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Abstra
t

We show how the tree-automata te
hniques proposed by Lugiez and S
hnoebelen

apply to the rea
hability analysis of RPPS systems. Using these te
hniques requires

that we express the states of RPPS systems in a tailor-made pro
ess rewrite system

where rea
hability is a relation re
ognizable by �nite tree-automata.
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1 Introdu
tion

This paper is 
on
erned with the veri�
ation of RPPS systems (for Re
ur-

sive Parallel Program S
hemes), an abstra
t model introdu
ed in [13,15℄ that

models the 
ontrol 
ow of programming languages with re
ursive 
oroutines.

As shown in, e.g., [9,10℄, the rea
hability analysis of su
h models has impor-

tant appli
ations in the stati
 analysis of programming languages with parallel


onstru
ts.

While RPPS systems 
an be seen as some kind of Petri nets with nested

markings (the viewpoint adopted in [13,15℄), we argue that it is worthwhile to

see them as an in�nite-state pro
ess algebra (or pro
ess rewrite system). This

approa
h is very a
tive (see [4℄ for a re
ent survey of a
hievements), partly

be
ause it ta
kles a wide range of veri�
ation problems (bisimulation 
he
k-

ing, temporal logi
 model 
he
king, et
.), and also partly be
ause there exist

several interesting pro
ess algebras (with quite di�erent expressive power) ob-

tained by simple synta
ti
 restri
tions on the allowed rewrite rules [20,18℄.

1

Email: labroue�lsv.ens-
a
han.fr

2

Email: phs�lsv.ens-
a
han.fr





2001 Published by Elsevier S
ien
e B. V.



Labroue and S
hnoebelen

Tree automata

Re
ently [17℄ showed how rea
hability problems for the PA pro
ess algebra

3


ould be solved simply and elegantly via tree-automata te
hniques. Beyond

the use of tree-automata, the approa
h heavily relies on an important idea:

one should not 
onsider pro
ess terms modulo any of the usual stru
tural


ongruen
es. These 
ongruen
es make pro
ess notations mu
h lighter, and

bring them 
loser to the intended semanti
s, but they hide regularity and are

not really 
ompatible with the tree-automata approa
h.

The tree-automata approa
h to PA is further developed in [16℄ where it

is shown that the rea
hability relation between PA pro
esses is an e�e
tively

re
ognizable relation, whi
h gives de
idability of the �rst-order transition logi


over PA.

Our 
ontribution

In this paper, we investigate whether the Lugiez & S
hnoebelen approa
h to

PA 
an be made to work for RPPS systems.

There are three main results in the paper. First we design RPA, a pro
ess

rewrite system that en
odes RPPS systems in a 
arefully 
hosen way. Then

we prove that rea
hability between RPA terms is a re
ognizable relation: we

use alternating tree-automata for a more dire
t proof. Finally, we show how

rea
hability between RPPS markings 
an be redu
ed to rea
hability questions

between RPA terms, ending with a dire
t automata-theoreti
 algorithm. As

a 
orollary, we obtain a proof of NP-
ompleteness for rea
hability between

RPPS markings.

The diÆ
ulties in this work 
ome from the fa
t that natural ways of en
od-

ing RPPS markings in a pro
ess-algebrai
 notation make it hard to de�ne 
or-

responding transitions via SOS (for Stru
tural Operational Semanti
s, see [1℄)

rules without losing the re
ognizability theorem we aim at. In parti
ular, we

see no way of using the PA pro
ess algebra for this task.

Related works

Previous de
idability results on RPPS [13,15℄ relied on more ad-ho
 tableaux

methods or the well-stru
ture of RPPS [11℄. These results were weaker than

what we o�er in se
tion 7.

The use of re
ognizable sets of 
on�gurations for symboli
 model 
he
king

has re
ently been 
alled \Regular model 
he
king" in [3℄. This approa
h is

weaker (but more pra
ti
al) sin
e it does not require that iterated su

essors

or prede
essors of a set of states form an e�e
tively 
omputable re
ognizable

language: only immediate prede
essors or su

essors are handled (sometimes,

the transitive 
losure of loops 
an be handled).

There exist several other systems for whi
h the rea
hability relation is

3

A fragment allowing re
ursive de�nitions mixing sequential and parallel 
omposition,

without syn
hronization [2℄.
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re
ognizable: it is semilinear for BPP [8℄, de�nable in the additive theory

of reals for timed automata [7℄, a re
ognizable relation between words for

some string rewrite systems [5℄ in
luding pushdown pro
esses (see [14℄ for

appli
ations to �-
al
ulus model 
he
king). Our approa
h di�ers in two points:

re
ognizability is in a tree-automata framework, and it requires that we invent

a new pro
ess algebra in whi
h to en
ode RPPS systems.

Plan of the paper

We �rst re
all RPPS s
hemes (Se
tion 2) before we introdu
e RPA (Se
tion 3)

and show how to en
ode RPPS s
hemes faithfully (Se
tion 4). Then we re
all

the basi
 tree-automata notions (Se
tion 5) we need to prove our main theorem

(Se
tion 6) and explain the pra
ti
al impli
ations (Se
tion 7). A �nal se
tion

explains how rea
hability between RPPS markings 
an be solved in NP with

tree automata.

2 Re
ursive-parallel program s
hemes

RPPS systems were introdu
ed as an abstra
t model for RP programs: we

refer the reader to [13,15℄ for motivations and examples. Here we present the

formal model without justi�
ation.

2.1 The stru
ture of RPPS systems

A = fa; b; : : :g is a set of a
tion names that does not 
ontain the spe
ial

a
tions 
all, wait, and end. We write

~

A (ranged over by �; �; : : :) for A [

f
all; wait; endg.

q

0

q

1

q

2

q

3

q

4

q

5

q

6

q

7

q

8

q

9


all


all

a

b

wait

a

end




wait

end

Fig. 1. A s
heme

A s
heme is a �nite rooted graph G = hQ; q

0

;�i where

�

Q is a �nite set of nodes,

�

q

0

2 Q is the initial node,
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�

� is the labeled 
ow fun
tion that maps any node q to a tuple in (A�Q)[

(f
allg �Q�Q) [ (fwaitg �Q) [ fendg.

� has a 
lumsy mathemati
al appearan
e but is graphi
ally easy to un-

derstand: every node is followed by in general one node, sometimes a pair

of nodes or no node at all. For example, the system depi
ted in Fig. 1 has

�(q

0

) = ha; q

1

i;�(q

1

) = h
all; q

2

; q

6

i; : : : ;�(q

9

) = end.

2.2 Behavioral semanti
s

The behavioral semanti
s of G is given via an in�nite labeled transition

system M

G

. Informally, a state of M

G

is a multiset of nodes (denoting the


urrent 
ontrol states of 
on
urrent pro
esses) organized with a father-son

relationship (relating a pro
ess with the father pro
ess that spawned it via a


all instru
tion). The 
orresponding formal de�nition is given below, and

we refer to [13,15℄ for more intuitions.

Formally, the set of hierar
hi
al states (also, \markings", or \states")

of a system G is the least set M(G) s.t. for any n nodes (not ne
essarily

distin
t) q

1

; : : : ; q

n

of G, and hierar
hi
al states s

1

; : : : ; s

n

2 M(G) the

multiset s = f(q

1

; s

1

); : : : ; (q

n

; s

n

)g is in M(G)

4

. In parti
ular, ; 2 M(G).

We use the 
ustomary notations \s + s

0

", \s � s

0

", : : : to denote sum,

in
lusion, : : : of multisets and hen
e of hierar
hi
al states. Below we write

(q; s) for the singleton multiset f(q; s)g. The size jsj of a state is given by

jf(q

i

; s

i

) j i = 1; : : :gj

def

=

P

i=1;:::

(1 + js

i

j).

We now formally de�ne what are the transitions !� M(G)�

~

A�M(G)

between hierar
hi
al states: ! is the least set of triples (s; a; s

0

), written

s

a

�! s

0

, satisfying the following rules:

a
tion: if �(q) = (a; q

0

) then (q; s)

a

�! (q

0

; s) for all s, (Ga)

end: if �(q) = end then (q; s)

end

�! s for all s, (Ge)


all: if �(q) = (
all; q

0

; q

00

) then (q; s)


all

�! (q

0

; s+ (q

00

; ;)) for all s, (G
)

wait: if �(q) = (wait; q

0

) then (q; ;)

wait

�! (q

0

; ;), (Gw)

paral1: if s

�

�! s

0

then s+ s

00

�

�! s

0

+ s

00

for all s

00

, (Gp1)

paral2: if s

�

�! s

0

then (q; s)

�

�! (q; s

0

) for all q 2 Q. (Gp2)

Rules paral1 and paral2 for parallelism express that any a
tivity s

�

�! s

0


an still take pla
e when brothers are present (i.e. in some s + s

00

) or when

a parent is present (i.e. in some (q; s)). The wait rule states how we 
an

4

A hierar
hi
al state of the form s = f(q

1

; s

1

); : : : ; (q

n

; s

n

)g has n 
ompletely indepen-

dent 
on
urrent a
tivities. One su
h a
tivity, say (q

i

; s

i

), is the invo
ation of a 
oroutine

(
urrently in state/node q

i

) together with its family of 
hildren invo
ations (the s

i

part).

4
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only perform a wait statement in state q if the invoked 
hildren are all ter-

minated (and then not present anymore). The other rules state how 
hildren

invo
ations are 
reated and kept around.

Finally, M

G

is hM(G);

~

A;!; s

0

i where the initial state is s

0

def

= (q

0

; ;).

Example 2.1 (q

0

; ;)

a

�! (q

1

; ;)


all

�! (q

2

; (q

6

; ;))




�! (q

2

; (q

7

; ;))


all

�!

(q

2

; (q

8

; (q

6

; ;)))

b

�! (q

3

; (q

8

; (q

6

; ;))) � � � is an exe
ution sequen
e of the sys-

tem M

G

asso
iated with the s
heme of Fig. 1.

As the wait rule shows, nodes that 
an only be exited via a wait step

behave 
onditionally: we denote by Q

?

the set of the states q of Q su
h that

�(q) = (wait; q

0

) for some q

0

, while Q

!

denotes Q nQ

?

.

3 The pro
ess algebra RPA

We now de�ne RPA, a pro
ess algebra designed to en
ode RPPS s
hemes.

3.1 RPA terms

We assume a s
heme G = hQ; q

0

;�i is �xed and 
onsider the set Const

def

=

Q [ f0g ranged over by 
; : : : T

G

, the set of RPA terms, or just \terms",

ranged over by t; u; v; : : : is given by the following syntax:

t; u ::= 
 j t I u:

For t a term, we write State(t) the set of all nodes from Q that o

ur in t.

The size of t, denoted jtj, is the number of symbols in t, given by j
j

def

= 1 and

jt I uj

def

= 1 + jtj+ juj.

RPA terms are binary trees but the left- and right-hand sides do not play

the same rôle, so that it is more natural to see them as 
ombs with some 


from Const at the deep left end, and a list of subterms on the right of the

spine (see example on Fig. 2). This motivates introdu
ing the 
onvenient

abbreviation \
 I

n

(u

1

; : : : ; u

n

)", de�ned indu
tively by 
 I

0

() = 0 and


 I

n

(u

1

; : : : ; u

n

) =

�


 I

n�1

(u

1

; : : : ; u

n�1

)

�

I u

n

. We only use the \I

n

"

abbreviation with a 
 2 Const in the left-hand side.

u

1

u

n�1

u

n




I

I

I

.

.

.

.

.

.

Fig. 2. 
 I

n

(u

1

; : : : ; u

n

)
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A (guarded) RPA de
laration is a �nite set � � Q �

~

A � Const � T

G

of

rules, written fq

i

�

�!

�




i

; t

i

j i = 1; : : : ; ng. The q

i

's need not be distin
t. For

te
hni
al 
onvenien
e, we require that all q 2 Q appear in the left-hand side

of at least one rule.

3.2 Semanti
s

Let A
t

def

=

~

A � f!; ?g. For 
onvenien
e, we write �

!

and �

?

rather than (�; !)

and (�; ?). A de
laration � de�nes a labeled transition �!� T

G

� A
t � T

G

,

given by the following SOS rules:

R1

q

�

!

�! q

0

I t

if (q

�

�!

�

q

0

; t) 2 � and q 2 Q

!

R3

t

�

!

�! t

0

u I t

�

!

�! u I t

0

R2

q

�

?

�! q

0

I t

if (q

�

�!

�

q

0

; t) 2 � and q 2 Q

?

R4

t

�

?

�! t

0

u I t

�

!

�! u I t

0

R5

t

�

!

�! t

0

t I u

�

!

�! t

0

I u

R6

t

�

?

�! t

0

t I u

�

?

�! t

0

I u

if State(u) = ;

The intuition is that a step t

�

x

�! u in T

G

en
odes a step s

t

�

�! s

u

in M

G

(where s

t

is the hierar
hi
al state denoted by t). The extra label x =! (resp.

x =?) means that this step 
an (resp. 
annot) o

ur on top of a
tive 
hildren

pro
esses. The label is 
hosen by rules R1, R2, tested by rules R5, R6, and

propagated a

ording to the semanti
s.

We write u

!

�! v (resp. u

?

�! v) when u

�

!

�! v (resp. u

�

?

�! v) for some �,

and u �! v when u

!

�! v or u

?

�! v. For n 2 N , we let \

n

�!" and \

n;!

�!" denote

respe
tively the iterated relations (!)

n

and

�

!

�!

�

n

. Also !

�

denotes the


losure

S

n2N

n

�!. As usual, \u �!" and \u 6�!" mean respe
tively that u �! v

for some v (resp. for no v).

3.3 Basi
 properties of RPA steps

We now list some key lemmas about the transitions between terms. These

results aim at explaining how one 
an de
ompose a 
ompound step into smaller

steps and will be the basis of the 
onstru
tion in se
tion 6.

Lemma 3.1 If u I v ! w then w has the form u

0

I v

0

and either (u ! u

0

and v = v

0

) or (v ! v

0

and u = u

0

).

Proof. By 
ase analysis of rules R3{R6. 2

Lemma 3.2 If u! v then jvj > juj.

6



Labroue and S
hnoebelen

Proof. By indu
tion on the derivation u �! v. The base 
ases are transitions

q �! q

0

I t. 2

Lemma 3.3 q !

�

q

0

i� q = q

0

.

Proof. q

n

�! q

0

entails n = 0 (Lemma 3.2). 2

The next six lemmas are proved in the Appendix. Lemma 3.5 gives a


hara
terization of

!

�!

�

.

Lemma 3.4 u �! i� State(u) 6= ;.

Lemma 3.5 u

!

�!

�

v i� for all t 2 T

G

, u I t!

�

v I t.

Lemma 3.6 v I t

!

�!

�

v

0

I t

0

i� v

!

�!

�

v

0

and t!

�

t

0

.

Lemma 3.7 v I t!

�

v

0

I t

0

i� t!

�

t

0

and

(

t

0

6! and v !

�

v

0

,

or v

!

�!

�

v

0

.

Lemma 3.8 q !

�

v I t i� there exist 
 and u s.t. (q !

�


; u) is a rule in

�, u!

�

t, and

(

t 6! and 
!

�

v,

or 


!

�!

�

v.

Lemma 3.9 q

!

�!

�

v I t i� q 2 Q

!

and there exist 
 and u s.t. q !

�


; u is a

rule in �, u!

�

t and 


!

�!

�

v.

4 Embedding RPPS s
hemes into RPA

The behavior of an RPPS s
heme G 
an be faithfully en
oded in RPA. We


onsider a set of rules �

G

obtained from �. For any q 2 Q,

a
tion: if �(q) = (a; q

0

) then �

G


ontains q

a

�! q

0

; 0, (Da)

end: if �(q) = end then �

G


ontains q

end

�! 0; 0, (De)


all: if �(q) = (
all; q

0

; q

00

) then �

G


ontains q


all

�! q

0

; q

00

, (D
)

wait: if �(q) = (wait; q

0

) then �

G


ontains q

wait

�! q

0

; 0. (Dw)

Thus �

G


an be seen as an appli
ation from Q to

~

A� Const� T

G

.

We now asso
iate a hierar
hi
al state S(t) with any term t 2 T

G

and,

re
ipro
ally, a term T (s) with any s 2 M(G). The aim is to de�ne what

hierar
hi
al state is en
oded by term t, and what term 
an be used to en
ode

hierar
hi
al state s.

7
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The mappings S and T are de�ned indu
tively by

T (f(q

1

; s

1

); : : : ; (q

n

; s

n

)g)

def

= 0 I

n

(q

1

I T (s

1

); : : : ; q

n

I T (s

n

)) (T)

S (0 I

n

(u

1

; : : : ; u

n

))

def

= S(u

1

) + � � � + S(u

n

) (S1)

S (q I

n

(u

1

; : : : ; u

n

))

def

= (q;S(u

1

) + � � � + S(u

n

)) (S2)

where equation (T) for T (s) requires that one pi
ks some ordering of the

elements of the multiset s.

S and T behave like an abstra
tion-
on
retization pair:

Lemma 4.1 For all s 2M(G), S(T (s)) = s.

Proof. By stru
tural indu
tion on s, using equations (T,S1,S2). 2

S gives rise to an equivalen
e between RPA terms: t �

S

u

def

, S(t) = S(u).

We write [u℄ for the equivalen
e 
lass of u w.r.t. �

S

, and T

�

S

for the set of

the equivalen
e 
lasses of T

G

.

Observe that �

S

is not a 
ongruen
e: (0 I u) �

S

u whereas

(0 I u) I v 6�

S

u I v

It is now possible to state how steps between RPA terms are related to

steps between RPPS hierar
hi
al states. This is done by abstra
ting over the !

or ? extra label that RPA steps 
arry, and that is only used for a 
ompositional

de�nition of steps. Write u

�

�! t when u

�

"

�! t for some " 2 f!; ?g.

Proposition 4.2 1. For all u; v in T

G

and � in

~

A, if u

�

�! t then S(u)

�

�! S(t).

2. For all s; s

0

in M(G) and � in

~

A, if s

�

�! s

0

, then T (s)

�

�! u for some u 2 T

G

su
h that S(u) = s

0

.

Proof (Idea). 1. (resp. 2.) is proved by indu
tion on u (resp. s) and a tedious


ase analysis. 2

The meaning of Proposition 4.2 is that, modulo the abstra
tion mapping

from A
t to

~

A that sends �

"

to �, S is a bisimulation between the RPA

transition system generated by �

G

and the transition systemM

G

we want to

analyze.

5 Tree languages and tree automata

Here we re
all the 
lassi
al tree-automata notions we need. We refer to [6℄

and [22℄ for more details.

5.1 Tree languages

Given a �nite ranked alphabet F = F

0

[F

1

[ : : : [F

m

, T

F

denotes the set of

�nite trees (or terms) built from F : for example, with F

0

= fa; bg, F

1

= fg; hg

8
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and F

2

= ffg, T

F


ontains trees like a, f(a; b) and f(g(f(h(b); a)); b). A tree

language is any subset L of T

F

.

5.2 Tree automata

A tree automaton is a tuple A = hF ;Q; F; Æi where F is a �nite ranked

alphabet, Q = fp; p

0

: : :g is a �nite set of 
ontrol states, F � Q is a set of

a

epting states and Æ � [

n2N

(Q�F

n

�Q

n

) is a �nite set of transition rules.

We refer to [6℄ (or [17℄) for the 
lassi
al de�nition of when a tree t is

re
ognized by state p of A, written p

�

7! t. For p 2 Q; L(p) denotes ft j p

�

7! tg.

L(A)

def

=

S

p2F

L(p) is the tree language re
ognized by A.

Example 5.1 Continuing with our previous example, and setting Q =

fp

0

; p

1

g, the set of rules des
ribes a top-down tree automaton

p

0

7! a p

0

7! b p

1

7! g(p

0

)

p

0

7! g(p

1

) p

0

7! h(p

1

) p

1

7! h(p

0

)

p

0

7! f(p

1

; p

1

) p

0

7! f(p

0

; p

0

) p

1

7! f(p

0

; p

1

)

p

1

7! f(p

1

; p

0

)

A possible derivation of f(h(b); a) by A is p

1

7! f(p

1

; p

0

) 7! f(h(p

0

); p

0

) 7!

f(h(p

0

); a) 7! f(h(b); a). So p

1

�

7! f(h(b); a).

5.3 Alternating tree automata

An alternating tree automaton is a tuple A = hF ;Q; F; Æi where now Æ is

a n-indexed family of maps from Q � F

n

to B

+

(f1; : : : ; ng � Q). Here, for

a given set X, B

+

(X) is the set of positive Boolean formulas over X (i.e.,

Boolean formulas built from elements in X using ^ and _), where we also

allow the formulas true and false. For example we 
ould have Æ(p; f) = (1; p

1

)_

((1; p

2

) ^ (2; p

3

) ^ (2; p

4

)).

We refer to [22℄ for the 
lassi
al de�nition of when a tree t is re
ognized by

state p of some alternating A. It is well-known that standard tree automata


an be seen as alternating automata where only disjun
tions are used, and that

the 
lass of trees languages re
ognized by alternating tree automata is exa
tly

the 
lass of tree languages re
ognized by non-alternating tree automata.

5.4 Re
ognizable relations on trees

We follow [6, Chapter 3℄ and [16℄. A tuple ht

1

; : : : ; t

n

i of n trees from T

F


an be seen as a single tree, denoted t

1

� � � � � t

n

, on a produ
t alphabet

F

�n

def

= (F [ f?g)

n

where the arity of f

1

: : : f

n

is the maximum of the arities

of the f

i

, assuming ? has arity 0.

For instan
e the pair hf(a; g(b)); f(f(a; a); b)i 
an also be seen as

ff(af(?a;?a); gb(b?)).

9
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We say a n-ary relation R � T

n

F

is re
ognizable i� the set of all t

1

�� � �� t

n

for (t

1

; : : : ; t

n

) 2 R is a regular tree language over F

�n

.

6 Re
ognizability of the rea
hability relation for RPA

The rea
hability relations!

�

and

!

�!

�

between RPA terms are re
ognizable:

Lemma 6.1 The set L

term

def

= fu 2 T

G

j u 6!g of terminated terms is re
og-

nizable.

Proof. u 6! i� State(u) = ; (Lemma 3.4). Thus the automaton with an

unique a

epting state p

#

and the transition rules

Æ(p

#

; 0) = true; Æ(p

#

; q) = false; Æ(p

#

;I) = (1; p

#

) ^ (2; p

#

) (1)

re
ognizes L

term

. 2

We now 
onsider the alternating automaton A

�

�!

whose states are p, �p, p

#

and all p

t

and �p

t

for t a subterm of some term appearing in � (thus jQj is in

O(j�j)).

A

�

�!

re
ognizes pairs of terms. Here we de�ne the alternating transition

fun
tion Æ with the following assumptions: (1) we omit the rules for Æ(p

#

; : : :),

(2) when Æ(p

0

; fg) is not expli
itly de�ned (for some p

0

2 Q and some f; g 2

(F [ f?g)) this means Æ(p

0

; fg) is false, and (3) we quantify over all q 2 Q,

all 
 2 Const , and all f 2 (F [ f?g).

Æ(p; 00) = Æ(�p; 00) = true (2)

Æ(p; qq

0

) = Æ(�p; qq

0

) =

(

true if q = q

0

,

false otherwise

(3)

Æ(p;II) = (2; p) ^

�

(1; �p) _ ((2; p

#

) ^ (1; p))

�

(4)

Æ(�p;II) = (1; �p) ^ (2; p) (5)

Æ(p; q I) =

_

q�!

�


;u

(2; p

u

) ^

�

(1; �p




) _ ((2; p

#

) ^ (1; p




))

�

(6)

Æ(�p; q I) =

8

>

<

>

:

_

q�!

�


;u

(2; p

u

) ^ (1; �p




) if q 2 Q

!

,

false otherwise

(7)

10



Labroue and S
hnoebelen

Æ(p

t

; f0) = Æ(�p

t

; f0) =

(

true if t = 0,

false otherwise

(8)

Æ(p

t

; fq) = Æ(�p

t

; fq) =

(

true if t = q,

false otherwise

(9)

Æ(p

t

1

It

2

; f I) = (2; p

t

2

) ^

�

(1; �p

t

1

) _ ((2; p

#

) ^ (1; p

t

1

))

�

(10)

Æ(�p

t

1

It

2

; f I) = (1; �p

t

1

) ^ (2; p

t

2

) (11)

Æ(p

q

; f I) = Æ(p; q I) (12)

Æ(�p

q

; f I) = Æ(�p; q I) (13)

This automaton satis�es the following 
orre
tness property:

Lemma 6.2

L(p) = fu� v j u!

�

vg; L(�p)= fu� v j u

!

�!

�

vg; (14)

L(p

t

) = fu� v j t!

�

vg; L(�p

t

) = fu� v j t

!

�!

�

vg; (15)

L(p

#

) = fu� v j v 6!g; (16)

where u; v are any terms of T

G

[ f?g.

Proof (Sket
h). The rules for Æ(p

#

; : : :) are the obvious modi�
ations of (1)

so that they apply to the se
ond element of a pair u� v while we do not take


are of the �rst element.

The proof is by indu
tion over the derivations u !

�

v, . . . , for the (�)

dire
tions, and by indu
tion over the produ
t term for the (�) dire
tions.

It turns out every transition rule between (2) and (13) is justi�ed by a

behavioral property we already proved. For example, Lemma 3.3 a

ounts for

(3) while Lemma 3.4 a

ounts for all rules Æ(p

#

; fg). Similarly, (5) is a dire
t

transposition of Lemma 3.6. 2

We obtain the important 
orollary:

Theorem 6.3 The relations !

�

and

!

�!

�

are re
ognizable. Furthermore, a

tree automaton re
ognizing them only needs O(j�j) states.

Proof. Our 
onstru
tion used an alternating automaton for 
larity (the


lauses de�ning Æ mimi
 lemmas from se
tion 3.3) but it is easy to adapt the


onstru
tion and get a (non-deterministi
 bottom up) tree automaton with

O(j�j) states. 2

7 Appli
ations

Theorem 6.3 immediately leads to de
idability results for RPA terms (and

RPPS s
hemes). The ni
e thing with these results is that they all involve the

11
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same smooth and general automata-theoreti
 reasoning.

Rea
hability sets. For any re
ognizable language L, the sets Pre

�

(L)

def

=

fu j u

�

�! v for some v 2 Lg and Post

�

(L)

def

= fu j v

�

�! u for some v 2 Lg

are re
ognizable, and the 
orresponding automata 
an be obtained in

polynomial-time by standard interse
tion and proje
tion 
onstru
ts on au-

tomata (assuming an automaton for L is known).

Rea
hability under 
onstraints. These result extend to rea
ha-

bility under 
onstraints, i.e. to the sets Pre

�

C

(L)

def

= fu j u

�

�!

v for some v 2 L and � 2 Cg and Post

�

C

(L)

def

= fu j v

�

�!

u for some v 2 L and � 2 Cg where C � A
t

�

is a 
onstraint on a
-


eptable labels for rea
hability. Not all regular C � A
t

�


an be dealt with

in this approa
h (see [17,16℄) but interesting regular 
onstraints, 
alled

de
omposable 
onstraints, are allowed [21℄.

Model 
he
king the logi
 EF. Using Pre

�

and standard 
onstru
ts for in-

terse
tion and 
omplementation, one 
an 
ompute for any formula ' of the

modal logi
 EF, the set Mod(') of all terms that satisfy ' (see [17,19℄).

Here, EF 
an even be enri
hed with de
omposable 
onstraints.

Note that sin
e bisimilar pro
esses satisfy the same EF formulas, we have

s j= ' i� T (s) j= ', so that this approa
h allows model 
he
king RPPS

s
hemes.

Model 
he
king the transition logi
. EF only needs e�e
tive re
ogniz-

ability of Pre

�

(L) for re
ognizable L. But with re
ognizability of

�

�!, we

get a simple model 
he
king algorithm for the full transition logi


5

, i.e. the

�rst-order logi
 FO(�!;

�

�!). See [16℄ for details and appli
ations.

8 Rea
hability between RPPS markings

Here we redu
e the problem of rea
hability between RPPS markings to

rea
hability questions between RPA terms. As a result, we get a simple

automata-theoreti
 algorithm for RPPS rea
hability, from whi
h NP-


ompleteness of rea
hability is easily derived.

Write u

�

) v when u �

S

u

0

�

�! v

0

�

S

v for some u

0

; v

0

. We adopt the usual

extensions u

�

) v (for � 2 A
t

�

) and u

�

) v. Rea
hability between RPPS

markings redu
es to

�

)-rea
hability between RPA terms, in the following for-

mal sense:

Proposition 8.1 Given two RPPS markings s and s

0

, s

�

�! s

0

in M

G

i�

T (s)

�

) T (t) in T

G

.

5

It is diÆ
ult to extend this de
idability result: by en
oding a grid stru
ture into RPA,

one 
an easily show that model 
he
king MSO(�!), the monadi
 se
ond-order logi
 with

�! as the only predi
ate, is unde
idable over RPA terms.

12
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Proof. Combine Prop. 4.2 and the de�nition of ). 2

8.1 Another 
hara
terization of �

S

Our next task is to obtain a 
hara
terization of �

S

that is more manageable

from a regular tree languages viewpoint. We do this with in several small

steps, with the help of some simpli�
ation or permutation relations between

RPA terms. The basi
 
on
epts (
on
uen
e, 
ommutations, . . . ) used in this

subse
tion are standard in the study of redu
tion systems (see e.g. [12℄).

8.1.1 Simpli�
ation

The relationsy and& are de�ned indu
tively by the following erasing rules:

0 I uy u (E1)


 I

n

(t

1

; : : : ; t

i�1

; 0 I

m

(u

1

; : : : ; u

m

); t

i+1

; : : : ; t

n

)&


 I

n+m�1

(t

1

; : : : ; t

i�1

; u

1

; : : : ; u

m

; t

i+1

; : : : ; t

n

)

(E2)

if t

i

& u, then 
 I

n

(t

1

; : : : ; t

n

)& 
 I

n

(t

1

; : : : ; t

i�1

; u; t

i+1

; : : : ; t

n

) (E3)

We let&& denotey[& and will use juxtaposition to denote the 
omposition

of relations. Observe that ty&u implies t&yu, and that tyyu implies

t&yu. Thus, writing&&

�

for the re
exive-transitive 
losure of&&, we dedu
e

that&&

�


oin
ide with&

�

y

�

and then with&y

=

, wherey

=

denotesy[ Id .

When t&&

�

u, we say that u is a simpli�
ation of t. We write.. and

�

.. to

denote the reverse relations (&&)

�1

and (&&

�

)

�1

. Sin
e u&& t implies juj > jtj,

&& is noetherian and &&

�

is a well-founded partial ordering.

Lemma 8.2 (Con
uen
e) If u.. v&& w, then u = w or u&& v

0

.. w for

some v

0

.

Proof. By indu
tion on v and 
ase analysis. See Appendix A.7. 2

Hen
e, by Newman's Lemma, && is 
onvergent: we let t# denote the sim-

pli�
ation normal form of t, i.e. the unique u one obtains by simplifying t as

mu
h as possible.

8.1.2 Permutation

The relation

�

is de�ned indu
tively by the following rules:


 I

n

(t

1

; : : : ; t

n

)

�


 I

n

(t

1

; : : : ; t

i�1

; t

i+1

; t

i

; t

i+2

; : : : ; t

n

) (P1)

if t

i

�

u, then 
 I

n

(t

1

; : : : ; t

n

)

�


 I

n

(t

1

; : : : ; t

i�1

; u; t

i+1

; : : : ; t

n

) (P2)

�

is symmetri
. We write

�

�

to denote the re
exive-transitive 
losure of

�

.

When t

�

�

u, we say t and u are permutationally equivalent.

The next lemma allows 
ommuting simpli�
ation and permutation:

Lemma 8.3 (Commutation) If u

�

v&&w, then u.. v

0

�

�

w for some v

0

.

13
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Proof. By indu
tion on u and 
ase analysis. See Appendix A.8. 2

By symmetry, u..

�

w entails u

�

�

..w.

8.1.3 Convertibility

Finally, we 
ombine simpli�
ations and permutations in!, a relation de�ned

as

�

&& [

�

[ ..

�

�

. When u! v, we say that u is 
an be 
onverted in v.

Lemma 8.4 The following are equivalent:

(a) u! v,

(b) there exist two terms u

0

and v

0

s.t. u&&

�

u

0

�

�

v

0 �

.. v,

(
) u#

�

�

v#.

Proof. Obviously (
) ) (b) ) (a). One proves (a) ) (b) by a standard

\peaks into valleys" normalization: Lemmas 8.2 and 8.3 allow erasing lo
al

peaks. Termination is guaranteed be
ause

�

�

&&

�

�

is noetherian, so that

the multiset of peaks stri
tly de
reases (in the well-founded multiset ordering

obtained from

�

�

&&

�

�

) after every lo
al transformation.

Then (b) ) (
) is easy: u! v entails u#

�

.. u! v&&

�

v# or shortly

u#! v#. Thus u# &&

�

�

�

�

.. v# by (a) ) (b). But sin
e u# and v# 
annot

be simpli�ed further, we get u#

�

�

v#. 2

Proposition 8.5 u �

S

v if and only if u! v.

Proof. The (() dire
tion is obvious: a simple inspe
tion of the rules show

that u&v or uyv or u

�

v implies S(u) = S(v). The ()) dire
tion is proved

in Appendix A.9. 2

Having de
omposed �

S

into \permutation" and \simpli�
ation" allows a

partial answer to the question of \what is the set of terms that belong to some

regular set L modulo S-equivalen
e?".

For a tree language L de�ne

[L℄

�

def

= fu j 9t 2 L; u

�

�

tg; [L℄

..

def

= fu j 9t 2 L; u&&

�

tg;

[L℄

!

def

= fu j 9t 2 L; u! tg: [L℄

&&

def

= fu j 9t 2 L; t&&

�

ug;

If L is regular, then [L℄

�

and [L℄

!

are not regular in general, while [L℄

..

and [L℄

&&

are. For our purposes, we shall need the following:

Lemma 8.6 If L is regular then [L℄

..

is regular. Furthermore, from a tree

automaton A re
ognizing L, one 
an build in polynomial-time a tree automaton

A

0

for [L℄

..

with jA

0

j = O(jAj

2

).

Proof (Idea). First, for any pair p; q of states of A, we add a state r

q

p

and

rules su
h that t

�

7! r

q

p

i� t is some 0 I

n

(t

1

; : : : ; t

n

) and p I

n

(t

1

; : : : ; t

n

)

�

7! q

14
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in A. Then, whenever q I q

0

�

7! q

00

, we add all rules of the form r

q

p

I q

0

7! r

q

00

p

.

With further rules p I r

q

p

7! q and r

q

p

I r

r

q

7! r

r

p

, the resulting automaton has

t

�

7! p i� t&

�

u for some u with u

�

7! p in A.

Then the 
onstru
tion is easily 
ompleted in view of &&

�

= &

�

y

=

. 2

8.2 Transitions modulo �

S

We 
an now prove that �

S

(or equivalently!) respe
ts behaviours in a sense

stronger than just being in
luded in the largest bisimulation:

Proposition 8.7 �

S

is a bisimulation relation modulo the abstra
tion of

f!; ?g labels, i.e. u �

S

v and u

�

�! u

0

implies that v

�

�! v

0

for some v

0

with

v �

S

v

0

.

Proof (Idea). Standard but tedious. One proves that

�

, & and y are

bisimulations up-to!. Prop. 8.5 
on
ludes. 2

Proposition 8.8 For any � 2 A
t

�

, t

�

) u i� t

�

�! u

0

for some u

0

�

S

u.

Proof. By indu
tion on the length of � and using Prop. 8.7. 2

With Prop. 8.5 and Lemma 8.4, we get

Lemma 8.9 u

�

) v i� u

�

�! w for some w s.t. v#

�

�

w#.

8.3 A NP-algorithm for

�

)-rea
hability

We 
an now prove the following

Theorem 8.10

�

)-rea
hability between RPA terms is NP-
omplete.

Proof. NP-hardness is well-known already for simpler pro
ess algebra like

BPP [8℄.

We now show membership in NP. Given u and v, we 
ompute v# in

polynomial-time, guess a w s.t. v#

�

�

w (note that jwj � jvj), build a tree

automaton for L = [w℄

..

using Lemma 8.6, and then an automaton for

L

0

= Pre

�

(L) = ft j t

�

�! t

0

2 Lg using Theo. 6.3 (these automata 
an be

built in polynomial-time). We answer yes if u 2 L

0

. Lemma 8.9 states that

this algorithm is 
orre
t. 2

9 Con
lusion

We en
oded RPPS systems into RPA, a pro
ess rewrite system that 
ombines

several features:

�

it has an e�e
tively re
ognizable rea
hability relation,

�

hen
e an uniform tree automata method 
an 
ompute the models of any

formula written in the transition logi
 TL,
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�

whi
h 
an be used for the rea
hability analysis of RPPS systems.

The diÆ
ulty in that work was to dis
over a pro
ess-algebrai
 presentation of

hierar
hi
al states where transitions are lo
al enough so that the rea
hability

relation is re
ognizable, whi
h is the sensitive problem. The 
onsequen
e

is that the link between hierar
hi
al states and RPA terms is not dire
t:

�

S

is not a 
ongruen
e, we need to use two notions \u

�

!

�! v" and \u

�

?

�! v", et
.

We see this work as more proof of the power of pro
ess rewrite systems

for the analysis of various kind of of in�nite state systems. At the same time,

it also shows that tree-automata are a powerful tool for the analysis of su
h

pro
ess rewrite systems.

A Appendix

A.1 Proof of Lemma 3.4

()): by indu
tion on the derivation u �!.

(() by indu
tion on u. If u = 0 then State(u) = ;. If u = q 2 Q then we

assumed � has at least one rule q

a

�! q

0

; v. If u is some u

1

I u

2

, then either

State(u

1

) 6= ; or State(u

2

) 6= ;:

1. if State(u

2

) 6= ; then u

2

�! by ind. hyp. and then u �! by R3-R4.

2. if State(u

2

) = ; then State(u

1

) 6= ;, u

1

�! by ind. hyp., and then u �!

by R5-R6. Observe that the 
ondition on the appli
ation of R6 
auses no

problem.

A.2 Proof of Lemma 3.5

The ()) dire
tion is obvious with rule R5.

For the (() dire
tion we pi
k q 2 Q and show by indu
tion on n 2 N that

u I q

n

�! v I q implies u

!

�!

�

v:

1. n = 0: then u I q = v I q. It follows that u = v and u

!

�!

�

v.

2. n > 0: then u I q

n�1

�! t! v I q. t must be some t

1

I t

2

(Lemma 3.1)

and t

2

i

�! q for some 0 � i � 1. Ne
essarily i = 0 (Lemma 3.2) and then

t

2

= q. t �! v I q is obtained by R5 sin
e State(q) 6= ; rules out R6. Hen
e

t

1

!

�! v. We 
on
lude by noting that the ind. hyp. gives u

!

�!

�

t

1

.

A.3 Proof of Lemma 3.6

((): Assuming v

!

�!

�

v

0

and t!

�

t

0

, we have v I t

!

�!

�

v I t

0

by R3-R4 and

v I t

0

!

�!

�

v

0

I t

0

by R5.

()): Assume v I t

!

�! v

0

I t

0

. This was obtained by R3, R4 or R5, so that

(v

!

�! v

0

and t = t

0

), or (v = v

0

and t �! t

0

). Hen
e v

!

�!

�

v

0

and t �!

�

t

0

.
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If now v I t

n;!

�! v

0

I t

0

for some n 2 N , the previous reasoning and an easy

indu
tion on n gives v

!

�!

�

v

0

and t �!

�

t

0

.

A.4 Proof of Lemma 3.7

((): one gets v I t

!

�!

�

v I t

0

by R3-R4, and follows with v I t

0

�!

�

v

0

I t

0

by R5 if v

!

�!

�

v

0

, or by R5-R6 if v !

�

v

0

and t

0

6!.

()): we have either (a) v I t

!

�!

�

v

0

I t

0

or (b) v I t !

�

v

1

I t

1

?

�! v

2

I

t

2

!

�

v

0

I t

0

. In 
ase (a), Lemma 3.6 
on
ludes. In 
ase (b), rule R6 requires

State(t

1

) = ; so that t

1

6!. It follows that t

0

= t

1

and t

0

6!.

A.5 Proof of Lemma 3.8

()): the �rst step of q !

�

must be some q �! 
 I u obtained by R1-R2 via

some q !

�


; u in �. Then 
 I u!

�

v I t and Lemma 3.7 
on
ludes.

((): this dire
tion is obvious by 
ombining R1-R2 and Lemma 3.7.

A.6 Sket
h Proof of Lemma 3.9

This extends Lemma 3.6 exa
tly like the previous lemma extended Lemma 3.7.

A.7 Proof of Lemma 8.2

We prove the lemma by indu
tion on v. Assume u.. v && w with u 6= w,

write v under the form 
 I

n

(v

1

; : : : ; v

n

), and 
onsider the following 
ases:

�

If v&&u using rule (E1), then v = 0 I u and, sin
e u 6= w, w = 0 I u

0

with

u&& u

0

. Then u&& u

0

.. w.

�

If v&&u using rule (E2) on v

i

, then if v&&w also uses rule (E2) (on v

j

with

j 6= i) it is easy to show u&&..w. If v&&w uses rule (E3), then u&&..w

is equally obvious.

�

If v && u using rule (E3), then u = 
 I

n

(v

1

; : : : ; v

i�1

; u

i

; v

i+1

; : : : ; v

n

)

with v

i

& u

i

. The only interesting 
ase for v && w is when w = 
 I

n

(v

1

; : : : ; v

i�1

; w

i

; v

i+1

; : : : ; v

n

) with v

i

& w

i

(the other 
ases are mirror im-

ages of 
ases we already 
onsidered). Here, sin
e u

i

6= w

i

, the ind. hyp.

gives u

i

&& v

00

.. w

i

for some v

00

and we dedu
e u&&..w.

A.8 Proof of Lemma 8.3

We assume u

�

v && w and prove the Lemma by indu
tion on w. Write w

under the form 
 I

n

(w

1

; : : : ; w

n

). If n = 0 then v = 0 I 
 and no u exists

s.t. u

�

v. Thus n > 0 and we now 
onsider all 
ases for v&& w:

�

If v&& w by rule (E1), then v = 0 I w and u = 0 I w

0

with w

0

�

w. We

are done sin
e u&& w

0

.
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�

If v && w by rule (E2), then v is some 
 I

n�m+1

(w

1

; : : : ; w

i�1

; 0 I

m

(w

i

; : : : ; w

i+m�1

); w

i+m

; : : : ; w

n

) with m possibly 0. Now there are several


ases for u

�

v:

If u

�

v by rule (P2), or by rule (P1) in a way that does not tou
h the

0 I

m

(w

i

; : : : ; w

i+m�1

) subterm of v, then it is easy to see that u&&

�

w.

Otherwise the 0 I

m

(w

i

; : : : ; w

i+m�1

) subterm of v is

swapped with w

i�1

or w

i

m

. In the �rst 
ase u is 
 I

n�m+1

(w

1

; : : : ; w

i�2

; 0 I

m

(w

i

; : : : ; w

i+m�1

); w

i�1

; w

m

; : : : ; w

n

) and u && v

0

=


 I

n

(w

1

; : : : ; w

i�2

; w

i

; : : : ; w

i+m�1

; w

i�1

; w

m

; : : : ; w

n

) works sin
e v

0

�

�

w

with m uses of rule (P1). The se
ond 
ase is similar.

�

If v&& w by rule (E3), v is 
 I

n

(w

1

; : : : ; w

i�1

; w

0

i

; w

i+1

; : : : ; w

n

) for some i

and w

0

i

s.t. w

0

i

&& w

i

. The 
ases where u

�

v by rule (E1), or by rule (E2)

on a subterm di�erent from w

0

i

, are easy to deal with.

The interesting 
ase is when u = 
 I

n

(w

1

; : : : ; w

i�1

; w

00

i

; w

i+1

; : : : ; w

n

)

and w

00

i

�

w

0

i

. Then the indu
tion hypothesis applied on w

00

i

�

w

0

i

&& w

i

yields w

00

i

&& v

00

�

�

w

i

for some v

00

, and we dedu
e u&& v

0

�

�

w with v

0

= 
 I

n

(w

1

; : : : ; w

i�1

; v

00

; w

i+1

; : : : ; w

n

).

A.9 Proof of Proposition 8.5

There only remains to prove the ()) dire
tion of Prop. 8.5. We start with

the following lemma:

Lemma A.1 u! u

0

implies 
 I

n

(: : : ; u; : : :)! 
 I

n

(: : : ; u

0

; : : :).

Proof. By indu
tion on the length of the derivation t

i

! u. For the base


ase, assume u&u

0

(resp. uyu

0

, u

�

u

0

): one 
on
ludes using rule (E3) (resp.

(E2), (P2)). 2

We are now ready to prove that S(u) = S(v) entails u! v. The proof is

by indu
tion on juj+ jvj. We assume that u and v are resp. 
 I

n

(u

1

; : : : ; u

n

)

and 


0

I

m

(v

1

; : : : ; v

m

) and 
onsider several 
ases:

�

If 
 2 Q and 


0

= 0, then S(u) = (
;

P

i

S(u

i

)) and S(v) =

P

j

S(v

j

).

Hen
e there is some k s.t. S(v

k

) = S(u) and for all j 6= k, S(v

j

) = ;. By

ind. hyp. we have v

k

! u and v

j

! 0 for j 6= k. Thus v ! 0 I

m

(0; : : : ; 0; u; 0; : : : 0) by Lemma A.1. Then v! 0 I u by (E2) and v! u

by (E1). The 
ase where 
 = 0 and 


0

2 Q is symmetri
.

�

If 
 = 0 = 


0

, then S(u) =

P

i

S(u

i

) and S(v) =

P

j

S(v

j

). If 
; 


0

2 Q, then

S(u) = (
;

P

i

S(u

i

)) and S(v) = (


0

;

P

j

S(v

j

)). In both 
ases, 
 = 


0

and

P

i

S(u

i

) =

P

j

S(v

j

).

Now, if ea
h u

i

and ea
h v

j

has the form q I

�

(: : :) with q 2 Q, then

n = m and there is a bije
tive h s.t. S(u

i

) = S(v

h(i)

). By ind. hyp.,

u

i

! v

h(i)

, then u! 
 I

n

(v

h(1)

; : : : ; v

h(n)

) by Lemma A.1, then u! v

by (P1).

Otherwise some u

i

or v

j

has the form 0 I

k

(w

1

; : : : ; w

k

), we use rule (E2)
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to 
atten the 
orresponding term in u or v and we repeat the pro
ess until

no su
h u

i

and v

j

exists. Eventually we obtain u&

�

u

0

and v&

�

v

0

with u

0

and v

0

having the form of the previous sub
ase, 
on
luding the proof.
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