
Eletroni Notes in Theoretial Computer Siene 52 No. 1 (2001)

URL: http://www.elsevier.nl/loate/ents/volume52.html 20 pages

An Automata-Theoreti Approah to the

Reahability Analysis of RPPS Systems

A. Labroue

1

and Ph. Shnoebelen

2

Laboratoire Sp�ei�ation & V�eri�ation,

ENS de Cahan & CNRS UMR 8643,

61 av. Pdt. Wilson, F-94235 Cahan Cedex, Frane

Abstrat

We show how the tree-automata tehniques proposed by Lugiez and Shnoebelen

apply to the reahability analysis of RPPS systems. Using these tehniques requires

that we express the states of RPPS systems in a tailor-made proess rewrite system

where reahability is a relation reognizable by �nite tree-automata.

Keywords: veri�ation of in�nite-state systems, proess algebra, reaha-

bility analysis, tree automata, model heking.

1 Introdution

This paper is onerned with the veri�ation of RPPS systems (for Reur-

sive Parallel Program Shemes), an abstrat model introdued in [13,15℄ that

models the ontrol ow of programming languages with reursive oroutines.

As shown in, e.g., [9,10℄, the reahability analysis of suh models has impor-

tant appliations in the stati analysis of programming languages with parallel

onstruts.

While RPPS systems an be seen as some kind of Petri nets with nested

markings (the viewpoint adopted in [13,15℄), we argue that it is worthwhile to

see them as an in�nite-state proess algebra (or proess rewrite system). This

approah is very ative (see [4℄ for a reent survey of ahievements), partly

beause it takles a wide range of veri�ation problems (bisimulation hek-

ing, temporal logi model heking, et.), and also partly beause there exist

several interesting proess algebras (with quite di�erent expressive power) ob-

tained by simple syntati restritions on the allowed rewrite rules [20,18℄.

1

Email: labroue�lsv.ens-ahan.fr

2

Email: phs�lsv.ens-ahan.fr

2001 Published by Elsevier Siene B. V.

Labroue and Shnoebelen

Tree automata

Reently [17℄ showed how reahability problems for the PA proess algebra

3

ould be solved simply and elegantly via tree-automata tehniques. Beyond

the use of tree-automata, the approah heavily relies on an important idea:

one should not onsider proess terms modulo any of the usual strutural

ongruenes. These ongruenes make proess notations muh lighter, and

bring them loser to the intended semantis, but they hide regularity and are

not really ompatible with the tree-automata approah.

The tree-automata approah to PA is further developed in [16℄ where it

is shown that the reahability relation between PA proesses is an e�etively

reognizable relation, whih gives deidability of the �rst-order transition logi

over PA.

Our ontribution

In this paper, we investigate whether the Lugiez & Shnoebelen approah to

PA an be made to work for RPPS systems.

There are three main results in the paper. First we design RPA, a proess

rewrite system that enodes RPPS systems in a arefully hosen way. Then

we prove that reahability between RPA terms is a reognizable relation: we

use alternating tree-automata for a more diret proof. Finally, we show how

reahability between RPPS markings an be redued to reahability questions

between RPA terms, ending with a diret automata-theoreti algorithm. As

a orollary, we obtain a proof of NP-ompleteness for reahability between

RPPS markings.

The diÆulties in this work ome from the fat that natural ways of enod-

ing RPPS markings in a proess-algebrai notation make it hard to de�ne or-

responding transitions via SOS (for Strutural Operational Semantis, see [1℄)

rules without losing the reognizability theorem we aim at. In partiular, we

see no way of using the PA proess algebra for this task.

Related works

Previous deidability results on RPPS [13,15℄ relied on more ad-ho tableaux

methods or the well-struture of RPPS [11℄. These results were weaker than

what we o�er in setion 7.

The use of reognizable sets of on�gurations for symboli model heking

has reently been alled \Regular model heking" in [3℄. This approah is

weaker (but more pratial) sine it does not require that iterated suessors

or predeessors of a set of states form an e�etively omputable reognizable

language: only immediate predeessors or suessors are handled (sometimes,

the transitive losure of loops an be handled).

There exist several other systems for whih the reahability relation is

3

A fragment allowing reursive de�nitions mixing sequential and parallel omposition,

without synhronization [2℄.

2

Labroue and Shnoebelen

reognizable: it is semilinear for BPP [8℄, de�nable in the additive theory

of reals for timed automata [7℄, a reognizable relation between words for

some string rewrite systems [5℄ inluding pushdown proesses (see [14℄ for

appliations to �-alulus model heking). Our approah di�ers in two points:

reognizability is in a tree-automata framework, and it requires that we invent

a new proess algebra in whih to enode RPPS systems.

Plan of the paper

We �rst reall RPPS shemes (Setion 2) before we introdue RPA (Setion 3)

and show how to enode RPPS shemes faithfully (Setion 4). Then we reall

the basi tree-automata notions (Setion 5) we need to prove our main theorem

(Setion 6) and explain the pratial impliations (Setion 7). A �nal setion

explains how reahability between RPPS markings an be solved in NP with

tree automata.

2 Reursive-parallel program shemes

RPPS systems were introdued as an abstrat model for RP programs: we

refer the reader to [13,15℄ for motivations and examples. Here we present the

formal model without justi�ation.

2.1 The struture of RPPS systems

A = fa; b; : : :g is a set of ation names that does not ontain the speial

ations all, wait, and end. We write

~

A (ranged over by �; �; : : :) for A [

fall; wait; endg.

q

0

q

1

q

2

q

3

q

4

q

5

q

6

q

7

q

8

q

9

all

all

a

b

wait

a

end

wait

end

Fig. 1. A sheme

A sheme is a �nite rooted graph G = hQ; q

0

;�i where

�

Q is a �nite set of nodes,

�

q

0

2 Q is the initial node,

3

Labroue and Shnoebelen

�

� is the labeled ow funtion that maps any node q to a tuple in (A�Q)[

(fallg �Q�Q) [(fwaitg �Q) [fendg.

� has a lumsy mathematial appearane but is graphially easy to un-

derstand: every node is followed by in general one node, sometimes a pair

of nodes or no node at all. For example, the system depited in Fig. 1 has

�(q

0

) = ha; q

1

i;�(q

1

) = hall; q

2

; q

6

i; : : : ;�(q

9

) = end.

2.2 Behavioral semantis

The behavioral semantis of G is given via an in�nite labeled transition

system M

G

. Informally, a state of M

G

is a multiset of nodes (denoting the

urrent ontrol states of onurrent proesses) organized with a father-son

relationship (relating a proess with the father proess that spawned it via a

all instrution). The orresponding formal de�nition is given below, and

we refer to [13,15℄ for more intuitions.

Formally, the set of hierarhial states (also, \markings", or \states")

of a system G is the least set M(G) s.t. for any n nodes (not neessarily

distint) q

1

; : : : ; q

n

of G, and hierarhial states s

1

; : : : ; s

n

2 M(G) the

multiset s = f(q

1

; s

1

); : : : ; (q

n

; s

n

)g is in M(G)

4

. In partiular, ; 2 M(G).

We use the ustomary notations \s + s

0

", \s � s

0

", : : : to denote sum,

inlusion, : : : of multisets and hene of hierarhial states. Below we write

(q; s) for the singleton multiset f(q; s)g. The size jsj of a state is given by

jf(q

i

; s

i

) j i = 1; : : :gj

def

=

P

i=1;:::

(1 + js

i

j).

We now formally de�ne what are the transitions !� M(G)�

~

A�M(G)

between hierarhial states: ! is the least set of triples (s; a; s

0

), written

s

a

�! s

0

, satisfying the following rules:

ation: if �(q) = (a; q

0

) then (q; s)

a

�! (q

0

; s) for all s, (Ga)

end: if �(q) = end then (q; s)

end

�! s for all s, (Ge)

all: if �(q) = (all; q

0

; q

00

) then (q; s)

all

�! (q

0

; s+ (q

00

; ;)) for all s, (G)

wait: if �(q) = (wait; q

0

) then (q; ;)

wait

�! (q

0

; ;), (Gw)

paral1: if s

�

�! s

0

then s+ s

00

�

�! s

0

+ s

00

for all s

00

, (Gp1)

paral2: if s

�

�! s

0

then (q; s)

�

�! (q; s

0

) for all q 2 Q. (Gp2)

Rules paral1 and paral2 for parallelism express that any ativity s

�

�! s

0

an still take plae when brothers are present (i.e. in some s + s

00

) or when

a parent is present (i.e. in some (q; s)). The wait rule states how we an

4

A hierarhial state of the form s = f(q

1

; s

1

); : : : ; (q

n

; s

n

)g has n ompletely indepen-

dent onurrent ativities. One suh ativity, say (q

i

; s

i

), is the invoation of a oroutine

(urrently in state/node q

i

) together with its family of hildren invoations (the s

i

part).

4

Labroue and Shnoebelen

only perform a wait statement in state q if the invoked hildren are all ter-

minated (and then not present anymore). The other rules state how hildren

invoations are reated and kept around.

Finally, M

G

is hM(G);

~

A;!; s

0

i where the initial state is s

0

def

= (q

0

; ;).

Example 2.1 (q

0

; ;)

a

�! (q

1

; ;)

all

�! (q

2

; (q

6

; ;))

�! (q

2

; (q

7

; ;))

all

�!

(q

2

; (q

8

; (q

6

; ;)))

b

�! (q

3

; (q

8

; (q

6

; ;))) � � � is an exeution sequene of the sys-

tem M

G

assoiated with the sheme of Fig. 1.

As the wait rule shows, nodes that an only be exited via a wait step

behave onditionally: we denote by Q

?

the set of the states q of Q suh that

�(q) = (wait; q

0

) for some q

0

, while Q

!

denotes Q nQ

?

.

3 The proess algebra RPA

We now de�ne RPA, a proess algebra designed to enode RPPS shemes.

3.1 RPA terms

We assume a sheme G = hQ; q

0

;�i is �xed and onsider the set Const

def

=

Q [f0g ranged over by ; : : : T

G

, the set of RPA terms, or just \terms",

ranged over by t; u; v; : : : is given by the following syntax:

t; u ::= j t I u:

For t a term, we write State(t) the set of all nodes from Q that our in t.

The size of t, denoted jtj, is the number of symbols in t, given by jj

def

= 1 and

jt I uj

def

= 1 + jtj+ juj.

RPA terms are binary trees but the left- and right-hand sides do not play

the same rôle, so that it is more natural to see them as ombs with some

from Const at the deep left end, and a list of subterms on the right of the

spine (see example on Fig. 2). This motivates introduing the onvenient

abbreviation \ I

n

(u

1

; : : : ; u

n

)", de�ned indutively by I

0

() = 0 and

 I

n

(u

1

; : : : ; u

n

) =

�

 I

n�1

(u

1

; : : : ; u

n�1

)

�

I u

n

. We only use the \I

n

"

abbreviation with a 2 Const in the left-hand side.

u

1

u

n�1

u

n

I

I

I

.

.

.

.

.

.

Fig. 2. I

n

(u

1

; : : : ; u

n

)

5

Labroue and Shnoebelen

A (guarded) RPA delaration is a �nite set � � Q �

~

A � Const � T

G

of

rules, written fq

i

�

�!

�

i

; t

i

j i = 1; : : : ; ng. The q

i

's need not be distint. For

tehnial onveniene, we require that all q 2 Q appear in the left-hand side

of at least one rule.

3.2 Semantis

Let At

def

=

~

A � f!; ?g. For onveniene, we write �

!

and �

?

rather than (�; !)

and (�; ?). A delaration � de�nes a labeled transition �!� T

G

� At � T

G

,

given by the following SOS rules:

R1

q

�

!

�! q

0

I t

if (q

�

�!

�

q

0

; t) 2 � and q 2 Q

!

R3

t

�

!

�! t

0

u I t

�

!

�! u I t

0

R2

q

�

?

�! q

0

I t

if (q

�

�!

�

q

0

; t) 2 � and q 2 Q

?

R4

t

�

?

�! t

0

u I t

�

!

�! u I t

0

R5

t

�

!

�! t

0

t I u

�

!

�! t

0

I u

R6

t

�

?

�! t

0

t I u

�

?

�! t

0

I u

if State(u) = ;

The intuition is that a step t

�

x

�! u in T

G

enodes a step s

t

�

�! s

u

in M

G

(where s

t

is the hierarhial state denoted by t). The extra label x =! (resp.

x =?) means that this step an (resp. annot) our on top of ative hildren

proesses. The label is hosen by rules R1, R2, tested by rules R5, R6, and

propagated aording to the semantis.

We write u

!

�! v (resp. u

?

�! v) when u

�

!

�! v (resp. u

�

?

�! v) for some �,

and u �! v when u

!

�! v or u

?

�! v. For n 2 N , we let \

n

�!" and \

n;!

�!" denote

respetively the iterated relations (!)

n

and

�

!

�!

�

n

. Also !

�

denotes the

losure

S

n2N

n

�!. As usual, \u �!" and \u 6�!" mean respetively that u �! v

for some v (resp. for no v).

3.3 Basi properties of RPA steps

We now list some key lemmas about the transitions between terms. These

results aim at explaining how one an deompose a ompound step into smaller

steps and will be the basis of the onstrution in setion 6.

Lemma 3.1 If u I v ! w then w has the form u

0

I v

0

and either (u ! u

0

and v = v

0

) or (v ! v

0

and u = u

0

).

Proof. By ase analysis of rules R3{R6. 2

Lemma 3.2 If u! v then jvj > juj.

6

Labroue and Shnoebelen

Proof. By indution on the derivation u �! v. The base ases are transitions

q �! q

0

I t. 2

Lemma 3.3 q !

�

q

0

i� q = q

0

.

Proof. q

n

�! q

0

entails n = 0 (Lemma 3.2). 2

The next six lemmas are proved in the Appendix. Lemma 3.5 gives a

haraterization of

!

�!

�

.

Lemma 3.4 u �! i� State(u) 6= ;.

Lemma 3.5 u

!

�!

�

v i� for all t 2 T

G

, u I t!

�

v I t.

Lemma 3.6 v I t

!

�!

�

v

0

I t

0

i� v

!

�!

�

v

0

and t!

�

t

0

.

Lemma 3.7 v I t!

�

v

0

I t

0

i� t!

�

t

0

and

(

t

0

6! and v !

�

v

0

,

or v

!

�!

�

v

0

.

Lemma 3.8 q !

�

v I t i� there exist and u s.t. (q !

�

; u) is a rule in

�, u!

�

t, and

(

t 6! and !

�

v,

or

!

�!

�

v.

Lemma 3.9 q

!

�!

�

v I t i� q 2 Q

!

and there exist and u s.t. q !

�

; u is a

rule in �, u!

�

t and

!

�!

�

v.

4 Embedding RPPS shemes into RPA

The behavior of an RPPS sheme G an be faithfully enoded in RPA. We

onsider a set of rules �

G

obtained from �. For any q 2 Q,

ation: if �(q) = (a; q

0

) then �

G

ontains q

a

�! q

0

; 0, (Da)

end: if �(q) = end then �

G

ontains q

end

�! 0; 0, (De)

all: if �(q) = (all; q

0

; q

00

) then �

G

ontains q

all

�! q

0

; q

00

, (D)

wait: if �(q) = (wait; q

0

) then �

G

ontains q

wait

�! q

0

; 0. (Dw)

Thus �

G

an be seen as an appliation from Q to

~

A� Const� T

G

.

We now assoiate a hierarhial state S(t) with any term t 2 T

G

and,

reiproally, a term T (s) with any s 2 M(G). The aim is to de�ne what

hierarhial state is enoded by term t, and what term an be used to enode

hierarhial state s.

7

Labroue and Shnoebelen

The mappings S and T are de�ned indutively by

T (f(q

1

; s

1

); : : : ; (q

n

; s

n

)g)

def

= 0 I

n

(q

1

I T (s

1

); : : : ; q

n

I T (s

n

)) (T)

S (0 I

n

(u

1

; : : : ; u

n

))

def

= S(u

1

) + � � � + S(u

n

) (S1)

S (q I

n

(u

1

; : : : ; u

n

))

def

= (q;S(u

1

) + � � � + S(u

n

)) (S2)

where equation (T) for T (s) requires that one piks some ordering of the

elements of the multiset s.

S and T behave like an abstration-onretization pair:

Lemma 4.1 For all s 2M(G), S(T (s)) = s.

Proof. By strutural indution on s, using equations (T,S1,S2). 2

S gives rise to an equivalene between RPA terms: t �

S

u

def

, S(t) = S(u).

We write [u℄ for the equivalene lass of u w.r.t. �

S

, and T

�

S

for the set of

the equivalene lasses of T

G

.

Observe that �

S

is not a ongruene: (0 I u) �

S

u whereas

(0 I u) I v 6�

S

u I v

It is now possible to state how steps between RPA terms are related to

steps between RPPS hierarhial states. This is done by abstrating over the !

or ? extra label that RPA steps arry, and that is only used for a ompositional

de�nition of steps. Write u

�

�! t when u

�

"

�! t for some " 2 f!; ?g.

Proposition 4.2 1. For all u; v in T

G

and � in

~

A, if u

�

�! t then S(u)

�

�! S(t).

2. For all s; s

0

in M(G) and � in

~

A, if s

�

�! s

0

, then T (s)

�

�! u for some u 2 T

G

suh that S(u) = s

0

.

Proof (Idea). 1. (resp. 2.) is proved by indution on u (resp. s) and a tedious

ase analysis. 2

The meaning of Proposition 4.2 is that, modulo the abstration mapping

from At to

~

A that sends �

"

to �, S is a bisimulation between the RPA

transition system generated by �

G

and the transition systemM

G

we want to

analyze.

5 Tree languages and tree automata

Here we reall the lassial tree-automata notions we need. We refer to [6℄

and [22℄ for more details.

5.1 Tree languages

Given a �nite ranked alphabet F = F

0

[F

1

[: : : [F

m

, T

F

denotes the set of

�nite trees (or terms) built from F : for example, with F

0

= fa; bg, F

1

= fg; hg

8

Labroue and Shnoebelen

and F

2

= ffg, T

F

ontains trees like a, f(a; b) and f(g(f(h(b); a)); b). A tree

language is any subset L of T

F

.

5.2 Tree automata

A tree automaton is a tuple A = hF ;Q; F; Æi where F is a �nite ranked

alphabet, Q = fp; p

0

: : :g is a �nite set of ontrol states, F � Q is a set of

aepting states and Æ � [

n2N

(Q�F

n

�Q

n

) is a �nite set of transition rules.

We refer to [6℄ (or [17℄) for the lassial de�nition of when a tree t is

reognized by state p of A, written p

�

7! t. For p 2 Q; L(p) denotes ft j p

�

7! tg.

L(A)

def

=

S

p2F

L(p) is the tree language reognized by A.

Example 5.1 Continuing with our previous example, and setting Q =

fp

0

; p

1

g, the set of rules desribes a top-down tree automaton

p

0

7! a p

0

7! b p

1

7! g(p

0

)

p

0

7! g(p

1

) p

0

7! h(p

1

) p

1

7! h(p

0

)

p

0

7! f(p

1

; p

1

) p

0

7! f(p

0

; p

0

) p

1

7! f(p

0

; p

1

)

p

1

7! f(p

1

; p

0

)

A possible derivation of f(h(b); a) by A is p

1

7! f(p

1

; p

0

) 7! f(h(p

0

); p

0

) 7!

f(h(p

0

); a) 7! f(h(b); a). So p

1

�

7! f(h(b); a).

5.3 Alternating tree automata

An alternating tree automaton is a tuple A = hF ;Q; F; Æi where now Æ is

a n-indexed family of maps from Q � F

n

to B

+

(f1; : : : ; ng � Q). Here, for

a given set X, B

+

(X) is the set of positive Boolean formulas over X (i.e.,

Boolean formulas built from elements in X using ^ and _), where we also

allow the formulas true and false. For example we ould have Æ(p; f) = (1; p

1

)_

((1; p

2

) ^ (2; p

3

) ^ (2; p

4

)).

We refer to [22℄ for the lassial de�nition of when a tree t is reognized by

state p of some alternating A. It is well-known that standard tree automata

an be seen as alternating automata where only disjuntions are used, and that

the lass of trees languages reognized by alternating tree automata is exatly

the lass of tree languages reognized by non-alternating tree automata.

5.4 Reognizable relations on trees

We follow [6, Chapter 3℄ and [16℄. A tuple ht

1

; : : : ; t

n

i of n trees from T

F

an be seen as a single tree, denoted t

1

� � � � � t

n

, on a produt alphabet

F

�n

def

= (F [f?g)

n

where the arity of f

1

: : : f

n

is the maximum of the arities

of the f

i

, assuming ? has arity 0.

For instane the pair hf(a; g(b)); f(f(a; a); b)i an also be seen as

ff(af(?a;?a); gb(b?)).

9

Labroue and Shnoebelen

We say a n-ary relation R � T

n

F

is reognizable i� the set of all t

1

�� � �� t

n

for (t

1

; : : : ; t

n

) 2 R is a regular tree language over F

�n

.

6 Reognizability of the reahability relation for RPA

The reahability relations!

�

and

!

�!

�

between RPA terms are reognizable:

Lemma 6.1 The set L

term

def

= fu 2 T

G

j u 6!g of terminated terms is reog-

nizable.

Proof. u 6! i� State(u) = ; (Lemma 3.4). Thus the automaton with an

unique aepting state p

#

and the transition rules

Æ(p

#

; 0) = true; Æ(p

#

; q) = false; Æ(p

#

;I) = (1; p

#

) ^ (2; p

#

) (1)

reognizes L

term

. 2

We now onsider the alternating automaton A

�

�!

whose states are p, �p, p

#

and all p

t

and �p

t

for t a subterm of some term appearing in � (thus jQj is in

O(j�j)).

A

�

�!

reognizes pairs of terms. Here we de�ne the alternating transition

funtion Æ with the following assumptions: (1) we omit the rules for Æ(p

#

; : : :),

(2) when Æ(p

0

; fg) is not expliitly de�ned (for some p

0

2 Q and some f; g 2

(F [f?g)) this means Æ(p

0

; fg) is false, and (3) we quantify over all q 2 Q,

all 2 Const , and all f 2 (F [f?g).

Æ(p; 00) = Æ(�p; 00) = true (2)

Æ(p; qq

0

) = Æ(�p; qq

0

) =

(

true if q = q

0

,

false otherwise

(3)

Æ(p;II) = (2; p) ^

�

(1; �p) _ ((2; p

#

) ^ (1; p))

�

(4)

Æ(�p;II) = (1; �p) ^ (2; p) (5)

Æ(p; q I) =

_

q�!

�

;u

(2; p

u

) ^

�

(1; �p

) _ ((2; p

#

) ^ (1; p

))

�

(6)

Æ(�p; q I) =

8

>

<

>

:

_

q�!

�

;u

(2; p

u

) ^ (1; �p

) if q 2 Q

!

,

false otherwise

(7)

10

Labroue and Shnoebelen

Æ(p

t

; f0) = Æ(�p

t

; f0) =

(

true if t = 0,

false otherwise

(8)

Æ(p

t

; fq) = Æ(�p

t

; fq) =

(

true if t = q,

false otherwise

(9)

Æ(p

t

1

It

2

; f I) = (2; p

t

2

) ^

�

(1; �p

t

1

) _ ((2; p

#

) ^ (1; p

t

1

))

�

(10)

Æ(�p

t

1

It

2

; f I) = (1; �p

t

1

) ^ (2; p

t

2

) (11)

Æ(p

q

; f I) = Æ(p; q I) (12)

Æ(�p

q

; f I) = Æ(�p; q I) (13)

This automaton satis�es the following orretness property:

Lemma 6.2

L(p) = fu� v j u!

�

vg; L(�p)= fu� v j u

!

�!

�

vg; (14)

L(p

t

) = fu� v j t!

�

vg; L(�p

t

) = fu� v j t

!

�!

�

vg; (15)

L(p

#

) = fu� v j v 6!g; (16)

where u; v are any terms of T

G

[f?g.

Proof (Sketh). The rules for Æ(p

#

; : : :) are the obvious modi�ations of (1)

so that they apply to the seond element of a pair u� v while we do not take

are of the �rst element.

The proof is by indution over the derivations u !

�

v, . . . , for the (�)

diretions, and by indution over the produt term for the (�) diretions.

It turns out every transition rule between (2) and (13) is justi�ed by a

behavioral property we already proved. For example, Lemma 3.3 aounts for

(3) while Lemma 3.4 aounts for all rules Æ(p

#

; fg). Similarly, (5) is a diret

transposition of Lemma 3.6. 2

We obtain the important orollary:

Theorem 6.3 The relations !

�

and

!

�!

�

are reognizable. Furthermore, a

tree automaton reognizing them only needs O(j�j) states.

Proof. Our onstrution used an alternating automaton for larity (the

lauses de�ning Æ mimi lemmas from setion 3.3) but it is easy to adapt the

onstrution and get a (non-deterministi bottom up) tree automaton with

O(j�j) states. 2

7 Appliations

Theorem 6.3 immediately leads to deidability results for RPA terms (and

RPPS shemes). The nie thing with these results is that they all involve the

11

Labroue and Shnoebelen

same smooth and general automata-theoreti reasoning.

Reahability sets. For any reognizable language L, the sets Pre

�

(L)

def

=

fu j u

�

�! v for some v 2 Lg and Post

�

(L)

def

= fu j v

�

�! u for some v 2 Lg

are reognizable, and the orresponding automata an be obtained in

polynomial-time by standard intersetion and projetion onstruts on au-

tomata (assuming an automaton for L is known).

Reahability under onstraints. These result extend to reaha-

bility under onstraints, i.e. to the sets Pre

�

C

(L)

def

= fu j u

�

�!

v for some v 2 L and � 2 Cg and Post

�

C

(L)

def

= fu j v

�

�!

u for some v 2 L and � 2 Cg where C � At

�

is a onstraint on a-

eptable labels for reahability. Not all regular C � At

�

an be dealt with

in this approah (see [17,16℄) but interesting regular onstraints, alled

deomposable onstraints, are allowed [21℄.

Model heking the logi EF. Using Pre

�

and standard onstruts for in-

tersetion and omplementation, one an ompute for any formula ' of the

modal logi EF, the set Mod(') of all terms that satisfy ' (see [17,19℄).

Here, EF an even be enrihed with deomposable onstraints.

Note that sine bisimilar proesses satisfy the same EF formulas, we have

s j= ' i� T (s) j= ', so that this approah allows model heking RPPS

shemes.

Model heking the transition logi. EF only needs e�etive reogniz-

ability of Pre

�

(L) for reognizable L. But with reognizability of

�

�!, we

get a simple model heking algorithm for the full transition logi

5

, i.e. the

�rst-order logi FO(�!;

�

�!). See [16℄ for details and appliations.

8 Reahability between RPPS markings

Here we redue the problem of reahability between RPPS markings to

reahability questions between RPA terms. As a result, we get a simple

automata-theoreti algorithm for RPPS reahability, from whih NP-

ompleteness of reahability is easily derived.

Write u

�

) v when u �

S

u

0

�

�! v

0

�

S

v for some u

0

; v

0

. We adopt the usual

extensions u

�

) v (for � 2 At

�

) and u

�

) v. Reahability between RPPS

markings redues to

�

)-reahability between RPA terms, in the following for-

mal sense:

Proposition 8.1 Given two RPPS markings s and s

0

, s

�

�! s

0

in M

G

i�

T (s)

�

) T (t) in T

G

.

5

It is diÆult to extend this deidability result: by enoding a grid struture into RPA,

one an easily show that model heking MSO(�!), the monadi seond-order logi with

�! as the only prediate, is undeidable over RPA terms.

12

Labroue and Shnoebelen

Proof. Combine Prop. 4.2 and the de�nition of). 2

8.1 Another haraterization of �

S

Our next task is to obtain a haraterization of �

S

that is more manageable

from a regular tree languages viewpoint. We do this with in several small

steps, with the help of some simpli�ation or permutation relations between

RPA terms. The basi onepts (onuene, ommutations, . . .) used in this

subsetion are standard in the study of redution systems (see e.g. [12℄).

8.1.1 Simpli�ation

The relationsy and& are de�ned indutively by the following erasing rules:

0 I uy u (E1)

 I

n

(t

1

; : : : ; t

i�1

; 0 I

m

(u

1

; : : : ; u

m

); t

i+1

; : : : ; t

n

)&

 I

n+m�1

(t

1

; : : : ; t

i�1

; u

1

; : : : ; u

m

; t

i+1

; : : : ; t

n

)

(E2)

if t

i

& u, then I

n

(t

1

; : : : ; t

n

)& I

n

(t

1

; : : : ; t

i�1

; u; t

i+1

; : : : ; t

n

) (E3)

We let&& denotey[& and will use juxtaposition to denote the omposition

of relations. Observe that ty&u implies t&yu, and that tyyu implies

t&yu. Thus, writing&&

�

for the reexive-transitive losure of&&, we dedue

that&&

�

oinide with&

�

y

�

and then with&y

=

, wherey

=

denotesy[Id .

When t&&

�

u, we say that u is a simpli�ation of t. We write.. and

�

.. to

denote the reverse relations (&&)

�1

and (&&

�

)

�1

. Sine u&& t implies juj > jtj,

&& is noetherian and &&

�

is a well-founded partial ordering.

Lemma 8.2 (Conuene) If u.. v&& w, then u = w or u&& v

0

.. w for

some v

0

.

Proof. By indution on v and ase analysis. See Appendix A.7. 2

Hene, by Newman's Lemma, && is onvergent: we let t# denote the sim-

pli�ation normal form of t, i.e. the unique u one obtains by simplifying t as

muh as possible.

8.1.2 Permutation

The relation

�

is de�ned indutively by the following rules:

 I

n

(t

1

; : : : ; t

n

)

�

 I

n

(t

1

; : : : ; t

i�1

; t

i+1

; t

i

; t

i+2

; : : : ; t

n

) (P1)

if t

i

�

u, then I

n

(t

1

; : : : ; t

n

)

�

 I

n

(t

1

; : : : ; t

i�1

; u; t

i+1

; : : : ; t

n

) (P2)

�

is symmetri. We write

�

�

to denote the reexive-transitive losure of

�

.

When t

�

�

u, we say t and u are permutationally equivalent.

The next lemma allows ommuting simpli�ation and permutation:

Lemma 8.3 (Commutation) If u

�

v&&w, then u.. v

0

�

�

w for some v

0

.

13

Labroue and Shnoebelen

Proof. By indution on u and ase analysis. See Appendix A.8. 2

By symmetry, u..

�

w entails u

�

�

..w.

8.1.3 Convertibility

Finally, we ombine simpli�ations and permutations in!, a relation de�ned

as

�

&& [

�

[..

�

�

. When u! v, we say that u is an be onverted in v.

Lemma 8.4 The following are equivalent:

(a) u! v,

(b) there exist two terms u

0

and v

0

s.t. u&&

�

u

0

�

�

v

0 �

.. v,

() u#

�

�

v#.

Proof. Obviously ()) (b)) (a). One proves (a)) (b) by a standard

\peaks into valleys" normalization: Lemmas 8.2 and 8.3 allow erasing loal

peaks. Termination is guaranteed beause

�

�

&&

�

�

is noetherian, so that

the multiset of peaks stritly dereases (in the well-founded multiset ordering

obtained from

�

�

&&

�

�

) after every loal transformation.

Then (b)) () is easy: u! v entails u#

�

.. u! v&&

�

v# or shortly

u#! v#. Thus u# &&

�

�

�

�

.. v# by (a)) (b). But sine u# and v# annot

be simpli�ed further, we get u#

�

�

v#. 2

Proposition 8.5 u �

S

v if and only if u! v.

Proof. The (() diretion is obvious: a simple inspetion of the rules show

that u&v or uyv or u

�

v implies S(u) = S(v). The ()) diretion is proved

in Appendix A.9. 2

Having deomposed �

S

into \permutation" and \simpli�ation" allows a

partial answer to the question of \what is the set of terms that belong to some

regular set L modulo S-equivalene?".

For a tree language L de�ne

[L℄

�

def

= fu j 9t 2 L; u

�

�

tg; [L℄

..

def

= fu j 9t 2 L; u&&

�

tg;

[L℄

!

def

= fu j 9t 2 L; u! tg: [L℄

&&

def

= fu j 9t 2 L; t&&

�

ug;

If L is regular, then [L℄

�

and [L℄

!

are not regular in general, while [L℄

..

and [L℄

&&

are. For our purposes, we shall need the following:

Lemma 8.6 If L is regular then [L℄

..

is regular. Furthermore, from a tree

automaton A reognizing L, one an build in polynomial-time a tree automaton

A

0

for [L℄

..

with jA

0

j = O(jAj

2

).

Proof (Idea). First, for any pair p; q of states of A, we add a state r

q

p

and

rules suh that t

�

7! r

q

p

i� t is some 0 I

n

(t

1

; : : : ; t

n

) and p I

n

(t

1

; : : : ; t

n

)

�

7! q

14

Labroue and Shnoebelen

in A. Then, whenever q I q

0

�

7! q

00

, we add all rules of the form r

q

p

I q

0

7! r

q

00

p

.

With further rules p I r

q

p

7! q and r

q

p

I r

r

q

7! r

r

p

, the resulting automaton has

t

�

7! p i� t&

�

u for some u with u

�

7! p in A.

Then the onstrution is easily ompleted in view of &&

�

= &

�

y

=

. 2

8.2 Transitions modulo �

S

We an now prove that �

S

(or equivalently!) respets behaviours in a sense

stronger than just being inluded in the largest bisimulation:

Proposition 8.7 �

S

is a bisimulation relation modulo the abstration of

f!; ?g labels, i.e. u �

S

v and u

�

�! u

0

implies that v

�

�! v

0

for some v

0

with

v �

S

v

0

.

Proof (Idea). Standard but tedious. One proves that

�

, & and y are

bisimulations up-to!. Prop. 8.5 onludes. 2

Proposition 8.8 For any � 2 At

�

, t

�

) u i� t

�

�! u

0

for some u

0

�

S

u.

Proof. By indution on the length of � and using Prop. 8.7. 2

With Prop. 8.5 and Lemma 8.4, we get

Lemma 8.9 u

�

) v i� u

�

�! w for some w s.t. v#

�

�

w#.

8.3 A NP-algorithm for

�

)-reahability

We an now prove the following

Theorem 8.10

�

)-reahability between RPA terms is NP-omplete.

Proof. NP-hardness is well-known already for simpler proess algebra like

BPP [8℄.

We now show membership in NP. Given u and v, we ompute v# in

polynomial-time, guess a w s.t. v#

�

�

w (note that jwj � jvj), build a tree

automaton for L = [w℄

..

using Lemma 8.6, and then an automaton for

L

0

= Pre

�

(L) = ft j t

�

�! t

0

2 Lg using Theo. 6.3 (these automata an be

built in polynomial-time). We answer yes if u 2 L

0

. Lemma 8.9 states that

this algorithm is orret. 2

9 Conlusion

We enoded RPPS systems into RPA, a proess rewrite system that ombines

several features:

�

it has an e�etively reognizable reahability relation,

�

hene an uniform tree automata method an ompute the models of any

formula written in the transition logi TL,

15

Labroue and Shnoebelen

�

whih an be used for the reahability analysis of RPPS systems.

The diÆulty in that work was to disover a proess-algebrai presentation of

hierarhial states where transitions are loal enough so that the reahability

relation is reognizable, whih is the sensitive problem. The onsequene

is that the link between hierarhial states and RPA terms is not diret:

�

S

is not a ongruene, we need to use two notions \u

�

!

�! v" and \u

�

?

�! v", et.

We see this work as more proof of the power of proess rewrite systems

for the analysis of various kind of of in�nite state systems. At the same time,

it also shows that tree-automata are a powerful tool for the analysis of suh

proess rewrite systems.

A Appendix

A.1 Proof of Lemma 3.4

()): by indution on the derivation u �!.

(() by indution on u. If u = 0 then State(u) = ;. If u = q 2 Q then we

assumed � has at least one rule q

a

�! q

0

; v. If u is some u

1

I u

2

, then either

State(u

1

) 6= ; or State(u

2

) 6= ;:

1. if State(u

2

) 6= ; then u

2

�! by ind. hyp. and then u �! by R3-R4.

2. if State(u

2

) = ; then State(u

1

) 6= ;, u

1

�! by ind. hyp., and then u �!

by R5-R6. Observe that the ondition on the appliation of R6 auses no

problem.

A.2 Proof of Lemma 3.5

The ()) diretion is obvious with rule R5.

For the (() diretion we pik q 2 Q and show by indution on n 2 N that

u I q

n

�! v I q implies u

!

�!

�

v:

1. n = 0: then u I q = v I q. It follows that u = v and u

!

�!

�

v.

2. n > 0: then u I q

n�1

�! t! v I q. t must be some t

1

I t

2

(Lemma 3.1)

and t

2

i

�! q for some 0 � i � 1. Neessarily i = 0 (Lemma 3.2) and then

t

2

= q. t �! v I q is obtained by R5 sine State(q) 6= ; rules out R6. Hene

t

1

!

�! v. We onlude by noting that the ind. hyp. gives u

!

�!

�

t

1

.

A.3 Proof of Lemma 3.6

((): Assuming v

!

�!

�

v

0

and t!

�

t

0

, we have v I t

!

�!

�

v I t

0

by R3-R4 and

v I t

0

!

�!

�

v

0

I t

0

by R5.

()): Assume v I t

!

�! v

0

I t

0

. This was obtained by R3, R4 or R5, so that

(v

!

�! v

0

and t = t

0

), or (v = v

0

and t �! t

0

). Hene v

!

�!

�

v

0

and t �!

�

t

0

.

16

Labroue and Shnoebelen

If now v I t

n;!

�! v

0

I t

0

for some n 2 N , the previous reasoning and an easy

indution on n gives v

!

�!

�

v

0

and t �!

�

t

0

.

A.4 Proof of Lemma 3.7

((): one gets v I t

!

�!

�

v I t

0

by R3-R4, and follows with v I t

0

�!

�

v

0

I t

0

by R5 if v

!

�!

�

v

0

, or by R5-R6 if v !

�

v

0

and t

0

6!.

()): we have either (a) v I t

!

�!

�

v

0

I t

0

or (b) v I t !

�

v

1

I t

1

?

�! v

2

I

t

2

!

�

v

0

I t

0

. In ase (a), Lemma 3.6 onludes. In ase (b), rule R6 requires

State(t

1

) = ; so that t

1

6!. It follows that t

0

= t

1

and t

0

6!.

A.5 Proof of Lemma 3.8

()): the �rst step of q !

�

must be some q �! I u obtained by R1-R2 via

some q !

�

; u in �. Then I u!

�

v I t and Lemma 3.7 onludes.

((): this diretion is obvious by ombining R1-R2 and Lemma 3.7.

A.6 Sketh Proof of Lemma 3.9

This extends Lemma 3.6 exatly like the previous lemma extended Lemma 3.7.

A.7 Proof of Lemma 8.2

We prove the lemma by indution on v. Assume u.. v && w with u 6= w,

write v under the form I

n

(v

1

; : : : ; v

n

), and onsider the following ases:

�

If v&&u using rule (E1), then v = 0 I u and, sine u 6= w, w = 0 I u

0

with

u&& u

0

. Then u&& u

0

.. w.

�

If v&&u using rule (E2) on v

i

, then if v&&w also uses rule (E2) (on v

j

with

j 6= i) it is easy to show u&&..w. If v&&w uses rule (E3), then u&&..w

is equally obvious.

�

If v && u using rule (E3), then u = I

n

(v

1

; : : : ; v

i�1

; u

i

; v

i+1

; : : : ; v

n

)

with v

i

& u

i

. The only interesting ase for v && w is when w = I

n

(v

1

; : : : ; v

i�1

; w

i

; v

i+1

; : : : ; v

n

) with v

i

& w

i

(the other ases are mirror im-

ages of ases we already onsidered). Here, sine u

i

6= w

i

, the ind. hyp.

gives u

i

&& v

00

.. w

i

for some v

00

and we dedue u&&..w.

A.8 Proof of Lemma 8.3

We assume u

�

v && w and prove the Lemma by indution on w. Write w

under the form I

n

(w

1

; : : : ; w

n

). If n = 0 then v = 0 I and no u exists

s.t. u

�

v. Thus n > 0 and we now onsider all ases for v&& w:

�

If v&& w by rule (E1), then v = 0 I w and u = 0 I w

0

with w

0

�

w. We

are done sine u&& w

0

.

17

Labroue and Shnoebelen

�

If v && w by rule (E2), then v is some I

n�m+1

(w

1

; : : : ; w

i�1

; 0 I

m

(w

i

; : : : ; w

i+m�1

); w

i+m

; : : : ; w

n

) with m possibly 0. Now there are several

ases for u

�

v:

If u

�

v by rule (P2), or by rule (P1) in a way that does not touh the

0 I

m

(w

i

; : : : ; w

i+m�1

) subterm of v, then it is easy to see that u&&

�

w.

Otherwise the 0 I

m

(w

i

; : : : ; w

i+m�1

) subterm of v is

swapped with w

i�1

or w

i

m

. In the �rst ase u is I

n�m+1

(w

1

; : : : ; w

i�2

; 0 I

m

(w

i

; : : : ; w

i+m�1

); w

i�1

; w

m

; : : : ; w

n

) and u && v

0

=

 I

n

(w

1

; : : : ; w

i�2

; w

i

; : : : ; w

i+m�1

; w

i�1

; w

m

; : : : ; w

n

) works sine v

0

�

�

w

with m uses of rule (P1). The seond ase is similar.

�

If v&& w by rule (E3), v is I

n

(w

1

; : : : ; w

i�1

; w

0

i

; w

i+1

; : : : ; w

n

) for some i

and w

0

i

s.t. w

0

i

&& w

i

. The ases where u

�

v by rule (E1), or by rule (E2)

on a subterm di�erent from w

0

i

, are easy to deal with.

The interesting ase is when u = I

n

(w

1

; : : : ; w

i�1

; w

00

i

; w

i+1

; : : : ; w

n

)

and w

00

i

�

w

0

i

. Then the indution hypothesis applied on w

00

i

�

w

0

i

&& w

i

yields w

00

i

&& v

00

�

�

w

i

for some v

00

, and we dedue u&& v

0

�

�

w with v

0

= I

n

(w

1

; : : : ; w

i�1

; v

00

; w

i+1

; : : : ; w

n

).

A.9 Proof of Proposition 8.5

There only remains to prove the ()) diretion of Prop. 8.5. We start with

the following lemma:

Lemma A.1 u! u

0

implies I

n

(: : : ; u; : : :)! I

n

(: : : ; u

0

; : : :).

Proof. By indution on the length of the derivation t

i

! u. For the base

ase, assume u&u

0

(resp. uyu

0

, u

�

u

0

): one onludes using rule (E3) (resp.

(E2), (P2)). 2

We are now ready to prove that S(u) = S(v) entails u! v. The proof is

by indution on juj+ jvj. We assume that u and v are resp. I

n

(u

1

; : : : ; u

n

)

and

0

I

m

(v

1

; : : : ; v

m

) and onsider several ases:

�

If 2 Q and

0

= 0, then S(u) = (;

P

i

S(u

i

)) and S(v) =

P

j

S(v

j

).

Hene there is some k s.t. S(v

k

) = S(u) and for all j 6= k, S(v

j

) = ;. By

ind. hyp. we have v

k

! u and v

j

! 0 for j 6= k. Thus v ! 0 I

m

(0; : : : ; 0; u; 0; : : : 0) by Lemma A.1. Then v! 0 I u by (E2) and v! u

by (E1). The ase where = 0 and

0

2 Q is symmetri.

�

If = 0 =

0

, then S(u) =

P

i

S(u

i

) and S(v) =

P

j

S(v

j

). If ;

0

2 Q, then

S(u) = (;

P

i

S(u

i

)) and S(v) = (

0

;

P

j

S(v

j

)). In both ases, =

0

and

P

i

S(u

i

) =

P

j

S(v

j

).

Now, if eah u

i

and eah v

j

has the form q I

�

(: : :) with q 2 Q, then

n = m and there is a bijetive h s.t. S(u

i

) = S(v

h(i)

). By ind. hyp.,

u

i

! v

h(i)

, then u! I

n

(v

h(1)

; : : : ; v

h(n)

) by Lemma A.1, then u! v

by (P1).

Otherwise some u

i

or v

j

has the form 0 I

k

(w

1

; : : : ; w

k

), we use rule (E2)

18

Labroue and Shnoebelen

to atten the orresponding term in u or v and we repeat the proess until

no suh u

i

and v

j

exists. Eventually we obtain u&

�

u

0

and v&

�

v

0

with u

0

and v

0

having the form of the previous subase, onluding the proof.

Referenes

[1℄ Aeto, L., W. J. Fokkink and C. Verhoef, Strutural operational semantis, in:

J. A. Bergstra, A. Ponse and S. A. Smolka, editors,Handbook of Proess Algebra,

Elsevier Siene, 2001 pp. 197{292.

[2℄ Baeten, J. C. M. and W. P. Weijland, \Proess Algebra," Cambridge Trats in

Theoretial Computer Siene 18, Cambridge Univ. Press, 1990.

[3℄ Bouajjani, A., B. Jonsson, M. Nilsson and T. Touili, Regular model heking, in:

Pro. 12th Int. Conf. Computer Aided Veri�ation (CAV'2000), Chiago, IL,

USA, July 2000, Leture Notes in Computer Siene 1855 (2000), pp. 403{418.

[4℄ Bukart, O., D. Caual, F. Moller and B. Ste�en, Veri�ation on in�nite

strutures, in: J. A. Bergstra, A. Ponse and S. A. Smolka, editors, Handbook of

Proess Algebra, Elsevier Siene, 2001 pp. 545{623.

[5℄ Caual, D., On word rewriting systems having a rational derivation, in:

Pro. 3rd Int. Conf. Foundations of Software Siene and Computation

Strutures (FOSSACS'2000), Berlin, Germany, Mar.-Apr. 2000, Leture Notes

in Computer Siene 1784, 2000, pp. 48{62.

[6℄ Comon, H., M. Dauhet, R. Gilleron, F. Jaquemard, D. Lugiez, S. Tison

and M. Tommasi, Tree Automata Tehniques and Appliations (1997{99), a

preliminary version of this eletroni book is available at http://www.grappa.

univ-lille3.fr/tata.

[7℄ Comon, H. and Y. Jurski, Timed automata and the theory of real numbers,

in: Pro. 10th Int. Conf. Conurreny Theory (CONCUR'99), Eindhoven, The

Netherlands, Aug. 1999, Leture Notes in Computer Siene 1664 (1999), pp.

242{257.

[8℄ Esparza, J., Petri nets, ommutative ontext-free grammars, and basi parallel

proesses, Fundamenta Informatiae 31 (1997), pp. 13{25.

[9℄ Esparza, J. and J. Knoop, An automata-theoreti approah to interproedural

data-ow analysis, in: Pro. 2nd Int. Conf. Foundations of Software Siene and

Computation Strutures (FOSSACS'99), Amsterdam, The Netherlands, Mar.

1999, Leture Notes in Computer Siene 1578 (1999), pp. 14{30.

[10℄ Esparza, J. and A. Podelski, EÆient algorithms for pre� and post� on

interproedural parallel ow graphs, in: Pro. 27th ACM Symp. Priniples of

Programming Languages (POPL'2000), Boston, MA, USA, Jan. 2000, 2000,

pp. 1{11.

[11℄ Finkel, A. and Ph. Shnoebelen,Well strutured transition systems everywhere!,

Theoretial Computer Siene 256 (2001), pp. 63{92.

19

Labroue and Shnoebelen

[12℄ Klop, J. W., Term rewriting systems, in: S. Abramsky, D. M. Gabbay and

T. S. E. Maibaum, editors, Handbook of Logi in Computer Siene, vol.2.

Bakground: Computational Strutures, Oxford Univ. Press, 1992 pp. 1{116.

[13℄ Kouhnarenko, O. and Ph. Shnoebelen, A model for reursive-parallel

programs, in: Pro. 1st Int. Workshop on Veri�ation of In�nite State Systems

(INFINITY'96), Pisa, Italy, Aug. 1996, Eletroni Notes in Theor. Comp. Si.

5 (1997), available at http://www.lsv.ens-ahan.fr/Publis/PAPERS/.

[14℄ Kupferman, O. and M. Y. Vardi, An automata-theoreti approah to reasoning

about in�nite-state systems, in: Pro. 12th Int. Conf. Computer Aided

Veri�ation (CAV'2000), Chiago, IL, USA, July 2000, Leture Notes in

Computer Siene 1855 (2000), pp. 36{52.

[15℄ Kushnarenko, O. and Ph. Shnoebelen, A formal framework for the analysis

of reursive-parallel programs, in: Pro. 4th Int. Conf. Parallel Computing

Tehnologies (PaCT'97), Yaroslavl, Russia, Sep. 1997, Leture Notes in

Computer Siene 1277 (1997), pp. 45{59.

[16℄ Lugiez, D. and Ph. Shnoebelen, Deidable �rst-order transition logis for PA-

proesses, in: Pro. 27th Int. Coll. Automata, Languages, and Programming

(ICALP'2000), Geneva, Switzerland, July 2000, Leture Notes in Computer

Siene 1853 (2000), pp. 342{353.

[17℄ Lugiez, D. and Ph. Shnoebelen, The regular viewpoint on PA-proesses (2000),

to appear in Theor. Comp. Si., available at http://www.lsv.ens-ahan.fr/

Publis/PAPERS/.

[18℄ Mayr, R., Proess rewrite systems, Information and Computation 156 (2000),

pp. 264{286.

[19℄ Mayr, R., Deidability of model heking with the temporal logi EF, Theoretial

Computer Siene 256 (2001), pp. 31{62.

[20℄ Moller, F., In�nite results, in: Pro. 7th Int. Conf. Conurreny Theory

(CONCUR'96), Pisa, Italy, Aug. 1996, Leture Notes in Computer Siene

1119 (1996), pp. 195{216.

[21℄ Shnoebelen, Ph., Deomposable regular languages and the shu�e operator,

EATCS Bull. 67 (1999), pp. 283{289.

[22℄ Vardi, M. Y., Alternating automata: Cheking truth and validity for temporal

logis, in: Pro. 14th Int. Conf. Automated Dedution (CADE'97), Townsville,

North Queensland, Australia, July 1997, Leture Notes in Computer Siene

1249 (1997), pp. 191{206.

20

