
On the Expressivity and Complexity of

Quantitative Branching-Time Temporal Logics

F. Laroussinie, Ph. Schnoebelen, and M. Turuani

Lab. Sp�eci�cation & V�eri�cation

ENS de Cachan & CNRS UMR 8643

61, av. Pdt. Wilson, 94235 Cachan Cedex France

email: ffl,phs,turuanig@lsv.ens-cachan.fr

Abstract. We investigate extensions of CTL allowing to express quanti-

tative requirements about an abstract notion of time in a simple discrete-

time framework, and study the expressive power of several relevant logics.

When only subscripted modalities are used, polynomial-time model check-

ing is possible even for the largest logic we consider, while introducing

freeze quanti�ers leads to a complexity blow-up.

1 Introduction

Temporal logic is widely used as a formal language for specifying the behaviour

of reactive systems (see [Eme90]). This approach allows model checking, i.e. the

automatic veri�cation that a �nite state system satis�es its expected behavourial

speci�cations. The main limitation to model checking is the state-explosion prob-

lem but, in practice, symbolic model checking techniques [BCM

+

92] have been

impressively successful, and model checking is now commonly used in the design

of critical reactive systems.

Real-time. While temporal logics only deal with \before and after" properties,

real-time temporal logics and more generally quantitative temporal logics aim

at expressing quantitative properties of the time elapsed during computations.

Popular real-time logics are based on timed transition systems and appear in

several tools (e.g., HyTech, Uppaal, Kronos). The main drawback is that model

checking is expensive [ACD93,AL99].

E�cient model checking. By contrast, some real-time temporal logics retain

usual discrete Kripke structures as models and allow to refer to quantitative

information with \bounded" modalities such as \AF

�10

A" meaning that A will

inevitably occur in at most 10 steps. A speci�c aspect of this framework is

that the underlying Kripke structures have no inherent concept of time. It is

the designer of the Kripke structure who decides to encode the
ow of elapsing

time by this or that event, so that the temporal logics in use are more properly

called quantitative temporal logics than real-time logics. [EMSS91] showed that

RTCTL (i.e.CTL plus bounded modalities \A U

�k

" and \E U

�k

" in the Kripke

structure framework) still enjoys the bilinear model checking time complexity of

CTL.

Our contribution. One important question is how far can one go along the lines

of RTCTL-like logics while still allowing e�cient model checking ? Here we

study two quantitative extensions of CTL, investigate their expressive power

and evaluate the complexity of model checking.

The �rst extension, called TCTL

s

, s for \subscripts", is basically the most

general logic along the lines of the RTCTL proposal : it allows combining \� k",

\� k" and \= k" (so that modalities counting w.r.t. intervals are possible). We

show this brings real improvements in expressive power, and model checking is

still in polynomial time. This extends results for RTCTL beyond the increased

expressivity: we use a �ner measure for size of formula (EF

=k

has size in O(logk)

and not k) and do not require that one step uses one unit of time.

The second extension, called TCTL

c

, c for \clocks", uses formula clocks,

a.k.a. freeze quanti�ers [AH94], and is a more general way of counting events.

TCTL

c

can still be translated directly into CTL but model checking is expensive.

The results on expressive power formalize natural intuitions which (as far as

we know) have never been proven formally, even in the dense time framework

1

.

Furthermore, in our discrete time framework our results on expressive power

must be stated in terms of how succinctly can one logic express this or that

property. Such proofs are scarce in the literature (one example is [Wil99]).

Related work. TCTL

s

and TCTL

c

are similar to (and inspired from) logics used

in dense real-time frameworks (though, in the discrete framework we use here,

their behaviour is quite di�erent). Our results on complexity of model checking

build on ideas from [DS98,KVW98,AL99,ET99].

Other branching-time extensions of RTCTL have been considered. Counting

with regular patterns makes model checking intractable [ET97]. Merging di�er-

ent time scales makes model checking NP-complete [ET99]. Allowing parameters

makes model checking exponential in the number of parameters [ET99].

Another extension with freeze variables can be found in [YMW97] where

richer constraints on number of occurrences of events can be stated (rending sat-

is�ability undecidable). On the other hand, the \until" modality is not included

and the expressive power of di�erent kinds of constraints is not investigated.

Plan of the paper. We introduce the basic notions and de�nitions in x 2. We

discuss expressive power in x 3 and model checking in x 4. We assume the reader

is familiar with standard notions of branching-time temporal logic (see [Eme90])

and structural complexity (see [Pap94]). Complete proofs appear in a full version

of the paper, available from the authors.

2 CTL + discrete time

We write N for the set of natural numbers, and AP = fA;B; : : :g for a �nite set

of atomic propositions. Temporal formulae are interpreted over states in Kripke

structures. Formally,

1

See e.g. the conjecture at the end of [ACD90] which becomes an unproved statement

in [ACD93].

De�nition 2.1. A Kripke structure (a \KS") is a tuple S = hQ

S

; R

S

; l

S

i where

Q

S

= fq

1

; : : :g is a non-empty set of states, R

S

� Q

S

�Q

S

is a total transition

relation, and l

S

: Q

S

! 2

AP

labels every state with the propositions it satis�es.

Below, we drop the \S" subscript in our notations whenever no ambiguity will

arise. A computation in a KS is an in�nite sequence � of the form q

0

q

1

: : : s.t.

(q

i

; q

i+1

) 2 R for all i 2 N. For i 2 N, �(i) (resp. �

ji

) denotes the i-th state,

q

i

(resp. i-th pre�x: q

0

q

1

; : : : ; q

i

). We write �(q) for the set of all computations

starting from q. Since R is total, �(q) is never empty.

The
ow of time. We assume a special atomic proposition tick 2 AP that

describes the elapsing of time in the model. The intuition is that states labeled

by tick are states where we observe that time has just elapsed, that the clock just

ticked. Equivalently, we can see all transitions as taking 1 time unit if they reach

a state labeled by tick, and as being instantaneous otherwise

2

. In pictures, we

use di�erent grey levels to distinguish tick states from non-tick ones.

Given a computation � = q

0

q

1

: : : and i � 0 , Time(�

ji

) denotes jfj j 0 < j �

i ^ tick 2 l(q

j

)gj, the time it took to reach q

i

from q

0

along �.

2.1 TCTL

s

Syntax. TCTL

s

formulae are given by the following grammar:

'; ::= :' j ' ^ j EX' j E'U

I

 j A'U

I

 j A j B j : : :

where I can be any �nite union [a

1

; b

1

[[� � �[[a

n

; b

n

[of disjoint integer intervals

with 0 � a

1

< b

1

< a

2

< b

2

< � � �a

n

< b

n

� !.

Standard abbreviations include >;?; '_ ; ') ; : : : as well as EF

I

' (for

E>U

I

'), AF

I

' (for A>U

I

'), EG

I

' (for :AF

I

:'), and AG

I

' (for :EF

I

:').

Moreover we let U

<k

stand for U

[0;k[

, U

>k

for U

[k+1;![

, and U

=k

for U

[k;k+1[

.

The usual CTL operators are included since the usual U corresponds to U

<!

.

Semantics. Figure 1 de�nes when a state q in some KS S, satis�es a TCTL

s

formula ', written q j= ', by induction over the structure of '.

We let TCTL

s

[<], TCTL

s

[<;=], etc. denote the fragments of TCTL

s

where

only simple constraints using only < (resp. < or =, etc.) are allowed. E.g.,

RTCTL is TCTL

s

[<] (with the proviso that our KS's have tick's).

2.2 TCTL

c

TCTL

c

uses freeze quanti�ers [AH94]. Here \clocks" are introduced in the for-

mula, set to zero when they are bound, and can be referenced \later" in arbitrary

ways. This standard construct gives more
exibility than subscripts.

2

Thus KS's with tick's can be seen as discrete timed structures, i.e. KS's where edges

(q; q

0

) 2 R are labeled by a natural number: the time it takes to follow the edge.

While discrete timed structures are more natural, KS's with tick are an essentially

equivalent framework where technicalities are simpler since they do not need labels

on the edges.

q j= A i� A 2 l(q),

q j= :' i� q 6j= ',

q j= ' ^ i� q j= ' and q j= ,

q j= EX' i� there exists � 2 �(q) s.t. � j= X',

q j= E'U

I

 i� there exists � 2 �(q) s.t. � j= 'U

I

q j= A'U

I

 i� for all � 2 �(q), we have � j= 'U

I

� j= X' i� �(1) j= ';

� j= 'U

I

 i� there exists i � 0 s.t. Time(�

ji

) 2 I

and �(i) j= and �(j) j= ' for all 0 � j < i,

Fig. 1. Semantics of TCTL

s

Syntax. For a set Cl = fx; y; : : :g of clocks, TCTL

c

formulae are given by the

following grammar:

'; ::= :' j ' ^ j EX' j E'U j A'U j x in ' j x � k j A j B j : : :

where �2 f=;�; <;�; >g and k 2 N. Constraints referring to clocks are re-

stricted to the simple form x � k, in the spirit of TCTL

s

.

An occurrence of a formula clock x in some x � k is bound if it is in the

scope of a \x in " freeze quanti�er, otherwise it is free. A formula is closed if it

has no free variables. Only closed formulae express properties of states in KS's.

Semantics. TCTL

c

formulae are interpreted over a state of a KS S together with

a valuation v : Cl! N of the clocks free in '.

q; v j= A i� A 2 l(q),

q; v j= :' i� q; v 6j= ',

q; v j= ' ^ i� q; v j= ' and q; v j= ,

q; v j= EX' i� there exists � 2 �(q) s.t. �; v j= X'

q; v j= E'U i� there exists � 2 �(q) s.t. �; v j= 'U

q; v j= A'U i� for all � 2 �(q) we have �; v j= 'U

q; v j= x in ' i� q; v[x 0] j= '

q; v j= x � k i� v(x) � k

�; v j= X' i� �(1); v+ d j= ' with d = Time(�

j1

)

�; v j= 'U i� there exists i � 0 s.t. �(i); v + d

i

j= and

�(j); v + d

j

j= ' for all 0 � j < i (where d

l

def

= Time(�

jl

))

Fig. 2. Semantics of TCTL

c

Figure 2 de�nes when q; v j= ' in some KS S by induction over the structure

of '. For m 2 N, v +m denotes the valuation which maps each clock x 2 Cl to

the value v(x)+m, and v[x 0] is v where now x evaluates to 0.

Clearly the TCTL

s

operators can be de�ned with TCTL

c

operators:

E'U

I

def

= x in

�

E'U(I(x) ^)

�

A'U

I

def

= x in

�

A'U(I(x) ^)

�

where, for I of the form [a

1

; b

1

[[� � �[[a

n

; b

n

[, I(x) denotes the clocks constraint

n

_

i=1

�

(a

i

�x) ^ (x<b

i

)

�

. Hence TCTL

s

can be seen as a fragment of TCTL

c

where

only one formula clock is allowed (and used in restricted ways).

A standard observation for logics such as TCTL

c

is that the actual values

recorded in v are only relevant up to a certain point depending on the formula

at hand. Let M

'

denote the largest constant appearing in ' (largest k in the

\x � k"'s) and, for m 2 N, let v �

m

v

0

when for any x 2 Cl, either v(x) = v

0

(x)

or v(x) > m < v

0

(x) (i.e. v and v

0

agree, or are beyond m).

Lemma 2.2. If v �

m

v

0

and m �M

'

, then q; v j= ' i� q; v

0

j= '.

Proof. Easy induction over the structure of ', using the fact that v �

m

v

0

entails

v + k �

m

v

0

+ k and v[x 0] �

m

v

0

[x 0]. ut

Remark 2.3. A related property is used by Emerson et al. in their study of

RTCTL: when checking whether q j= ' inside some KS with jQ j= m states, it

is possible to replace by m any constant k larger than m in the subscripts of '.

We emphasize that this property does not hold for TCTL

s

[=] (it does hold for

TCTL

s

[<;>]). ut

The size of our formulae is the length of the string

3

used to write them down

in a su�ciently succinct way, e.g., jA�U

I

� j is 1+ j� j + j � j + j I j. For I of

the form [a

1

; b

1

[[� � �[[a

n

; b

n

[, we have jI j

def

= dlog a

1

e+ � � �+ dlog b

n

e (assuming

log(0) = log(!) = 0). ht(') denotes the temporal height of formula '. As usual,

it is the maximal number of nested modalities in '. Obviously, ht(') is smaller

than the size of ' (even when viewed as a dag).

3 Expressivity

Formally, TCTL

s

or TCTL

c

do not add expressive power to CTL:

Theorem 3.1. Any closed TCTL

c

(or TCTL

s

) formula is equivalent to a CTL

formula.

Proof. With any TCTL

c

formula', and valuation v, we associate a CTL formula

(')

v

s.t. q; v j= ' i� q j= (')

v

for any state q of any Kripke structure. Then, if

' has no free clock variables, any (')

v

is a CTL equivalent to '. The de�nition

of (')

v

is given by the following rewrite rules:

(' ^)

v

def

= '

v

^

v

(:')

v

def

= :'

v

(A)

v

def

= A

(x � k)

v

def

=

�

> if v(x) � k,

? otherwise

(x in ')

v

def

= '

v[x 0]

3

We sometimes see a formula as a dag, where identical subformulae are only counted

once. Such cases are stated explicitly.

(AF')

v

def

=

8

>

<

>

:

AF'

v

if v + 1 �

M

'

v,

'

v

_ AX

�

A(:tick) U

�

(:tick^ '

v

) _ (tick^ (AF')

v+1

)

��

otherwise

(E' U)

v

def

=

8

>

>

>

<

>

>

>

:

E'

v

U

v

if v+ 1 �

M

';

v,

v

_

�

'

v

^ EX

�

E('

v

^:tick) U

�

(

v

^:tick) _ (tick^ (E'U)

v+1

)

���

otherwise

This gives a well-founded de�nition for ()

v

since in the right-hand sides either

()

v

is recursively applied over subformulae, or ()

v+1

is applied on the same

formula (or both). But moving from ()

v

to ()

v+1

is only done until v �

M

v+1,

which is bound to eventually happen. Then it is a routine matter to check that

the correctness invariant (i.e., \q; v j= ' i� q j= (')

v

") is preserved by these

rules. ut

The translation we just gave is easy to describe but the resulting (')

v

for-

mulae have enormous size. It turns out that this cannot be avoided. Even more,

we can say that moving from CTL to TCTL

s

[<] to TCTL

s

to . . . allows writing

new formulae that have no succinct equivalent at the previous level.

Theorem 3.2. 1. TCTL

s

[<] can be exponentially more succinct than CTL,

2. TCTL

s

[<;>] can be exponentially more succinct than TCTL

s

[<].

The proof is given by the following lemmas.

Lemma 3.3. Any CTL formula equivalent to EF

<n

A (a logn-sized formula)

has temporal height at least n.

Proof. Consider the KS described in Figure 3. One easily shows (by structural in-

duction over ') that for any CTL formula', ht(') � i implies �

i

j= ' i� �

i+1

j=

'. On the other hand, �

j

j= EF

<n

A i� j < n. Thus anyCTL equivalent to EF

<n

A

�

i

j= tick ^ :A

�

n

 j= :tick ^ A

A

�

0

�

n�1

Fig. 3. �

n

j= EF

<n+1

A and �

n+1

6j= EF

<n+1

A

must have temporal height larger than n. ut

Lemma 3.4. Any TCTL

s

[<] formula equivalent to EF

>n

A (a logn-sized for-

mula) has temporal height at least n.

Proof. Consider the KS described in Figure 4. One easily shows (by structural

induction over ') that for any formula ' in TCTL

s

[<], ht(') � i implies �

i

j=

' i� �

i+1

j= ' and �

i

j= ' i� �

i+1

j= '. On the other hand, �

j

j= EF

>n

A i�

j > n. Thus any TCTL

s

[<] equivalent to EF

>n

A must have temporal height

larger than n. ut

Let us mention two (natural) conjectures that would allow separating further

fragments:

�

n

�

n�1

A

�

n�1

�

0

�

0

�

i

j= tick ^ :A

�

i

j= :tick ^:A

 j= :tick ^A

�

n

Fig. 4. �

n

6j= EF

>n

A and �

n+1

j= EF

>n

A

Conjecture 3.5. 1. TCTL

s

[<;>;=] can be exponentially more succinct than

TCTL

s

[<;>],

2. TCTL

c

can be exponentially more succinct than TCTL

s

.

We have not yet been able to �nd the required proofs, which are hard to build.

The �rst point is based on the conjecture that any TCTL

s

[<;>] formula equiva-

lent to EF

=k

A has temporal height at least k. For the second one, we conjecture

that any TCTL

s

formula equivalent to x in EF

�

A ^ EF(B ^ x = k)

�

has size at

least k.

We have explained how TCTL

s

becomes more and more expressive when we

allow subscripts with <, then also with >, then also with =. Subscripts of the

form \= k" are the main di�erence between RTCTL and our proposal. They

enhance expressivity and make model checking more complex (see x 4).

Once we have TCTL

s

[<;>;=], subscripts with intervals are just a convenient

shorthand:

Theorem 3.6. TCTL

s

is not more succinct than TCTL

s

[<;>;=].

Proof. For I of the form

S

i=1:::n

[a

i

; b

i

[, we denote by I�k the set

S

i=1:::n

[a

i

�

k; b

i

�k[(after the obvious normalization if k > a

1

).

Let ' be a TCTL

s

formula. We build an equivalent TCTL

s

[<;>;=] formula

~' with the following equivalences:

E � U

I

� �

_

i=1:::n

E � U

=a

i

(E � U

<b

i

�a

i

�)

A � U

I

� �

8

>

>

>

>

<

>

>

>

>

:

A � U

=a

1

(A � U

I�a

1

�) if a

1

> 0,

:E(:�)U

<b

1

(: � ^ :�)

^ :E(:�)U

=b

1

�

:A � U

=a

2

�b

1

(A � U

I�a

2

�)

�

otherwise

Correctness is easy to check. The size of ~', seen as a dag, is linear in the size

of ' seen as a dag

4

. ut

4 Model checking

For the logics we investigate, the model checking problem is the problem of

computing whether q j= ' for q a state of a KS S and ' a temporal formula. In

4

Viewing formulae as dags is convenient here, and agree with our later use of Theo-

rem 3.6 when we investigate e�cient model checking for TCTL

s

.

this section we analyse the complexity of model checking problems for TCTL

s

and TCTL

c

.

Given a KS S and a formula ', the complexity of model checking can be

evaluated in term of jS j and j' j. But more discriminating information can be

obtained by also looking at the program complexity of model checking (i.e., the

complexity when ' is �xed and S; q is the only input) and the formula complexity

(i.e., when S; q is �xed and ' is the only input).

While TCTL

s

model checking can be done e�ciently, this is not true for

TCTL

c

(even when considering a �xed KS).

Theorem 4.1. Let S = hQ;R; li be a KS and ' a TCTL

s

formula. There exists

a model checking algorithm running in time O

�

(jQ j

3

+ jR j)� j' j

�

. Moreover

if ' belongs to TCTL

s

[<;>], the algorithm runs in time O

�

(jQ j + jR j)� j' j

�

.

Proof (Idea). The algorithm extends the classical algorithms for CTL andRTCTL

(see [EMSS91]) with procedures dealing with TCTL

s

[<;=; >] operators (as seen

in Theorem 3.6, formulae with interval subscripts can be decomposed). The most

expensive procedure concerns the EU

=

case where we compute the transitive clo-

sures of relations, hence the (quite naive) O(j Q j

3

+ jR j). The TCTL

s

[<;>]

fragment uses only procedures in O

�

(jQ j+ jR j)� j' j

�

. ut

Theorem 4.2. The model checking problem for TCTL

c

is PSPACE-complete.

The formula complexity of TCTL

c

model checking is PSPACE-complete.

Proof. To prove this result, it is su�cient to show that TCTL

c

model check-

ing is in PSPACE

5

and that the formula complexity is PSPACE-hard. The

proof of this last point relies on ideas from [AL99]: let P be an instance of

QBF (Quanti�ed Boolean Formula, a PSPACE-complete problem). W.l.o.g. P

is some Q

1

p

1

: : :Q

n

p

n

:' (with Q

i

2 f9; 8g and ' a propositional formula over

p

1

; : : : ; p

n

). We reduce P to a model checking problem S; q j= � where S is the

simple KS (fqg; fq! qg; fl(q) = tickg) and � is the following TCTL

c

formula:

t in EF

�

t=1 ^O

1

�

x

1

in EF

h

t=2^ : : :

�

t= i ^O

i

(x

i

in EF(t= i+1 ^ : : :

EF(t=n+1 ^ ~') : : :

�i

��

where O

i

is EF

�1

(resp. EG

�1

) if Q

i

is 9 (resp. 8) and ~' is ' where occurrences

of p

i

have been replaced by x

i

= n+ 1� i. Observe that any clock x

i

is reset at

time i or i+ 1 and depending on this reset time the atomic propositions p

i

will

be interpreted as true or false after the n+1-th transition. The operator EF

�1

(resp. EG

�1

) allows to quantify existentially (resp. universally) over these two

reset times. Clearly � is valid i� S; q j= �. ut

In practice, one can easily use any CTLmodel checker for model checking TCTL

c

formulae, and the resulting algorithm runs in time O(j S j :M

jClj

: j ' j). For

5

This uses standard arguments, see the long version for details.

example, with SMV, one just adds one variable for each formula clock and update

them in the obvious way. This is much more practical than an approach based on

Theorem 3.1 and the complexity is not too frightening for formulae with jCl j= 1

(only one clock), a fragment already more expressive than TCTL

s

.

A theoretical view. The following table gives a synthetic summary of complex-

ity measures for model checking CTL, TCTL

s

and TCTL

c

, showing that model

checking the full TCTL

s

is as tractable as model checking CTL in both argu-

ments. On the other hand, model checking TCTL

c

requires polynomial space

even for a �xed Kripke structure.

CTL TCTL

s

TCTL

c

Complexity of model checking P-complete PSPACE-complete

Formula complexity LOGSPACE PSPACE-complete

Program complexity NLOGSPACE-complete

Filling the table. Model checking TCTL

s

is in P as we just saw. P-hardness

results from the obvious reading of the circuit-value problem (with proper alter-

nation) as a model checking problem for the EX fragment of CTL. The formula

complexity of model checking CTL is LOGSPACE and this result can be eas-

ily extended to TCTL

s

. The program complexity of model checking TCTL

s

and

TCTL

c

is NLOGSPACE-complete since we proved (Theorem 3.1) that these log-

ics can be translated intoCTL, for which the NLOGSPACE-complete complexity

is given in [KVW98].

Symbolic model checking. When it comes to symbolic model checking (i.e., when

S is given under the form of a synchronized product of k structures S

1

; : : : ; S

k

),

CTL model checking becomes PSPACE-complete [KVW98], this is also true for

TCTL

s

and TCTL

c

:

Theorem 4.3. The symbolic model checking problem for TCTL

s

and TCTL

c

is

PSPACE-complete.

5 Conclusion

We investigated the expressive power and the complexity of model checking

for TCTL

s

and TCTL

c

, two quantitative extensions of CTL along the lines of

RTCTL [EMSS91,ET99].

The expressive power must be measured in a framework where, strictly speak-

ing, everything can be translated into CTL.

We showed that TCTL

s

, while more succinct than RTCTL, still allows an

e�cient model checking algorithm. By contrast TCTL

c

, the extension of CTL

with freeze quanti�ers leads to a complexity blow-up.

References

[ACD90] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time sys-

tems. In Proc. 5th IEEE Symp. Logic in Computer Science (LICS'90),

Philadelphia, PA, USA, June 1990, pages 414{425, 1990.

[ACD93] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time.

Information and Computation, 104(1):2{34, 1993.

[AH94] R. Alur and T. A. Henzinger. A really temporal logic. Journal of the ACM,

41(1):181{203, 1994.

[AL99] L. Aceto and F. Laroussinie. Is your model checker on time ? In Proc. 24th

Int. Symp. Math. Found. Comp. Sci. (MFCS'99), Szklarska Poreba, Poland,

Sep. 1999, volume 1672 of Lecture Notes in Computer Science, pages 125{

136. Springer, 1999.

[BCM

+

92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.

Symbolic model checking: 10

20

states and beyond. Information and Com-

putation, 98(2):142{170, 1992.

[DS98] S. Demri and Ph. Schnoebelen. The complexity of propositional linear tem-

poral logics in simple cases (extended abstract). In Proc. 15th Ann. Symp.

Theoretical Aspects of Computer Science (STACS'98), Paris, France, Feb.

1998, volume 1373 of Lecture Notes in Computer Science, pages 61{72.

Springer, 1998.

[Eme90] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,

Handbook of Theoretical Computer Science, vol. B, chapter 16, pages 995{

1072. Elsevier Science, 1990.

[EMSS91] E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan. Quantitative

temporal reasoning. In Proc. 2nd Int. Workshop Computer-Aided Veri�ca-

tion (CAV'90), New Brunswick, NJ, USA, June 1990, volume 531 of Lecture

Notes in Computer Science, pages 136{145. Springer, 1991.

[ET97] E. A. Emerson and R. J. Tre
er. Generalized quantitative temporal reason-

ing: An automata-theoretic approach. In Proc. 7th Int. Joint Conf. Theory

and Practice of Software Development (TAPSOFT'97), Lille, France, Apr.

1997, volume 1214 of Lecture Notes in Computer Science, pages 189{200.

Springer, 1997.

[ET99] E. A. Emerson and R. J. Tre
er. Parametric quantitative temporal rea-

soning. In Proc. 14th IEEE Symp. Logic in Computer Science (LICS'99),

Trento, Italy, July 1999, pages 336{343, 1999.

[KVW98] O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic ap-

proach to branching-time model checking, 1998. Full version of the CAV'94

paper, accepted for publication in J. ACM.

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[Wil99] T. Wilke. CTL+ is exponentially more succint than CTL. In

Proc. 19th Conf. Found. of Software Technology and Theor. Comp. Sci.

(FST&TCS'99), Chennai, India, Dec. 1999, volume 1738 of Lecture Notes

in Computer Science. Springer, 1999.

[YMW97] J. Yang, A. K. Mok, and F. Wang. Symbolic model checking for event-

driven real-time systems. ACM Transactions on Programming Languages

and Systems, 19(2):386{412, 1997.

