
Constant delay enumeration for conjunctive queries

Luc Segoufin
INRIA and ENS Cachan

ABSTRACT
We survey some of the recent results about enumerat-
ing the answers to queries over a database. We focus
on the case where the enumeration is performed with a
constant delay between any two consecutive solutions,
after a linear time preprocessing.

This cannot be always achieved. It requires restricting
either the class of queries or the class of databases.

We consider conjunctive queries and describe several
scenarios when this is possible.

1. INTRODUCTION
The evaluation of queries is a central problem in

database management systems. Given a query q
and a database D the evaluation of q over D con-
sists in computing the set q(D) of all answers to q on
D. The complexity of this problem has been widely
studied. However most of the complexity bounds
are extrapolated from the boolean case (aka the
model checking problem) and expressed as a func-
tion of the sizes of q and D. For non boolean queries
it may be not satisfactory enough to express com-
plexity results just in terms of the sizes of D and q.
A simple observation shows that the set q(D) may
be huge, even larger than the database itself, as it
can have a number of elements of the form ||D||l,
where ||D|| is the size of the database and l the ar-
ity of the query. The fact that the solution set q(D)
may be of size exponential in the query is intuitively
not sufficient to make the problem hard, and al-
ternative complexity measures had to be found for
query answering. For instance one could consider
output-sensitive complexity measures expressed as
a function of the sizes of q, D but also q(D). In
this direction, one way to define tractability is to
assume that tuples of the query result can be gen-
erated one by one with some regularity, for example
by ensuring a fixed delay between two consecutive
outputs once a necessary precomputation has been
done to construct a suitable index structure.

This approach, that considers query answering

as an enumeration problem, has deserved some at-
tention over the last few years. In this vein, the
best that one can hope for is constant delay, i.e.,
the delay depends only on the size of q (but not
on the size of D). A number of query evaluation
problems have been shown to admit constant de-
lay algorithms, usually preceded by a preprocessing
phase that is linear in the size of the database. We
survey some of these results in this paper.

This imposes drastic constraints. In particular,
the first answer is output after a time linear in the
size of the database and once the enumeration starts
a new answer is being output regularly at a speed
independent from the size of the database. Alto-
gether, the set q(D) is entirely computed in time
f(q)(||D|| + |q(D)|) for some function f depending
only on q and not on D. In particular boolean
queries can be evaluated in time linear in the size
of the database. However, as shown in [5], the fact
that evaluation of boolean queries is easy does not
guarantee the existence of such efficient enumer-
ation algorithms in general: under some reason-
able complexity assumption, there is no constant
delay algorithm with linear preprocessing enumer-
ating the answers of acyclic conjunctive queries, al-
though it is well-known that the model-checking
of boolean acyclic queries can be done in linear
time [29].

We stress that our study is theoretical. If most
of the algorithms we will mention here are linear
in the size of the database, the multiplicative fac-
tors are often very big, making any implementation
difficult. However, we believe that the index struc-
tures designed for making these algorithms work are
interesting and, with extra assumptions, could pos-
sibly be turned into something practical.

In this paper we concentrate on conjunctive que-
ries, possibly with negated atoms. We will see how
various forms of acyclicity play here a crucial role.
Modulo reasonable complexity assumptions, we are
actually able to characterize precisely those acyclic

10 SIGMOD Record, March 2015 (Vol. 44, No. 1)

conjunctive queries that can be enumerated with
constant delay.

There are many related problems. Typically one
could imagine computing the top-` most relevant
answers relative to some ranking function or to pro-
vide a sampling of q(D) relative to some distribu-
tion. One could also imagine computing only the
number of solutions |q(D)| or providing an efficient
test for whether a given tuple belongs to q(D) or
not. It is not clear a priori how these problems are
related to constant delay enumeration. However, it
turns out that in the scenarios where constant de-
lay enumeration can be achieved, one can often also
count the number of solutions in time linear in the
size of the database and, after linear time prepro-
cessing on the database, one can test in constant
time whether a given tuple is part of the answers
set.

This survey is by no means exhaustive. It is
only intended to survey the major theoretical re-
sults concerning conjunctive queries and enumera-
tion. Hopefully it will convince the reader that this
is an important subject for research that still con-
tains many interesting and challenging open prob-
lems.

Enumeration in general, and constant delay enu-
meration in particular, is a well identified subfield
of algorithmics, and many non trivial enumeration
algorithms exist for problems over graphs (like enu-
merating all spanning trees, all connected compo-
nents, all cycles etc. . .) We will not discuss those
results at all here.

2. PRELIMINARIES

2.1 Database and queries
In this paper a database is a finite relational struc-

ture. A relational signature is a tuple

σ = (R1, · · · , Rl),

each Ri being a relational symbol of arity ri. A
relational structure over σ is a tuple

D =
(
D,RD1 , . . . , R

D
l

)
,

where D is the domain of D and RDi is a subset of
Dri . We define the size of D as

||D|| = |σ|+ |D|+
∑
Ri

|RDi |ri.

It corresponds to the size of a reasonable encoding
of D. The number of elements in the domain of D
is denoted by |D|.

A query takes as input a database of a given sig-
nature σ and returns a relation of a fixed arity, the

arity of the query. A query is boolean if its arity is
0. The query is then either true or false on D and
defines a property of D. A query is unary if its arity
is 1. If q is a query and ā is in the image of q on D,
then we write D |= q(ā). Finally we set

q(D) = {ā | D |= q(ā)}.
Note that the size of q(D) may be exponential in the
arity of q. A query language is a class of queries.
Typically it is defined as a logical formalism such
as CQ (for conjunctive queries), FO (for first-order
queries), MSO (for monadic second-order queries)
and so on. As usual, |q| denotes the size of q.

2.2 Model of computation
We use Random Access Machines (RAM) with

addition and uniform cost measure as a model of
computation, cf. [1]. Our algorithms will take as
input a query q of size k and a database D of size
n. We then say that an algorithm runs in linear
time if it ends within f(k)n steps, for some function
f . It runs in quasi-linear time if it ends within
f(k)n log n steps. It runs in constant time if it ends
in f(k) steps.

Given an n×n matrix, and two numbers i, j ≤ n
the RAM model returns the content to the entry
(i, j) of the matrix in constant time. Therefore
when given the adjacency matrix of a graph it can
test in constant time where two given nodes are
adjacent or not. However our databases are en-
coded by the list of their tuples and we therefore do
not have access to the adjacency matrix. Testing
whether a tuple belongs to a relation may therefore
require more than a constant time.

In the sequel we assume that the input database
comes with a linear order on the domain. If not, we
use the one induced by the encoding of the database
as an input to the RAM. Whenever we iter-
ate through all nodes of the domain, the iteration
is with respect to the initial linear order.

An important observation is that the RAM model
can sort m elements of size O(logm) in time
O(m logm) [18]. In particular, we can sort lexico-
graphically the tuples of a relation in linear time.
As a consequence, a simple merge-sort algorithm
we can compute the relation {x̄ȳ | R(x̄ȳ)∧S(x̄)} in
time linear in the sizes of R and S.

2.3 Parametrized complexity
The database D and the query q play different

roles as input of our problems. It is often assumed
that |D| is large while |q| is small. Hence it is use-
ful to distinguish them in the input of the query
answering problem. Parametrized complexity is a
suitable framework for analyzing such situations.

SIGMOD Record, March 2015 (Vol. 44, No. 1) 11

We only provide here the basics of parametrized
complexity needed for understanding this paper.
The interested reader is referred to the mono-
graph [17].

We view the problem of boolean query evalua-
tion as a parametrized problem where the input is
a database D and a boolean query q, the parameter
is |q| and the problem asks whether D |= q.

A parametrized problem is Fixed Parameter
Tractable, i.e. can be solved in FPT, if it can
be solved in time f(q)||D||c for some suitable com-
putable function f and constant c. The idea behind
this definition is that it is often preferable to have
an algorithm working in 2|q|||D||2 rather than ||D|||q|.

In parametrized complexity there is also a suit-
able notion of reduction, called FPT-reduction.
FPT is closed under FPT-reductions and there are
some hard classes of parametrized problems, closed
under FPT-reductions, containing problems with
no known FPT algorithms and that are believed
to be different from FPT.

We distinguish two important hard classes de-
noted W[1] and AW[∗]. W[1] plays in parametrized
complexity the role of NP in classical complexity.
A typical problem which is complete for W[1] is
the parametrized boolean query evaluation problem
for CQ [24]. AW[∗] plays in parametrized complex-
ity the role of PSpace in classical complexity. A
typical problem which is complete for AW[∗] is the
parametrized boolean query evaluation problem for
FO [24].

2.4 The enumeration class CD◦Lin

Let L be a query language and C be a class of
databases. We say that the enumeration problem
for L over C can be solved with constant delay after
linear preprocessing (is in CD◦Lin), if it can be
solved by a RAM algorithm which, on input q ∈ L
and D ∈ C, can be decomposed into two phases:

• a preprocessing phase that is performed in time
linear in the size of the database, and
• an enumeration phase that outputs q(D) with

no repetition and a delay depending only on
q between any two consecutive outputs. The
enumeration phase has full read access to the
output of the preprocessing phase and can use
extra memory whose size depends only on q.

The definition of CD◦Lin requires a preprocess-
ing time linear in ||D|| and a delay not depending
on D. There are hidden multiplicative factors that
are functions on the size of the query. These factors
may be huge. We will refer to them in the sequel as
the multiplicative factors.

Before we proceed with the technical presentation
of the results, it is worth spending some time with
examples.

Example 1. Consider a database schema con-
taining a binary relational symbol R and the query

q(x, y) := ¬R(x, y).

On input database D, the following simple algorithm
enumerates q(D):

Go through all pairs (a, b);
test if it is a fact of RD;
if so skip this pair;
otherwise output it.

However, a simple complexity analysis shows that
the delay between any two outputs is not constant.
There are two reasons for this. First, arbitrarily
long sequences of pairs can be skipped. Second, it
is not obvious how to test whether (a, b) ∈ RD in
constant time (i.e. without going through the whole
relation RD). In order to enumerate this query with
constant delay it is necessary to perform a prepro-
cessing computing an index structure that can be
used for enumeration. This is done as follows.

We first decide on an arbitrary linear order on the
domain of D. We then order all RD according to
the lexicographical order. Recall that with the RAM
model this can be done in time linear in ||D||.

We then compute for each tuple ū of RD the tu-
ples v̄ = f(ū) and v̄′ = g(ū) such that v̄ is the
smallest (relative to the lexicographical order) ele-
ment not in RD that is bigger than ū (hence all tu-
ples between ū and v̄ are in RD) and v̄′ is the small-
est (relative to the lexicographical order) element in
∈ RD that is bigger than v̄. These functions can be
computed in time linear in ||D|| by a simple pass on
the ordered list of RD from its last element to the
first one.

This concludes the preprocessing phase, the index
consists in those precomputed functions. Note that
the RAM model is such that once a function h is
computed, on input ū, h(ū) is returned in constant
time.

Using the precomputed functions, the enumera-
tion phase is now simple. We maintain two pairs
of elements of D: one is initialized with the small-
est pair according to the lexicographical order, the
other one with the smallest pair in RD. The second
pair will always be pointing to an element of RD.
Assuming the current pairs are 〈ū, v̄〉, we then do
the following until ū is maximal.

If ū = v̄ then we move to 〈f(v̄), g(v̄)〉. Note that
f and g are such that for all v̄, f(v̄) 6= g(v̄).

12 SIGMOD Record, March 2015 (Vol. 44, No. 1)

If ū 6= v̄ we output ū and replace it by its succes-
sor in the lexicographical order without changing v̄.

This algorithm is constant delay as an output is
performed at least every other step and each step
can be performed in constant time as all the relevant
functions have been precomputed. All output tuples
are clearly not in RD and the reader can check that
all skipped tuples are in RD.

Example 2. Same schema but the query is now
computing the pairs of nodes at distance 2:

q(x, y) := ∃zR(x, z) ∧R(z, y).

We will see in Section 3 that it is likely that this
query cannot be enumerated with constant delay.
However, if we assume that R has degree bounded
by d, then for any node u of the graph, at most d2

nodes v are at distance 2 from u. Moreover, it is
easy to see that we can compute in time linear in
||D|| the function f(u) associating to u the list of its
nodes at distance 1. An extra linear pass based on
the function f computes the function g(u) associ-
ating to u the list of its nodes at distance 2. From
there the enumeration algorithm with constant delay
is trivial.

Remark 1. Notice that if the enumeration prob-
lem for L over C is in CD◦Lin, then all answers can
be output in time O(||D||+ |q(D)|) and the first out-
put is computed in time linear in ||D||. In particular
the evaluation problem for boolean queries of L is
in FPT. Hence unless FPT = W[1] any language
L whose evaluation problem for boolean queries is
hard for W[1] cannot be enumerated in CD◦Lin.
In particular this holds for CQ and FO.

Notice that if the arity of q is less or equal to 1,
then |q(D)| ≤ |D| ≤ ||D||. It is then plausible that
the whole set of answers can be computed in time
linear in ||D||. If this is the case then we have a sim-
ple constant delay algorithm that precomputes all
answers during the precomputation phase and then
scans the set of answers and outputs them one by
one during the enumeration phase. Hence enumer-
ation often becomes relevant when the arity of q is
at least 2. In this case q(D) can be quadratic in ||D||
and hence can certainly not be computed within the
linear time constraint of the precomputation phase.
The index structure built during the preprocessing
phase is then a non trivial object. One can also
view this index structure as a compact (of linear
size) representation of the set q(D) (that can be of
polynomial size) and the enumeration algorithm as
an output streaming decompression algorithm.

3. CONJUNCTIVE QUERIES AND ENU-
MERATION

In this section we consider the evaluation of con-
junctive queries with possibly negated atoms. We
start with the case with no negated atoms.

3.1 Conjunctive queries
Recall that a conjunctive query (CQ) is a query

of the form

q(x̄) := ∃y1 · · · ∃yl

∧
i

Ri(z̄i)

where Ri(z̄i) is an positive atom of q, Ri being a
relational symbol and z̄i containing variables from
x̄ or ȳ.

A typical example is the distance 2 query of Ex-
ample 2. Another example is the query returning
all triangles in a graph.

As evaluating boolean conjunctive queries is hard
for W[1], we restrict our attention to acyclic con-
junctive queries that can be evaluated in time |q| ·
||D|| · |q(D)| [29]. We will see that it is very unlikely
that constant delay enumeration can be done even
for acyclic conjunctive queries. It is only achieved
for a subset of them called free-connex. We start
with the necessary definitions.

To a conjunctive query q, we associate an hy-
pergraph H(q) = (V, S) whose vertices V are the
variables of q and whose hyperedges S are the set
of variables occurring in a single atom of q, i.e.
S = {{x1, · · · , xp} |R(x1, · · · , xp) is an atom of q}.

A join tree of q ∈ CQ is a tree T whose nodes are
atoms of q and such that

(i) each atom of q is the label of exactly one node
of T ,

(ii) for each variable x of q, the set of nodes of T
in which x occurs is connected.

A conjunctive query q is said to be acyclic if it
has a join tree. In graph theoretical terms this is
equivalent to saying that the hypergraph H(q) is
α-acyclic.

A boolean query associated to a join tree can
be evaluated in time linear in ||D|| using a simple
bottom-up traversal of the join tree. If the query is
non boolean, the possible valuations of the free vari-
ables need to be stored at each step, hence a mul-
tiplicative extra factor of |q(D)|. The result of [29]
follows.

An acyclic conjunctive query q(x̄) is said to be
free-connex if the query q(x̄) ∧R(x̄) is also acyclic,
where x̄ are the free variables of q and R is a new

SIGMOD Record, March 2015 (Vol. 44, No. 1) 13

symbol of appropriate arity1. Note that all boolean
acyclic queries are free-connex.

For example the acyclic conjunctive query

q(x, y) := ∃u, v S(x, y, u) ∧ T (x, y, v)

is free-connex because the following join tree shows
acyclicity of the extended query:

R(x, y)

S(x, y, u) T (x, y, v)

However the distance 2 query

q(x, y) := ∃z S(x, z) ∧ S(z, y)

is acyclic but not free-connex as the query

∃z S(x, z) ∧ S(z, y) ∧R(x, y)

is clearly cyclic.
Free-connexity implies the existence of a join

tree where all the free variables occur at the root.
Hence the bottom-up traversal of the join tree can
be performed without having to remember the val-
uations of the free variables until the last steps.
The multiplicative factor of |q(D)| then become an
additive factor. With little extra effort this can
be turned into a constant delay enumeration algo-
rithm.

Theorem 1. [5] The enumeration for free-connex
acyclic conjunctive queries is in CD◦Lin.

We stress that the multiplicative factors involved
in Theorem 1 are polynomial in the query size.

The result of Theorem 1 also holds if the queries
contain inequalities. In this case atoms with in-
equalities are not involved when building the (gen-
eralized) join trees. In the presence of inequalities,
the multiplicative factors are now exponential in the
query size.

It turns out that free-connexity characterizes ex-
actly those acyclic queries that can be enumerated
in constant delay, assuming boolean matrix multi-
plication cannot be done in quadratic time. Boolean
matrix multiplication is the problem of given two
n × n matrices with boolean entries M,N to com-
pute their product MN . The best known algo-
rithms so far (based on the Coppersmith–Winograd
algorithm [11]) require more than n2.37 steps.

Theorem 2. [5] If boolean matrix multiplication
cannot be done in quadratic time then the following
are equivalent for acyclic conjunctive queries q:
1This is not the initial definition of free-connex as given
in [5]. This presentation is from Brault-Baron [9]

1. q is free-connex
2. q can be enumerated in CD◦Lin

3. q can be evaluated in time O(||D||+ |q(D)|).
In particular the distance 2 query cannot be enu-
merated with constant delay after linear time pre-
processing unless boolean matrix multiplication can
be done in quadratic time.

With a stronger hypothesis we can even show that
acyclicity itself is necessary for having constant de-
lay enumeration. This hypothesis requires that it
is not possible to test the existence of a triangle in
a hypergraph of n vertices in time O(n2) and that
for any k testing the presence of a k-dimensional
tetrahedron cannot be tested in linear time (see [9]
for precise definitions).

Theorem 3. [9] If the above hypothesis is true
then the following are equivalent for q ∈ CQ:

1. q is acyclic free-connex
2. q can be enumerated in CD◦Lin

3.2 Signed conjunctive queries
We are now interested in evaluating signed con-

junctive queries. Those extend the syntax of con-
junctive queries by allowing negated atoms. In other
words they are of the form

q(x̄) := ∃ȳ q+(x̄ȳ) ∧ q−(x̄ȳ)

where q+ is a conjunction of positive atoms while
q− is a conjunction of negated atoms.

When q− is empty we have seen in the previous
section that q can be enumerated with constant de-
lay after a linear preprocessing as soon as H(q+) is
α-acyclic and q+ free-connex. When q+ is empty it
has been shown in [8, 9] that constant delay enu-
meration can be achieved if H(q−) is β-acyclic and
q− free-connex. β-acyclicity is the hereditary ex-
tension of α-acyclicity. It requires that the hy-
pergraph and all its subhypergraphs are α-acyclic.
When neither q+ nor q− are empty then a notion
of signed-acyclicity was introduced in [9]. It yields
α-acyclicity and β-acyclicity in the corresponding
limit cases. It also allows for tractable enumeration
algorithms.

Theorem 4. [9] The enumeration for free-connex
signed-acyclic conjunctive queries can be done with
constant delay after a preprocessing time of the form
||D||(log ||D||)|q|.

The enumeration for free-connex signed-acyclic
conjunctive queries can be done with logarithmic de-
lay after a quasi-linear time preprocessing.

14 SIGMOD Record, March 2015 (Vol. 44, No. 1)

The multiplicative factors are exponential in the
size of the query for the constant delay result but
polynomial in the logarithmic delay result. As in
the previous section, modulo complexity hypothe-
sis, typically that testing the existence of a trian-
gle cannot be done in O(n2 log n) time on a graph
of size n, the signed-acyclicity hypothesis and the
free-connexity hypothesis cannot be avoided [9].

3.3 Longer delay
We could consider enumeration algorithms allow-

ing for non constant delay.

Delay linear in the size of the database. In this set-
ting, the preprocessing phase remains linear in the
size of the database but the delay between any two
consecutive outputs is now linear in the size of the
database. Notice that linear delay still implies that
the associated model checking problem is in FPT,
hence CQ cannot be enumerated with linear delay
unless W[1] =FPT.

One can then consider restricting the class of
databases. A class of databases, called X-databases,
has been exhibited such that CQ can be enumerated
over it with linear delay. We will not define X-
databases in this note. Typical examples are grids
and trees with all XPath axis.

Theorem 5. [4]. The enumeration for CQ over
X-structures can be done with linear delay.

For acyclic conjunctive queries linear delay enumer-
ation can be obtained with no restriction on the
databases.

Theorem 6. [5]. The enumeration for acyclic
CQ over all databases can be done with linear delay.

Polynomial delay. One could also allow polynomial
precomputation and polynomial delay. This notion
is maybe less relevant in the database context. In-
deed, the degree of the polynomial could depend on
the size of the query and in this case the preprocess-
ing phase can often precompute all solutions. This
notion is however relevant when considering first-
order queries with free second-order variables. In
this case, for Σ1-queries, polynomial delay enumer-
ation can be achieved [16].

4. NEARBY PROBLEMS
It turns out that the index structures build for

enumeration can be used with little modifications
for solving several related problems, like counting
the number of solutions, or in the presence of an or-
der, directly pointing to the jth-solution. We briefly
survey those results here.

Counting the number of solutions.
Given a query q and a database D, the counting

problem is to compute |q(D)|.
Given a query language L, we say that the count-

ing problem of L is solvable in time f(n) if for any
q ∈ L and any database D, |q(D)| can be computed
in time g(q)f(||D||) for some computable function g.
Note that f does not depend on q. If f is poly-
nomial then the associated parametrized computa-
tional problem is in the class FPT.

For conjunctive queries, actually even for acyclic
conjunctive queries, counting the number of solu-
tions of a query is a hard problem. Already for
acyclic conjunctive queries the combined complex-
ity is #P -complete [25] and only the quantifier free
acyclic conjunctive queries can be solved in time lin-
ear in ||D|| [3]. Adding just one quantifier already
make already the problem hard [26].

For this reason, [14] introduced a new parame-
ter named quantified-star size. It measures “how
the free variables are spread in the formula” and
bounding this parameter yields tractable counting
problem for acyclic conjunctive queries.

Theorem 7. [14] For each number s, the count-
ing problem for acyclic conjunctive queries of
quantified-star size bounded by s can be solved in
time polynomial in both the size of the query and of
the database.

It turns out that this parameter characterizes ex-
actly the class of acyclic conjunctive queries having
a tractable counting problem. If a class of acyclic
conjunctive query does not have a bounded
quantified-star size, then its associated counting
problem is #W[1]-hard [14]. In particular, it cannot
be solved in FPT.

It is possible to perform counting efficiently be-
yond acyclic conjunctive queries. For instance it is
known that the boolean case is tractable for CQ
having bounded width for various notions of width.
In order to capture also non boolean queries the no-
tion of quantified-star size was extended for various
notions of width [13]. Based on this definition for
hypertreewidth, the result reads as follows:

Theorem 8. [13] Let C be a class of CQ of
bounded generalized hypertreewidth.

Assuming W[1] 6= FPT the following are equiva-
lent:

1. The counting problem for queries in C is solv-
able in polynomial time

2. C has bounded quantified-star size

SIGMOD Record, March 2015 (Vol. 44, No. 1) 15

If the schema is not part of the input, or more
generally if we assume a bound on the arity of the
predicates used in queries of C, they building on [19]
we get the following stronger result that also shows
that the bounded treewidth hypothesis is necessary:

Theorem 9. [13] Let C be a class of CQ using
predicates of bounded arity. Assuming W[1] 6= FPT
the following are equivalent:

1. The counting problem for queries in C is solv-
able in polynomial time

2. C has bounded treewidth and bounded
quantified-star size

5. DISCUSSION

5.1 More expressive queries
In order to be able to enumerate more expres-

sive queries, one need restrictions on the class of
databases under consideration. Several restrictions
have been investigated, like bounded degree [20, 12],
bounded expansion [21] and low degree [15] for FO
queries, bounded tree-width [2, 22] for MSO queries
and XPath queries over data trees [7]. The inter-
ested reader is referred to [27, 28] for a more detailed
overview of these results.

5.2 The impact of order
The definition of CD◦Lin presented here does

not specify the order in which the answers are out-
put. One could require a specific order, relevant to
the context in which the query is evaluated. For
instance, if there is a linear order on the domain of
the database, one could require that the tuples of
the result are output in lexicographical order. An-
other typical example is when there is a relevance
measure associated to each tuple and one would like
the answers to the query to be output in the order
of their relevance.

Requiring a specific order when outputting the
answers to a query may have a dramatic impact on
the existence of constant delay algorithms. This is
not surprising as the index built during the prepro-
cessing phase is designed for a particular order.

6. CONCLUSIONS
We mentioned several results concerning constant

delay enumeration of conjunctive queries. We hope
that we succeeded to convince the reader that this
is a very interesting topic. We conclude with several
research directions.

One could for instance consider relaxing the “no
duplicate” constraint during the enumeration phase

and enumerate conjunctive queries with the “bag se-
mantics”, i.e. each answer occurs as many times as
there are valuations witnessing it. This has not been
investigated and is clearly relevant for database
queries with aggregate predicates.

The situation of the lower bounds mentioned in
this paper is not completely satisfactory as they are
based on complexity or algorithmics hypothesis. Of
course one can construct artificial problems, based
on the fact that there exist quadratic but not linear
problems, that do not admit constant delay enu-
meration algorithms. For the queries mentioned in
this note, like the distance 2 one, the lower bounds
requires an assumption. It is plausible (i.e. there
are no known drastic consequences in complexity
theory nor in algorithmic) that the non existence
of constant delay enumeration algorithms could be
proved with no assumptions. We believe this is an
interesting and challenging question.

7. REFERENCES
[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman.

The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

[2] G. Bagan. MSO Queries on Tree
Decomposable Structures Are Computable
with Linear Delay. In Conf. on Computer
Science Logic (CSL), pages 167–181, 2006.

[3] G. Bagan. Algorithmes et complexité des
problèmes d’énumération pour l’évaluation de
requêtes logiques. PhD thesis, Université de
Caen, 2009.

[4] G. Bagan, A. Durand, E. Filiot, and
O. Gauwin. Efficient Enumeration for
Conjunctive Queries over X-underbar
Structures. In Conf. on Computer Science
Logic (CSL), pages 80–94, 2010.

[5] G. Bagan, A. Durand, and E. Grandjean. On
Acyclic Conjunctive Queries and Constant
Delay Enumeration. In Conf. on Computer
Science Logic (CSL), pages 208–222, 2007.

[6] G. Bagan, A. Durand, E. Grandjean, and
F. Olive. Computing the jth solution of a
first-order query. RAIRO Theoretical
Informatics and Applications, 42(1):147–164,
2008.

[7] M. Bojańczyk and P. Parys. XPath evaluation
in linear time. J. of the ACM, 58(4), 2011.

[8] J. Brault-Baron. A Negative Conjunctive
Query is Easy if and only if it is Beta-Acyclic.
In Conf. on Computer Science Logic (CSL),
pages 137–151, 2012.

[9] J. Brault-Baron. De la pertinence de
l’énumération : complexité en logiques

16 SIGMOD Record, March 2015 (Vol. 44, No. 1)

propositionnelle et du premier ordre. PhD
thesis, Université de Caen, 2013.

[10] T. Colcombet. A Combinatorial Theorem for
Trees. In Intl. Coll. on Automata, Languages
and Programming (ICALP), pages 901–912,
2007.

[11] D. Coppersmith and S. Winograd. Matrix
Multiplication via Arithmetic Progressions. J.
on Symbolic Computation, 9(3):251–280, 1990.

[12] A. Durand and E. Grandjean. First-order
queries on structures of bounded degree are
computable with constant delay. ACM Trans.
on Computational Logic (ToCL), 8(4), 2007.

[13] A. Durand and S. Mengel. Structural
tractability of counting of solutions to
conjunctive queries. In Intl. Conf. on
Database Theory, pages 81–92, 2013.

[14] A. Durand and S. Mengel. On Polynomials
Defined by Acyclic Conjunctive Queries and
Weighted Counting Problems. J. on
Computer and System Sciences (JCSS),
80(1):277–296, 2014.

[15] A. Durand, N. Schweikardt, and L. Segoufin.
Enumerating first-order queries over databases
of low degree. In Symp. on Principles of
Database Systems (PODS), 2014.

[16] A. Durand and Y. Strozecki. Enumeration
Complexity of Logical Query Problems with
Second-order Variables. In Conf. on Computer
Science Logic (CSL), pages 189–202, 2011.

[17] J. Flum and M. Grohe. Parameterized
Complexity Theory. Springer, 2006.

[18] E. Grandjean. Sorting, Linear Time and the
Satisfiability Problem. Annals of Mathematics
and Artificial Intelligence, 16:183–236, 1996.

[19] M. Grohe, T. Schwentick, and L. Segoufin.
When is the evaluation of conjunctive queries
tractable? In Symposium on Theory of
Computing (STOC), pages 657–666, 2001.

[20] W. Kazana and L. Segoufin. First-order query
evaluation on structures of bounded degree.
Logical Methods in Computer Science
(LMCS), 7(2), 2011.

[21] W. Kazana and L. Segoufin. Enumeration of
first-order queries on classes of structures with
bounded expansion. Symp. on Principles of
Database Systems (PODS), 2013.

[22] W. Kazana and L. Segoufin. Enumeration of
monadic second-order queries on trees. ACM
Transactions on Computational Logic, 14(4),
2013.

[23] S. Lindell. A Normal Form for First-Order
Logic over Doubly-Linked Data Structures.
Int. J. Found. Comput. Sci., 19(1):205–217,

2008.
[24] C. H. Papadimitriou and M. Yannakakis. On

the Complexity of Database Queries. J. on
Computer and System Sciences (JCSS),
58(3):407–427, 1999.

[25] R. Pichler and S. Skritek. Tractable Counting
of the Answers to Conjunctive Queries. In
Alberto Mendelzon Intl. Workshop on
Foundations of Data Management (AMW),
2011.

[26] R. Pichler and S. Skritek. Tractable counting
of the answers to conjunctive queries. J.
Comput. Syst. Sci., 79(6):984–1001, 2013.

[27] L. Segoufin. Enumerating with constant delay
the answers to a query. In Intl. Conf. on
Database Theory, pages 10–20, 2013.

[28] L. Segoufin. A glimpse on constant delay
enumeration. In Intl. Symp. on Theoretical
Aspects of Computer Science (STACS), pages
13–27, 2014.

[29] M. Yannakakis. Algorithms for Acyclic
Database Schemes. In Intl. Conf. on Very
Large Databases (VLDB), pages 82–94, 1981.

SIGMOD Record, March 2015 (Vol. 44, No. 1) 17

