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Abstract Spatial logics have been proposed to reason
locally and modularly on algebraic models of distributed sys-
tems. In this paper we define the spatial equational logic AπL
whose models are processes of the applied π -calculus. This
extension of the π -calculus allows term manipulation and
records communications as aliases in a frame, thus augment-
ing the predefined underlying equational theory. Our logic
allows one to reason locally either on frames or on processes,
thanks to static and dynamic spatial operators. We study the
logical equivalences induced by various relevant fragments
of AπL, and show in particular that the whole logic induces
a coarser equivalence than structural congruence. We give
characteristic formulae for some of these equivalences and
for static equivalence. Going further into the exploration of
AπL’s expressivity, we also show that it can eliminate stan-
dard term quantification.

Keywords Spatial Logic · Applied pi-calculus

1 Introduction

1.1 Spatial logics

Spatial logics have been proposed to reason locally and mod-
ularly on algebraic models of distributed systems such as
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ambients [14] or π -calculus [8]. In a broad sense, spatial
logics may also include separation logic [26] and tree log-
ics [11], although these logics deal with static models. Two
essential connectives in these logics are spatial conjunction
and adjunct. The spatial conjunction A ∗ B expresses that
property A hold on one part of the system, and property
B hold on another, disjoint, part of the system. Disjointness
plays a crucial role in separation logic to express non-aliasing
properties, and in π -calculus spatial logic to express race-
freedom properties, to cite a few examples. Adjunct A −−∗ B
expresses that, once placed in an environment satisfying A,
the system will satisfy B. While spatial conjunction supports
a form of local reasoning and bottom-up specification, the
adjunct accounts for a certain form of contextual reasoning.
Contextual reasoning, that is ensuring some properties of a
system provided its environment enjoys some other proper-
ties, is the key idea of many specification techniques, such as
rely/guarantee reasoning. Bisimilarity also is a form of con-
textual reasoning (although in a weaker sense), as it estab-
lishes statements of the form “the system will behave in a
certain way under any environment.”

1.2 Cryptographic protocols

Contextual reasoning is very important in cryptographic pro-
tocols. For instance, secrecy under a passive or active attacker
is a certain safety property—the secret cannot be deduced—
that the cryptographic protocol should guarantee in whatever
environment it is run. Whether the environment is active or
passive already is an example of conditions one may wish to
impose on the environment.

In the applied π -calculus, this distinction is emphasized
by introducing two different equivalences: static equivalence
and bisimilarity. However, cryptographic properties often
need to be more precise about what is assumed from the
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environment. For instance, private channels or secret keys are
usually modeled by name restriction in applied π -calculus,
but the frontier between what is public and what is private
is only meaningful when the attacker is the environment and
the protocol is “fair.” For some protocols the separation is
not so clear. To give an example, in electronic voting pro-
tocols, coercion-resistance is a secrecy property of the vote
administrator, for whom the environment involves two agents
with different abilities and objectives: a voter, who needs to
follow a given vote protocol, and a coercer who forces her
to reveal information that can prove that she voted in a cer-
tain way. Coercion-resistance turned out to be hard to reduce
to standard secrecy, and required the introduction of a new
simulation relation [12].

This form of complex contextual reasoning seems to
underline the limitations of which specifications can be
expressed using bisimulation. The fact that adjunct allows
to express complex contextual reasoning in a natural man-
ner motivated us to introduce a spatial logic for the applied
π -calculus.

1.3 Spatial logics and standard process equivalences

Spatial logics, and similarly modal logics, may provide a
more flexible and manageable alternative than process equi-
valences. In an ideal world, the logical equivalence coin-
cides with a well-identified process equivalence ≈, and the
logic admits characteristic formulae. Then, checking whether
P ≈ Q reduces to checking that P satisfies the characteristic
formula of Q, or that the characteristic formulae of P and Q
are equivalent.

Spatial logics live in such an ideal world for the π -
calculus, the ambient calculus, the static ambient calculus
and the memory model of separation logic, for various kinds
of equivalences. The spatial conjunction is the cause of a very
intensional discriminating power for spatial logics [16,17]
as logical equivalence coincides with structural congruence.
Dropping this connective and reasoning only with adjunct−−∗
usually yields extensional equivalences such as barb equiva-
lence [15]. Albeit quite intuitive, these results depend on the
nature of the process model they deal with, and should be
treated with care: the intensional equivalence might be much
coarser than structural congruence, and logical equivalence
is not a congruence in the general case, even in the presence
of adjunct.

1.4 A spatial equational logic

In this paper we investigate a spatial equational logic for the
applied π -calculus [2], an extension of the π -calculus [24]
where processes may communicate terms through channels.
These terms are tested for equality using an equational the-
ory, which is global, as well as local axioms placed in a frame,

which act as a record of what has been sent to the environment
so far.

For example, the frame � = {enc(s,y)/x } |{pk(n)/y}, that we
will use as an example throughout this paper, augments the
equational theory with the knowledge that x is an alias for
a message encrypted with a public key, itself aliased by y.
To reflect the private nature of s and n, these names will be
hidden, and we will write νn, s. �.

More precisely, each term sent to the environment is stored
in an active substitution that acts as a local alias that assigns
a variable to this term. For instance, νn, s. � can be obtained
from a process νn. {pk(n)/y} | νs. ā〈enc(s, y)〉.P by sending
enc(s, y) to an environment listening on channel a, thus
reducing to νn, s. � | P .

This peculiar aspect of the calculus raises new questions
with respect to standard expressiveness issues. First, it is
not clear how this logic should be designed in order to live
in the same ideal world as spatial logics for π -calculus.
Second, one could hope to characterize the static equiva-
lence for frames introduced in the applied π -calculus with a
static fragment of the logic. This objective is very appealing,
since static equivalence plays a central role in cryptographic
properties. Third, we may wonder what is the correct notion
of separation for frames.

1.5 Contributions

Our first contribution is the characterization of the logical
equivalences of the static, static extensional, and dynamic
fragments. Static fragments are obtained forbidding the use
of the temporal modality, and the static extensional fragment
is obtained by furthermore forbidding the use of the spatial
conjunction. These fragments turn out to play similar roles as
in the case of the π -calculus: static intensional equivalence
is proved to coincide with structural congruence for frames,
whereas static extensional equivalence coincides with static
equivalence.

It should be underlined that, to our knowledge, this is
the first logical characterization of static equivalence that
is independent from the equational theory: no constraint is
put on the equational theory. All the constructions involved
are rather simple compared to other logical characterizations
of frame equivalence [19] for specific classes of equational
theories. Moreover, characteristic formulae are derivable for
both intensional and extensional equivalences.

Our second contribution deals with the logical equivalence
of the dynamic intensional fragment. Surprisingly, we show
that the logic cannot distinguish messages with similar infor-
mation content. As a consequence, this equivalence is coarser
than mere structural congruence. Moreover, we show that it
is not a congruence, due to the possible introduction of noise
in communications that the logic may not detect. This notice-
ably complicates the techniques to obtain an axiomatization
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of this equivalence. We point out some admissible axioms for
logical equivalence and prove this axiomatization complete
for the equational theory of finite trees.

The following table summarizes our results (last two lines)
with respect to previous expressiveness results:

Calculus Extensional Full logic
fragment

Mobile Ambients unknown structural congruence [18]
Static Ambients unknown structural congruence [10]
CCS unknown structural congruence +

renaming [9]
π-calculus barb congruence [15] structural congruence [16]
Frames static equivalence structural congruence
Applied π-calculus unknown structural congruence + noise

Our third contribution is a quantifier elimination tech-
nique that shows that the standard term quantifiers ∃t. A can
be mimicked by spatial connectives, which gives one more
example of a spatial logic more expressive than first-order
logic.

1.6 Decision procedures

To be of practical interest, the ideal world mentioned above
should include a decision procedure for the model-checking
or for the satisfiability problems of the logic. These prob-
lems are known to be hard for spatial logics, even for very
simple calculi such as CCS without recursion [9]. However,
some recent work introduces a new technique based on well-
structured transition systems [3]. In this work, processes are
typed, and only a positive fragment of the spatial logic can be
checked. Adapting these ideas to the appliedπ -calculus is far
out of the scope of the present work, but may be promising.

Deciding our logic is hard for another reason: as static
equivalence is already undecidable [7], so is the model-
checking problem for the static fragment of our logic.
However, a lot of work has been put into obtaining deci-
sion procedures for static equivalence against some restricted
classes of equational theories [1]. Similarly, the ProVerif
tool [5] can decide restricted forms of bisimilarity, which has
practical benefits to prove secrecy properties. One of our ini-
tial motivations was to investigate whether the spatial logic
for frames could introduce new decidable classes of static
equivalence. As already mentioned in a technical report [28],
we can decide a fragment of the spatial logics for frames
using tree automata techniques. The proof relies on some
conditions on the equational theories, which unfortunately
excluded lots of interesting equational theories commonly
used in cryptographic examples. Recently [20], we inves-
tigated further this approach, and observed that even small
relaxations of the conditions we put on the equational the-
ory already yield undecidability. Thus we tend to believe that
the fragment of logic handled by tree automata technique is

not the most interesting one, and some useful and decidable
fragments of our spatial logic still need to be identified.

1.7 Proof techniques for logical characterization

The goal of this work is to introduce a spatial logic that
captures interesting logical equivalence, and this goal drives
some of our choices in the design of the logic, consider-
ing that all spatial logics present in the literature differ on
their syntax and semantics: some include revelation operator
whereas others do not, some include least fixed points con-
structs whereas others do not, etc. We do not claim that our
choices are the only relevant ones, but we try to comment on
them whenever possible. However, adapting existing proof
techniques for the characterization of logical equivalences is
far from trivial, and depends highly on these choices.

There are at least two approaches for establishing that
a logical equivalence =L coincides with a process equiva-
lence

.= (extensional or intensional), provided=L is already
such that

.=⊆=L : the first approach consists in defining, for
each process P , a characteristic formula φP such that the
models of φP exactly are the processes Q such that P

.=
Q. This is the method used for instance for CCS [9]. The
result obtained from this method is stronger than a pure char-
acterization of =L , thus this method may fail even if the
logic does characterize

.=. The second method, due to Sangi-
orgi, brings to mind the proof that logical equivalence in
Hennessy-Milner logic coincides with barb congruence. It
goes through an intermediate equivalence≈int , called inten-
sional bisimilarity [18], which can be proved (hopefully eas-
ily) to coincide with

.=. Then the characterization of logical
equivalence boils down to two properties. The first one, called
soundness by Sangiorgi [27], states that ≈int⊆=L , and the
second one, completeness, states that=L⊆≈int . In the proof
of Sangiorgi [27], and in its extension to infinitary ambi-
ents [18], soundness is rather easy to prove, since ≈int is
almost the Ehrenfeucht-Fraïssé game of the logic. The rules
of the adjuncts in the Ehrenfeucht-Fraïssé game are how-
ever omitted in the definition of ≈int ; for instance, the rule
for � would be: if P1 ≈int Q1, then for all P2 there is Q2

such that P1 | P2 ≈int Q1 | Q2 and P2 ≈int Q2. Instead,
Sangiorgi establishes that ≈int is a congruence, which in
particular implies that the rules of adjuncts are admissible.
The completeness proof of Sangiorgi goes through two steps:
first, ≈int is identified with the ω-limit

⋂
i≥0 ≈i of its finite

approximants ≈i ; second 	≈i⊆	=L is proved for all i ≥ 0 by
induction, considering formulae that express the conditions
of ≈int . A key property for both steps of the completeness
proof is that, for fixed P and Q, P ≈i+1 Q holds if and only
if only P ′ ≈i Q′ for a finite set of such pairs P ′, Q′ that
depend only on P and Q, with some additional conditions.
This property may not hold, for instance if the calculus is not
image-finite.
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We rely on the first method for characterizing the static
equivalences, as characteristic formulae are rather easy to
define in this case. However, for the logical equivalence of
the whole logic, neither are we able to define characteris-
tic formulae for =L , nor do we establish that intensional
bisimilarity coincides with =L . We instead combine the
two methods mentioned before: we introduce an intensional
bisimilarity and establish that (1) ≡′⊆≈int , where ≡′ is the
extended structural equivalence we aim at characterizing, (2)
≈int is sound, or in other words≈int⊆=L , which holds only
if the rules of the adjuncts are included in the definition of
≈int , and (3) there exist characteristic formulae for≡′ when
the equational theory over terms is the one of finite trees.
Since steps (1) and (2) of the proof do not depend on the
equational theory, we are able to prove that =L is not a con-
gruence whatever the equational theory. This is what makes
the rules for the adjuncts of the definition of≈int mandatory.
Their presence has important consequences on the complete-
ness proof. Although we do not consider infinitary processes,
≈int cannot be proved to be the ω-limit

⋂
i≥0 ≈i of its finite

approximants. There are proofs that intensional bisimilarity
coincides with the limit of its approximants even with image-
infiniteness: either using local characteristic formulae [18], or
using well-ordering arguments [4]. However, it seems chal-
lenging to adapt these proofs to our setting. Instead, we let
the question of whether ≈int= ⋂

i≥0 ≈i open, as we do not
need to answer it to characterize logical equivalence with our
approach.

1.8 Structure of the paper

In Sect. 2 we collect all the necessary background on the
applied π -calculus, and define our process compositions ∗
and ||. Section 3 introduces AπL. Sections 4 and 5 present
the characterizations of the logical equivalences for the static
and dynamic fragments respectively. Section 6 establishes the
quantifier elimination result. A table summing up the auxil-
iary formulae used throughout this paper can be found in the
appendix.

2 Applied π -calculus

2.1 Terms

The grammar of applied π -calculus processes relies on the
definition of a set of terms along with an equational theory.
This lets the user decide for example which cryptographic
primitives the calculus will use. The set of terms is con-
structed using disjoint infinite sets V and N of (respectively)
variables and names, and a finite signature � which is a set
of functions, each with its arity (constants have arity 0). Its
grammar is as follows, where ar( f ) is the arity of f , x ∈ V

and a ∈ N :

M, N ::= x | a | f (M1, . . . ,Mar( f ))

We will use the letters a, b, c, n,m, s to refer to ele-
ments of N , x, y, z for elements of V and u, v, w for
“meta-variables” that may belong either to N or to V . We will
write M, N for terms. fn(M) and fv(M) respectively denote
the sets of free names and free variables of M , defined as
usual, and fnv(M) � fn(M) ∪ fv(M).

These terms come equipped with an equivalence relation
E called an equational theory on �, where membership of
a pair (M, N ) of terms is written E � M = N , or sim-
ply M = N if E is clear from context. This relation must
be closed under substitution of terms for variables or names
(M1 = M2 implies M1[u←N ] = M2[u←N ]) and context
application (N1 = N2 implies M[x←N1] = M[x←N2]). In
particular, syntactic equality on terms is an equational theory
that satisfies these conditions, called the theory of finite trees
in this paper.

2.2 Processes

Applied π -calculus extends the standard π -calculus with
primitives for term manipulation, namely active substitutions
and term communications. The grammar of processes is split
into two levels: the plain processes which account for the
dynamic part, and the extended ones, also simply referred to
as “processes” which extend the former with a static part.
Note that replication !P p is not part of our setting.

P p, Q p, . . . ::= plain processes P, Q, . . . ::= (extended) processes
0 null process P p plain process
P p | Q p composition {M/x } active substitution
νa. P p name restriction P | Q parallel composition
ach(n).P p name input νa. P name restriction
āch〈n〉.P p name output νx . P variable restriction
a(x).P p term input
ā〈M〉.P p term output
if M = N
then P p else Q p conditional

Our grammar differs from the original one in that it allows
two kinds of communications that do not interfere: com-
munications of names behave as in the standard π -calculus
whereas communications of terms may interact with active
substitutions and conditionals. Names are thus allowed to
serve both as channels through which communications may
occur and as atoms on which to build terms. Another solu-
tion would be to define a type system for the terms, as in the
original applied π -calculus; although this would not change
our results, we prefer to avoid the complications this would
lead to.

The set of free names (resp. variables) of a process P
is defined as usual and written fn(P) (resp. fv(P)), with
fn({M/x }) � fn(M) (resp. fv({M/x }) � {x} ∪ fv(M)), and
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with both restrictions and both inputs being binders. We write
fnv(P) for the set fn(P) ∪ fv(P). We may also write e.g.
fn(P,M, N ) for fn(P) ∪ fn(M) ∪ fn(N ).

Compositions of active substitutions of the form {M1/x1} |
· · · |{Mn/xn } will be written {M/x}, and referred to using σ, τ .
Depending on the context, we will write x either for the vec-
tor x1, . . . , xn or for the associated set {x1, . . . , xn}, where
n = |x|. Trailing 0’s in processes will often be omitted, as
well as null else branches in conditionals.

From now on, and as usual, we will only consider extended
processes whose active substitutions are cycle-free, and we
will always assume that there is at most one active substi-
tution for each variable, and exactly one if the variable is
restricted.

Definition 1 (Well-formed processes) A process P is said
to be well-formed if the following conditions are satisfied:

1. If {M1/x1},…,{Mn/xn } are the active substitutions that
appear in P , then the oriented graph whose vertices are
these active substitutions, and where there is an edge
from {Mi/xi } to {M j/x j } iff xi ∈ fv(M j ) is acyclic.

2. There is at most one active substitution for each variable.
3. There is exactly one active substitution for each restricted

variable.

2.3 Operational semantics

The structural congruence relation≡ identifies processes that
can be obtained one from another by mere rewriting. It is
called congruence as it is closed by context applications.

Definition 2 (Context, evaluation context) A context (resp.
an evaluation context) is an extended process with a hole in
place of a plain (resp. extended) process.

This hole can be filled with any extended process that
makes the resulting extended process well-formed.

Definition 3 (Structural congruence) Structural congru-
ence is the smallest equivalence relation on well-formed
extended processes that is stable by α-conversion on both
names and variables and by application of contexts, and that
satisfies the following rules:

Par- 0 P ≡ P | 0
Par- A P |(Q | R) ≡ (P | Q) | R
Par- C P | Q ≡ Q | P
New- 0 νu. 0 ≡ 0
New- New νu. νv. P ≡ νv. νu. P
New- Par P | νu. Q ≡ νu. (P | Q)

when u 	∈ fnv(P)
Alias νx . ({M/x } | P) ≡ P[x←M]
Subst {M/x } | P p ≡ {M/x } | P p[x←M]
Rewrite {M/x } ≡ {N/x } if E � M = N

The original structural congruence [2] is slightly different
from ours:

– It is closed by application of evaluation contexts instead
of arbitrary contexts. This makes inductive characteriza-
tion of processes up to ≡ impossible (see Sect. 5).

– The original rules Alias’ and Subst’ are as follows:

Alias’ νx . {M/x } ≡ 0
Subst’ {M/x } | P ≡ {M/x } | P[x←M]

With our own Alias and Subst rules, active substitutions
may affect other active substitutions only if their domain is
a restricted variable. They may only apply to plain processes
otherwise. As such, the rule Alias’ is still valid in our set-
ting, whereas Subst’ is restricted to plain processes only.
This makes our quantifier elimination technique easier, as it
dramatically limits the interferences between active substi-
tutions. In the absence of adjuncts, it could have been useful
(although not necessary) for characterizing intensional bi-
similarity as a limit of its finite approximants (as described
in the introduction), since our notion of structural congru-
ence allows only finitely many ways of splitting a process
whereas, for the original structural congruence and for a fixed
P , there may be infinitely many non-congruent pairs of pro-
cesses P1, P2 such that P ≡ P1 | P2. Aside from these tech-
nical considerations, more informal ones pressed us to adopt
this definition:

– Our definition does not change the behavior of processes,
as both the reduction rules and the static equivalence def-
initions, presented below, stay the same. Moreover, as it
was originally the case, each process P can be written
as νn. (σ | Q p) for some set of restricted names n, some
parallel composition of active substitutions σ and some
public plain process Q p.

– We claim that the results presented in this paper would
hold with either notion of structural congruence without
a lot of changes, except for quantifier elimination.

– It could moreover be argued that our definition better sup-
ports the idea of active substitutions being viewed as log-
ging information about past communications than it was
the case with the standard congruence: consider a process
that sends two messages M and N , with N = f (M),
resulting in the process P ′ |{M/x } |{N/y}. Consider sim-
ilarly a process that sends M and the “recipe” f (x) to
produce N , ending in P ′ |{M/x } |{ f (x)/y}. Then ≡ distin-
guishes between these two processes, whereas the origi-
nal structural congruence does not.

Due to the Rewrite rule, two structurally congruent pro-
cesses may not have the same set of free names or variables.
Thus, we define the closures of these sets up to structural
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congruence fn(P), fv(P), fnv(P) and the corresponding sets
for terms:

fn(P) �
⋂

Q≡P

fn(Q) fv(P) �
⋂

Q≡P

fv(Q)

fnv(P) � fn(P) ∪ fv(P) fn(M) �
⋂

N=M

fn(N )

fv(M) �
⋂

N=M

fv(N ) fnv(M) � fn(M) ∪ fv(M)

Similarly, a process will be considered plain even in the
presence of active substitutions over hidden variables. Doing
so makes the class of plain processes stable by structural con-
gruence, as the Alias rule (as well as Alias’, for that matter)
may introduce such restricted active substitutions.

Finally, let us recall the definition of internal reduction:

Definition 4 (Reduction) Internal reduction→ is the small-
est relation that is closed by structural congruence and by
application of evaluation contexts and that satisfies the rules
below:

Comm- T ā〈x〉.P p | a(x).Q p → P p | Q p

Comm- C āch〈m〉.P p | ach(n).Q p → P p | Q p[n←m]
Then if M = M then P p else Q p → P p

Else if M = N then P p else Q p → Q p

(when fv(M, N ) = ∅ and E � M = N )

Remark 1 With these rules, and as explained by Abadì and
Fournet [2], the communication of a term M happens as fol-
low:

ā〈M 〉.P p | a(x).Q p

≡ νx . ({M/x } | ā〈x〉.P p) | a(x).Q p by Alias
≡ νx . ({M/x } | ā〈x〉.P p | a(x).Q p) by New- Par
→ νx . ({M/x } | P p | Q p) by Comm- T
≡ P p | Q p[x←M] by Alias

One obtains thus that ā〈M〉.P p | a(x).Q p → P p | Q p

[x←M] as expected.

Remark 2 Whenever E � M = N , we have ā〈M〉 ≡ ā〈N 〉
using Alias and Rewrite.

2.4 Frames

A frame is an extended process built up solely from active
substitutions and the null process, using parallel composi-
tion and name and variable restrictions. In other words, it is
a process with no plain parts except for 0. The frame φ(P)
of a process P is P in which every embedded plain process
is set to 0. The domain dom(φ) of a frame φ (resp. dom(P)
of a process P) is the set of variables upon which the active
substitutions of φ (resp. φ(P)) act.

Similarly, the plain process (P)p associated with P is
obtained by mapping every substitution over non-restricted
variables to 0.

Frames behave consistently w.r.t. structural congruence,
as expressed by the following lemma:

Lemma 1 If P ≡ Q then φ(P) ≡ φ(Q).
Proof Suppose a proof of P ≡ Q. A proof of φ(P) ≡ φ(Q)
can be obtained simply by setting every plain process embed-
ded into P or Q to 0 into the proof, and by suppressing
branches that prove two guarded plain processes to be con-
gruent, as the equality to prove will be 0 ≡ 0. ��

However, it does not hold that P ≡ Q implies (P)p ≡
(Q)p: considering P = {y/x } | ā〈x〉 and Q = {y/x } | ā〈y〉,
P ≡ Q holds but not ā〈x〉 ≡ ā〈y〉.

The following three definitions are standard in the applied
π -calculus.

Definition 5 (Closed frame, process, and closing context)
A frameφ (resp. a process P) is closed when fv(φ) ⊆ dom(φ)
(resp. fv(P) ⊆ dom(P)). An evaluation context C[·] closes
the frame φ (resp. the process P) when C[φ] (resp. C[P]) is
both well-formed and closed.

Definition 6 (Term equality) Two terms M and N are equal
in the frame φ, written φ � M = N when there exists a set
of names n and a substitution σ (i.e. a public frame) such that
φ ≡ νn. σ , Mσ = Nσ and n ∩ fn(M, N ) = ∅. Two terms
are equal in the process P when they are equal in φ(P).

Definition 7 (Static equivalence) Two closed frames φ and
ψ are statically equivalent, written φ ≈s ψ , when dom(φ) =
dom(ψ) and, for all terms M and N , φ � M = N if and only
if ψ � M = N .

Two processes are statically equivalent when their frames
are.

As it is, static equivalence is a congruence on closed
frames, but not on non-closed ones. For instance, with
〈 · , · 〉 being the pairing operation and π1 the first projec-
tion, if we let φ = νn. {dec(enc(〈1,n〉,1),y)/x } and ψ = νn.
{dec(enc(〈1,n〉,1),z)/x } then φ ≈s ψ , but π1(x)= 1 holds in the
frame {1/y} |φ and not in {1/y} |ψ .

To overcome this issue, and later be able to write for-
mulae characterizing static equivalence for both closed and
non-closed frames, we introduce strong static equivalence
≈s

s :

Definition 8 (Strong static equivalence) Strong static
equivalence≈s

s is the largest equivalence relation included in
≈s and closed by application of closing evaluation contexts.

One can note that strong static equivalence is closed by
application of arbitrary evaluation contexts (and not just clos-
ing ones), and that it coincides with static equivalence on
closed frames.
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2.5 Additional operators

One of the core operators of spatial logics is the spatial con-
junction |, which allows local reasoning. A formula of the
form A | B is satisfied by a process which can be split in a
disjoint manner into a parallel composition of two processes
such that one of them satisfies the formula A and the other
satisfies B. Here, disjointness is read as “not sharing any
secret name.” In this section, we introduce two finer-grained
meanings for “disjointness” that we feel are a better fit for
the applied π -calculus, by the mean of two novel operators
on processes.

Consider a protocol F = νn, n′. ({ck(n,n′)/x } | A(x, n) |
H(x, n′)) where Abelard and Héloïse share a compound
key ck(n, n′) generated from a nonce n of A(x, n) and n′
of H(x, n′). A(x, n) and H(x, n′) are plain processes where
the variable x and names n, n′ appear free. Then we can-
not write a specification of the form A |H for this process,
as the active substitution on x binds the two plain processes
together under the restriction νn, n′. To overcome this lim-
itation, we introduce a new operator � which allows us to
separate processes in a subtle way: the frame of the process
is copied on both sides, but the plain part of the process is
split in two pieces, provided they do not share private names.
The same issue is raised when we try to cut into the frame,
so we define ∗ that splits the frame into disjoint parts w.r.t. a
common plain process.

Another justification for having two different kinds of
“knives” for applied π -calculus processes is that, when split-
ting up a process P into a parallel composition of two subpro-
cesses P1 | P2, two very different operations are performed
on a conceptual level, as both the dynamic (plain) and the
static (frame) part of the process are split into two extended
processes.

Finally, and perhaps more importantly, as we aim at char-
acterizing static equivalence, we want to be able to isolate a
fragment of our logic that acts as a spatial logic for frames, i.e.
such that every formula of this fragment is satisfied by some
process P if and only if it is satisfied by φ(P) (this is what
is expressed later on by Lemma 6). This calls for a spatial
conjunction that can split solely the frame of a process.

Because the strict separation between the frame and the
plain process of an extended process might not be syntac-
tically obvious, these two operations need to be defined up
to structural congruence. For this purpose, we first define
them for a restricted class of processes for which composi-
tion using � or ∗ is obvious, and then extend the definitions
to every pair of processes which may be rewritten into two
such processes.

Definition 9 (Process and frame compositions) Given
frames φ, φ1, φ2, plain processes P p, P p

1 , P p
2 and names

n1,n2 such that n1 ∩ fn(φ2, P p
2 ) = n2 ∩ fn(φ1, P p

1 ) = ∅,
we let

νn1. ((νn2. φ) | P p
1 ) � νn2. ((νn1. φ) | P p

2 ) � νn1n2. (φ | P p
1 | P p

2 )

νn1. (φ1 | νn2. P p) ∗ νn2. (φ2 | νn1. P p) � νn1n2. (φ1 |φ2 | P p).

In the following, for † in { �, ∗}, we write P ↔ P1 † P2

if there are P ′,P ′1,P ′2 such that P ≡ P ′, P1 ≡ P ′1, P2 ≡ P ′2
and P ′ = P ′1 † P ′2.

For example, the protocol F above can be written as

F = (νn. (νn′. {ck(n,n′)/x }) | A(x, n)) �
(νn′. (νn. {ck(n,n′)/x }) | H(x, n′)).

Remark 3 Formally, P ↔ P1 ∗ P2 is a ternary relation and,
for some P1, P2, one may have P ↔ P1 ∗ P2 and P ′ ↔ P1 ∗
P2 for some non congruent P, P ′. Albeit not a composition
law, ∗ projects as a composition law on frames: φ(P ∗ Q) ≡
φ(P) |φ(Q). Ternary relations also arise in the relational
models of BI, or in context logics.

Finally, let us state some useful properties of these new
operators.

Lemma 2 For all P, P1, P2, if P ↔ P1 � P2 then φ(P) ≡
φ(P1) ≡ φ(P2).

Proof This is an immediate consequence of Lemma 1. ��
Lemma 3 For any process P, the following hold:

1. P ↔ φ(P) � P
2. P ↔ (P)p ∗ P
3. ∀Q. Q ≡ P ⇒ P ↔ (Q)p ∗ P
4. ∀Q. P ↔ φ(P) � Q ⇒ Q ≡ P
5. ∀Q, Q′. Q′ ≡ P ∧ P ↔ (Q′)p ∗ Q ⇒ Q ≡ P
6. P ↔ P1 ∗ P2 ∧ φ(P1) ≡ 0 ⇒ ∃Q ≡ P. (Q)p ≡ P1

Proof 1. We write P ≡ νn. (σ | Q p). Then we have
φ(P) ≡ νn. (σ | 0), and νn. (σ | Q p) � νn. (σ | 0) =
νn. (σ | Q p | 0) ≡ P , i.e. P ↔ φ(P) � P .

2. This is a special case of 3.
3. Let P ′ ≡ P . It is sufficient to prove that there are n, φ

and Q p such that P ≡ νn. φ | Q p with νn. Q p ≡ (P ′)p,
which is done by structural induction on P ′:

– If P ′ is a plain process, we can take φ = 0 and n
empty.

– If P ′ is an active substitution {M/x } then we can take
Q = 0 and n empty.

– If P ′ = P1 | P2, the induction hypothesis gives
us P ′ ≡ (νn1. (φ1 | Q1)) |(νn2. (φ2 | Q2)) with
νni . Qi ≡ (Pi )

p. We can always assume n1 ∩ n2 =
∅ up to additional steps of α-conversion, so that
P ≡ νn1n2. ((φ1 |φ2) |(Q1 | Q2)). Since (P ′)p =
(P1)

p |(P2)
p ≡ νn1n2. (Q1 | Q2), we can conclude

by taking n = n1n2, φ = φ1 |φ2 and Q = Q1 | Q2.
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– If P ′ = νn. P ′′ then the induction hypothesis gives
us that P ′′ ≡ νn′. (φ′ | Q′) with νn′. Q′ ≡ (P ′)p. It
then follows that P ≡ νnn′. (φ′ | Q′) with (P ′)p =
νn. (P ′′)p ≡ νnn′. Q′ which lets us conclude.

– If P ′ = νx . P ′ then the induction hypothesis gives
us that P ′′ ≡ νn′. (φ′ | Q′)with νn′. Q′ ≡ (P ′)p and
x ∈ dom(φ′), from which we can assume without
loss of generality that φ′ = {M/x } |φ′′ for some term
M . It then follows that P ≡ νxn′. ({M/x } |φ′′ | Q′)
with (P ′)p = νxn′. ({M/x } | Q′) which allows us to
conclude.

4. If P ↔ φ(P) � Q then there are n1, n2, φ, P p
1 and P p

2
such that:

P ≡ νn1n2. (φ | P p
1 | P p

2 )

φ(P) ≡ νn1. ((νn2. φ) | P p
1 )

Q ≡ νn2. ((νn1. φ) | P p
2 )

Since φ(P) is a frame, P p
1 ≡ 0, so P ≡ νn1n2.

(φ | P p
2 ) ≡ Q.

5. If P ↔ (Q′)p ∗ Q then there are n1, n2, φ1, φ2 and P ′
such that:

P ≡ νn1n2. (φ1 |φ2 | P ′)
(Q′)p ≡ νn1. (φ1 |(νn2. P ′))

Q ≡ νn2. (φ2 |(νn1. P ′))

Since (Q′)p is a plain process, φ1 ≡ 0, so P ≡
νn1n2. (φ2 | P ′) ≡ Q.

6. Assume P ↔ P1∗P2∧φ(P1) = ∅. There are Q ≡ P and
n1, n2, Q′p, φ1, φ2 such that νn1. (φ1 | νn2. Q′p) ≡ P1,
νn2. (φ2 | νn1. Q′p) ≡ P2 and Q = νn1n2. (φ1 |φ2 |
Q′p). As φ(P1) ≡ 0, φ1 ≡ 0 so (Q)p = νn1n2. Q′p ≡
νn1. (φ1 | νn2. Q′p) ≡ P1, which allows us to conclude.

��

3 A spatial logic for the applied π -calculus

3.1 Syntax and semantics

We assume an infinite set T V of term variables, distinct from
V and N , ranged over with t, t ′, . . . , and we write U, V for
terms that may mention these term variables. We call AπL
the set of formulae defined by the following grammar:

A, B ::=U = V |¬A | A ∧ B | ♦A | ∃t. A | Iu. A | Nu. A

| A � u | ©u | 0 | A � B | A � B | ∅ | A ∗ B | A −−∗ B

U = V is the equality of terms w.r.t. the current frame,
negation and conjunction are classical, and ♦A is the strong
reduction modality. ∃t. A is term quantification and In.

Fig. 1 Satisfaction relation

A and Ix . A are respectively the fresh name and fresh vari-
able quantifications. We use the same operator for both of
these, as well as for the N, © and � operators, because
our convention on namings allows us to do so unambigu-
ously. Nu. A is the hidden name or variable quantification;
©u means that u appears free in the process; A � u is hid-
ing of name or variable u. 0 (resp. ∅) denotes the null plain
process (resp. the empty frame) and A � B (reps. A ∗ B) plain
process (resp. frame) composition. A � B (resp. A −−∗ B) is
a guarantee operator and the adjunct of A � B (resp. A ∗ B).

The operators’ semantics, close to the one defined by
Caires and Cardelli for the π -calculus [8], is given by a sat-
isfaction relation described in Figure 1 whose judgments are
of the form P, v � A between a process P , a spatial formula
A and a valuation v. Valuations assign terms M to all the
free term variables t of the formula and are written {t→M}
when |t| = |M| = n and v(ti ) = Mi for all i ∈ {1 . . . n}. We
write v{t→M} for the valuation v whose domain has been
extended to t with v(t) = M . Finally, when A is closed and
the valuation is empty, judgments are written P � A.

Boolean operators are assumed to bind more tightly than
compositions and adjunctions, which in turn bind more
tightly than every other operator. Derived connectives ∀t ,
∨,⇔ and U 	= V are defined as usual, and so are the sets of
free names and free variables of a formula A, written fn(A)
and fv(A).

Satisfaction of a formula A by a process P and a valuation
v should remain unchanged should some names or variables
be swapped in A, P and v, as expressed by the following
lemma. Swapping of two names or variables is defined in the
obvious way and needs not to care about capture avoidance;
it is written for example P[m ↔ n] for the swapping of m
and n in P .

Lemma 4 For all P, v and A and names or variables u, u′,
the following holds:

P, v � A iff P[u ↔ u′], v[u ↔ u′] � A[u ↔ u′].
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Proof The proof is done by induction on the formula A. It
is enough to prove one implication because the swapping
operation is an involution.

– U = V :

P, v � U = V
⇒P � Uv = V v
⇒P[u ↔ u′] � Uv[u ↔ u′] = V v[u ↔ u′] By invariance of E
⇒P[u ↔ u′], v[u ↔ u′] � (U = V )[u ↔ u′] Because u, u′ /∈ dom(v)

– ¬A, A1 ∧ A2, ♦A, ∃t. A: straightforward.
– Iw. A:

P, v � Iw. A
⇒∃w′ /∈ fnv(P, v, A). P, v � A[w←w′]
⇒∃w′ /∈ fnv(P, v, A). P[u ↔ u′],
v[u ↔ u′] � A[w←w′][u ↔ u′]

By induction hypothesis

The only case that requires attention is when w′ = u′.
Then u′ /∈ fnv(P, v, A) so u /∈ fnv(P[u ↔ u′], v[u ↔
u′], A[u ↔ u′]) and A[w←w′][u ↔ u′] = A[u ↔
u′][w←u]. This leads us to:

P, v � Iw. A
⇒P[u ↔ u′], v[u ↔ u′] � A[u ↔ u′][w←u]
⇒∃w′ /∈ fnv(P, v, A). P[u ↔ u′], v[u ↔ u′]

� A[u ↔ u′][w←w′] By takingw′ = u
⇒P[u ↔ u′], v[u ↔ u′] � (Iw. A)[u ↔ u′]

– Nw. A: similar to the previous case.
– The remaining cases are straightforward. ��

Let us now comment on the choice of the logical operators
we consider in our spatial logic with respect to other possible
choices adopted in the literature.

Variable revelation We introduce a revelation operator for
restricted variables. Hidden name revelation was sometimes
considered unpleasant in early days of spatial logics, and hid-
den variable revelation can be considered unpleasant as well,
with even more reasons, as hidden variables “do not exist
properly”, in the sense that any process is congruent to a pro-
cess without restricted variables. Moreover, this operator will
not be essential in the characterization of static equivalence.
The reason for considering it is its help in the characteriza-
tion of logical equivalence of the full logic: so as to express
in the logic that a process sends a message M , the only solu-
tion we found is to first “reveal” a variable x and thus an
active substitution {M/x }, and then express that the process
sends x . This mimics the reduction steps of such a process,
as detailed in Remark 1. The same trick is used to charac-
terize branching tests. Despite our efforts, we do not have
a clear representation of logical equivalence without hidden

variable revelation. On the other hand, variable revelation is
still not expressive enough to characterize structural congru-
ence when the equational theory over terms is not the one of
finite trees. Thus, there might be other choices than ours that
would yield a more satisfactory framework, although we do
not have any particular idea about what they could be.

The case for multiple spatial conjunctions; absence of fixed-
points We introduce two distinct spatial conjunctions, one
of the motivations mentioned earlier being that we may split
processes even if they share private names. Another approach
for solving this issue could be to keep only one spatial con-
junction |, as in other spatial logics, and rely on operators that
reveal arbitrarily many restricted names, such as the operator
H∗ introduced by Acciai and Boreale [3], or to include fixed
point constructs in the logic, thus allowing to define H∗A
as μX.A ∨ Hn.X , with n 	∈ fn(A). Fixed points complicate
a bit the characterization of logical equivalence in terms of
Ehrenfeucht-Fraïssé games, and thus in terms of intensional
bisimilarity. Moreover, their use seemed rather limited to us,
except for this specific purpose. Hence we do not consider
them in our setting, nor do we consider the H∗A construct.

However, one could wonder about the impact that our
choice of having two spatial conjunctions has on the charac-
terization of the logical equivalences. The alternative would
be to have a single spatial conjunction |, a null process predi-
cate 0 and a single adjunct �, that would account for both the
plain part and the extended part. We claim that most of the
results presented in this paper would carry on to this setting,
with very little modifications. In particular, this choice is not
essential for the characterization of the logical equivalence
of the full logic. However, and as stressed in Section 2.5, dis-
tinguishing ∗ and−−∗ from the usual | and � yields a logical
characterization of static equivalence for all processes, and
not processes restricted to frames, as highlighted by Lem-
mas 6 and 7. These lemmas would not hold with a single
spatial conjunction connectives, because a static fragment
that would contain one of 0, | or � would also constrain the
plain part. Choosing to have distinct operators to treat the
frame and the plain part of processes thus allows us to have
a more elegant presentation in that respect.

3.2 Derived formulae

The formulae below will be useful in the following sections:

� � 0 ∨ ¬0 ⊥ � ¬� A[B] � (A ∧ 0) � ((B ∧ ∅) ∗ �)
A � B � ¬(A � ¬B) A −−� B � ¬(A −−∗ ¬B)

1 � ¬0 ∧ ¬(¬0 � ¬0) I � ¬∅ ∧ ¬(¬∅ ∗ ¬∅)
public � ¬Nn.©n single � 1 ∧ ∅ ∧ public

Proposition 1 The formulae above are verified by a process
P iff there exists a process Q ≡ P such that:
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1. �: nothing is required; ⊥ is always false;
2. A[B]: φ(Q) verifies A and (Q)p verifies B;
3. A � B (this is the dual of �): there are Q′, R such that

R ↔ Q � Q′, Q′ � A and R � B, and similarly for−−�;
4. 1 (resp. I): (Q)p (resp. φ(Q)) is not null and cannot be

divided into two non-null processes;
5. public: Q has no bound name: ∀n, Q′. Q ≡ νn. Q′ ⇒

n /∈ fn(Q′);
6. single: Q is guarded, either by a communication or by

a conditional construct.

Proof

1. � and ⊥: trivial;
2. If P � A[B] then, from the formula, there are P1 and P2

such that P ↔ P1 � P2, P1 � A∧0 and P2 � (B∧∅)∗�.
Lemma 2 gives us that P1 ≡ φ(P), hence φ(P) � A. As
P1 ≡ φ(P), Lemma 3(4) applies and P2 ≡ P , so there
exist P ′1, P ′2 such that P ↔ P ′1 ∗ P ′2 and P ′1 � B ∧ ∅.
Since the frame of P ′1 is empty, Lemma 3(6) applies, so
there is Q ≡ P such that (Q)p ≡ P ′1, hence (Q)p � B.
Moreover, φ(Q) ≡ φ(P) (Lemma 1), so φ(Q) � A.
Conversely, let Q be such that Q ≡ P , φ(Q) � A and
(Q)p � B. Lemma 3(2) entails Q ↔ (Q)p ∗ Q so
Q � (B∧∅)∗� and Lemma 3(1) entails Q ↔ φ(Q) � Q
so Q � (A ∧ 0) � ((B ∧ ∅) ∗ �).

3. 4. and 5. Straightforward.
6. Straightforward case analysis. ��

It is also worth mentioning that the fresh quantifier and the
“empty frame” predicates can be expressed using the other
operators of the logic.

Proposition 2 The following logical equivalences hold:

1. In. A ⇔ Nn. A ∧ ¬©n
2. Ix . A ⇔ Nx . (I ∧ public) ∗ (A ∧ ¬©x)
3. ∅ ⇔ �� ((¬♦�) −−∗ ¬♦�)

Proof

1. This is straightforward since the conditions P ≡ νn. P ′
and P ′ � ¬©n are equivalent to P ≡ P ′. This uses (but
is independent from) Lemma 5 to conclude.

2. The elimination of the fresh variable quantifier requires a
bit more care, as variable revelation creates a new active
substitution. We also have to make sure that this substitu-
tion cannot have had affected the rest of the process. The
only possibility for that, as the variable must be fresh,
is for it to have replaced the term of the substitution by
the revealed variable in the plain part of the process, thus
exposing an occurrence of the variable that would con-
tradict ¬©x .

3. The left-to-right direction is easy. For the converse, let
P be a process whose frame is not empty. Then there is
x ∈ dom(P). Let us now consider a frame φ closing P ,

the process Q = if x = y then 0 for y /∈ fv(φ, P), and
a closed term M . Then Q |φ |{M/y} � ¬♦� as the test
in Q is still open in x , but P | Q |φ |{M/y} � ¬♦� as
P |φ |{M/y} can “close” x and y and therefore force Q to
reduce to its “else” branch (or its “then” branch in case
the test is rendered true). ��

Finally, as do the corresponding operators of Caires
and Cardelli, the fresh and the hidden quantifiers have the
Gabbay-Pitts property [13]:

Proposition 3 For all name or variable u, formula A, pro-
cess P and valuation v, the following propositions are
equivalent:

1. P, v � Iu. A
2. ∃u′ /∈ fnv(P, v, A). P, v � A[u←u′]
3. ∀u′ /∈ fnv(P, v, A). P, v � A[u←u′]
4. P, v � ¬Iu.¬A

Proof

– (1)⇔ (2): By definition.
– (2)⇒ (3): If P, v � A[u←u′] for u′ /∈ fnv(P, v, A) then,

for any u′′ /∈ fnv(P, v, A) Lemma 4 gives us P[u′ ↔
u′′], v[u′ ↔ u′′] � A[u←u′][u′ ↔ u′′]. As neither u′
nor u′′ appear free in P , v or A, we can conclude that
P, v � A[u←u′′].

– (2)⇐ (3): Trivial.
– (3)⇔ (4): By definition. ��

Proposition 4 For all name or variable u, formula A, pro-
cess P and valuation v, the following propositions are equiv-
alent:

1. P, v � Nu. A
2. ∃u′ /∈ fnv(P, v, A). ∃P ′. P ≡ νu′. P ′ and P ′, v �

A[u←u′]
3. ∀u′ /∈ fnv(P, v, A). ∃P ′. P ≡ νu′. P ′ and P ′, v �

A[u←u′]

Proof Similar to the proof of Proposition 3. ��
3.3 Cryptographic examples

We now propose, on a very basic example, some possible ave-
nues for using the spatial logic to express cryptographic prop-
erties. As usual, we interpret the frame as the history of past
communications: restricted names are nonces or secrets, and
each active substitution holds the content of an emitted mes-
sage. Recall the frame νn, s. � of the introduction, modeling
a situation where an encrypted secret s had been transmitted
using a published public key pk(n) (we assume here the equa-
tional theory axiom dec(enc(x, pk(y)), sk(y)) = x) and con-
sider the frame νn, s. � |φ = νn, s. {enc(s,y)/x } |{pk(n)/y} |φ
for an extra frame φ.
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Following the definition of the appliedπ -calculus, we will
say that the secret s is deducible from this frame if the formula
leak � ∃t. x = enc(t, y) holds; for instance, choosing φ =
{sk(n)/z} as an extra frame would yield such a leak, with t =
dec(x, z) as witness. The formula ∃t.∀t ′.Nn. (t = pk(n) ∧
t ′ 	= sk(n)) asserts that the published key is indeed public,
and that its associated private key is secret. An emitted mes-
sage M represented by an active substitution {M/z} in φ is
part of the cause of a leak if the formula (¬leak)� z ∧ leak
holds.

One could also express static properties about authenti-
cated sessions: in a protocol where each user is assigned a ses-
sion identifier (here, a secret name) used in every subsequent
communication, one may count the number of opened ses-
sions with ∗-conjunctions of the I formula. Indeed, if every
other nonce used by the protocol within a session is gener-
ated from the session identifier, each subframe verifying I

will correspond to a different session.
The dynamic part of the logic allows one to reason about

the execution in isolation of some partners of a given pro-
tocol, or in a context which abides by some policy of the
protocol: the formula Client � Server would describe a pro-
tocol with a client and a server, and Client � Attack would
describe a server that might be attacked by a context that
follows the specification of a genuine client.

As mentioned earlier, our initial motivation was also to
provide a logic that may express some complex forms of
contextual reasoning. Let us illustrate these ideas on the elec-
tronic vote protocol and the coercion-resistance property, fol-
lowing the definitions of Kremer et al. [12]. The vote protocol
involves three kinds of agents: the organizers (administrator,
key managers, and vote collectors), the voters, and the coerc-
ers. Voters share some keys with organizers that are unknown
to the coercer. The coercion-resistance property is a property
of the organizers protocol that says that whatever the coercer
will force the voter to send (interactively), she can never be
sure that the voter voted in a certain way. Receipt-freeness
is defined likewise, except that the coercer is passive, and
can be reduced to a static equivalence check. On the con-
trary, coercion-resistance cannot be reduced to a bisimilarity
check, because here the voter plays against the coercer. Our
expectation is that one may express coercion resistance as a
check of the form

Administrator � Coercer(a)� (CoercedVoter

�Claim(a) ∧ Vote(b)).

In this formula, the adjuncts may express the complex form of
contextual reasoning that causes standard bisimulation tech-
nique to fail. Formula Coercer(a) expresses that the process
is a coercer who wants a voter to vote a, CoercedVoter
expresses that the process is a coerced voter, following
both the vote protocol and the coercer protocol, Claim(a)

expresses that the coercer-voter protocol indeed succeeds,
and Vote(b) expresses that the administrator-voter protocol
succeeds and that the voter voted b. This formula can be
read in English as “whatever the coercer asks the voter to do,
the voter has a strategy to satisfy both the coercer and the
administrator while preserving his vote secret.”

Finally, an important concept in cryptography in gen-
eral and applied π -calculus in particular is deducibility of
terms [1], and it can be expressed very naturally inside our
logic. A term M is said to be deducible in a frame νn. σ which
is written νn. σ � M (the scope of the restriction extends to
M : the notation should be read as νn. (σ � M)), when there
exists a term N such that fn(N ) ∩ n = ∅ and Nσ = M .
This can be expressed in our logic by the following formula,
where s are the secret names occurring in M :

∃t. s � t =M

As the term quantification is placed first, the guessed term
cannot contain the revealed names. Unfortunately, some care
is required when revealing the names n: because of the
α-conversions that may occur, the names we reveal are not
necessarily the ones we intended to reveal. For instance, con-
sider F = νs, s′. {pk(s)/x }{pk(s′)/y}{s′/z} and the question “is
s deducible from F?” Then while the answer is “no”, the
formula ∃t. s � t = s is true, because we can chose to swap
s and s′ by α-conversion and then take t = z = s as witness.

To overcome this, we have to provide additional con-
straints on the names we reveal. If there is only one secret
name in the frame, nothing is required. If the frame is F
and we want to know whether s is deducible, we can use the
formula ∃t. s � (t = s ∧ pk(s)= x) which ensures that we
are talking about the same s than before. A general recipe
for solving the issue is to describe the whole frame νn. {M/x}
within the formula:

∃t.n � (t =M ∧ x1 = M1 ∧ . . . ∧ xn = Mn)

3.4 Fragments

We define two usual fragments of our logic: the extensional
one, which allows one to observe a process via its interac-
tions with some (possibly constrained) environment, and the
intensional one, which allows one to explore the very struc-
ture of the process. We also distinguish between static oper-
ators, which only account for the frame, and dynamic ones,
which account for the whole process. The four fragments are
summed up by the table below, that defines which operators
the formulae of each fragments may be composed of. The
intensional fragment contains the extensional one and the
dynamic one contains the static one; the static extensional
fragment is thus common to all fragments, and the dynamic
intensional one coincides with the whole logic.
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We write AπL for the set of all formulae, Lstat for the
static fragment, and Lstat

ext for the static extensional fragment.

3.5 Logical equivalences and other process equivalences

The next two sections are devoted to the characterization
of the expressiveness of every logical fragment introduced
so far, and in particular to that of the logical equivalences
they induce. A first step in that direction is to notice that the
semantics of the formulae is preserved by structural congru-
ence, by projection over the frame for static formulae, and by
static equivalence for static extensional formulae. We finish
this section by proving these properties.

Lemma 5 P � A and P ≡ Q implies Q � A.

Proof We prove this by induction on the structure of the
formula.

– U = V : As structural congruence is included in static
equivalence [2], P ≈s Q, so Q, v � U = V .

– Iu. A: If P, v � Iu. A then, by definition and Lemma 3,
∀u′ /∈ fnv(P, v, A). P, v � A[u←u′]. In particular, we
can pick u′′ /∈ fnv(P, v, A) ∪ fnv(Q) such that P, v �
A[u←u′′]. By induction hypothesis, Q, v � A[u←u′′],
so ∃u′ /∈ fnv(Q, v, A). Q, v � A[u←u′], i.e. Q, v �
Iu. A.

– Nu. A:

P, v � Nu. A ⇐⇒ ∃u′ /∈ fnv(P, v, A). ∃P ′. P ≡ νu′. P ′

and P ′, v � A[u←u′]
⇐⇒ ∃u′ /∈ fnv(P, v, A). ∃P ′. Q ≡ νu′. P ′

and P ′, v � A[u←u′]
⇐⇒ ∃u′ /∈ fnv(Q, v, A). ∃P ′. Q ≡ νu′. P ′

and P ′, v � A[u←u′]
⇐⇒ Q, v � Nu. A

The second equivalence uses P ≡ Q and the third one
uses Lemma 4.

All other cases are straightforward. ��
Lemma 6 For every formula A of Lstat, P � A iffφ(P) � A.

Proof The proof is done by induction on the formula. All
the cases are straightforward, except for frame composition
and adjunct. Let us detail the case of ∗: P � A1 ∗ A2 if and
only if there are P1, P2 such that P ↔ P1 ∗ P2 and Pi � Ai .

By Lemma 5, we may assume P ≡ P1 ∗ P2. By induction
hypothesis, this is true if and only if φ(Pi ) � Ai and by
definition of the frame composition, φ(P) ≡ φ(P1) |φ(P2)

which lets us conclude. ��
Lemma 7 For every formula A of Lstat

ext , φ ≈s
s ψ and φ � A

implies ψ � A.

Proof Let us prove by induction on the formula A that for
all frames φ ≈s

s ψ and all valuations v,

φ, v � A implies ψ, v � A.

– The cases of ∅, ∃t. A,¬A and A1 ∧ A2 are straight-
forward.

– If φ, v � U = V then φ � Uv= V v so that by defini-
tion of static equivalence ψ � Uv= V v and thus ψ, v �
U = V .

– If φ, v � A � x , then x ∈ dom(φ) and (νx . φ), v � A.
Since φ ≈s

s ψ , x ∈ dom(ψ) and νx . φ ≈s
s νx . ψ so

by induction hypothesis (νx . ψ), v � A, yielding ψ, v �
A � x . The case for A � n is similar.

– If φ, v � A −−∗ B then for all φ′, φ′′, φ′′ ↔ φ ∗ φ′ and
φ′, v � A implies φ′′, v � B. Since the plain parts are
all null, this is equivalent to φ′′ ≡ φ |φ′, and thus the
induction hypothesis applies for ψ |φ′ ≈s

s φ |φ′, yield-
ing (ψ |φ′), v � B and then ψ, v � A −−∗ B. ��

4 Spatial logic applied to frames

In this section, we establish that logical equivalences induced
by the static fragments match static equivalences that have
originally been proposed for the applied π -calculus: struc-
tural congruence for frames for the intensional fragment, and
static equivalence for the extensional fragment.

4.1 Intensional characterization

The formula Subst(x =M) below characterizes processes
of the form {M/x }, for a given x and a given M . The other
two will be useful for our quantifier elimination procedure in
Sect. 6.

public_frame � ¬(� ∗ (I ∧ Nx . I))

Subst(x) � public_frame ∧ (∅� x)

Subst(x =M) � ∅� x ∧ x = M

Lemma 8 For each process P, variable x and term M such
that E � x = M, we have:

– P � public_frame iff φ(P) ≡ {M/x} for some variables
x and terms M;

– P � Subst(x) iff φ(P) ≡ {N/x } for some term N;
– P � Subst(x =M) iff φ(P) ≡ {M/x }.
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Proof Observe first that if P � I∧Nx . I then P � I, so either
φ(P) is a single public active substitution or φ(P) ≡ νn.
σ where σ cannot be split into σ1 and σ2 that do not share
names in n. So proving the formula amounts to prove that
a frame of the first form does not satisfy Nx . I, whereas a
frame of the latter form does.

Assume first that P is of the form {M/x }, and let us show
that P � Nx . I. Let P ′ be any arbitrary process such that P ≡
νy. P ′. Then P ′ ≡ νn. ({M ′

/x } |{N/y})with M ′[y←N ] = M ,
thus P ′ ≡ {M/x } | νn. {N/y}, which shows that it does not
satisfy I.

Assume now that φ(P) is not public. Then there is n such
that φ ≡ (νn. φ1), n ∈ fn(φ1) and νn. φ1 � I. Then, for
x /∈ dom(P), we have νn. φ1 ≡ νx, n. (φ1 |{n/x }) so νn. φ1 �
Nx . I. This illustrates one peculiar behavior of variable rev-
elation: it may reveal a substitution under the scope of an
arbitrary number of name restrictions.

The other two formulae are straightforward. Observe that
the hide operator is used in conjunction with the ∅ predicate
to state both x ∈ dom(P) and dom(P) ⊆ {x}. ��

Once this basic block is defined, one can easily build up
a formula capturing processes in a certain structural congru-
ence class, as expressed by the following theorem:

Theorem 1 (Characteristic formulae for frames) For all
frames φ there exists a formula Fφ in Lstat such that for all
extended processes P, P � Fφ if and only if φ(P) ≡ φ.

Proof One can build a frameφ′ ≡ φ constructed using frame
compositions instead of parallel compositions. A character-
istic formula for φ′ can then be built up inductively in a
straightforward manner, using the logical frame composition
and name and variable revelations. ��

For example, a characteristic formula for our running
example’s frame νn, s. � is

Fνn,s. � = (Ns.Subst(x = enc(s, y))) ∗ (Nn.Subst(y= pk(n))).

Together with Lemma 5, this theorem gives a precise defini-
tion of logical equivalence induced by Lstat on frames:

Corollary 1 (Logical equivalence in Lstat) For all extended
processes P and Q, P and Q satisfy the same formulae of
Lstat if and only if φ(P) ≡ φ(Q).

4.2 Extensional characterization

We will show in this section that logical equivalence for
Lstat

ext , or extensional equivalence, coincides with strong static
equivalence and that, given a closed frame φ, one can con-
struct a formula F≈s

φ characterizing the equivalence class of
φ. The right-to-left inclusion is given by Lemma 7. For its
converse, let us first remark that one can characterize frames

whose domains are x using the formula ∅� x. Then, one
can define a characteristic formula F≈s

σ for a public frame
σ = {M/x} of size n:

F≈s
σ � ∅� x ∧

n∧

i=1

xi = Mi .

Let φ be a closed frame νn. σ with σ a public frame, and
consider the formula

(νn. σ ) forces U = V � F≈s
σ −−∗ (

(U = V )� n
)
.

Then ∅, v � φ forces U = V if and only if φ, v � U = V .
Moreover, one can internalize an assumption ∅ � A in the
logic: a process P satisfies (∅ ∧ ¬A) −−∗ ⊥ if and only if
∅ � A. We may then derive characteristic formulae for static
equivalence on closed frames:

F≈s
φ � ∅� x ∧ ∀t, t ′.

(
(∅ ∧ ¬φ forces t = t ′) −−∗ ⊥)⇔ t = t ′.

Theorem 2 (Formulae for static equivalence) For all
closed frames φ, ψ , ψ � F≈s

φ if and only if φ ≈s ψ .

Proof See discussion above. ��
Using this theorem and Lemma 7, one concludes that two

closed frames φ and ψ satisfy the same formulae of Lstat
ext if

and only if φ ≈s ψ , and this extends to the general case by
using strong static equivalence:

Theorem 3 (Logical equivalence in Lstat
ext ) For all extended

processes P and Q, P and Q satisfy the same formulae of
Lstat

ext if and only if P ≈s
s Q, and characteristic formulae for

these equivalence classes are derivable.

Proof Let us consider two non-closed, logically equivalent
frames φ1 and φ2. Then, for any closing evaluation con-
text C ≡ νn. ( · | σ), they should both satisfy the formula
Fσ −−∗ F≈s

C[φ1]� n. Thus, for all closing evaluation con-

texts C , C[φ2] � F≈s
C[φ1] so C[φ2] ≈s C[φ1]. This shows

φ1 ≈s
s φ2, so logical equivalence on frames is indeed strong

static equivalence on frames (and thus on processes, by
Lemma 6). ��

5 Logical characterization of processes

In this section we study the logical equivalence induced by
the dynamic intensional fragment. More precisely, we write
P =L Q if P and Q cannot be told apart by a AπL formula,
and look for a better understanding of=L . We first introduce
a notion of intensional bisimulation, and prove it sound with
respect to=L . We then establish that=L is not a congruence,
which reinforces our choice of adding rules for adjuncts in
the definition of intensional bisimulation. We then introduce
a notion of relaxed structural congruence ≡′, and show that
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it is an intensional bisimulation. Finally, we establish several
completeness results using characteristic formulae, either by
restricting the equational theory, or by restricting the set of
considered processes, which altogether entails that=L is ≡′
in these particular cases.

5.1 Intensional bisimilarity and its soundness

We introduce a notion of intensional bisimulation that aims
at characterizing =L by an Ehrenfeucht-Fraïssé game.

Definition 10 (Intensional bisimulation) A relation R is an
intensional bisimulation if R is symmetric and the following
assertions hold for all (P, Q) ∈ R:

1. φ(P) ≡ φ(Q);
2. if (P)p ≡ 0 then (Q)p ≡ 0;
3. if u ∈ fnv(P) then u ∈ fnv(Q);
4. if there is P ′ such that P ≡ νu. P ′ then there is Q′ such

that Q ≡ νu. Q′ and P ′ R Q′;
5. for † ∈ {∗, �}, for all P1, P2, if P ↔ P1 † P2, then there

are Q1, Q2 such that Q ↔ Q1 † Q2 and Pi R Qi ;
6. for † ∈ {∗, �}, for all P1, P ′, if P1 ↔ P† P ′, then there are

Q1, Q′ such that Q1 ↔ Q † Q′, P ′ R Q′ and P1 R Q1;
7. if there is P ′ such that P→P ′ then there is Q′ such that

Q→Q′ and P ′ R Q′;
8. νu. P R νu. Q.

Let us stress the fact that no equivalents of conditions 6 and
8 occur in the original intensional bisimulation [27]. Fortu-
nately, intensional bisimilarity was a congruence in that case
and as a consequence, conditions 6 and 8 were admissible.
Note moreover that conditions 6 and 8 do not entail that R
is a congruence (even with † = |).
Proposition 5 (Soundness) Let R be an intensional bisim-
ulation. Then R⊆=L .

Proof Let A be some formula. We prove by induction on
A that for all P, Q, v, if P, v � A and (P, Q) ∈ R then
Q, v � A.

– A1 ∧ A2: immediate by induction.
– ¬A: suppose Q � A, then by induction (and symmetry

of R) P � A: contradiction.
– ∅ or U = V : immediate by condition 1.
– 0: immediate by condition 2.
– ©u: immediate by condition 3.
– ∃t.A: then there is v′ such that P, v′ � A and the induc-

tion applies for A.
– ♦A: immediate by condition 7 and induction.
– Nu. A: immediate by condition 4 and induction.
– A � u: immediate by condition 8 and induction.

– A1 � A2: then P ↔ P1 � P2 so by condition 5 there are Q1,
Q2, such that Q ↔ Q1 � Q2 and Pi R Qi . We conclude
by induction.

– A1 ∗ A2: similar.
– A1 � A2: let Q1, Q2 be such that Q2 ↔ Q � Q1 and Q1 �

A1. By condition 6 there are P1, P2 such that Pi R Qi .
By induction P1 � A1 and as P � A1 � A2, P2 � A2.
Another use of the induction hypothesis lets us conclude
Q2 � A2.

– A1 −−∗ A2: similar. ��

5.2 Non-congruence of logical equivalence

We now give two examples of intensional bisimulations that
show that logical equivalence is strictly coarser than struc-
tural congruence, and is not even a congruence in general.
These bisimulations are based on the notion of shift func-
tions. A unary function symbol f is called a shift function if
there are unary function symbols g1, . . . , gn such that E �
f (g(x)) = g( f (x)) = x . In the following, we assume some
fixed shift function f (we will later on consider the case of the
equational theory of trees, for which there is no such func-
tion). In cryptographic terms, M and f (M) represent two
different pieces of information that are deducible one from
another by linear deduction, which explains why they may
be indistinguishable for some notion of observer matching
our logic.

Let a be some fixed channel name, f a shift function and
g unary functions such that E � f (g(x)) = g( f (x)) = x .
We consider a transformation shift f

a (P) that intuitively shifts
all term communications of P on channel a using function
f . This can be viewed of as a reversible noise introduced
globally on all communications over a.

Definition 11 (Shifted channels) The transformation shift f
a

is inductively defined as a morphism for all syntactic opera-
tors but term inputs and outputs on a, for which it is defined
as follows:

shift f
a (ā〈M〉.P) � ā〈 f (M)〉.shift f

a (P)

shift f
a (a(x).P) � a(x).shift f

a (P[x←g(x)]).
For instance, shift f

a (ā〈M〉 | a(x).ā〈h(x)〉) = ā〈 f (M)〉
| a(x).ā〈 f (h(g(x)))〉.
Proposition 6 The symmetric closure of R= {(P, shiftaf
(P)), P ∈ P} is an intensional bisimulation.

To prove this, we first derive some technical lemmas.

Lemma 9 (shiftaf (P))[x←M] = shiftaf (P[x←M]).
Proof By induction on P:

– Homomorphic cases are straightforward;
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– For outputs on a:

(shiftaf (ā〈N 〉.P))[x←M]
= (ā〈 f (N )〉.shiftaf (P))[x←M] by definition of shift

= ā〈 f (N [x←M])〉.((shiftaf (P))[x←M])
= ā〈 f (N [x←M])〉.(shiftaf (P[x←M])) by induction

= shiftaf ((ā〈N 〉.P)[x←M]) by definition of shift

– For inputs on a (y is taken fresh for M, x):

(shiftaf (a(y).P))[x←M]
= (a(y).shiftaf (P[y←g(y)]))[x←M] by definition of shift
= a(y).((shiftaf (P[y←g(y)]))[x←M])
= a(y).shiftaf (P[y←g(y)][x←M]) by induction
= a(y).shiftaf (P[x←M][y←g(y)])
= shiftaf ((a(y).P)[x←M]) by definition of shift

��
Lemma 10 If P ≡ Q, then shiftaf (P) ≡ shiftaf (Q).

Proof The reasoning is done by induction on the proof that
P ≡ Q. The only cases that require some care are:

Alias νx . ({M/x } | P) ≡ P[x←M]
Subst {M/x } | P p ≡ {M/x } | P p[x←M]
Let us detail the Alias case:

shiftaf (νx . ({M/x } | P))
= νx . ({M/x } | shiftaf (P)) by definition of shift
≡ (shiftaf (P))[x←M]
= shiftaf (P[x←M]) by Lemma 9

The case for Subst is similar. ��
Lemma 11 shiftaf (shiftag(P)) ≡ P.

Proof By induction on P:
– Homomorphic cases are straightforward;
– For outputs on a:

shiftaf (shiftag(ā〈N 〉.P))
= shiftaf (ā〈g(N )〉.shiftag(P))
= ā〈 f (g(N ))〉.shiftaf (shiftag(P))
≡ ā〈N 〉.shiftaf (shiftag(P))
≡ ā〈N 〉.P by induction;

– For inputs on a (y is taken fresh for M, x):

shiftaf (shiftag(a(x).P))
= shiftaf (a(x).shiftag(P[x← f (x)]))
= a(x).shiftaf ((shiftag(P[x← f (x)]))[x←g(x)])
= a(x).shiftaf (shiftag(P[x← f (x)][x←g(x)]))

by Lemma 9
= a(x).shiftaf (shiftag(P))
= a(x).P by induction.

��

Lemma 12 For † in {∗, � }, if P ↔ P1 † P2 then shiftaf (P)↔
shiftaf (P1) † shiftaf (P2).

Proof Straightforward by definition of ∗, �. ��
Lemma 13 If P → P ′ then shiftaf (P)→ shiftaf (P

′).

Proof The proof is by case analysis on the contracted redex:

– Channel communication: P ≡ νn. ach(n).P1 | āch〈b〉.
P2 | P3, and P ′ ≡ νn. P1[n←b] | P2 | P3. Straightfor-
ward from definition of shiftaf .

– Branching test: P ≡ νn. if M = N then P1 else P2 | P3

and P ′ ≡ νn. Pi | P3 for i ∈ {1, 2}. Straightforward (note
that shifting does not affect the test M = N ).

– Term communication: similarly to channel communica-
tion, P ≡ νn. P3 | a(x).P1 | ā〈M〉.P2 and
P ′ ≡ νn. P1[x←M] | P2 | P3. Some care is then nec-
essary in the application of shiftaf :

shiftaf (P) ≡ νn. a(x).shiftaf (P1[x←g(x)])
| ā〈 f (M)〉.shiftaf (P2) | shiftaf (P3)

→ νn. (shiftaf (P1[x←g(x)]))[x← f (M)] |
shiftaf (P2) | shiftaf (P3)

= νn. shiftaf (P1[x←g(x)][x← f (M)]) |
shiftaf (P2) | shiftaf (P3)

= νn. shiftaf (P1[x←M]) |
shiftaf (P2) | shiftaf (P3)

≡ shiftaf (P
′)

��

We are now ready to prove Proposition 6.

Proof (of Proposition 6) Let R = {(P, shiftaf (P)), P ∈ P},
and let us prove that the symmetric closure of R is an inten-
sional bisimulation. Let (P, Q) be some pair in R:

1. φ(P) ≡ φ(Q): by definition, shifting does not affect the
frame.

2. If P p ≡ 0 then Q p ≡ 0: straightforward.
3. If u ∈ fnv(P) then u ∈ fnv(Q): straightforward.
4. If there is P ′ such that P ≡ νu. P ′ then there is Q′ such

that Q ≡ νu. Q′ and P ′ R Q′: either P = shiftaf (Q)
or Q = shiftaf (P). Assume first Q = shiftaf (P). Set
Q′ = shiftaf (P

′), then by P ≡ νu. P ′ and Lemma 10,
Q ≡ νu. Q′, which ends the proof. Assume now P =
shiftaf (Q); then Q = shiftag(P) by Lemma 11, so set-
ting Q′ = shiftag(P

′) entails both Q ≡ νu. Q′ and P ′ =
shiftaf (Q

′), which ends the proof.
5. For † ∈ {∗, �}, for all P1, P2, if P ↔ P1 † P2, then there

are Q1, Q2 such that Q ↔ Q1 † Q2 and Pi R Qi : either
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P = shiftaf (Q) or Q = shiftaf (P). Assume first Q =
shiftaf (P). Set Qi = shiftaf (Pi ), then by P ≡ P1†P2 and
Lemma 12, one gets Q ≡ Q1 † Q2, which ends the proof.
The other case is treated similarly using Lemma 11.

6. For † ∈ {∗, �}, for all P1, P ′, if P1 ↔ P † P ′ then there are
Q1, Q′ such that Q1 ↔ Q † Q′, P ′ R Q′ and P1 R Q1:
the proof is similar to previous case.

7. If there is P ′ such that P→P ′ then there is Q′ such that
Q→Q′ and P ′ R Q′: straightforward by Lemma 13.

8. νu. P R νu. Q: straightforward. ��

Propositions 5 and 6 have some quite unexpected conse-
quences on logical equivalence. First, it entails the following
logical equivalences:

ā〈0〉 =L ā〈 f (0)〉 (1)

ā〈0〉 | b̄〈0〉 =L ā〈 f (0)〉 | b̄〈0〉 (2)

But the noise introduced on a channel should affect all of
its communications, as it could otherwise be observed; in
particular, it can be proved that:

ā〈0〉 | ā〈0〉 	=L ā〈 f (0)〉 | ā〈0〉 (3)

which, together with (1) shows that =L is not a congruence.

Proposition 7 (Non-congruence) Logical equivalence is
not a congruence.

Proof We prove that logical equivalence cannot be a con-
gruence in the general case. In order to do so, we consider
an equational theory with a shift function f . We introduce
below a formula that will discriminate between the processes
P = ā〈 f (a)〉 | ā〈a〉 and Q = ā〈a〉 | ā〈a〉. If =L was to be a
congruence P and Q would have to satisfy the same formulae
as Proposition 6 shows that ā〈 f (a)〉 =L ā〈a〉.

For this purpose, we build a formula that plays the fol-
lowing scenario: place a process that listens on a and then
branches depending on the input term. With P , there is such
a process that may take either branches depending on what
output on a it interacted with, but with Q the same branch
will be taken in both cases.

Let us first characterize outputs of terms:

output � single ∧ (single �♦0) ∧Ix . (Subst(x)

−−� �[©x])
Lemma 14 For all processes P, P � output iff there exists
M and a such that P ≡ ā〈M〉.
Proof This formula is true of a process P if P is guarded
and can, together with another guarded process, reduce to
the null process. Thus, it has to be a communication of some
sort or a conditional; but if P was a conditional, it could not
reduce to null when in parallel with another guarded process
(there would still be one of the processes left), so P has to be

a communication, followed by 0. The last part of the formula
states that one may unapply some active substitution in P ,
so P has to be an output of term. The converse is immediate.

��
The following formula characterizes a single input fol-

lowed by a conditional that depends on the result of the input:

test_input � single ∧ (output �♦♦1) ∧ (output �♦♦0)

Lemma 15 For all processes P, P � test_input iff there
exists a and a test test(x) such that there exist terms M
and N that respectively validate and invalidate test(x),
and either P ≡ a(x).if test(x) then Q else 0 or P ≡ a(x).
if test(x) then 0 else Q for some Q satisfying 1.

Proof If P satisfies test_input then P is guarded and,
together with an output process, may perform two reduc-
tion steps resulting in the null process or a guarded process.
If the first reduction step was performed inside P in the first
case, then it would be the same in the second case. The sec-
ond reduction step will then have to involve both processes
in order to be able to yield the null process, but then the
continuation of P will have to satisfy both 1 and 0 which is
impossible.

Hence, the only solution is for P to be a conditional
guarded by an input, and the test has to depend on the result
of the input given the two different behaviors that one may
observe depending on the output atom placed alongside P .
The converse is immediate. ��

We are now ready to give a formula that may discriminate
between P and Q:

A � test_input � ((1 �♦♦1) ∧ (1 �♦♦0))

We have P � A: for R = a(x).if x = a then R′ for some
process R′ � 1, it holds that R � test_input, ā〈a〉 | R �
♦♦1 and ā〈 f (a)〉 | R � ♦♦0. On the other hand, no process
satisfying test_input may produce two different reduction
sequences when placed alongside Q as it outputs twice the
same term. Hence, Q � A and logical equivalence is not a
congruence. ��

Such a phenomenon was already observed for the spatial
logic of CCS [9], where =L coincided with structural con-
gruence up to injective renaming. Non-congruence makes the
proof of the converse of Proposition 5 much harder than the
Howe-like method used e.g. by Sangiorgi [27], even in the
very simple case of CCS. Indeed, a global quantification over
the shift function used for each channel should be expressed
at the logical level, which calls on for a quantifiers elimina-
tion result; despite some progress in that direction (see next
section), we did not succeed in using them to prove that =L

is an intensional bisimulation.
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5.3 Relaxed structural congruence

Let now ∼ be the smallest equivalence on tests M = N such
that:

Symmetry M = N ∼ N = M
Shift M = N ∼ f (M) = f (N )

where f is a shift function. Let moreover ≡′ be the smallest
congruence extending ≡ with the following axiom:

Test
if test
then P p else Q p ≡′ if test ′

then P p else Q p

when test ∼ test ′. Then the following result can be estab-
lished:

Proposition 8 (Soundness of ≡′) ≡′ is an intensional
bisimulation.

To prove this, let us first derive some lemmas. We write
P ∼ P ′ for the smallest congruence that satisfies the axiom
Test only, so ≡′ is (≡ ∪ ∼)∗.
Lemma 16 If P ∼ Q, then Pσ ∼ Qσ for all public frames
σ (resp. for all name substitutions).

Proof Straightforward from the definition of ∼. ��
Lemma 17 If P[x←M] ∼ Q then there is Q′ such that
Q ≡ Q′[x←M] and P ∼ Q′.

Proof We reason by case analysis on the rule of test replace-
ment that is used in P ∼ Q:

– Symmetry: straightforward.
– Shift: P[x←M] must contain a test f(N1)= N2 that

is replaced by N1= g(N2) in Q. If M is a subterm
f1(N1) of f(N1) one may possibly have the test f2(x) =
N2 in P , with f = f2f1 (for simplicity, we omit
to consider that M may also be a subterm of N2).
Then Q is congruent to the process Q0 identical to Q
except for the test N1= g(N2) of Q that is replaced by
g(f2(f1(N1)))= g(N2). Then Q0 = Q′[x←M] where
Q′ contains the test g(f2(x))= g(N2), so P ∼ Q′. ��

Lemma 18 P ≡∼ Q if and only if P ∼≡ Q.

Proof Test replacement commutes with all congruence
rewriting. It is straightforward for most of the cases, but the
cases of Subst and Rewrite. For these two cases, Lem-
mas 16 and 17 are used. ��

We can now prove the Proposition 8.

Proof (of Proposition 8) Since≡ is an intensional bisimula-
tion, it is sufficient to prove that∼ is an intensional bisimula-
tion up to ≡. It is straightforward that ∼ satisfies conditions

1, 2, 3, and 8. It is also straightforward that it satisfies 4 when
u is a name. By Lemma 16, it also satisfies 7. Let us detail
the last cases: condition 4 for variables, and conditions 5
and 6.

4. Assume P ∼ Q and P ≡ νx . P ′. Then P ′ ≡
νn. {M/x } | P ′′ with P ′′[x←M] ≡∼ Q. By Lemma 17,
there is Q′′ such that Q ≡ νx . νn. ({M/x } | Q′′) and
P ′′ ∼ Q′′. Then P ′ ∼ Q′ for Q′ = {M/x } | Q′′, which
shows condition 4.

5. Assume P ∼ Q and P ↔ P1 � P2. Then by Lemma 18
there is Q′, φ, P ′1, P ′2 such that Q ≡ Q′ and Q′ ∼
νn1,n2. φ | P ′1 | P ′2. By definition of ∼ there is then
Q′1, Q′2 such that Q′ = νn1, n2. φ | Q′1 | Q′2 and P ′i ∼
Q′i , which shows condition 5 for ||. The ∗ case is
analogous.

6. Assume P ∼ Q and P1 ↔ P � P ′. Then P1 ∼ Q � P ′,
which ends the proof by taking Q1 = P1. ��

5.4 Completeness and characteristic formulas

As mentioned earlier, we did not succeed in proving a com-
pleteness result in the general case. However, we can char-
acterize logical equivalence in at least two cases:

– when the processes are restricted to those of the
π -calculus;

– when the equational theory is the one of finite trees.

The proof relies on defining characteristic formulas for
≡′, which has been proved to be included in=L above. Some
parts of the proof do not use the hypothesis that E is the equa-
tional theory of finite trees, hence the hypothesis is explicitly
mentioned for the results that depend on it.

5.4.1 Formulae for π -calculus processes

Consider the formulae of Fig. 2. Formula testch(a, b) char-
acterizes the processes of the form ā〈b〉 or b̄〈a〉, and is then
used to characterize communication primitives.

Lemma 19 P � atom(a, b) iff one of the conditions below
is satisfied:

1. P ≡ āch〈b〉;
2. P ≡ b̄ch〈a〉;
3. P ≡ ā〈M〉 and b ∈ fn(M);
4. P ≡ b̄〈M〉 and a ∈ fn(M).

Proof Straightforward. ��
Lemma 20 P � testch(a, b) iff P satisfies conditions 1 or
2 of Lemma 19.
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Fig. 2 Formulae for name
communications

Fig. 3 Formulae for terms
communications

Proof P satisfies 3 or 4 iff it is congruent to νx . ({M/x } | c̄〈x〉)
for some c ∈ {a, b}. ��
Lemma 21 P � inch(a, b).A iff there is P ′ such that P ≡
ach(b′).P ′ and P ′ � A[b←b′] for some b′ 	∈ fn(A).

Proof Assume P � inch(a, b).A. Then P is single and dead-
locks, but P | c̄ch〈d〉 reduces. So P must be an input. More-
over, {c, d} = {a, b′} with b′ 	∈ fn(P), so a = c and b′ = d.
The other implication is straightforward. ��
Lemma 22 P � outch(a, b).A iff there is P ′ such that P ≡
āch〈b〉.P ′ and P ′ � A.

Proof We have:

P � outch(a, b).A

⇔ P is single and there exists Q such that

P | ach(c).d̄ch〈e〉→Q and Q � testch(b′, b) � A

for some {d, e} = {c, b′} such that c, b′ 	∈ fnP

⇔ P ≡ āch〈 f 〉.P ′ for some f, P ′ and

P ′ |(d̄ch〈e〉)[c← f ] � testch(b′, b) � A for some

{d, e} = {c, b′} and c, b′ 	∈ fn(P)

⇔ P ≡ āch〈b〉.P ′ and P ′ � A.

��We call a plain process a π -calculus process if it does
not contain any term communication or branching. Then, a
direct consequence of the two previous lemmas is this first
characterization of logical equivalence:

Theorem 4 For every π -calculus process P, there is a for-
mula FP ∈ AπL such that for every extended process Q,
Q | FP if and only if Q ≡ P.

Proof By induction over P (see also proof of Theorem 5). ��
This result and the characteristic formulae shown in Fig. 2

are very similar to what was already known in the case of the
π -calculus [16].

5.4.2 Formulae under the empty equational theory

In this section, we assume that E is the equational theory of
finite trees, and we establish the following result:

Theorem 5 Let E be the theory of finite trees. Then for every
process P there is a formula FP ∈ AπL such that for all pro-
cesses Q, Q | FP if and only if Q ≡′ P. In particular, ≡′
is the same as =L .

Characterizing term communications The first widget we
need is a formula ©p=x that characterizes the processes where
x does not occur as a strict subterm of one of the terms appear-
ing in the plain part of the process. It is then quite simple to
characterize processes ā〈x〉. From this point on, we may also
characterize ā〈M〉 by revealing x in νx . ({M/x } | ā〈x〉), and
from there all communications can be characterized. Figure 3
presents the whole construction.

Lemma 23 P � ©p=x iff x ∈ fn(P) and for all terms M
appearing in P, either x 	∈ fv(M), or M = x.

Proof We have:

P � ©p=x

⇔ x ∈ fn(P) and there is no M, z, P ′ such that

P ≡ νz. ({M/z} | P ′), M 	= x ,

x ∈ fv(M), and z ∈ fv(P ′)
⇔ x ∈ fn(P) and there is no M appearing in P such that

M 	= x and x ∈ fv(M).

��
Lemma 24 P � out(a, x) iff P ≡ ā〈x〉.
Proof We have:

P � out(a, x)

⇔ P is single, there is Q single such that

P | Q→0,a ∈ fn(P), x ∈ fv(P),

and x is not a strict subterm

⇔ P ≡ com.0 for some communication primitive,

a ∈ fn(P), x ∈ fv(P),

and x is not a strict subterm

⇔ P ≡ ā〈x〉
��
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Fig. 4 Formulae for
conditionals

Lemma 25 P � in(a, x).A iff there is P ′, x ′ such that P ≡
a(x ′).P ′, x ′ 	∈ fv(A), and P ′ � A[x←x ′].
Proof Straightforward from previous lemma. ��
Lemma 26 P � out(a,M).A iff there is P ′ such that P ≡
ā〈M〉.P ′ and P ′ � A.

Proof Straightforward from previous lemma. ��
To summarize, the following result result holds for non-

branching processes:

Theorem 6 Let E be the theory of finite trees. Then for every
non-branching process P, there is a formula FP ∈ AπL
such that for all extended processes Q, Q | FP if and only
if Q ≡ P.

Proof By induction over P (see also proof of Theorem 5). ��

Characterizing conditionals We can use the same tech-
nique to characterize the test of conditionals, as any con-
ditional is congruent to νx, y. (if x = y then P else Q |{M/x }
|{N/y}). However, we need to be slightly more careful when
we reveal variables x, y, since we do not want them to affect
P and Q. For this purpose, we need to characterize the vari-
ables that appear inside one of the branches of a conditional
but not inside the test: this is the purpose of formula ©brx .
We have that P � ©brx iff P ≡ if M = N then P1 else P2

with x ∈ fv(P1, P2) and x /∈ fv(M, N ).

Lemma 27 P � if iff there is M, N , P1, P2 such that P ≡
if M = N then P1 else P2.

Proof Conditional is the only construct that can perform one
step of reduction on its own. Moreover, it can always do so
when the process is closed. ��
Lemma 28 P � ©brx iff there is M, N , P1, P2 such that
P ≡ if M = N then P1 else P2, x ∈ fv(P1, P2) and x /∈
fv(M, N ).

Proof If P � ©brx , then P ≡ if M = N then P1 else P2 and
there is φ with x /∈ fv(φ) such that φ | P � ♦©x , that is
φ | P1 � ©x or φ | P2 � ©x . The result follows in either
case, since x /∈ fv(φ).

The converse is obtained by revealing the substitution
{M/z} and adding with −−� the frame {N/z} if x ∈ fv(P1),
thus making the test true, or {n/z} |φ′ where φ′ closes N and
n is a fresh name if x ∈ fv(P2), thus making the test false. ��

Lemma 29 P � if(M = N , A, B) iff there are M,N,P1,P2

such that P ≡ if test then P1 else P2 with test ∈ {M = N ,
N =M}, P1 � A and P2 � B.

Proof Straightforward. ��
Proof of Theorem 5. Assume first that P is a plain process.
We define FP by induction on P:

FυP � Nu.FP F0 � ∅ ∧ 0

FP1 | P2 � FP1 � FP2

Fif M=N then P1 else P2 � if(M = N ,FP1 ,FP2)

Fach(b).P � inch(a, b).FP Fāch〈b〉.P � outch(a, b).FP

Fa(x).P � inch(a, x).FP Fā〈M〉.P � out(a,M).FP

Assume now P is a process with a frame. Then P is always
congruent to a process of the form νn. φ |(P)p, for which
a characteristic formula is Nn.Fφ[F(P)p ], which ends the
proof. ��

6 Elimination of term quantification

6.1 Intuitions

This section is devoted to the construction of a translation of
any formula A of AπL into a logically equivalent one that
does not make use of term quantification, thus proving the
following theorem:

Theorem 7 (Term quantification elimination) For every
closed formula A ∈ AπL, there is a formula �A� ∈ AπL\{∃}
such that A ⇔ �A� is valid.

�A� is defined by structural induction on the formula A.
It leaves most of A’s structure unchanged, but replaces every
subformula ∃t. A′ with a formula of the form Nx . �A′�{t→x}.
Hence, the N quantifier is in charge of picking a term M for
the new active substitution {M/x } it reveals, thus mimicking
term quantification. Further occurrences of t in the formula
are then replaced by x . The successive variable revelations
inductively build up an environment frame placed alongside
the actual process that records witnesses of term quantifica-
tions. This environment frame calls for special care during
the translation of a formula. For instance, we need to copy it
on either sides of a ∗ operator, and on the left-hand side of
a−−∗. Moreover, to follow the semantics of ∃t. A, one has to
make sure that this substitution is not created under hidden
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names of the process and does not mention other substitutions
belonging to the environment frame.

To keep track of this, the translation will have to be of
the form �A�v where v is a valuation {t→x} that associ-
ates previously encountered term variables to their corre-
sponding variables in the domain of the environment frame.
The translation thus starts with an empty valuation: �A� �
�A�∅, and the valuation grows each time a term quantifica-
tion is encountered. We write e for the environment {x→M}
corresponding to the environment frame �e� � {M/x}. More-
over, we will only consider well-formed environments e and
translations �A�v where fv(A,M)∩x = ∅. Finally, when the
domain of e matches the codomain of v, we write e ◦ v for
the valuation {t→M}.

Before going through the technicalities of the proof, let us
first give the proof sketches for the translations of ∃t. A and
A1∗ A2. The formula�v enforces, at each step of the transla-
tion, the wellformedness of the environment frame and will
be defined later on. The actual translation of term quantifica-
tion is as follows, where xn+1 /∈ fv(A, v):

�∃t. A�v � �v ∧ Nxn+1. �A�v{t→xn+1}.

It merely creates a fresh substitution, as the inductive
hypothesis on �A�v{t→xn+1} will suffice to enforce the well-
formedness of the new environment frame.

The translation of frame composition copies the valuation
frame in order for it to be present alongside both subprocess-
es. It is performed as follows:

�A1 ∗ A2�v � �v ∧Ix′. (�v′ ∧
∧

x∈x

¬©x ∧ Subst(x′))

−−�
(∗n

i=1(Subst(xi , x ′i ) ∧ x ′i = xi ) ∗ �
∧�A1�v ∗ �A2�v′

)

.

The idea is to add a new environment frame over fresh
variables x′. The left-hand side of −−� ensures that this is a
valid environment which does not make use of the variables
of the previous environment. This avoids the possibility of
creating active substitutions of the form {x/x ′ } which would
not make sense once we separate them from the first environ-
ment. The right-hand side makes sure that both environments
are the same and distributes them over the translations of sub-
formulae A1 and A2.

6.2 Technical lemmas

Let us first enunciate three lemmas:

Lemma 30 For all processes Q, Q′ such that fv(Q, Q′) ∩
{x} = ∅, if Q |{M1...Mn/x1...xn } ≡ Q′ |{M ′

1...M
′
n/x1...xn } for some

terms M,M′, then M = M′ and Q ≡ Q′.

Proof Q ≡ Q′ is immediate since the processes do not
mention variables in x. According to structural congruence
rules for public frames, M and M′ have to be equal term by
term. ��

Lemma 31 If P ≡ σ | P ′ for some public frame σ and
extended process P ′ such that fv(P ′) ∩ dom(σ ) = ∅, and
there exists Q, R such that R ↔ P � Q, then Q ≡ σ | Q′ and
R ≡ σ | R′ for some Q′ and R′, and R′ ↔ P ′ � Q′.

Proof As R ↔ P � Q and P ≡ σ | P ′, there exists
n1,n2, φ, P1 and P2 such that n1∩fn(P2) = n2∩fn(P1) = ∅,
n1n2 ∩ fn(σ ) = ∅ and:

P ≡ νn1. (νn2. (σ |φ) | P1)

Q ≡ νn2. (νn1. (σ |φ) | P2)

R ≡ νn1n2. (σ |φ | P1 | P2)

It follows that there are Q′ and R′ such that Q ≡ σ | Q′ and
R ≡ σ | R′. Taking σ out of the processes above gives us:

P ′ ≡ νn1. (νn2. φ | P1)

Q′ ≡ νn2. (νn1. φ | P2)

R′ ≡ νn1n2. (φ | P1 | P2)

This shows that R′ ↔ P ′ � Q′. ��

Lemma 32 For every public frameφ and processes P, Q, R,
R ↔ P � Q if and only if (φ | R)↔ (φ | P) � (φ | Q).

Proof This is straightforward. ��

6.3 The proof

We are now ready to give the induction hypothesis we want
to prove on �A�v:

Lemma 33 (Induction hypothesis) P � �A�v if and only
if there exists Q and e such that P ≡ Q |�e�, fv(Q) ∩
dom(�e�) = ∅, and Q, e ◦ v � A.

To meet the requirements of this lemma and make sure that
P is indeed the composition of a process Q and an environ-
ment frame corresponding to e, we first define a formula�v
that will have to be verified at every step of the translation:

�{t→x} �
∧

x∈x

(Subst(x) ∗ ¬©x).

Lemma 34 For all processes P and valuations v, P � �v
if and only if there exists a process Q and an environment e
such that P ≡ Q |�e�, fv(Q)∩dom(�e�) = ∅ and the domain
of e matches the codomain of v.

Proof If P � �{t→x} then for all x ∈ x there are Qx and
Mx such that P ≡ {Mx/x } | Qx and x /∈ fv(Qx ,Mx ). So
there is a frame φ = {M1...Mn/x1...xn } with xi /∈ fv(M j ) for
(i, j) ∈ {1, . . . , n} and a process Q with fv(Q)∩x = ∅ such
that P ≡ φ | Q. We can conclude with e = {x→M}. The
converse is straightforward. ��
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Fig. 5 Elimination of term
quantification

We are now ready to present the inductive translation �A�v

shown on Figure 5. We assume that formulae are written
using � and −−� in lieu of � and −−∗ as it is equivalent,
albeit easier to do so. Except for the ones above and −−�
(which works the same way as ∗), the meaning of all the
cases should be quite straightforward.

The proof of the induction hypothesis will make use of
the following lemma:

Lemma 35 fv(�A�v) = fv(A, v).

Proof Immediate by induction on the formula A. ��
We can now prove Lemma 33 by induction on the formula

A. We write e ≡ e′ when e = {x→M}, e′ = {x→M′} and
for i ∈ {1 . . . n}, Mi = M ′

i .

Proof of Lemma 33. – �M = N�v � �v ∧ Mv = Nv:

P � �M = N�v ⇔ P ≡ Q |�e�, fv(Q) ∩ dom(�e�) = ∅
and P � Mv = Nv

⇔ P ≡ Q |�e�, fv(Q) ∩ dom(�e�) = ∅
and Q � Mve = Nve

⇔ P ≡ Q |�e�, fv(Q) ∩ dom(�e�) = ∅
and Q, (e ◦ v) � M = N

Indeed, fv(Q,M, N ) ∩ dom(�e�) = ∅.
– �0�v � �v ∧ 0, �∅�v � �v ∧ Subst(x): Trivial.
– �A1 ∧ A2�v � �v ∧ �A1�v ∧ �A2�v: If P � �A�v , then

by induction there exist Q1 |�e1� ≡ P and Q2 |�e2� ≡ P
such that fv(Qi ) ∩ dom(�ei �) = ∅ and Qi , (ei ◦ v) � Ai

(i ∈ {1, 2}). By Lemmas 30 and 5, A2 also holds for Q1

and the desired result follows (the converse is immediate).
– �¬A�v � �v ∧ ¬�A�v: If P � �¬A�v then P � �A�v

so, by induction hypothesis, for all Q, e such that P ≡
Q |�e�, Q, (e ◦ v) � A. As P � �v , there exists such Q
and e and Q, (e ◦ v) � ¬A, hence the result.
Reciprocally, if there are Q,e such that P ≡ Q |�e� and
Q, (e ◦ v) � ¬A with fv(Q) ∩ dom(�e�) = ∅, then
by Lemma 30, for all Q′,e′ such that P ≡ Q′ |�e′�

and fv(Q′) ∩ dom(�e′�) = ∅, Q ≡ Q′ and e = e′ so
Q′, (e′ ◦ v) � ¬A. By induction hypothesis, P � �A�v

so P � �¬A�v .
– �♦A�v � �v ∧ ♦�A�v: Straightforward.
– �A1 � A2�v � �v ∧ (�A1�v � �A2�v): Straightforward.
– �A� B� � �v∧�A�v��B�v: If P � �A� B�v then P ≡

P ′ |�e� for some P ′ and e such that fv(P ′)∩dom(e) = ∅,
and there exists Q, R such that R ↔ P � Q, Q � �A�v

and R � �B�v . By Lemma 31 there are processes Q′, R′
such that Q ≡ Q′ |�e�, R′ ↔ P ′ � Q′ and R ≡ R′ |�e�. By
induction hypothesis, Q′, (e◦v) � A and R′, (e◦v) � B,
so P ′, (e ◦ v) � A � B.
The converse is similar; it uses Lemma 32 as a converse
of Lemma 31.

– �Nx . A�v � �v∧Nx ′. �A[x←x ′]�v (x ′ /∈ fv(v)): If P �
�Nx . A�v then P ≡ Q |�e�, fv(Q) ∩ dom(�e�) = ∅ and
P � Nx ′. �A[x←x ′]�v . By definition of N, there exists
P ′ and y /∈ fv(Q, e, �A[x←x ′]�v) such that P ≡ νy. P ′
and P ′ � �A[x←x ′]�v[x ′←y], so P ′ � �A[x←y]�v . By
induction hypothesis, there exists Q′, e′ such that P ′ ≡
Q′ |�e′� and Q′, (e′ ◦ v) � A[x←y]. As P ≡ νy. P ′,
e ≡ e′ and Q ≡ νy. Q′, so Q′, (e ◦ v) � Ny. A[x←y],
and by α-conversion, Q, (e ◦ v) � Nx . A.
Reciprocally, with the same notations:

Q, (e ◦ v) � Nx . A ⇒ Q′, (e ◦ v) � A[x←y]
⇒ P ′ � �A[x←y]�v
⇒ P ′ � �A[x←x ′]�v[x ′←y]
⇒ P � Nx ′. �A[x←x ′]�v

– �Nn. A�v � �v∧Nn. �A�v: Same as above, albeit easier.
– �©u�v � �v ∧ Subst(x) ∗ ((∧x∈{x} ¬©x) ∧ ©u): Let

us prove the inductive case for �©y�v for some variable
y, the case where u is a name being similar. P � �©y�v

if and only if P ≡ Q |�e�, fv(Q) ∩ dom(�e�) = ∅ and
P � Subst(x) ∗ ((∧x∈x ¬©x)∧©y). This is true if and
only if Q � ©y, the condition fv(Q) ∩ dom(�e�) = ∅
and the formula

∧
x∈x ¬©x ensuring that active substi-

tutions of the environment frame have not been applied,
nor unapplied.
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– �∃t. A�v � �v ∧ Nxn+1. �A�v{t→xn+1}: If P � �∃t. A�v

then one the one hand, by Lemma 34, there exist Q and e
such that fv(Q)∩ dom(�e�) = ∅ and P ≡ Q |�e�, and on
the other hand, by definition ofN and Lemma 35, for some
x /∈ fv(P, A, v) there is P ′ such that P ≡ νx . P ′ and P ′ �
�A�v{t→x}. By induction hypothesis, P ′ ≡ Q |�e� |{M/x },
so Q, (e{x→M} ◦ v{t→x} � A, so Q, (e ◦ v) � ∃t. A.
Conversely, if P ≡ Q |�e�, fv(Q) ∩ dom(�e�) = ∅
and Q, (e ◦ v) � ∃t. A, then there exists M such that
Q, (e ◦ v){t→M} � A. As variables in dom(�e�) are
all free for Q,A, we can chose M such that fv(M) ∩
dom(�e�) = ∅, and so e{x→M} is a valid environment
and the induction hypothesis applies, so Q |�e{x→M}� �
�A�v∪{t→x}. Together with Lemma 35, this shows P �
Nxn+1. �A�v∪{t→xn+1}, and by Lemma 34 P � �∃t. A�v .
In the following, we will write w for the valuation
{t1→y1, . . . , tn→yn} and f for the environment
{y1→N1, . . . , yn→Nn}.

– �A1 ∗ A2�v

� �v ∧Ix′. (
∧

x∈x

¬©x ∧ Subst(x′) ∧�v′)

−−�
( ∗n

i=1(Subst(xi , x ′i ) ∧ x ′i = xi ) ∗ �
∧�A1�v ∗ �A2�

′
v

)

It is easy to check that P � �A1 ∗ A2�v if and only if there
are Q, M, y fresh and N such that fv(M, N , Q) ∩ xy =
∅, for i ∈ {1, . . . , n}, {Mi/xi } |{Ni/yi } � xi = yi , and
Q |�e� |� f � � �A1�v ∗ �A2�w. The former is equivalent
to Mi = Ni for all i , and we conclude from the latter
and the induction hypothesis that Q ≡ Q1 ∗ Q2 and
Qi , (e ◦ v) � Ai (as e ◦ v = f ◦ w). Thus, Q, (e ◦ v) �
A1 ∗ A2.
Conversely, if Q, (e ◦ v) � A1 ∗ A2, then Q ≡
Q1 ∗ Q2 for some Qi , (e ◦ v) � Ai . By induction
hypothesis, Q1 |�e� � �A1�v and Q2 |� f � � �A2�w. As
Q |�e� |� f � ≡ (Q1 |�e�) ∗ (Q2 |� f �), the desired result
holds.

– �A −−� B�v

� �v ∧Ix′. (
∧

x∈x

¬©x ∧ �A�v′)

−−�
( � ∗ (∗n

i=1(Subst(xi , x ′i ) ∧ x ′i 	= xi ))

∧(�B�v ∧∧
x ′∈x′ ¬©x ′) ∗ Subst(x′)

)

As in the cases of ∗ and �, it should be immediate
to check that P � �A −−� B�v if and only if there
are P ′,Q′,R′,M,y and N such that R′ ↔ P ′ ∗ Q′,
fv(M, N , P ′, Q′, R′)∩xy = ∅, N = M, Q′ |� f � � �A�w

and R′ |�e� |� f � � (�B�v ∧∧
y∈y ¬©y) ∗ Subst(y), so

R′ |�e� � �B�v . With two applications of the induction
hypothesis, we get Q′, (e ◦ v) � A and R′, (e ◦ v) � B,
yielding the result. Like for frame composition, the con-
verse is straightforward. ��

7 Conclusion

Related work Blanchet et al. have developed a decision pro-
cedure for a finer notion than barbed-congruence, and have
implemented it in the tool ProVerif [6]. Spatial logics for
process algebrae with explicit resources have first been stud-
ied by Pym [25]. The idea of distributing assertions about
knowledge in space using spatial logics has been explored
by Mardare [23]. More examples of applications of spatial
connectives in cryptographic logics can be found in Kramer’s
thesis [21]. Hüttel et al. gave a logical characterization and
characteristic formulae for static equivalence [19] for some
classes of equational theories.

Extensions One natural way to extend the logic could be to
consider a weak, several steps version of the♦modality. We
conjecture that this would allow us to handle the full applied
π -calculus with replication, as in the case of ambients [17].

Appendix

See Table 1.

Table 1 Table of auxiliary
formulae Notation Intuitive meaning Definition First seen

� True 0 ∨ ¬0 p. 15
⊥ False ¬� p. 15
A[B] Frame satisfies A and plain part satisfies B (A ∧ 0) � ((B ∧ ∅) ∗ �) p. 15
A � B Dual of � ¬(A � ¬B) p. 15
A −−� B Dual of−−∗ ¬(A −−∗ ¬B) p. 15
1 Indivisible plain part ¬0 ∧ ¬(¬0 � ¬0) p. 15
I Indivisible frame ¬∅ ∧ ¬(¬∅ ∗ ¬∅) p. 15
public No secret name ¬Nn.©n p. 15
single Guarded plain process 1 ∧ ∅ ∧ public p. 15
public_frame No secret name (static version) ¬(� ∗ (I ∧ Nx . I)) p. 20
Subst(x) Substitution on x public_frame ∧ (∅� x) p. 20
Subst(x =M) Substitution {M/x } ∅� x ∧ x = M p. 20
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