

�

�!

�

q

0

; t) 2 � and q 2 Q

?

R4

t

�

?

�! t

0

u I t

�

!

�! u I t

0

R5

t

�

!

�! t

0

t I u

�

!

�! t

0

I u

R6

t

�

?

�! t

0

t I u

�

?

�! t

0

I u

if State(u) = ;

The intuition is that a step t

�

x

�! u in T

G

en
odes a step s

t

�

�! s

u

in M

G

(where s

t

is the hierar
hi
al state denoted by t). The extra label x =! (resp.

x =?) means that this step
an (resp.
annot) o

ur on top of a
tive
hildren

pro
esses. The label is
hosen by rules R1, R2, tested by rules R5, R6, and

propagated a

ording to the semanti
s.

We write u

!

�! v (resp. u

?

�! v) when u

�

!

�! v (resp. u

�

?

�! v) for some �,

and u �! v when u

!

�! v or u

?

�! v. For n 2 N , we let \

n

�!" and \

n;!

�!" denote

respe
tively the iterated relations (!)

n

and

�

!

�!

�

n

. Also !

�

denotes the

losure

S

n2N

n

�!. As usual, \u �!" and \u 6�!" mean respe
tively that u �! v

for some v (resp. for no v).

3.3 Basi
 properties of RPA steps

We now list some key lemmas about the transitions between terms. These

results aim at explaining how one
an de
ompose a
ompound step into smaller

steps and will be the basis of the
onstru
tion in se
tion 6.

Lemma 3.1 If u I v ! w then w has the form u

0

I v

0

and either (u ! u

0

and v = v

0

) or (v ! v

0

and u = u

0

).

Proof. By
ase analysis of rules R3{R6. 2

Lemma 3.2 If u! v then jvj > juj.

6

Labroue and S
hnoebelen

Proof. By indu
tion on the derivation u �! v. The base
ases are transitions

q �! q

0

I t. 2

Lemma 3.3 q !

�

q

0

i� q = q

0

.

Proof. q

n

�! q

0

entails n = 0 (Lemma 3.2). 2

The next six lemmas are proved in the Appendix. Lemma 3.5 gives a

hara
terization of

!

�!

�

.

Lemma 3.4 u �! i� State(u) 6= ;.

Lemma 3.5 u

!

�!

�

v i� for all t 2 T

G

, u I t!

�

v I t.

Lemma 3.6 v I t

!

�!

�

v

0

I t

0

i� v

!

�!

�

v

0

and t!

�

t

0

.

Lemma 3.7 v I t!

�

v

0

I t

0

i� t!

�

t

0

and

(

t

0

6! and v !

�

v

0

,

or v

!

�!

�

v

0

.

Lemma 3.8 q !

�

v I t i� there exist
 and u s.t. (q !

�

; u) is a rule in

�, u!

�

t, and

(

t 6! and
!

�

v,

or

!

�!

�

v.

Lemma 3.9 q

!

�!

�

v I t i� q 2 Q

!

and there exist
 and u s.t. q !

�

; u is a

rule in �, u!

�

t and

!

�!

�

v.

4 Embedding RPPS s
hemes into RPA

The behavior of an RPPS s
heme G
an be faithfully en
oded in RPA. We

onsider a set of rules �

G

obtained from �. For any q 2 Q,

a
tion: if �(q) = (a; q

0

) then �

G

ontains q

a

�! q

0

; 0, (Da)

end: if �(q) = end then �

G

ontains q

end

�! 0; 0, (De)

all: if �(q) = (
all; q

0

; q

00

) then �

G

ontains q

all

�! q

0

; q

00

, (D
)

wait: if �(q) = (wait; q

0

) then �

G

ontains q

wait

�! q

0

; 0. (Dw)

Thus �

G

an be seen as an appli
ation from Q to

~

A� Const� T

G

.

We now asso
iate a hierar
hi
al state S(t) with any term t 2 T

G

and,

re
ipro
ally, a term T (s) with any s 2 M(G). The aim is to de�ne what

hierar
hi
al state is en
oded by term t, and what term
an be used to en
ode

hierar
hi
al state s.

7

Labroue and S
hnoebelen

The mappings S and T are de�ned indu
tively by

T (f(q

1

; s

1

); : : : ; (q

n

; s

n

)g)

def

= 0 I

n

(q

1

I T (s

1

); : : : ; q

n

I T (s

n

)) (T)

S (0 I

n

(u

1

; : : : ; u

n

))

def

= S(u

1

) + � � � + S(u

n

) (S1)

S (q I

n

(u

1

; : : : ; u

n

))

def

= (q;S(u

1

) + � � � + S(u

n

)) (S2)

where equation (T) for T (s) requires that one pi
ks some ordering of the

elements of the multiset s.

S and T behave like an abstra
tion-
on
retization pair:

Lemma 4.1 For all s 2M(G), S(T (s)) = s.

Proof. By stru
tural indu
tion on s, using equations (T,S1,S2). 2

S gives rise to an equivalen
e between RPA terms: t �

S

u

def

, S(t) = S(u).

We write [u℄ for the equivalen
e
lass of u w.r.t. �

S

, and T

�

S

for the set of

the equivalen
e
lasses of T

G

.

Observe that �

S

is not a
ongruen
e: (0 I u) �

S

u whereas

(0 I u) I v 6�

S

u I v

It is now possible to state how steps between RPA terms are related to

steps between RPPS hierar
hi
al states. This is done by abstra
ting over the !

or ? extra label that RPA steps
arry, and that is only used for a
ompositional

de�nition of steps. Write u

�

�! t when u

�

"

�! t for some " 2 f!; ?g.

Proposition 4.2 1. For all u; v in T

G

and � in

~

A, if u

�

�! t then S(u)

�

�! S(t).

2. For all s; s

0

in M(G) and � in

~

A, if s

�

�! s

0

, then T (s)

�

�! u for some u 2 T

G

su
h that S(u) = s

0

.

Proof (Idea). 1. (resp. 2.) is proved by indu
tion on u (resp. s) and a tedious

ase analysis. 2

The meaning of Proposition 4.2 is that, modulo the abstra
tion mapping

from A
t to

~

A that sends �

"

to �, S is a bisimulation between the RPA

transition system generated by �

G

and the transition systemM

G

we want to

analyze.

5 Tree languages and tree automata

Here we re
all the
lassi
al tree-automata notions we need. We refer to [6℄

and [22℄ for more details.

5.1 Tree languages

Given a �nite ranked alphabet F = F

0

[F

1

[: : : [F

m

, T

F

denotes the set of

�nite trees (or terms) built from F : for example, with F

0

= fa; bg, F

1

= fg; hg

8

Labroue and S
hnoebelen

and F

2

= ffg, T

F

ontains trees like a, f(a; b) and f(g(f(h(b); a)); b). A tree

language is any subset L of T

F

.

5.2 Tree automata

A tree automaton is a tuple A = hF ;Q; F; Æi where F is a �nite ranked

alphabet, Q = fp; p

0

: : :g is a �nite set of
ontrol states, F � Q is a set of

a

epting states and Æ � [

n2N

(Q�F

n

�Q

n

) is a �nite set of transition rules.

We refer to [6℄ (or [17℄) for the
lassi
al de�nition of when a tree t is

re
ognized by state p of A, written p

�

7! t. For p 2 Q; L(p) denotes ft j p

�

7! tg.

L(A)

def

=

S

p2F

L(p) is the tree language re
ognized by A.

Example 5.1 Continuing with our previous example, and setting Q =

fp

0

; p

1

g, the set of rules des
ribes a top-down tree automaton

p

0

7! a p

0

7! b p

1

7! g(p

0

)

p

0

7! g(p

1

) p

0

7! h(p

1

) p

1

7! h(p

0

)

p

0

7! f(p

1

; p

1

) p

0

7! f(p

0

; p

0

) p

1

7! f(p

0

; p

1

)

p

1

7! f(p

1

; p

0

)

A possible derivation of f(h(b); a) by A is p

1

7! f(p

1

; p

0

) 7! f(h(p

0

); p

0

) 7!

f(h(p

0

); a) 7! f(h(b); a). So p

1

�

7! f(h(b); a).

5.3 Alternating tree automata

An alternating tree automaton is a tuple A = hF ;Q; F; Æi where now Æ is

a n-indexed family of maps from Q � F

n

to B

+

(f1; : : : ; ng � Q). Here, for

a given set X, B

+

(X) is the set of positive Boolean formulas over X (i.e.,

Boolean formulas built from elements in X using ^ and _), where we also

allow the formulas true and false. For example we
ould have Æ(p; f) = (1; p

1

)_

((1; p

2

) ^ (2; p

3

) ^ (2; p

4

)).

We refer to [22℄ for the
lassi
al de�nition of when a tree t is re
ognized by

state p of some alternating A. It is well-known that standard tree automata

an be seen as alternating automata where only disjun
tions are used, and that

the
lass of trees languages re
ognized by alternating tree automata is exa
tly

the
lass of tree languages re
ognized by non-alternating tree automata.

5.4 Re
ognizable relations on trees

We follow [6, Chapter 3℄ and [16℄. A tuple ht

1

; : : : ; t

n

i of n trees from T

F

an be seen as a single tree, denoted t

1

� � � � � t

n

, on a produ
t alphabet

F

�n

def

= (F [f?g)

n

where the arity of f

1

: : : f

n

is the maximum of the arities

of the f

i

, assuming ? has arity 0.

For instan
e the pair hf(a; g(b)); f(f(a; a); b)i
an also be seen as

ff(af(?a;?a); gb(b?)).

9

Labroue and S
hnoebelen

We say a n-ary relation R � T

n

F

is re
ognizable i� the set of all t

1

�� � �� t

n

for (t

1

; : : : ; t

n

) 2 R is a regular tree language over F

�n

.

6 Re
ognizability of the rea
hability relation for RPA

The rea
hability relations!

�

and

!

�!

�

between RPA terms are re
ognizable:

Lemma 6.1 The set L

term

def

= fu 2 T

G

j u 6!g of terminated terms is re
og-

nizable.

Proof. u 6! i� State(u) = ; (Lemma 3.4). Thus the automaton with an

unique a

epting state p

#

and the transition rules

Æ(p

#

; 0) = true; Æ(p

#

; q) = false; Æ(p

#

;I) = (1; p

#

) ^ (2; p

#

) (1)

re
ognizes L

term

. 2

We now
onsider the alternating automaton A

�

�!

whose states are p, �p, p

#

and all p

t

and �p

t

for t a subterm of some term appearing in � (thus jQj is in

O(j�j)).

A

�

�!

re
ognizes pairs of terms. Here we de�ne the alternating transition

fun
tion Æ with the following assumptions: (1) we omit the rules for Æ(p

#

; : : :),

(2) when Æ(p

0

; fg) is not expli
itly de�ned (for some p

0

2 Q and some f; g 2

(F [f?g)) this means Æ(p

0

; fg) is false, and (3) we quantify over all q 2 Q,

all
 2 Const , and all f 2 (F [f?g).

Æ(p; 00) = Æ(�p; 00) = true (2)

Æ(p; qq

0

) = Æ(�p; qq

0

) =

(

true if q = q

0

,

false otherwise

(3)

Æ(p;II) = (2; p) ^

�

(1; �p) _ ((2; p

#

) ^ (1; p))

�

(4)

Æ(�p;II) = (1; �p) ^ (2; p) (5)

Æ(p; q I) =

_

q�!

�

;u

(2; p

u

) ^

�

(1; �p

) _ ((2; p

#

) ^ (1; p

))

�

(6)

Æ(�p; q I) =

8

>

<

>

:

_

q�!

�

;u

(2; p

u

) ^ (1; �p

) if q 2 Q

!

,

false otherwise

(7)

10

Labroue and S
hnoebelen

Æ(p

t

; f0) = Æ(�p

t

; f0) =

(

true if t = 0,

false otherwise

(8)

Æ(p

t

; fq) = Æ(�p

t

; fq) =

(

true if t = q,

false otherwise

(9)

Æ(p

t

1

It

2

; f I) = (2; p

t

2

) ^

�

(1; �p

t

1

) _ ((2; p

#

) ^ (1; p

t

1

))

�

(10)

Æ(�p

t

1

It

2

; f I) = (1; �p

t

1

) ^ (2; p

t

2

) (11)

Æ(p

q

; f I) = Æ(p; q I) (12)

Æ(�p

q

; f I) = Æ(�p; q I) (13)

This automaton satis�es the following
orre
tness property:

Lemma 6.2

L(p) = fu� v j u!

�

vg; L(�p)= fu� v j u

!

�!

�

vg; (14)

L(p

t

) = fu� v j t!

�

vg; L(�p

t

) = fu� v j t

!

�!

�

vg; (15)

L(p

#

) = fu� v j v 6!g; (16)

where u; v are any terms of T

G

[f?g.

Proof (Sket
h). The rules for Æ(p

#

; : : :) are the obvious modi�
ations of (1)

so that they apply to the se
ond element of a pair u� v while we do not take

are of the �rst element.

The proof is by indu
tion over the derivations u !

�

v, . . . , for the (�)

dire
tions, and by indu
tion over the produ
t term for the (�) dire
tions.

It turns out every transition rule between (2) and (13) is justi�ed by a

behavioral property we already proved. For example, Lemma 3.3 a

ounts for

(3) while Lemma 3.4 a

ounts for all rules Æ(p

#

; fg). Similarly, (5) is a dire
t

transposition of Lemma 3.6. 2

We obtain the important
orollary:

Theorem 6.3 The relations !

�

and

!

�!

�

are re
ognizable. Furthermore, a

tree automaton re
ognizing them only needs O(j�j) states.

Proof. Our
onstru
tion used an alternating automaton for
larity (the

lauses de�ning Æ mimi
 lemmas from se
tion 3.3) but it is easy to adapt the

onstru
tion and get a (non-deterministi
 bottom up) tree automaton with

O(j�j) states. 2

7 Appli
ations

Theorem 6.3 immediately leads to de
idability results for RPA terms (and

RPPS s
hemes). The ni
e thing with these results is that they all involve the

11

Labroue and S
hnoebelen

same smooth and general automata-theoreti
 reasoning.

Rea
hability sets. For any re
ognizable language L, the sets Pre

�

(L)

def

=

fu j u

�

�! v for some v 2 Lg and Post

�

(L)

def

= fu j v

�

�! u for some v 2 Lg

are re
ognizable, and the
orresponding automata
an be obtained in

polynomial-time by standard interse
tion and proje
tion
onstru
ts on au-

tomata (assuming an automaton for L is known).

Rea
hability under
onstraints. These result extend to rea
ha-

bility under
onstraints, i.e. to the sets Pre

�

C

(L)

def

= fu j u

�

�!

v for some v 2 L and � 2 Cg and Post

�

C

(L)

def

= fu j v

�

�!

u for some v 2 L and � 2 Cg where C � A
t

�

is a
onstraint on a
-

eptable labels for rea
hability. Not all regular C � A
t

�

an be dealt with

in this approa
h (see [17,16℄) but interesting regular
onstraints,
alled

de
omposable
onstraints, are allowed [21℄.

Model
he
king the logi
 EF. Using Pre

�

and standard
onstru
ts for in-

terse
tion and
omplementation, one
an
ompute for any formula ' of the

modal logi
 EF, the set Mod(') of all terms that satisfy ' (see [17,19℄).

Here, EF
an even be enri
hed with de
omposable
onstraints.

Note that sin
e bisimilar pro
esses satisfy the same EF formulas, we have

s j= ' i� T (s) j= ', so that this approa
h allows model
he
king RPPS

s
hemes.

Model
he
king the transition logi
. EF only needs e�e
tive re
ogniz-

ability of Pre

�

(L) for re
ognizable L. But with re
ognizability of

�

�!, we

get a simple model
he
king algorithm for the full transition logi

5

, i.e. the

�rst-order logi
 FO(�!;

�

�!). See [16℄ for details and appli
ations.

8 Rea
hability between RPPS markings

Here we redu
e the problem of rea
hability between RPPS markings to

rea
hability questions between RPA terms. As a result, we get a simple

automata-theoreti
 algorithm for RPPS rea
hability, from whi
h NP-

ompleteness of rea
hability is easily derived.

Write u

�

) v when u �

S

u

0

�

�! v

0

�

S

v for some u

0

; v

0

. We adopt the usual

extensions u

�

) v (for � 2 A
t

�

) and u

�

) v. Rea
hability between RPPS

markings redu
es to

�

)-rea
hability between RPA terms, in the following for-

mal sense:

Proposition 8.1 Given two RPPS markings s and s

0

, s

�

�! s

0

in M

G

i�

T (s)

�

) T (t) in T

G

.

5

It is diÆ
ult to extend this de
idability result: by en
oding a grid stru
ture into RPA,

one
an easily show that model
he
king MSO(�!), the monadi
 se
ond-order logi
 with

�! as the only predi
ate, is unde
idable over RPA terms.

12

Labroue and S
hnoebelen

Proof. Combine Prop. 4.2 and the de�nition of). 2

8.1 Another
hara
terization of �

S

Our next task is to obtain a
hara
terization of �

S

that is more manageable

from a regular tree languages viewpoint. We do this with in several small

steps, with the help of some simpli�
ation or permutation relations between

RPA terms. The basi

on
epts (
on
uen
e,
ommutations, . . .) used in this

subse
tion are standard in the study of redu
tion systems (see e.g. [12℄).

8.1.1 Simpli�
ation

The relationsy and& are de�ned indu
tively by the following erasing rules:

0 I uy u (E1)

 I

n

(t

1

; : : : ; t

i�1

; 0 I

m

(u

1

; : : : ; u

m

); t

i+1

; : : : ; t

n

)&

 I

n+m�1

(t

1

; : : : ; t

i�1

; u

1

; : : : ; u

m

; t

i+1

; : : : ; t

n

)

(E2)

if t

i

& u, then
 I

n

(t

1

; : : : ; t

n

)&
 I

n

(t

1

; : : : ; t

i�1

; u; t

i+1

; : : : ; t

n

) (E3)

We let&& denotey[& and will use juxtaposition to denote the
omposition

of relations. Observe that ty&u implies t&yu, and that tyyu implies

t&yu. Thus, writing&&

�

for the re
exive-transitive
losure of&&, we dedu
e

that&&

�

oin
ide with&

�

y

�

and then with&y

=

, wherey

=

denotesy[Id .

When t&&

�

u, we say that u is a simpli�
ation of t. We write.. and

�

.. to

denote the reverse relations (&&)

�1

and (&&

�

)

�1

. Sin
e u&& t implies juj > jtj,

&& is noetherian and &&

�

is a well-founded partial ordering.

Lemma 8.2 (Con
uen
e) If u.. v&& w, then u = w or u&& v

0

.. w for

some v

0

.

Proof. By indu
tion on v and
ase analysis. See Appendix A.7. 2

Hen
e, by Newman's Lemma, && is
onvergent: we let t# denote the sim-

pli�
ation normal form of t, i.e. the unique u one obtains by simplifying t as

mu
h as possible.

8.1.2 Permutation

The relation

�

is de�ned indu
tively by the following rules:

 I

n

(t

1

; : : : ; t

n

)

�

 I

n

(t

1

; : : : ; t

i�1

; t

i+1

; t

i

; t

i+2

; : : : ; t

n

) (P1)

if t

i

�

u, then
 I

n

(t

1

; : : : ; t

n

)

�

 I

n

(t

1

; : : : ; t

i�1

; u; t

i+1

; : : : ; t

n

) (P2)

�

is symmetri
. We write

�

�

to denote the re
exive-transitive
losure of

�

.

When t

�

�

u, we say t and u are permutationally equivalent.

The next lemma allows
ommuting simpli�
ation and permutation:

Lemma 8.3 (Commutation) If u

�

v&&w, then u.. v

0

�

�

w for some v

0

.

13

Labroue and S
hnoebelen

Proof. By indu
tion on u and
ase analysis. See Appendix A.8. 2

By symmetry, u..

�

w entails u

�

�

..w.

8.1.3 Convertibility

Finally, we
ombine simpli�
ations and permutations in!, a relation de�ned

as

�

&& [

�

[..

�

�

. When u! v, we say that u is
an be
onverted in v.

Lemma 8.4 The following are equivalent:

(a) u! v,

(b) there exist two terms u

0

and v

0

s.t. u&&

�

u

0

�

�

v

0 �

.. v,

(
) u#

�

�

v#.

Proof. Obviously (
)) (b)) (a). One proves (a)) (b) by a standard

\peaks into valleys" normalization: Lemmas 8.2 and 8.3 allow erasing lo
al

peaks. Termination is guaranteed be
ause

�

�

&&

�

�

is noetherian, so that

the multiset of peaks stri
tly de
reases (in the well-founded multiset ordering

obtained from

�

�

&&

�

�

) after every lo
al transformation.

Then (b)) (
) is easy: u! v entails u#

�

.. u! v&&

�

v# or shortly

u#! v#. Thus u# &&

�

�

�

�

.. v# by (a)) (b). But sin
e u# and v#
annot

be simpli�ed further, we get u#

�

�

v#. 2

Proposition 8.5 u �

S

v if and only if u! v.

Proof. The (() dire
tion is obvious: a simple inspe
tion of the rules show

that u&v or uyv or u

�

v implies S(u) = S(v). The ()) dire
tion is proved

in Appendix A.9. 2

Having de
omposed �

S

into \permutation" and \simpli�
ation" allows a

partial answer to the question of \what is the set of terms that belong to some

regular set L modulo S-equivalen
e?".

For a tree language L de�ne

[L℄

�

def

= fu j 9t 2 L; u

�

�

tg; [L℄

..

def

= fu j 9t 2 L; u&&

�

tg;

[L℄

!

def

= fu j 9t 2 L; u! tg: [L℄

&&

def

= fu j 9t 2 L; t&&

�

ug;

If L is regular, then [L℄

�

and [L℄

!

are not regular in general, while [L℄

..

and [L℄

&&

are. For our purposes, we shall need the following:

Lemma 8.6 If L is regular then [L℄

..

is regular. Furthermore, from a tree

automaton A re
ognizing L, one
an build in polynomial-time a tree automaton

A

0

for [L℄

..

with jA

0

j = O(jAj

2

).

Proof (Idea). First, for any pair p; q of states of A, we add a state r

q

p

and

rules su
h that t

�

7! r

q

p

i� t is some 0 I

n

(t

1

; : : : ; t

n

) and p I

n

(t

1

; : : : ; t

n

)

�

7! q

14

Labroue and S
hnoebelen

in A. Then, whenever q I q

0

�

7! q

00

, we add all rules of the form r

q

p

I q

0

7! r

q

00

p

.

With further rules p I r

q

p

7! q and r

q

p

I r

r

q

7! r

r

p

, the resulting automaton has

t

�

7! p i� t&

�

u for some u with u

�

7! p in A.

Then the
onstru
tion is easily
ompleted in view of &&

�

= &

�

y

=

. 2

8.2 Transitions modulo �

S

We
an now prove that �

S

(or equivalently!) respe
ts behaviours in a sense

stronger than just being in
luded in the largest bisimulation:

Proposition 8.7 �

S

is a bisimulation relation modulo the abstra
tion of

f!; ?g labels, i.e. u �

S

v and u

�

�! u

0

implies that v

�

�! v

0

for some v

0

with

v �

S

v

0

.

Proof (Idea). Standard but tedious. One proves that

�

, & and y are

bisimulations up-to!. Prop. 8.5
on
ludes. 2

Proposition 8.8 For any � 2 A
t

�

, t

�

) u i� t

�

�! u

0

for some u

0

�

S

u.

Proof. By indu
tion on the length of � and using Prop. 8.7. 2

With Prop. 8.5 and Lemma 8.4, we get

Lemma 8.9 u

�

) v i� u

�

�! w for some w s.t. v#

�

�

w#.

8.3 A NP-algorithm for

�

)-rea
hability

We
an now prove the following

Theorem 8.10

�

)-rea
hability between RPA terms is NP-
omplete.

Proof. NP-hardness is well-known already for simpler pro
ess algebra like

BPP [8℄.

We now show membership in NP. Given u and v, we
ompute v# in

polynomial-time, guess a w s.t. v#

�

�

w (note that jwj � jvj), build a tree

automaton for L = [w℄

..

using Lemma 8.6, and then an automaton for

L

0

= Pre

�

(L) = ft j t

�

�! t

0

2 Lg using Theo. 6.3 (these automata
an be

built in polynomial-time). We answer yes if u 2 L

0

. Lemma 8.9 states that

this algorithm is
orre
t. 2

9 Con
lusion

We en
oded RPPS systems into RPA, a pro
ess rewrite system that
ombines

several features:

�

it has an e�e
tively re
ognizable rea
hability relation,

�

hen
e an uniform tree automata method
an
ompute the models of any

formula written in the transition logi
 TL,

15

Labroue and S
hnoebelen

�

whi
h
an be used for the rea
hability analysis of RPPS systems.

The diÆ
ulty in that work was to dis
over a pro
ess-algebrai
 presentation of

hierar
hi
al states where transitions are lo
al enough so that the rea
hability

relation is re
ognizable, whi
h is the sensitive problem. The
onsequen
e

is that the link between hierar
hi
al states and RPA terms is not dire
t:

�

S

is not a
ongruen
e, we need to use two notions \u

�

!

�! v" and \u

�

?

�! v", et
.

We see this work as more proof of the power of pro
ess rewrite systems

for the analysis of various kind of of in�nite state systems. At the same time,

it also shows that tree-automata are a powerful tool for the analysis of su
h

pro
ess rewrite systems.

A Appendix

A.1 Proof of Lemma 3.4

()): by indu
tion on the derivation u �!.

(() by indu
tion on u. If u = 0 then State(u) = ;. If u = q 2 Q then we

assumed � has at least one rule q

a

�! q

0

; v. If u is some u

1

I u

2

, then either

State(u

1

) 6= ; or State(u

2

) 6= ;:

1. if State(u

2

) 6= ; then u

2

�! by ind. hyp. and then u �! by R3-R4.

2. if State(u

2

) = ; then State(u

1

) 6= ;, u

1

�! by ind. hyp., and then u �!

by R5-R6. Observe that the
ondition on the appli
ation of R6
auses no

problem.

A.2 Proof of Lemma 3.5

The ()) dire
tion is obvious with rule R5.

For the (() dire
tion we pi
k q 2 Q and show by indu
tion on n 2 N that

u I q

n

�! v I q implies u

!

�!

�

v:

1. n = 0: then u I q = v I q. It follows that u = v and u

!

�!

�

v.

2. n > 0: then u I q

n�1

�! t! v I q. t must be some t

1

I t

2

(Lemma 3.1)

and t

2

i

�! q for some 0 � i � 1. Ne
essarily i = 0 (Lemma 3.2) and then

t

2

= q. t �! v I q is obtained by R5 sin
e State(q) 6= ; rules out R6. Hen
e

t

1

!

�! v. We
on
lude by noting that the ind. hyp. gives u

!

�!

�

t

1

.

A.3 Proof of Lemma 3.6

((): Assuming v

!

�!

�

v

0

and t!

�

t

0

, we have v I t

!

�!

�

v I t

0

by R3-R4 and

v I t

0

!

�!

�

v

0

I t

0

by R5.

()): Assume v I t

!

�! v

0

I t

0

. This was obtained by R3, R4 or R5, so that

(v

!

�! v

0

and t = t

0

), or (v = v

0

and t �! t

0

). Hen
e v

!

�!

�

v

0

and t �!

�

t

0

.

16

Labroue and S
hnoebelen

If now v I t

n;!

�! v

0

I t

0

for some n 2 N , the previous reasoning and an easy

indu
tion on n gives v

!

�!

�

v

0

and t �!

�

t

0

.

A.4 Proof of Lemma 3.7

((): one gets v I t

!

�!

�

v I t

0

by R3-R4, and follows with v I t

0

�!

�

v

0

I t

0

by R5 if v

!

�!

�

v

0

, or by R5-R6 if v !

�

v

0

and t

0

6!.

()): we have either (a) v I t

!

�!

�

v

0

I t

0

or (b) v I t !

�

v

1

I t

1

?

�! v

2

I

t

2

!

�

v

0

I t

0

. In
ase (a), Lemma 3.6
on
ludes. In
ase (b), rule R6 requires

State(t

1

) = ; so that t

1

6!. It follows that t

0

= t

1

and t

0

6!.

A.5 Proof of Lemma 3.8

()): the �rst step of q !

�

must be some q �!
 I u obtained by R1-R2 via

some q !

�

; u in �. Then
 I u!

�

v I t and Lemma 3.7
on
ludes.

((): this dire
tion is obvious by
ombining R1-R2 and Lemma 3.7.

A.6 Sket
h Proof of Lemma 3.9

This extends Lemma 3.6 exa
tly like the previous lemma extended Lemma 3.7.

A.7 Proof of Lemma 8.2

We prove the lemma by indu
tion on v. Assume u.. v && w with u 6= w,

write v under the form
 I

n

(v

1

; : : : ; v

n

), and
onsider the following
ases:

�

If v&&u using rule (E1), then v = 0 I u and, sin
e u 6= w, w = 0 I u

0

with

u&& u

0

. Then u&& u

0

.. w.

�

If v&&u using rule (E2) on v

i

, then if v&&w also uses rule (E2) (on v

j

with

j 6= i) it is easy to show u&&..w. If v&&w uses rule (E3), then u&&..w

is equally obvious.

�

If v && u using rule (E3), then u =
 I

n

(v

1

; : : : ; v

i�1

; u

i

; v

i+1

; : : : ; v

n

)

with v

i

& u

i

. The only interesting
ase for v && w is when w =
 I

n

(v

1

; : : : ; v

i�1

; w

i

; v

i+1

; : : : ; v

n

) with v

i

& w

i

(the other
ases are mirror im-

ages of
ases we already
onsidered). Here, sin
e u

i

6= w

i

, the ind. hyp.

gives u

i

&& v

00

.. w

i

for some v

00

and we dedu
e u&&..w.

A.8 Proof of Lemma 8.3

We assume u

�

v && w and prove the Lemma by indu
tion on w. Write w

under the form
 I

n

(w

1

; : : : ; w

n

). If n = 0 then v = 0 I
 and no u exists

s.t. u

�

v. Thus n > 0 and we now
onsider all
ases for v&& w:

�

If v&& w by rule (E1), then v = 0 I w and u = 0 I w

0

with w

0

�

w. We

are done sin
e u&& w

0

.

17

Labroue and S
hnoebelen

�

If v && w by rule (E2), then v is some
 I

n�m+1

(w

1

; : : : ; w

i�1

; 0 I

m

(w

i

; : : : ; w

i+m�1

); w

i+m

; : : : ; w

n

) with m possibly 0. Now there are several

ases for u

�

v:

If u

�

v by rule (P2), or by rule (P1) in a way that does not tou
h the

0 I

m

(w

i

; : : : ; w

i+m�1

) subterm of v, then it is easy to see that u&&

�

w.

Otherwise the 0 I

m

(w

i

; : : : ; w

i+m�1

) subterm of v is

swapped with w

i�1

or w

i

m

. In the �rst
ase u is
 I

n�m+1

(w

1

; : : : ; w

i�2

; 0 I

m

(w

i

; : : : ; w

i+m�1

); w

i�1

; w

m

; : : : ; w

n

) and u && v

0

=

 I

n

(w

1

; : : : ; w

i�2

; w

i

; : : : ; w

i+m�1

; w

i�1

; w

m

; : : : ; w

n

) works sin
e v

0

�

�

w

with m uses of rule (P1). The se
ond
ase is similar.

�

If v&& w by rule (E3), v is
 I

n

(w

1

; : : : ; w

i�1

; w

0

i

; w

i+1

; : : : ; w

n

) for some i

and w

0

i

s.t. w

0

i

&& w

i

. The
ases where u

�

v by rule (E1), or by rule (E2)

on a subterm di�erent from w

0

i

, are easy to deal with.

The interesting
ase is when u =
 I

n

(w

1

; : : : ; w

i�1

; w

00

i

; w

i+1

; : : : ; w

n

)

and w

00

i

�

w

0

i

. Then the indu
tion hypothesis applied on w

00

i

�

w

0

i

&& w

i

yields w

00

i

&& v

00

�

�

w

i

for some v

00

, and we dedu
e u&& v

0

�

�

w with v

0

=
 I

n

(w

1

; : : : ; w

i�1

; v

00

; w

i+1

; : : : ; w

n

).

A.9 Proof of Proposition 8.5

There only remains to prove the ()) dire
tion of Prop. 8.5. We start with

the following lemma:

Lemma A.1 u! u

0

implies
 I

n

(: : : ; u; : : :)!
 I

n

(: : : ; u

0

; : : :).

Proof. By indu
tion on the length of the derivation t

i

! u. For the base

ase, assume u&u

0

(resp. uyu

0

, u

�

u

0

): one
on
ludes using rule (E3) (resp.

(E2), (P2)). 2

We are now ready to prove that S(u) = S(v) entails u! v. The proof is

by indu
tion on juj+ jvj. We assume that u and v are resp.
 I

n

(u

1

; : : : ; u

n

)

and

0

I

m

(v

1

; : : : ; v

m

) and
onsider several
ases:

�

If
 2 Q and

0

= 0, then S(u) = (
;

P

i

S(u

i

)) and S(v) =

P

j

S(v

j

).

Hen
e there is some k s.t. S(v

k

) = S(u) and for all j 6= k, S(v

j

) = ;. By

ind. hyp. we have v

k

! u and v

j

! 0 for j 6= k. Thus v ! 0 I

m

(0; : : : ; 0; u; 0; : : : 0) by Lemma A.1. Then v! 0 I u by (E2) and v! u

by (E1). The
ase where
 = 0 and

0

2 Q is symmetri
.

�

If
 = 0 =

0

, then S(u) =

P

i

S(u

i

) and S(v) =

P

j

S(v

j

). If
;

0

2 Q, then

S(u) = (
;

P

i

S(u

i

)) and S(v) = (

0

;

P

j

S(v

j

)). In both
ases,
 =

0

and

P

i

S(u

i

) =

P

j

S(v

j

).

Now, if ea
h u

i

and ea
h v

j

has the form q I

�

(: : :) with q 2 Q, then

n = m and there is a bije
tive h s.t. S(u

i

) = S(v

h(i)

). By ind. hyp.,

u

i

! v

h(i)

, then u!
 I

n

(v

h(1)

; : : : ; v

h(n)

) by Lemma A.1, then u! v

by (P1).

Otherwise some u

i

or v

j

has the form 0 I

k

(w

1

; : : : ; w

k

), we use rule (E2)

18

Labroue and S
hnoebelen

to
atten the
orresponding term in u or v and we repeat the pro
ess until

no su
h u

i

and v

j

exists. Eventually we obtain u&

�

u

0

and v&

�

v

0

with u

0

and v

0

having the form of the previous sub
ase,
on
luding the proof.

Referen
es

[1℄ A
eto, L., W. J. Fokkink and C. Verhoef, Stru
tural operational semanti
s, in:

J. A. Bergstra, A. Ponse and S. A. Smolka, editors,Handbook of Pro
ess Algebra,

Elsevier S
ien
e, 2001 pp. 197{292.

[2℄ Baeten, J. C. M. and W. P. Weijland, \Pro
ess Algebra," Cambridge Tra
ts in

Theoreti
al Computer S
ien
e 18, Cambridge Univ. Press, 1990.

[3℄ Bouajjani, A., B. Jonsson, M. Nilsson and T. Touili, Regular model
he
king, in:

Pro
. 12th Int. Conf. Computer Aided Veri�
ation (CAV'2000), Chi
ago, IL,

USA, July 2000, Le
ture Notes in Computer S
ien
e 1855 (2000), pp. 403{418.

[4℄ Bukart, O., D. Cau
al, F. Moller and B. Ste�en, Veri�
ation on in�nite

stru
tures, in: J. A. Bergstra, A. Ponse and S. A. Smolka, editors, Handbook of

Pro
ess Algebra, Elsevier S
ien
e, 2001 pp. 545{623.

[5℄ Cau
al, D., On word rewriting systems having a rational derivation, in:

Pro
. 3rd Int. Conf. Foundations of Software S
ien
e and Computation

Stru
tures (FOSSACS'2000), Berlin, Germany, Mar.-Apr. 2000, Le
ture Notes

in Computer S
ien
e 1784, 2000, pp. 48{62.

[6℄ Comon, H., M. Dau
het, R. Gilleron, F. Ja
quemard, D. Lugiez, S. Tison

and M. Tommasi, Tree Automata Te
hniques and Appli
ations (1997{99), a

preliminary version of this ele
troni
 book is available at http://www.grappa.

univ-lille3.fr/tata.

[7℄ Comon, H. and Y. Jurski, Timed automata and the theory of real numbers,

in: Pro
. 10th Int. Conf. Con
urren
y Theory (CONCUR'99), Eindhoven, The

Netherlands, Aug. 1999, Le
ture Notes in Computer S
ien
e 1664 (1999), pp.

242{257.

[8℄ Esparza, J., Petri nets,
ommutative
ontext-free grammars, and basi
 parallel

pro
esses, Fundamenta Informati
ae 31 (1997), pp. 13{25.

[9℄ Esparza, J. and J. Knoop, An automata-theoreti
 approa
h to interpro
edural

data-
ow analysis, in: Pro
. 2nd Int. Conf. Foundations of Software S
ien
e and

Computation Stru
tures (FOSSACS'99), Amsterdam, The Netherlands, Mar.

1999, Le
ture Notes in Computer S
ien
e 1578 (1999), pp. 14{30.

[10℄ Esparza, J. and A. Podelski, EÆ
ient algorithms for pre� and post� on

interpro
edural parallel
ow graphs, in: Pro
. 27th ACM Symp. Prin
iples of

Programming Languages (POPL'2000), Boston, MA, USA, Jan. 2000, 2000,

pp. 1{11.

[11℄ Finkel, A. and Ph. S
hnoebelen,Well stru
tured transition systems everywhere!,

Theoreti
al Computer S
ien
e 256 (2001), pp. 63{92.

19

Labroue and S
hnoebelen

[12℄ Klop, J. W., Term rewriting systems, in: S. Abramsky, D. M. Gabbay and

T. S. E. Maibaum, editors, Handbook of Logi
 in Computer S
ien
e, vol.2.

Ba
kground: Computational Stru
tures, Oxford Univ. Press, 1992 pp. 1{116.

[13℄ Kou
hnarenko, O. and Ph. S
hnoebelen, A model for re
ursive-parallel

programs, in: Pro
. 1st Int. Workshop on Veri�
ation of In�nite State Systems

(INFINITY'96), Pisa, Italy, Aug. 1996, Ele
troni
 Notes in Theor. Comp. S
i.

5 (1997), available at http://www.lsv.ens-
a
han.fr/Publis/PAPERS/.

[14℄ Kupferman, O. and M. Y. Vardi, An automata-theoreti
 approa
h to reasoning

about in�nite-state systems, in: Pro
. 12th Int. Conf. Computer Aided

Veri�
ation (CAV'2000), Chi
ago, IL, USA, July 2000, Le
ture Notes in

Computer S
ien
e 1855 (2000), pp. 36{52.

[15℄ Kushnarenko, O. and Ph. S
hnoebelen, A formal framework for the analysis

of re
ursive-parallel programs, in: Pro
. 4th Int. Conf. Parallel Computing

Te
hnologies (PaCT'97), Yaroslavl, Russia, Sep. 1997, Le
ture Notes in

Computer S
ien
e 1277 (1997), pp. 45{59.

[16℄ Lugiez, D. and Ph. S
hnoebelen, De
idable �rst-order transition logi
s for PA-

pro
esses, in: Pro
. 27th Int. Coll. Automata, Languages, and Programming

(ICALP'2000), Geneva, Switzerland, July 2000, Le
ture Notes in Computer

S
ien
e 1853 (2000), pp. 342{353.

[17℄ Lugiez, D. and Ph. S
hnoebelen, The regular viewpoint on PA-pro
esses (2000),

to appear in Theor. Comp. S
i., available at http://www.lsv.ens-
a
han.fr/

Publis/PAPERS/.

[18℄ Mayr, R., Pro
ess rewrite systems, Information and Computation 156 (2000),

pp. 264{286.

[19℄ Mayr, R., De
idability of model
he
king with the temporal logi
 EF, Theoreti
al

Computer S
ien
e 256 (2001), pp. 31{62.

[20℄ Moller, F., In�nite results, in: Pro
. 7th Int. Conf. Con
urren
y Theory

(CONCUR'96), Pisa, Italy, Aug. 1996, Le
ture Notes in Computer S
ien
e

1119 (1996), pp. 195{216.

[21℄ S
hnoebelen, Ph., De
omposable regular languages and the shu�e operator,

EATCS Bull. 67 (1999), pp. 283{289.

[22℄ Vardi, M. Y., Alternating automata: Che
king truth and validity for temporal

logi
s, in: Pro
. 14th Int. Conf. Automated Dedu
tion (CADE'97), Townsville,

North Queensland, Australia, July 1997, Le
ture Notes in Computer S
ien
e

1249 (1997), pp. 191{206.

20

