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We show that problems arising in static analysis of XML specifications and transformations
can be dealt with using techniques similar to those developed for static analysis of
programs. Many properties of interest in the XML context are related to navigation, and
can be formulated in temporal logics for trees. We choose a logic that admits a simple
single-exponential translation into unranked tree automata, in the spirit of the classical
LTL-to-Büchi automata translation. Automata arising from this translation have a number
of additional properties; in particular, they are convenient for reasoning about unary node-
selecting queries, which are important in the XML context. We give two applications of
such reasoning: one deals with a classical XML problem of reasoning about navigation in
the presence of schemas, and the other relates to verifying security properties of XML
views.
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1. Introduction

Static analysis of XML specifications and transformations has been the focus of many recent papers. Typical problems
include consistency of type declarations and constraints [1,5,25], or of schema specifications and navigational properties
[7,18] or containment of XPath expressions [9,11,17,27,37]. They found application in query optimization, access control,
data exchange, and reasoning about security properties of views, among others.

There is an analogy, at least at the level to tools and techniques, between many of XML static analysis problems and
those arising in software verification. Specifications of program behavior are often expressed in temporal logic formalisms,
while the programs themselves are abstracted as labeled transitions systems or Kripke structures, and thus can be viewed
as automata. To reason about programs, logical specifications are turned into automata, and then verification problems are
reduced to pure automata questions such as ‘is there an accepting run of a given automaton?’.

When we turn to XML, we see both the ingredients. First, many XML specifications – for example, various schema
formalisms – are automata-based. For example, DTDs are extended context free grammars, and extended DTDs (which add a
notion of specialization to DTDs) have precisely the power of tree automata. Many other formalisms have automata-theoretic
flavor, see [26] for a survey. Furthermore, there is a close connection between XML navigation (e.g., the language XPath),
which is a key component of query languages, and temporal logics [6,28,27,23,17,18]. Thus, it is very natural to adapt
automata-based techniques developed by the verification community (cf. [12]) to XML static analysis problems involving
schemas and navigation.

This idea has been explored in the past, mainly by adapting existing verification tools, and reshaping the problem at
hand so that those tools would be applicable to it. For example, [27] shows how to reason about XPath and XML schemas
by encoding them in PDL (propositional dynamic logic). The problem is, given an input DTD d and Xpath expressions e1 and
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e2, to check whether containment e1(T ) ⊆ e2(T ) holds for all trees T conforming to d. While the approach of [27] achieves a
provably optimal EXPTIME bound, it does so by a rather complicated algorithm. For example, it uses, as a black box for one
of its steps, a translation from PDL into a certain type of tree automata [43], for which no efficient implementations exist.
Another example of such reasoning [17,18], for the same containment problem, goes via a better implementable μ-calculus,
and achieves a similar 2O (n) bound.

We propose an alternative approach: instead of using verification techniques as-is in the XML context, we adapt them
to get better static analysis algorithms. The present paper can be viewed as a proof-of-concept paper: we demonstrate one
logic-to-automata translation targeted to XML applications, which closely resembles the standard Vardi–Wolper’s translation
[42] of LTL (linear temporal logic) into nondeterministic Büchi automata, and show that it is easily applicable in some typical
XML reasoning tasks.

Typically, temporal logic formulae are translated into either nondeterministic or alternating automata; for LTL, both are
possible [42,40]. We believe that both should be explored in the XML context. For this paper, we concentrate on the former.
A recent paper [11] developed an alternating-automata based approach along the lines of [40]. It handled a more expressive
navigation language, but did not work out connections with XML schemas, as we do here.

Our goal is to find a clean direct translation from a logical formalism suitable for expressing many XML reasoning tasks,
into an automata model. Towards that end, we use a simple LTL-like logic for trees, which we call TLtree, rather than a
W3C-designed language (but we shall show that such languages can be easily translated into TLtree). This logic was defined
in [36], and it was recently used in the work on XPath extensions [28], and as a key ingredient for an expressively-complete
logic for reasoning about procedural programs [3,4]. It should be noted that we do not propose to use TLtree for writing
specifications; rather, we view it as a convenient intermediate step as constantly changing standards and languages such as
XPath. Those languages can be easily encoded in TLtree, and the translation from TLtree into automata follows the lines of
well established translations from temporal logics into automata.

The translation that we exhibit produces a bit more than automata rejecting or accepting trees; instead it will produce
query automata [32,30,16] which can also select nodes from trees in their successful runs. The ability to produce such
automata is not surprising at all (since in the Vardi–Wolper construction states are sets of formulae and successful runs tell
us which formulae hold in which positions). Nonetheless, it is a useful feature for XML reasoning, since many XML data
processing tasks are about node-selecting queries [20,32,38,31]. Furthermore, additional properties of query automata arising
in the translation make operations such as complementation and testing containment very easy.

1.1. Main contributions

We present a single-exponential translation from the logic TLtree into unranked tree automata (in fact, into query au-
tomata with additional properties). We then show how to translate various flavors of XPath into TLtree (most of the time,
linearly, but even in more complex cases still guaranteeing the overall single-exponential bound on the translation XPath
→ TLtree → automata). Furthermore we give two applications of the translations to XML reasoning, involving satisfiabil-
ity/containment of XPath in the presence of schema information, and reasoning about XML views.

1.2. Organization

In Section 2 we give examples of XML reasoning where the logic/automata connection would be useful. Section 3
describes unranked trees and automata for unranked trees. In Section 4 we present the logic TLtree and various XPath
formalisms, and in Section 5 we give an easy translation of XPath into TLtree. In Section 6 we give a translation from TLtree

to query automata. Section 7 applies this translation in complex reasoning tasks involving schemas and navigation in XML
documents and to reasoning about XML views.

An extended abstract of this work has appeared in LPAR 2008 conference proceedings [24].

2. Motivating examples

We now consider two examples of XML static analysis problems that will later be handled by restating these problems
with the help of TLtree and the automata translation. While formal definitions will be given later, for the reader not fluent
in XML the following abstractions will be sufficient. First, XML documents themselves are labeled unranked trees (that is,
different nodes can have a different number of children). XML schemas describe how documents are structured; we abstract
them for now by means of tree automata. The most common of such formalisms is referred to as DTDs (document type
definitions). And finally XPath is a navigational language; an XPath expression for now can be thought of as selecting a set
of nodes in a tree.

2.1. Reasoning about schemas and navigation

A common static analysis problem in the XML context, arising in query optimization and consistency checking, is the
interaction of navigational properties (expressed, for example, in XPath) with schemas (often given as DTDs). Examples of
such problems are XPath containment [37] or XPath/DTD consistency [7].



212 L. Libkin, C. Sirangelo / Journal of Applied Logic 8 (2010) 210–232
The containment problem of XPath expressions under a DTD, is the problem of checking whether for all trees satisfying
a DTD d, the set of nodes selected by an expression e1 is contained in the set selected by e2 (written as d |� e1 ⊆ e2). The
XPath/DTD consistency problem is to check whether there exists a tree satisfying a given DTD where the set of nodes selected
by a given Xpath expression is non-empty.

Known results about the complexity of such problems are typically stated in terms of completeness for various intractable
complexity classes. They imply unavoidability of exponential-time algorithms, and they do not necessarily lead to reasonable
algorithms that can be used in practice.

To illustrate this, consider the containment problem of XPath expressions under a DTD. For example, consider two ex-
pressions e1 = r//b and e2 = r/a/b (we assume that r refers to the root of a tree). The first expression selects all nodes
(descendants of the root, which is expressed by r//) labeled b. The second expression selects b-labeled grandchildren of the
root whose parent is labeled a. In general we have e2 ⊆ e1 but e1 ⊆ e2 does not hold. However, if we have a DTD d with
the rules r → a∗; a → b∗; b → ε saying that all children of r must be labeled a and all children of a-labeled nodes must be
labeled b, then we have the reverse inclusion as well, i.e., d |� e1 ⊆ e2.

To verify containment, one could use automata-based algorithms that translate XPath directly into automata (which
could depend heavily on a particular syntactic class [33]). Alternatively, one could attempt a translation via an existing
logic. This is the approach of [27,17] which translate e1, e2, and d into formulae of expressive logics such as PDL (in [27]) or
μ-calculus (in [17,18]). Then one uses techniques of [43,41] to check if there exists a finite tree T satisfying d and a node s
in T witnessing e1(s) ∧ ¬e2(s), i.e., a counterexample to the containment.

While this is very much in the spirit of the traditional logic/automata connection used so extensively in static analysis
of programs, there are some problems with this approach as currently used. The logics used were chosen because of their
ability to encode DTDs, but this makes the constructions apply several algorithms as black-boxes. For example, the PDL
approach of [27] combines three different constructions: one is a translation into PDL with converse on binary trees; another
one is an algorithm of [43] translating PDL into a rather complex automata model; and a third one is a product construction
with an extra automaton that restricts the produced automaton to finite trees. Another limitation of the above approaches
to verify containment is that we do not get a concise description of the set of all possible counterexamples, rather a yes or
no answer. Finally, the high expressiveness of logics comes at a cost. The running time of algorithms that go via μ-calculus
or PDL is 2O (‖e1‖+‖e2‖+‖d‖) , where ‖ · ‖ denotes the size [27,18]. In several applications, we would rather avoid the 2O (‖d‖)
factor, since many DTDs are computer-generated from database schemas and could be very large, while XPath expressions
tend to be small.

The translation we propose is a direct and simple construction (following the lines of Vardi–Wolper’s translation), and
does not rely on complicated algorithms such as the PDL-to-automata translation (which are unlikely to be implementable).
It produces a concise description of all possible counterexamples. Finally, it exhibits an exponential blowup in the size of e1
and e2, but remains polynomial in the size of the schema.

To illustrate it, we revisit the example with the DTD d given by r → a∗; a → b∗; b → ε and expressions e1 = r//b and
e2 = r/a/b. We shall translate XPath expressions into temporal logic formulae:

ψe1 = b

ψe2 = b ∧ X−
ch

(
a ∧ X−

chr
)
.

The connective X−
ch means that a formula is true in the parent of a given node; that is, b ∧ X−

ch(a ∧ X−
chr) is true in a node if

it is labeled by b, its parent by a, and its grandparent by r.
We then define ϕ = ψe1 ∧ ¬ψe2 which describes counterexamples to containment. We modify it so that all negations

apply only to labels:

ϕ = b ∧ X−
ch

(¬a ∨ X−
ch¬r

)
.

We then follow a standard approach by translating this formula into an automaton whose states are sets of subformulae of
ϕ , i.e., subsets of

¬a, ¬r, b, X−
ch¬r, ¬a ∨ X−

ch¬r, X−
ch

(¬a ∨ X−
ch¬r

)
, ϕ.

The resulting automaton would accept some trees of course, because in general the containment e1 ⊆ e2 does not hold. But
we then take the product of this automaton with the automaton that captures the DTD. The resulting automaton accepts
counterexamples to containment under the DTD. In our example, this automaton would be empty.

Informally (and this will be made precise when we describe the translation), the product automaton is of size exponential
in e1 and e2 (as in [27,18]) and linear in the size of d (unlike in [27,18]). Since testing for emptiness can be done in
polynomial time, the construction removes an exponential factor 2O (‖d‖) .

The example shown above outlines the main elements of the construction we present here. The temporal formulae come
from the logic TLtree. We present two main technical devices in this paper:

1. A single-exponential translation from TLtree formulae to automata; and
2. A single-exponential, but often linear, translation from XPath to TLtree.
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While this might appear to lead to a double-exponential translation overall, we also show that the XPath-to-TLtree is done
in a way that does not increase the number of subformulae. And since the states of the automaton are sets of subformulae,
the overall translation is single-exponential.

Our approach can deal with more general problems than XPath containment under DTDs. Generalizations of this problem
will be discussed in Section 7.1. In particular the ability to manipulate TLtree formulae also gives us algorithms for complex
containment/equivalence conditions; the ability to take products lets us incorporate schema information in a way that avoids
an exponential blowup in the size of the schema.

2.2. Reasoning about views and query answers

Often the user sees not a whole XML document, but just a portion of it, V (called a view), generated by a query. Such a
query typically specifies a set of nodes selected from a source document, and thus can be represented by a query automaton
QAV : i.e., an extension of a tree automaton that can select nodes in trees; a formal definition will be given shortly.

If we only have access to V , we do not know the source document that produced it, as there could be many trees
T satisfying V = QAV (T ). We may know, however, that every such source has to satisfy some schema requirements,
presented by a tree automaton A. Moreover we may know that there is some particular information about the source that
is considered a “secret”, and therefore should not be available.

A common problem is to check whether V may reveal this “secret” information about the source. If Q is a Boolean
(yes/no) query, one defines the certain answer to Q over V to be true iff Q is true in every possible T that generates V :

certainA
Q AV (Q; V ) =

∧{
Q(T )

∣∣ V = QA V (T ), T is accepted by A
}
.

Now if by looking at V , we can conclude that certainA
Q A V

(Q; V ) is true, then V reveals that Q is true in an unknown
source. If Q is a containment statement e1 ⊆ e2, such an inclusion could be information that needs to be kept secret (e.g.,
it may relate two different groups of people). For more on this type of applications, see [15,14].

For example, assume that the source document (that is unknown to us) conforms to the DTD d with the rules r → a∗, c∗;
a → b∗,d∗; and c∗ → f ∗,b∗ (plus b,d, f → ε). Suppose that the view simply selects all the b-labeled nodes, and together
with each node it selects the full path from the root to the node.

Next, assume that the ‘secret’ query Q is the containment r//b ⊆ r//a/b. It says that every b node must be a child of
an a node. If a and b talk about groups of people, products, etc., information of this kind may be important to hide. If we
simply look at the DTD and the query, we cannot derive this fact, as some b’s appear on the r.c.b path. It appears that we
need access to the document itself.

However, if we have access just to the view and not the source document, we may positively answer the query in some
cases. For instance, if in the view every b node is a child of an a node, then we can derive, from the view and the schema
information, that the same is true in the source, even if we do not know it.

In general, assume that the Boolean query Q is definable by an automaton AQ . Our approach to computing certain
answers is as follows. We attempt to convert automata AQ , A, and the query automaton QA V into a new automaton A∗
so that A∗ accepts V iff certainA

Q AV
(Q; V ) is false. Then acceptance by A∗ gives us some assurances that the secret is

not revealed. Furthermore, since views are often given by XPath expressions, and e1 and e2 are often XPath expressions
too, an efficient algorithm for constructing A∗ would give us a verification algorithm exponential in (typically short) XPath
expressions defining e1, e2, and V , and polynomial in a (potentially large) expression defining the schema.

In fact, we shall present a polynomial-time construction for A∗ for the case of views which are similar to the one we
used in the example. Namely, such views are subtree- (or upward-closed): together with each node they select the whole
path from the root to that node. Such queries have arisen in a number of applications in the XML context, see [2,8]. For
them, using the previous efficient translations from logical formulae into query automata, we get efficient algorithms for
verifying properties of views.

3. Unranked trees and automata

3.1. Unranked trees

XML documents are normally abstracted as labeled unranked trees (we disregard data values as well as references such
as ID and IDREF that lead to more general graph structures). We now recall the classical definitions, see [31,23,38].

Nodes in unranked trees are elements of N∗ , i.e. strings of natural numbers. We write s · s′ for the concatenation of
strings, and ε for the empty string. The basic binary relations on N∗ are:

• the child relation: s ≺ch s′ if s′ = s · i, for some i ∈ N, and
• the next-sibling relation: s′ ≺ns s′′ if s′ = s · i and s′′ = s · (i + 1) for some s ∈ N∗ and i ∈ N.

The descendant relation ≺∗ and the younger sibling relation ≺∗
ns are the reflexive-transitive closures of ≺ch and ≺ns.
ch
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An unranked tree domain D is a finite prefix-closed subset of N∗ such that s · i ∈ D implies s · j ∈ D for all j < i. If Σ

is a finite alphabet, a Σ-labeled unranked tree is a pair T = (D, λ), where D is a tree domain and λ is a labeling function
λ : D → Σ .

An unranked tree T = (D, λ) can be viewed as a structure 〈D,≺∗
ch,≺∗

ns, (Pa)a∈Σ 〉, where Pa ’s are labeling predicates:
Pa = {s ∈ D | λ(s) = a}. Thus, when we talk about first-order logic (FO), or monadic second-order logic (MSO), we interpret
them on these representations of unranked trees. Recall that MSO extends FO with quantification over sets.

In what follows we will often refer to unranked trees simply as trees.

3.2. Unranked tree automata and XML schemas

A nondeterministic unranked tree automaton (cf. [31,38]) over Σ-labeled trees is a triple A = (Q , F , δ) where Q is a finite
set of states, F ⊆ Q is the set of final states, and δ is a mapping Q × Σ → 2Q ∗

such that each δ(q,a) is a regular language
over Q . We assume that each δ(q,a) is given as an NFA (nondeterministic finite automaton). A run of A on a tree T = (D, λ)

is a function ρA : D → Q such that if s ∈ D is a node with n children, and λ(s) = a, then the string ρA(s ·0) · · ·ρA(s · (n−1))

is in δ(ρA(s),a). Thus, if s is a leaf labeled a, then ρA(s) = q implies that ε ∈ δ(q,a). A run is accepting if ρA(ε) ∈ F , and
a tree is accepted by A if an accepting run exists. Sets of trees accepted by automata A are called regular and denoted by
L(A).

There are multiple notions of schemas for XML documents. What is common for such notions is that their structural
aspects are subsumed by unranked tree automata, see [26] for several examples. More, translations from various schema
formalisms into automata are usually very effective [26], and thus automata are naturally viewed as an abstraction of
schemas in the XML literature. Among such schema formalisms, DTDs (i.e., extended context-free grammars) are most
commonly used. So when we speak of XML schemas, we shall assume that they are given by unranked tree automata.

As an example, we show a simple translation from DTDs into unranked tree automata. Suppose we have a DTD d over
an alphabet Σ = {a0,a1, . . . ,an} given by the set of rules ai → ei , where each ei is a regular expression over Σ . We assume
that a0 is the root. The states of the automaton Ad are Q = {qa0 , . . . ,qan }, the final state is qa0 , and the transition function is

δ(qai ,ai) = qei for all i

δ(qai ,a j) = ∅ for all i �= j.

Here qei is obtained from ei by replacing each al by qal .
For instance, if we have a DTD d with the rules root → book+ , book → title,author∗ and title,author → ε, then the

automaton Ad would have states qroot,qbook,qauthor,qtitle , and the transitions

δ(qroot, root) = q+
book

δ(qbook,book) = qtitle,q∗
author

δ(qtitle, title) = ε

δ(qauthor,author) = ε;
with all other values of δ being ∅.

In what follows, the size ‖d‖ of a DTD d refers to the size of the automaton Ad (under any standard encoding of tree
automata).

3.3. Query automata

It is well known that automata capture the expressiveness of MSO (monadic second order logic) sentences over finite
and infinite strings and trees [39]. The model of query automata [32] captures the expressiveness of MSO formulae ϕ(x)
with one free first-order variable – that is, MSO-definable unary queries. We present here a nondeterministic version, as in
[30,16].

A query automaton (QA) for Σ-labeled unranked trees is a tuple QA = (Q , F , Q s, δ), where (Q , F , δ) is a nondeterminis-
tic unranked tree automaton, and Q s ⊆ Q is the set of selecting states. The runs of QA on a tree T are defined as the runs
of (Q , F , δ) on T . Each run ρ of QA on a tree T = (D, λ) defines the set Sρ(T ) = {s ∈ D | ρ(s) ∈ Q s} of nodes assigned a
selecting state. The unary query defined by QA is then, under the existential semantics,

QA∃(T ) =
⋃{

Sρ(T ) | ρ is an accepting run of QA on T
}
.

Alternatively, one can define QA∀(T ) under the universal semantics as
⋂{Sρ(T ) | ρ is an accepting run of QA on T }. Both

semantics capture the class of unary MSO queries [30].
For example, the automaton Ad for the DTD d from the previous section can be turned into a query automaton QAd,book

that selects book nodes from documents that conform to D simply by declaring qbook as the selecting state.
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These semantics QA∃(T ) and QA∀(T ) are not very convenient for reasoning tasks, as many runs need to be taken into
account – different nodes may be selected in different runs. Also, it makes operations on query automata hard computation-
ally: for example, a natural notion of complement for an existential-semantics QA will be expressed as a universal semantics
QA, requiring an exponential time algorithm to convert it back into an existential QA.

To remedy this, we define a notion of single-run query automata as QAs (Q , F , Q s, δ) satisfying two conditions:

1. For every tree T , and accepting runs ρ1 and ρ2, we have Sρ1 (T ) = Sρ2 (T ); and
2. The automaton (Q , F , δ) accepts every tree.

For such QAs, we can unambiguously define the set of selected nodes as QA(T ) = Sρ(T ), where ρ is an arbitrarily chosen
accepting run.

While the conditions are fairly strong, they do not restrict the power of QAs:

Fact 1. (See [16,34,35].) For every query automaton QA, there exists an equivalent single-run query automaton, that is, a single-run
query automaton QA′ such that QA∃(T ) = QA′(T ) for every tree T .

The construction in [16] needs a slight modification to produce such QA; also it needs to be extended to unranked trees
which is straightforward. This was also noticed in [35]. One can also get this result by slightly adapting the construction of
[34].

For example, to make the query automaton QAd,book (that selects book nodes from documents conforming to d) single-
run, we use the following trick: in the beginning the QA guesses whether the tree conforms to DTD or not. If it does, it
attempts to run QAd,book , with qbook as the selecting state (in a way that it will not accept if the tree does not conform
to d). If the guess is that the tree does not conform to d, it runs an automaton accepting the complement of d with no
selecting states. This will satisfy the definition of single-run.

We now make a few remarks about closure properties and decision problems for single-run QAs. It is known [31] that
non-emptiness problem for existential-semantics QAs is solvable in polynomial time; hence the same is true for single-run
QAs. Single-run QAs are easily closed under intersection: the usual product construction works. Moreover, if one takes a
product A × QA of a tree automaton and a single-run QA (where selecting states are pairs containing a selecting state of

QA), the result is a QA satisfying (1) above, and the non-emptiness problem for it is solvable in polynomial time too.
We define the complement of a single-run QA as QA = (Q , F , Q − Q s, δ), where QA = (Q , F , Q s, δ). It follows imme-

diately from the definition that for every tree T with domain D , we have QA(T ) = D − QA(T ), if QA is single-run. This
implies that the containment problem QA1 ⊆ QA2 (i.e., checking whether QA1(T ) ⊆ QA2(T ) for all T ) for single-run QAs
is solvable in polynomial time, since it is equivalent to checking emptiness of QA1 × QA2.

4. Logics on trees: TLtree and XPath

4.1. TLtree

We shall use a tree temporal logic [28,36], denoted here by TLtree [23]. It can be viewed as a natural extension of LTL with
the past operators to unranked trees [21,41], with next, previous, until, and since operators for both child and next-sibling
relations. The syntax of TLtree is defined by:

ϕ,ϕ′ := � | ⊥ | a | ϕ ∨ ϕ′ | ¬ϕ | X∗ϕ | X−∗ ϕ | ϕU∗ϕ′ | ϕS∗ϕ′,

where � and ⊥ are true and false, a ranges over Σ , and ∗ is either ‘ch’ (child) or ‘ns’ (next sibling). The semantics is defined
with respect to a tree T = (D, λ) and a node s ∈ D:

• (T , s) |� �; (T , s) �|� ⊥;
• (T , s) |� a iff λ(s) = a;
• (T , s) |� ϕ ∨ ϕ′ iff (T , s) |� ϕ or (T , s) |� ϕ′;
• (T , s) |� ¬ϕ iff (T , s) �|� ϕ;
• (T , s) |� Xchϕ if there exists a node s′ ∈ D such that s ≺ch s′ and (T , s′) |� ϕ;
• (T , s) |� X−

chϕ if there exists a node s′ ∈ D such that s′ ≺ch s and (T , s′) |� ϕ;
• (T , s) |� ϕUchϕ

′ if there is a node s′ such that s ≺∗
ch s′ , (T , s′) |� ϕ′ , and for all s′′ �= s′ satisfying s ≺∗

ch s′′ ≺∗
ch s′ we have

(T , s′′) |� ϕ;
• (T , s) |� ϕSchϕ

′ if there is a node s′ such that s′ ≺∗
ch s, (T , s′) |� ϕ′ , and for all s′′ �= s′ satisfying s′ ≺∗

ch s′′ ≺∗
ch s we have

(T , s′′) |� ϕ .

The semantics of Xns, X−
ns, Uns, and Sns is analogous by replacing the child relation with the next-sibling relation.

We shall also use the standard abbreviations: Fchϕ is �Uchϕ (there is a descendant where ϕ is true), F−
chϕ is �Schϕ

(there is an ancestor where ϕ) is true; and likewise for Fns and F−
ns. We also use root as a shorthand for ¬X− �.
ch
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A TLtree formula ϕ defines a unary query T �→ {s | (T , s) |� ϕ}. It is known that TLtree is expressively complete for FO: the
class of such unary queries is precisely the class of queries defined by FO formulae with one free variable [28,36].

4.2. XPath

We present a first-order complete extension of XPath, called conditional XPath, or CXPath [28]. We introduce very minor
modifications to the syntax (e.g., we use an existential quantifier E instead of the usual XPath node test brackets [ ]) to
make the syntax resemble that of temporal logics. CXPath has node formulae α and path formulae β given by:

α,α′ := a | ¬α | α ∨ α′ | Eβ

β,β ′ :=?α | step | step∗ | (step/?α)∗ | β/β ′ | β ∨ β ′

where a ranges over Σ and step is one of the following: ≺ch, ≺−
ch, ≺ns, or ≺−

ns. The language without the (step/?α)∗ is
known as “core XPath”.

Intuitively Eβ states the existence of a path starting in a given node and satisfying β , the path formula ?α tests if the
node formula α is true in the initial node of a path, and / is the composition of paths.

Given a tree T = (D, λ), the semantics of a node formula is a set of nodes �α�T ⊆ D , and the semantics of a path
formula is a binary relation �β�T ⊆ D × D given by the following rules. We use R∗ to denote the reflexive-transitive closure
of relation R , and π1(R) to denote its first projection.

�a�T = {
s ∈ D | λ(s) = a

} �?α�T = {
(s, s) | s ∈ �α�T

}

�¬α�T = D − �α�T �step�T = {
(s, s′) | s, s′ ∈ D and (s, s′) ∈ step

}

�α ∨ α′�T = �α�T ∪ �α′�T �β ∨ β ′�T = �β�T ∪ �β ′�T

�Eβ�T = π1
(�β�T

) �step∗�T = �step�∗
T

�β/β ′�T = �β�T ◦ �β ′�T�
(step/?α)∗

�
T = �

(step/?α)
�∗

T .

CXPath defines two kinds of unary queries: those given by node formulae, and those given by path formulae β , selecting
�β�root

T = {s ∈ D | (ε, s) ∈ �β�T }. Both classes capture precisely unary FO queries on trees [28].

5. XPath and TLtree

XPath expressions can be translated into TLtree. For example, consider an expression in the “traditional” XPath syntax:
e = /a//b[//c]. It says: start at the root, find children labeled a, their descendants labeled b, and select those which have a
c-descendant. It can be viewed as both a path formula and a node formula of XPath. An equivalent path formula is

β =≺ch /?a/ ≺∗
ch /?

(
b ∧ E

(≺∗
ch /?c

))
.

The set �β�root
T = {s | (ε, s) ∈ �β�T } is precisely the set of nodes selected by e in T . Alternatively we can view it as a node

formula

α = b ∧ E
(≺∗

ch /?c
) ∧ E

((≺−
ch

)∗
/?

(
a ∧ E

(≺−
ch /root

)))
.

Here root is an abbreviation for a formula that tests for the root node. Then �α�T generates the set of nodes selected by e.
It is known [29] that for every path formula β , one can construct in linear time a node formula α so that �β�root

T = �α�T .
Thus, from now on we deal with node XPath formulae.

The above formulae can be translated into an equivalent TLtree expression

b ∧ Fchc ∧ F−
ch

(
a ∧ X−

chroot
)
.

This formula selects b-labeled nodes with c-labeled descendants, and an a-ancestor which is a child of the root – this is of
course equivalent to the original expression.

In what follows, the size ‖ψ‖ of a formula ψ (both a TLtree and a CXPath formula) refers to the number of nodes in the
parse tree of ψ .

Since both TLtree and CXPath are first-order expressively-complete [28], each core or conditional XPath expression is
equivalent to a formula of TLtree; however, no direct translation has previously been produced. We now give such a direct
translation that, for each CXPath formula α, produces an equivalent TLtree formula ϕα . The crucial property of this translation
is that, even if ϕα can be exponential in the size of α, the size of its Fischer–Ladner closure (the set of all subformulae and
their negations) is at most linear in the size of the original formula α. This, together with the translation from TLtree to QAs,
will guarantee single-exponential bounds on QAs equivalent to XPath formulae. In the translation, CXPath formulae of the
form (step/?α)∗ will be referred to as conditional axes.
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Theorem 1. Each node formula α of core or conditional XPath can be effectively translated into an equivalent formula ϕα of TLtree

such that the number of subformulae of ϕα is at most linear in the size of α. Moreover, if α does not use disjunctions of path formulae
nor child conditional axes, then the size of ϕα is at most linear in the size of α.

Proof. Given two TLtree formulae ϕ and ϕ′ and a CXPath path formula β , we say that ϕ′ ≡ Xβϕ if for each tree T and each
node s of T , one has that (T , s) |� ϕ′ iff there exists a node s′ in T , with (s, s′) ∈ �β�T , such that (T , s′) |� ϕ .

Each CXPath node formula α is translated into a TLtree formula which we denote by ϕα ; while each CXPath path formula
is translated into a mapping xβ from TLtree formulae to TLtree formulae. The intended semantics of the translation is as
follows:

1. If α is a node formula, then ϕα is an equivalent TLtree formula, that is for each tree T and each node s in T , we have
that (T , s) |� ϕα iff s ∈ �α�T .

2. If β is a path formula, then xβ is a mapping such that, for each TLtree formula ϕ , one has xβ(ϕ) ≡ Xβϕ .

The syntactic translation rules are the following:

α ϕα

a a
¬α′ ¬ϕα′
α′ ∨ α′′ ϕα′ ∨ ϕα′′
Eβ xβ(�)

β xβ(ϕ)

?α ϕα ∧ ϕ
≺ch Xchϕ

≺∗
ch �Uchϕ

(≺ch /?α)∗ ϕ ∨ Xch(ϕαUch(ϕ ∧ ϕα))

(≺−
ch /?α)∗ (X−

chϕα)Schϕ

(≺ns /?α)∗ (Xnsϕα)Unsϕ

(≺−
ns /?α)∗ (X−

nsϕα)Snsϕ

β ′/β ′′ xβ ′ ◦ xβ ′′(ϕ)

β ′ ∨ β ′′ xβ ′(ϕ) ∨ xβ ′′(ϕ)

In the cases β =≺−
ch, β =≺ns, β =≺−

ns, translation rules are obtained from the case β =≺ch by replacing Xch with X−
ch,

Xns and X−
ns, respectively. In the cases β =≺−∗

ch , β =≺∗
ns, β =≺−∗

ns , translation rules are obtained from the case β =≺∗
ch by

replacing Uch with Sch, Uns and Sns, respectively.
We now show by induction that ϕα and xβ have the intended semantics stated in (1) and (2) above. In the base case

that α = a, clearly ϕα is equivalent to α. Moreover in the base case that β =≺ch (resp. β =≺∗
ch), by the translation rules,

xβ(ϕ) = Xchϕ (resp. xβ(ϕ) = �Uchϕ), therefore for each tree T and each node s of T , we have that (T , s) |� xβ(ϕ) iff
there exists s′ such that s ≺ch s′ (resp. s ≺∗

ch s′) and (T , s′) |� ϕ . In other words, (T , s) |� xβ(ϕ) iff there exists s′ such that
(s, s′) ∈ �β�T and (T , s′) |� ϕ . By definition of Xβ , it follows that xβ(ϕ) ≡ Xβϕ . The proofs for the other steps (≺−

ch, ≺ns, ≺−
ns,

and their transitive closures) follow the same lines.
We now deal with the general cases, by using structural induction on the CXPath formula.
In the case that α is ¬α′ or α′ ∨ α′′ or Eβ , we assume that ϕα′ , ϕα′′ and xβ have the intended semantics stated in (1)

and (2) above. Then ϕα′ and ϕα′′ are equivalent to α′ and α′′ respectively; similarly xβ(�) ≡ Xβ�. As a consequence, by
definition of the semantics of TLtree and CXPath formulae, ¬ϕα′ is equivalent to ¬α′ , and ϕα′ ∨ϕα′′ is equivalent to α′ ∨α′′ .
Also, by definition of Xβ , for each tree T and each node s of T , one has that (T , s) |� xβ(�) iff there exists a node s′ in T ,
with (s, s′) ∈ �β�T . Then xβ(�) is equivalent to Eβ .

In the case that β =?α, by the induction hypothesis, ϕα is equivalent to α. Then for each tree T and each node s of T ,
one has that (T , s) |� xβ(ϕ) iff s ∈ �α�T (or equivalently (s, s) ∈ �?α�T ) and (T , s) |� ϕ . It follows that xβ(ϕ) ≡ Xβϕ .

In the case that β = (≺ch /?α)∗ , we have xβ(ϕ) = ϕ ∨ Xch(ϕαUch(ϕ ∧ ϕα)) and, by the induction hypothesis, ϕα is
equivalent to α. Now notice that (s, s′) ∈ �β�T iff

(a) either s′ = s or
(b) there exists s0 with s ≺ch s0 such that s0 ≺∗

ch s′ and for all s′′ with s0 ≺∗
ch s′′ ≺∗

ch s′ , one has s′′ ∈ �α�T (or equivalently
(T , s′′) |� ϕα ).

On the other hand, it follows from the definition of xβ(ϕ) that (T , s) |� xβ(ϕ) iff

(i) either (T , s) |� ϕ or
(ii) there exists s0 with s ≺ch s0 and s′ with s0 ≺∗

ch s′ such that (T , s′) |� ϕ and for all s′′ satisfying s0 ≺∗
ch s′′ ≺∗

ch s′ , we have
(T , s′′) |� ϕα .
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By comparing (i) and (ii) with (a) and (b) above, one derives that (T , s) |� xβ(ϕ) iff there exists s′ with (s, s′) ∈ �β�T such
that (T , s′) |� ϕ; that is xβ(ϕ) ≡ Xβϕ .

In the case that β = (≺−
ch /?α)∗ , we have xβ(ϕ) = (X−

chϕα)Schϕ and, by the induction hypothesis, ϕα is equivalent to α.
First notice that (s, s′) ∈ �β�T iff s′ ≺∗

ch s and for all s′′ �= s′ with s′ ≺∗
ch s′′ ≺∗

ch s, one has (T , s′′) |� X−
chϕα . By definition of

xβ and the semantics of Sch it follows that (T , s) |� xβ(ϕ) iff there exists s′ with (s, s′) ∈ �β�T , satisfying (T , s′) |� ϕ; that is
xβ(ϕ) ≡ Xβϕ .

The proofs for β = (≺ns /?α)∗ and β = (≺−
ns /?α)∗ follow the same lines as the case β = (≺−

ch /?α)∗ .
In the case that β = β ′/β ′′ , by the induction hypothesis, for each TLtree formula ψ , we have xβ ′ (ψ) ≡ Xβ ′ψ and xβ ′′ (ψ) ≡

Xβ ′′ψ . Therefore for each tree T and each node s of T , we have that (T , s) |� xβ(ϕ) iff there exists a node s′ with (s, s′) ∈
�β ′�T , such that (T , s′) |� xβ ′′(ϕ). On the other hand (T , s′) |� xβ ′′(ϕ) iff there exists a node s′′ with (s′, s′′) ∈ �β ′′�T such
that (T , s′′) |� ϕ . In other words, (T , s) |� xβ(ϕ) iff there exists a node s′′ with (s, s′′) ∈ �β ′/β ′′�T such that (T , s′′) |� ϕ . It
follows that xβ(ϕ) ≡ Xβϕ .

In the case that β = β ′ ∨ β ′′ – under the hypothesis that xβ ′ (ϕ) ≡ Xβ ′ϕ and xβ ′′ (ϕ) ≡ Xβ ′′ϕ – for a tree T and a
node s of T , we have that (T , s) |� xβ(ϕ) iff (T , s) |� xβ ′ (ϕ) or (T , s) |� xβ ′′(ϕ). This implies that (T , s) |� xβ(ϕ) iff there
exists a node s′ with (s, s′) ∈ �β ′�T or (s, s′) ∈ �β ′′�T (that is (s, s′) ∈ �β ′�T ∪ �β ′′�T ), such that (T , s′) |� ϕ . Given that
�β ′ ∨ β ′′�T = �β ′�T ∪ �β ′′�T , we have that xβ(ϕ) ≡ Xβϕ .

We now analyze the size of the produced TLtree formulae w.r.t. the size of the corresponding CXPath formulae. In what
follows, for each TLtree formula ϕ , we let sf(ϕ) stand for the set of its subformulae.

Claim 1.

1. For each CXPath node formula α,∣∣sf(ϕα)
∣∣ � 4‖α‖.

Moreover if no subformula of α is a path formula of the form β ′ ∨ β ′′ or (≺ch /?α′)∗ , then ‖ϕα‖ � 2‖α‖.
2. For each CXPath path formula β and TLtree formula ϕ ,

sf
(
xβ(ϕ)

) = sf(ϕ) ∪ Cβ

for some set Cβ of subformulae, with |Cβ | � 4‖β‖. Moreover if no subformula of β is a path formula of the form β ′ ∨ β ′′ or
(≺ch /?α′)∗ , for each TLtree formula ϕ , we have that ‖xβ(ϕ)‖ � ‖ϕ‖ + 2‖β‖.

Proof. We prove the claim by induction on the structure of the formulae α and β . In the base case that α = a, a ∈ Σ , we
have |sf(ϕα)| = ‖ϕα‖ = 1 while ‖α‖ = 1, thus |sf(ϕα)| � 4‖α‖ and ‖ϕα‖ � 2‖α‖ hold.

In the case that β = step, we have ‖xβ(ϕ)‖ = 1 + ‖ϕ‖ and sf(xβ(ϕ)) = sf(ϕ) ∪ {Xchϕ} thus |Cβ | = 1. On the other hand
‖β‖ = 1, therefore |Cβ | � 4‖β‖ and ‖xβ(ϕ)‖ � ‖ϕ‖ + 2‖β‖ hold.

In the case that β =≺∗
ch, we have ‖xβ(ϕ)‖ = ‖ϕ‖ + 2 and sf(xβ(ϕ)) = sf(ϕ) ∪ {�,�Uchϕ}, thus |Cβ | = 2. On the other

hand ‖β‖ = 1, therefore |Cβ | � 4‖β‖ and ‖xβ(ϕ)‖ � ‖ϕ‖ + 2‖β‖ hold.
In the general case:

• If α = ¬α′ (or α = α′ ∨ α′′), the subformulae of ϕα are sf(ϕα) = {¬ϕ′
α} ∪ sf(ϕα′ ) (or sf(ϕα) = {ϕα′ ∨ ϕα′′ } ∪ sf(ϕα′ ) ∪

sf(ϕα′′ ), resp.). By the induction hypothesis, |sf(ϕα′ )| � 4‖α′‖, therefore |sf(ϕα)| � 1 + 4‖α′‖ � 4 + 4‖α′‖ = 4‖α‖ (resp.,
|sf(ϕα)| � 1 + 4‖α′‖ + 4‖α′′‖ � 4‖α‖).
Moreover if α does not contain disjunction between path formulae, nor conditional child axes, so does α′ . Therefore, by
the induction hypothesis on α′ , we have that ‖ϕα‖ = 1 + ‖ϕ′

α‖ � 1 + 2‖α′‖ � 2‖α‖.
Similarly, in the case α = α′ ∨ α′′ , the size ‖ϕα‖ = 1 + ‖ϕα′ ‖ + ‖ϕα′′ ‖ � 1 + 2‖α′‖ + 2‖α′′‖ � 2‖α‖.

• If α = Eβ , then sf(ϕα) = sf(xβ(�)). By the induction hypothesis |sf(xβ(�))| � 1 + 4‖β‖ � 4‖Eβ‖. Thus |sf(ϕα)| � 4‖α‖.
If α, and therefore β , has no subformulae of the form β ′ ∨ β ′′ or of the form (≺ch /?α′)∗ , the induction hypothesis
applies to β , implying ‖ϕα‖ = ‖xβ(�)‖ � 1 + 2‖β‖ � 2‖α‖.

• If β =?α, then sf(xβ(ϕ)) = {ϕα ∧ϕ}∪sf(ϕα)∪sf(ϕ) and, by the induction hypothesis, |{ϕα ∧ϕ}∪sf(ϕα)| � 1+|sf(ϕα)| �
1 + 4‖α‖ � 4‖β‖.
Moreover, if β contains no disjunctions between path formulae nor conditional child axes, the induction hypothesis on
α implies that ‖xβ(ϕ)‖ = 1 + ‖ϕα‖ + ‖ϕ‖ � 1 + 2‖α‖ + ‖ϕ‖ � 2‖β‖ + ‖ϕ‖.

• If β = (≺ch /?α)∗ , then sf(xβ(ϕ)) = {ϕ∨Xch(ϕαUch(ϕ∧ϕα)),ϕ∧ϕα,ϕαUch(ϕ∧ϕα),Xch(ϕαUch(ϕ∧ϕα)}∪sf(ϕα)∪sf(ϕ).
By the induction hypothesis |sf(ϕα)| � 4‖α‖ thus |{ϕ ∨ Xch(ϕαUch(ϕ ∧ ϕα)),ϕ ∧ ϕα, ϕαUch(ϕ ∧ ϕα),Xch(ϕαUch(ϕ ∧
ϕα)} ∪ sf(ϕα)| � 4 + 4‖α‖ = 4‖β‖.

• If β = (≺−
ch /?α)∗ , then sf(xβ(ϕ)) = {(X−

chϕα)Schϕ,X−
chϕα} ∪ sf(ϕα) ∪ sf(ϕ). By the induction hypothesis |sf(ϕα)| � 4‖α‖

thus |{(X−
chϕα)Schϕ,X−

chϕα} ∪ sf(ϕα)| � 2 + 4‖α‖ < 4‖β‖.
We proceed similarly when β is based on the other step formulae (≺ns and ≺−

ns).
• If β = β ′/β ′′ , then sf(xβ(ϕ)) = sf(xβ ′ (xβ ′′ (ϕ))). By the induction hypothesis on β ′ , sf(xβ(ϕ)) = sf(xβ ′′(ϕ)) ∪ Cβ ′ . Now we

can apply the induction hypothesis on β ′′ to derive sf(xβ(ϕ)) = sf(ϕ) ∪ Cβ ′′ ∪ Cβ ′ , where |Cβ ′′ ∪ Cβ ′ | � 4‖β ′‖ + 4‖β ′′‖ <

4‖β‖.
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Moreover when β contains no disjunction between path formulae and no conditional child axes, so do β ′ and β ′′ .
It follows from the induction hypothesis that ‖xβ(ϕ)‖ = ‖xβ ′ (xβ ′′ (ϕ))‖ � ‖xβ ′′ (ϕ)‖ + 2‖β ′‖ � ‖ϕ‖ + 2‖β ′′‖ + 2‖β ′‖ <

‖ϕ‖ + 2‖β‖.
• If β = β ′ ∨ β ′′ , then sf(xβ(ϕ)) = {xβ ′ (ϕ) ∨ xβ ′′(ϕ)} ∪ sf(xβ ′ (ϕ)) ∪ sf(xβ ′′ (ϕ)). By the induction hypothesis, we have that

sf(xβ ′ (ϕ)) ∪ sf(xβ ′′ (ϕ)) = sf(ϕ)∪ Cβ ′ ∪ Cβ ′′ with |Cβ ′ | � 4‖β ′‖ and |Cβ ′′ | � 4‖β ′′‖. Therefore sf(xβ(ϕ)) = sf(ϕ)∪ Cβ where
|Cβ | = |{xβ ′(ϕ) ∨ xβ ′′(ϕ)} ∪ Cβ ′ ∪ Cβ ′′ | � 1 + 4‖β ′‖ + 4‖β ′′‖ < 4(1 + ‖β ′‖ + ‖β ′′‖) = 4‖β‖.

This proves the claim by induction. �
The proof of the theorem follows directly from item (1) of Claim 1. �
Notice that Core Xpath formulae do not contain conditional axes at all, therefore we derive the following corollary:

Corollary 1. Node formulae α of Core Xpath that do not use any disjunctions of path formulae can be effectively translated into
equivalent TLtree formulae of size at most linear in the size of α.

Observe also that translation rules for (≺ch /?α)∗ and β ′ ∨β ′′ are the ones determining a size exponential blowup in the
translation from CXPath to TLtree; in fact the TLtree translation of these formulae contains duplicates of subformulae ϕ or ϕα .
On the other hand, an alternative version of CXPath can be defined, where conditional axes have the form β = (?α/step)∗ .
The translation rules for this form of conditional axes are simpler: for step =≺ch we have xβ(ϕ) = ϕαUchϕ , and for the
other steps (≺−

ch, ≺ns, ≺−
ns), the operator Uch is replaced by Sch, Uns and Sns, respectively. Therefore, for this alternative

version of CXPath, no translation rule other than the one for β ′ ∨ β ′′ determines an exponential blowup in size. This is
stated in the following corollary:

Corollary 2. Node formulae α of CXPath with conditional axes of the form (?α/step)∗ that do not use any disjunctions of path
formulae can be effectively translated into equivalent TLtree formulae of size at most linear in the size of α.

6. Tree logic into query automata: A translation

Our goal is to translate TLtree into single-run QAs. We do a direct translation into unranked QAs, as opposed to coding
of unranked trees into binary (which is a common technique). Such coding is problematic for two reasons. First, simple
navigation over unranked trees may look unnatural when coded into binary, resulting in more complex formulae (child,
for example, becomes ‘left successor followed by zero or more right successors’). Second, coding into binary trees makes
reasoning about views much harder. The property of being “upward-closed” (i.e. of being a subtree view), which is essential
for decidability of certain answers, is not even preserved by the translation. Thus, we do a direct translation into unranked
QAs, and then apply it to XML specifications.

Since values of transitions δ(q,a) in unranked QAs are not sets of states but rather NFAs representing regular languages
over states, we measure the size of QA = (Q , F , Q s, δ) not as the number |Q | of states, but rather as

‖QA‖ = |Q | +
∑

q∈Q ,a∈Σ

∥∥δ(q,a)
∥∥,

where, if δ(q,a) is an NFA with states S and transition relation σ , the size ‖δ(q,a)‖ = |S| + |σ |.
We first sketch the automaton construction and then show formally that every TLtree formula can be translated in

exponential time into an equivalent query automaton. First, as is common with translations into nondeterministic automata
[42], we need to work with a version of TLtree in which all negations are pushed to propositions. To deal with until and
since operators, we shall introduce four operators R∗ and I∗ for ∗ being ‘ch’ or ‘ns’ so that ¬(αU∗β) ↔ ¬αR∗¬β and
¬(αS∗β) ↔ ¬αI∗¬β; this part is completely standard. However, trees do not have a linear structure and we cannot just push
negation inside the X operators: for example, ¬Xchϕ is not Xch¬ϕ . Since our semantics of the next operators is existential
(there is a successor node in which the formula is true), we need to add their universal analogs. For example, X∀

chϕ is true
in s if for every successor s′ of s in the domain of the tree, ϕ is true in s′ . Then of course we have ¬Xchϕ ↔ X∀

ch¬ϕ . We add

four such operators (X∀
ch,X∀

ns,X−∀
ch ,X−∀

ns ). Other axes have a linear structure, so one could alternatively add tests for the root,
first, and last child of a node to deal with them. For example, ¬X−

chϕ ↔ X−
ch¬ϕ ∨ αroot , where αroot is a test for the root.

But for symmetry we prefer to deal with the four universal versions of the next/previous operators, since it is unavoidable
for Xch.

With these additions, we can push negations to propositions, so we assume negations only occur in subformulae ¬a for
a ∈ Σ . Given a formula ϕ in this version of TLtree, we will denote as QAϕ the query automaton constructed for ϕ . The
states of QAϕ will be maximally consistent subsets of the Fischer–Ladner closure of ϕ (in particular, for each state q and a
subformula ψ , exactly one of ψ and ¬ψ is in q).

The transitions have to ensure that all “horizontal” temporal connectives behave properly, and that “vertical” transitions
are consistent. The alphabet of each automaton δ(q,a) is the set of states of QAϕ ; that is, letters of δ(q,a) are sets of
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formulae. Each δ(q,a) is a product of three automata. The first guarantees that eventualities αUnsβ and αSnsβ are fulfilled
in the oldest and youngest siblings. For that, we impose conditions on the initial states δ(q,a)’s that they need to read a
letter (which is a state of QAϕ ) that may not contain αSnsβ without containing β , and on their final state guaranteeing
that in the last letter we do not have a subformula αUnsβ without having β .

The second automaton enforces horizontal transitions, and it behaves very similarly to the standard LTL-to-Büchi con-
struction; it only deals with next-sibling connectives. For example, if Xnsα is the current state of QA for a node s · i, then
the state for s · (i + 1) contains α, and that if αUnsβ is in the state for s · i but β is not, then αUnsβ is propagated into the
state for s · (i + 1).

The third automaton enforces vertical transitions. We give a few sample rules. If q contains the negation of αSchβ , then
the automaton rejects after seeing a state which contains αSchβ but does not contain β (since in this case αSchβ must
propagate to the parent). If q contains αUchβ and does not contain β , then the automaton only accepts if one of its input
letters contains αUchβ . And if q contains Xchα, then it only accepts if one of its input letters contains α. In addition, we
have to enforce eventualities αUchβ by disallowing these automata to accept ε if q contains αUchβ and does not contain β .

The final states of QAϕ at the root must enforce correctness of αSchβ formulae: with each such formula, states from
F must contain β as well. This completes the construction. When all automata δ(q,a) are properly coded, the 2O (n) bound
follows. We then show a standard lemma that in an accepting run, a node is assigned a state that contains a subformula α
iff α is true in that node. This guarantees that for every tree, there is an accepting run. Since each state has either α or ¬α
in it, it follows that the resulting QA is single-run.

We now show this formally:

Theorem 2. Every TLtree formula ϕ of size n can be translated, in exponential time, into an equivalent single-run query automaton
QAϕ of size 2O (n) , i.e. a query automaton such that QAϕ(T ) = {s | (T , s) |� ϕ} for every tree T .

Proof. We extend TLtree with eight operators, R∗ , I∗ , X∀∗ and X−∀∗ , where ∗ is either ch or ns. The semantics of the new
operators is defined so that:

• ϕR∗ϕ′ ↔ ¬(¬ϕU∗¬ϕ′),
• ϕI∗ϕ′ ↔ ¬(¬ϕS∗¬ϕ′),
• X∀∗ϕ ↔ ¬X∗¬ϕ ,
• X−∀∗ ϕ ↔ ¬X−∗ ¬ϕ .

With these operators, we can assume that negation only occurs in subformulae ¬a for a ∈ Σ . That is, we work with an
equivalent TLtree syntax

ϕ,ϕ′ := � | ⊥ | a | ¬a | ϕ ∨ ϕ′ | ϕ ∧ ϕ′

| X∗ϕ | X−∗ ϕ | X∀∗ϕ | X−∀∗ ϕ | ϕU∗ϕ′ | ϕS∗ϕ′ | ϕR∗ϕ′ | ϕI∗ϕ′.

A formula in TLtree as presented earlier can be rewritten, in linear time, into an equivalent formula in this syntax by
propagating ¬ all the way to the atoms.

Next, as for LTL-to-automata translation, we define valid labelings of trees with TLtree formulae and their properties. We
will then show how to construct a query automaton that enforces such a labeling for a given formula, and prove that it is
the desired query automaton.

Valid labelings. Recall that the Fischer–Ladner closure of a TLtree formula ϕ is defined as the set of all subformulae of ϕ
and their complements:

cl(ϕ) = {ψ | ψ is a subformula of ϕ} ∪ {¬ψ | ψ is a subformula of ϕ}
where the complement ¬ψ stands for the formula obtained by pushing negation through the operators of ψ in the usual
way. We identify ¬¬ψ with ψ .

Given an unranked Σ-labeled tree T = (D, λ) and a TLtree formula ϕ over Σ , a closure labeling of T with ϕ is a mapping
τ : D → 2cl(ϕ) . A closure labeling τ of T is valid if each formula that labels a node is satisfied in that node. That is, for each
node s of T and for each formula ϕ ∈ τ (s), we have that (T , s) |� ϕ . We next prove that a closure labeling τ that satisfies
the following conditions on each node s, is valid:

1. (a) ⊥ /∈ τ (s);
(b) if ϕ ∨ ϕ′ ∈ τ (s), then either ϕ ∈ τ (s) or ϕ′ ∈ τ (s);
(c) if ϕ ∧ ϕ′ ∈ τ (s), then both ϕ ∈ τ (s) and ϕ′ ∈ τ (s);

2. for each a ∈ Σ , if a ∈ τ (s) then λ(s) = a, and if ¬a ∈ τ (s) then λ(s) �= a;
3. (a) if Xchϕ ∈ τ (s), then for some i, the node s · i is in D and ϕ ∈ τ (s · i);

(b) if X∀
chϕ ∈ τ (s), then for all i such that s · i is in D , we have ϕ ∈ τ (s · i);

(c) if X− ϕ ∈ τ (s) then there exists s′ ∈ D such that s′ ≺ch s and ϕ ∈ τ (s′);
ch
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(d) if X−∀
ch ϕ ∈ τ (s) and there exists s′ ∈ D such that s′ ≺ch s, then ϕ ∈ τ (s′);

(e) if ϕUchϕ
′ ∈ τ (s), then:

– either ϕ′ ∈ τ (s) or
– ϕ ∈ τ (s) and, for some i, the node s · i is in D and ϕUchϕ

′ ∈ τ (s · i);
(f) if ϕSchϕ

′ ∈ τ (s), then:
– either ϕ′ ∈ τ (s) or
– ϕ ∈ τ (s) and s = s′ · i, for some s′ ∈ D and some i, and ϕSchϕ

′ ∈ τ (s′);
(g) if ϕRchϕ

′ ∈ τ (s) then:
– ϕ′ ∈ τ (s) and
– either ϕ ∈ τ (s) or ϕRchϕ

′ ∈ τ (s · i), for each i such that s · i ∈ D;
(h) if ϕIchϕ

′ ∈ τ (s), then:
– ϕ′ ∈ τ (s) and
– if s = s′ · i for some s′ ∈ D and some i, then either ϕ ∈ τ (s) or ϕIchϕ

′ ∈ τ (s′);
4. (a) if Xnsϕ ∈ τ (s), then there exists s′ ∈ D with s ≺ns s′ and ϕ ∈ τ (s′);

(b) if X∀
nsϕ ∈ τ (s) and there exists s′ ∈ D with s ≺ns s′ , then ϕ ∈ τ (s′);

(c) if X−
nsϕ ∈ τ (s), then there exists s′ ∈ D with s′ ≺ns s and ϕ ∈ τ (s′);

(d) if X−∀
ns ϕ ∈ τ (s), and there exists s′ ∈ D with s′ ≺ns s, then ϕ ∈ τ (s′);

(e) if ϕUnsϕ
′ ∈ τ (s), then:

– either ϕ′ ∈ τ (s) or
– ϕ ∈ τ (s) and there exists s′ ∈ D with s ≺ns s′ and ϕUnsϕ

′ ∈ τ (s′);
(f) if ϕSnsϕ

′ ∈ τ (s), then:
– either ϕ′ ∈ τ (s) or
– ϕ ∈ τ (s) and there exists s′ ∈ D with s′ ≺ns s and ϕSnsϕ

′ ∈ τ (s′);
(g) if ϕRnsϕ

′ ∈ τ (s) then:
– ϕ′ ∈ τ (s) and
– if there exists s′ ∈ D with s ≺ns s′ , either ϕ ∈ τ (s) or ϕRnsϕ

′ ∈ τ (s′);
(h) if ϕInsϕ

′ ∈ τ (s), then:
– ϕ′ ∈ τ (s) and
– if there exists s′ ∈ D with s′ ≺ns s, either ϕ ∈ τ (s) or ϕInsϕ

′ ∈ τ (s′).

Lemma 1. Given a TLtree formula ϕ over Σ and an unranked Σ-labeled tree T = (D, λ), if τ : D → 2cl(ϕ) is a closure labeling of T
satisfying conditions (1)–(4), then τ is a valid labeling.

Proof. We prove the statement by induction on the structure of formulae occurring in the labeling τ . The base case is
that of atomic formulae: if � ∈ τ (s) for some s ∈ D , then clearly (T , s) |� �. Moreover, for each a ∈ Σ , if a ∈ τ (s) (resp.,
¬a ∈ τ (s)), then by rule (2), (T , s) |� a (resp., (T , s) |� ¬a).

Now we consider non-atomic formulae, and we assume that for each of their subformulae ϕ , if ϕ ∈ τ (s), then (T , s) |� ϕ .
If ϕ ∨ϕ′ ∈ τ (s) (or ϕ ∧ϕ′ ∈ τ (s)), then by rule (1b) (resp., rule (1c)), either ϕ ∈ τ (s) or ϕ′ ∈ τ (s) (resp., both ϕ ∈ τ (s) and

ϕ′ ∈ τ (s)). By the induction hypothesis, this implies that either (S, T ) |� ϕ or (S, T ) |� ϕ′ (resp., (S, T ) |� ϕ and (S, T ) |� ϕ′).
Therefore (S, T ) |� ϕ ∨ ϕ′ (resp., (S, T ) |� ϕ ∧ ϕ′).

If Xchϕ ∈ τ (s) then, by rule (3a), ϕ ∈ τ (s · i), for some i. By the induction hypothesis, (T , s · i) |� ϕ and then (T , s) |� Xchϕ .
The same holds for Xnsϕ using rule (4a).

Similarly if X∀
chϕ ∈ τ (s) then, by rule (3b), ϕ ∈ τ (s · i), for all i such that s · i ∈ D . By the induction hypothesis, (T , s · i) |� ϕ

and then (T , s) |� X∀
chϕ . The same holds for X∀

nsϕ using rule (4b).
If X−

chϕ ∈ τ (s), then by rule (3c) and by the induction hypothesis, s = s′ · i, for some i and some s′ ∈ D , and (T , s′) |� ϕ ,
whence (T , s) |� X−

chϕ . The same reasoning can be applied to the formula X−
nsϕ , using rule (4c).

If X−∀
ch ϕ ∈ τ (s), then by rule (3d) and by the induction hypothesis, we know that if there exist s′ ∈ D such that s′ ≺ch s,

then (T , s′) |� ϕ , whence (T , s) |� X−∀
ch ϕ . The same reasoning can be applied to the formula X−∀

ns ϕ , using rule (4d).
If ϕUchϕ

′ ∈ τ (s), by successive application of rule (3e), there exists s′ with s ≺∗
ch s′ such that ϕ′ ∈ τ (s′) and, for each

s′′ with s ≺∗
ch s′′ ≺∗

ch s′ and s′′ �= s′ , we have that ϕ ∈ τ (s′′). This implies, by the induction hypothesis, that (T , s) |� ϕUchϕ
′ .

We proceed similarly for the formula ϕSchϕ
′ (using rule (3f)), for the formula ϕUnsϕ

′ (using rule (4e)) and for the formula
ϕSnsϕ

′ (using rule (4f)).
Now assume ϕRchϕ

′ ∈ τ (s). For each s′ with s ≺∗
ch s′ , if (T , s′) � ϕ′ , by the induction hypothesis, ϕ′ /∈ τ (s′). Then, by

successive application of rule (3g), there exists s′′ , with s ≺∗
ch s′′ ≺∗

ch s′ and s′′ �= s′ , such that ϕ ∈ τ (s′′). Hence, by the
induction hypothesis, (T , s′′) |� ϕ . Since this holds for all descendant of s where ϕ′ is not satisfied, we conclude that (T , s) |�
ϕRchϕ

′ . Similarly we can prove the satisfaction of formulae of the form ϕRnsϕ
′ (by successive application of rule (4g)),

formulae of the form ϕIchϕ
′ (by rule (3h)), and formulae of the form ϕInsϕ

′ (by rule (4h)). �
A valid labeling τ of a tree T with a formula ϕ is maximal if, for each formula ψ ∈ cl(ϕ) and for each node s of T , we

have that ψ ∈ τ (s) if and only if (T , s) |� ψ .
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Query automaton. For a given TLtree formula ϕ0 over alphabet Σ , we now construct a query automaton QAϕ0 =
(Q , F , Q s, δ) whose accepting runs on a Σ-labeled tree T compute a maximal closure labeling of T with ϕ0. Intuitively
the states of the automaton correspond to subsets of cl(ϕ0) and the accepting runs enforce conditions (1)–(4) to guarantee
validity. Maximality is guaranteed by restricting the states of the automaton to maximally consistent subsets of cl(ϕ0).

In particular, the set of states Q ⊆ 2cl(ϕ0) consists of all the subsets q ⊆ cl(ϕ0) such that:

• for each ψ ∈ cl(ϕ0), either ψ ∈ q or ¬ψ ∈ q, but not both;
• ⊥ /∈ q;
• if ϕ ∨ ϕ′ ∈ q, then either ϕ ∈ q or ϕ′ ∈ q;
• if ϕ ∧ ϕ′ ∈ q, then both ϕ ∈ q and ϕ′ ∈ q.

The set of final states F consists of all q0 ∈ Q such that:

• q0 does not contain formulae of the form X−
chϕ; or Xnsϕ or X−

nsϕ;
• if q0 contains a formula of the form ϕSchϕ

′ or ϕIchϕ
′ or ϕSnsϕ

′ or ϕInsϕ
′ or ϕUnsϕ

′ or ϕRnsϕ
′ , then q0 also contains ϕ′ .

For each formula ϕ ∈ cl(ϕ0), we let Q ϕ be the set of states q ∈ Q such that ϕ ∈ q. Then the selecting states are Q s = Q ϕ0 .
The transition function δ : Q × Σ → 2Q ∗

is defined as follows. For each q ∈ Q and a ∈ Σ :

δ(q,a) =
⋂
ψ∈q

L(ψ,q,a) ∩ L−(q) ∩ Lns

where:

• L(ψ,q,a) is the contribution of the formula ψ ∈ q to δ(q,a), it enforces “future” vertical conditions and is defined as
follows, depending on ψ :
– if ψ = a′ with a′ ∈ Σ and a′ �= a, or if ψ = ¬a, then L(ψ,q,a) = ∅;
– if ψ = Xchϕ then L(ψ,q,a) = Q ∗ Q ϕ Q ∗;
– if ψ = X∀

chϕ then L(ψ,q,a) = Q ∗
ϕ ;

– if ψ = ϕUchϕ
′ then

L(ψ,q,a) =
⎧⎨
⎩

Q ∗ if ϕ′ ∈ q

∅ if ϕ′ /∈ q and ϕ /∈ q

Q ∗ Q ψ Q ∗ if ϕ′ /∈ q and ϕ ∈ q;
– if ψ = ϕRchϕ

′ then

L(ψ,q,a) =

⎧⎪⎨
⎪⎩

∅ if ϕ′ /∈ q

Q ∗ if ϕ′ ∈ q and ϕ ∈ q

Q ∗
ψ if ϕ′ ∈ q and ϕ /∈ q;

– for all other formulae, L(ψ,q,a) = Q ∗ .
• L−(q) enforces “past” vertical conditions and is defined as follows:

L−(q) = Q −(q)∗

where Q −(q) is the set of states q′ satisfying all of the following conditions with q:
– if q′ contains X−

chϕ or X−∀
ch ϕ , then ϕ ∈ q;

– if q′ contains ϕSchϕ
′ , then either ϕ′ ∈ q′ , or ϕ ∈ q′ and ϕSchϕ

′ ∈ q;
– if q′ contains ϕIchϕ

′ , then ϕ′ ∈ q′ and either ϕ ∈ q′ or ϕIchϕ
′ ∈ q.

• Lns enforces horizontal conditions. It is a language over alphabet Q which simply enforces consistency of for-
mula assignments. Since its alphabet symbols are already sets of formulae, this can be enforced by a DFA Ans =
(Q ns, Q ,q0, Q F , δns), having:
– set of states Q ns = {q0} ∪ Q , where q0 is a distinguished initial state, not occurring in Q ;
– set of final states Q F containing precisely q0 and all states q f ∈ Q such that:

(a) q f does not contain formulae of the form Xnsϕ;
(b) if ϕUnsϕ

′ is in q f or ϕRnsϕ
′ is in q f , then also ϕ′ is in q f ;

– transition function δns : Q ns × Q → Q ns defined as follows. For all states q′ ∈ Q ns and symbols q̃ ∈ Q , we have that
q′ = δns(q0, q̃) iff q′ = q̃ and both the following conditions hold:
(a) q′ does not contain formulae of the form X−

nsϕ;
(b) if ϕSnsϕ

′ ∈ q′ or ϕInsϕ
′ ∈ q′ then ϕ′ ∈ q′ .

For all states q,q′ in Q ns and symbols q̃ ∈ Q , with q �= q0, we have that q′ = δns(q, q̃) iff q′ = q̃ and the following
holds:
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(a) if Xnsϕ ∈ q or X∀
nsϕ ∈ q, then ϕ ∈ q′;

(b) if X−
nsϕ ∈ q′ or X−∀

ns ϕ ∈ q′ , then ϕ ∈ q;
(c) if ϕUnsϕ

′ ∈ q, then either ϕ′ ∈ q or ϕ ∈ q and ϕUnsϕ
′ ∈ q′;

(d) if ϕSnsϕ
′ ∈ q′ , then either ϕ′ ∈ q′ or ϕ ∈ q′ and ϕSnsϕ

′ ∈ q;
(e) if ϕRnsϕ

′ ∈ q then ϕ′ ∈ q and either ϕ ∈ q or ϕRnsϕ
′ ∈ q′;

(f) if ϕInsϕ
′ ∈ q′ , then ϕ′ ∈ q′ and either ϕ ∈ q′ or ϕInsϕ

′ ∈ q.

Lemma 2. ρ is an accepting run of QAϕ0 on a tree T iff ρ is a maximal valid labeling of T with ϕ0 .

Proof. Assume ρ is a maximal valid labeling of T with ϕ0, then directly by maximality and by the semantics of TLtree

formulae, ρ satisfies conditions (1)–(4). Maximality also implies that for each s ∈ T the set of formulae ρ(s) is a maximally
consistent subset of cl(ϕ0). Together with conditions (1) for ρ , this implies that for each node s ∈ T , the set ρ(s) is a state
of QAϕ0 .

Now we prove that ρ is an accepting run, that is: (1) ρ(ε) ∈ F and (2) for each node s, with n � 0 children,
ρ(s · 0), . . . , ρ(s · (n − 1)) ∈ δ(ρ(s), λ(s)).

Conditions (3c), (3f), (3h), and (4), satisfied by ρ in s = ε, imply directly the properties defining F . Thus ρ(ε) ∈ F . We
next prove that for all nodes s, with n � 0 children:

(A) the sequence of states ρ(s · 0), . . . , ρ(s · (n − 1)) belongs to L(ψ,ρ(s), λ(s)), for all ψ ∈ ρ(s),
(B) ρ(s · 0), . . . , ρ(s · (n − 1)) ∈ L−(ρ(s)) and
(C) ρ(s · 0), . . . , ρ(s · (n − 1)) ∈ Lns.

These will prove ρ(s · 0), . . . , ρ(s · (n − 1)) ∈ δ(ρ(s), λ(s)).

(A) For each formula ψ of the form a′ or ¬a′ (with a′ ∈ Σ ) in ρ(s), by condition (2), L(ψ,ρ(s), λ(s)) = Q ∗ . Then ρ(s ·
0), . . . , ρ(s · (n − 1)) ∈ L(ψ,ρ(s), λ(s)).
For each formula of the form Xchϕ in ρ(s), condition (3a) for ρ implies that, for some i, the label ρ(s · i) is in Q ϕ .
Hence ρ(s · 0), . . . , ρ(s · (n − 1)) belongs to Q ∗ Q ϕ Q ∗ = L(Xchϕ,ρ(s), λ(s)).
For each formula of the form X∀

chϕ in ρ(s), condition (3b) for ρ implies that, for all i such that s · i ∈ D , the label ρ(s · i)
is in Q ϕ . Hence ρ(s · 0), . . . , ρ(s · (n − 1)) belongs to Q ∗

ϕ = L(X∀
chϕ,ρ(s), λ(s)).

For each formula of the form ϕUchϕ
′ in ρ(s), by condition (3e), there are two cases:

• if ϕ′ ∈ ρ(s), then L(ϕUchϕ
′,ρ(s), λ(s)) = Q ∗ , therefore it contains ρ(s · 0), . . . , ρ(s · (n − 1));

• otherwise ϕ ∈ ρ(s) and, for some i, ρ(s · i) ∈ Q ϕUchϕ′ . Hence ρ(s · 0), . . . , ρ(s · (n − 1)) belongs to Q ∗ Q ϕUchϕ′ Q ∗ . This
language coincides with L(ϕUchϕ

′,ρ(s), λ(s)) (since ϕ′ /∈ ρ(s) and ϕ ∈ ρ(s)).
For each formula of the form ϕRchϕ

′ ∈ ρ(s), condition (3g) satisfied by ρ implies that L(ϕRchϕ
′,ρ(s), λ(s)) is not empty.

Moreover we have two cases:
• if ϕ ∈ ρ(s), then L(ϕRchϕ

′,ρ(s), λ(s)) = Q ∗ , therefore it contains ρ(s · 0), . . . , ρ(s · (n − 1));
• otherwise, for each i such that s · i ∈ D , the state ρ(s · i) is in Q ϕRchϕ′ . Hence ρ(s · 0), . . . , ρ(s · (n − 1)) ∈ Q ∗

ϕRchϕ′ . On

the other hand Q ∗
ϕRchϕ′ coincides with L(ϕRchϕ

′,ρ(s), λ(s)), since in this case, ϕ′ ∈ ρ(s) and ϕ /∈ ρ(s).
For all other formulae ψ in ρ(s), the language L(ψ,ρ(s), λ(s)) is Q ∗ , thus membership is trivial.

(B) Conditions (3c), (3d), (3f) and (3h) satisfied by ρ on all nodes s · i, for i = 0, . . . ,n −1, directly imply that ρ(s · i) belongs
to Q −(ρ(s)), for all i. Therefore ρ(s · 0), . . . , ρ(s · (n − 1)) belongs to Q −(ρ(s))∗ , that is to L−(ρ(s)).

(C) If s is a leaf, its sequence of children is ε and ε ∈ Lns (since in Ans the initial state is also final).
If s is not a leaf, condition (4) is satisfied in s · i, for all i. This implies that Ans accepts ρ(s · 0), . . . , ρ(s · (n − 1)). Indeed,
conditions (4c), (4f) and (4h) satisfied by ρ in the node s · 0 imply, by definition of Ans, that δns(q0,ρ(s · 0)) = ρ(s · 0).
Similarly δns(ρ(s · i),ρ(s · (i + 1))) = ρ(s · (i + 1)), for i = 0, . . . ,n − 2 by conditions (4a), (4b), (4e) and (4g) on node s · i,
and conditions (4c), (4e), (4f) and (4h) on node s · (i + 1). Finally ρ(s · (n − 1)) is a final state for Ans, by conditions (4a),
(4e) and (4g) on node s · (n − 1). This shows that there exists an accepting run of Ans on ρ(s · 0), . . . , ρ(s · (n − 1)).

Properties (A), (B), (C), proved above imply ρ(s · 0), . . . , ρ(s · (n − 1)) ∈ δ(ρ(s), λ(s)), for all nodes s, and prove that ρ is
an accepting run. This completes the proof of one direction.

Conversely, assume that ρ is an accepting run of QAϕ0 on T . We first prove that ρ is closure labeling satisfying condi-
tions (1)–(4) (stated in the beginning of the proof), and thus, by Lemma 1, a valid labeling. Maximality will follow from the
fact that states are maximally consistent subsets of cl(ϕ0).

Conditions (1) are satisfied for each node s, by the definition of states of QAϕ0 .
Condition (2) is satisfied since ρ is accepting and then, for each node s, the set δ(ρ(s), λ(s)) is non-empty. Therefore, by

definition of δ, for each a ∈ Σ , if a (or ¬a) is in ρ(s), the language L(a,q, λ(s)) (resp., L(¬a,q, λ(s))) must be non-empty.
This directly implies condition (2) for ρ .
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We now prove that ρ satisfies condition (3). For each node s of T with n � 0 children:

• If Xchϕ ∈ ρ(s), by definition of δ(ρ(s), λ(s)), and since ρ is accepting, the sequence ρ(s · 0), . . . , ρ(s · (n − 1)) belongs to
the language L(Xchϕ,ρ(s), λ(s)) = Q ∗ Q ϕ Q ∗ . Hence ϕ ∈ ρ(s · i), for some i. This proves condition (3a) for ρ in s.

• Similarly, if X∀
chϕ ∈ ρ(s), by definition of δ(ρ(s), λ(s)), and since ρ is accepting, the sequence ρ(s · 0), . . . , ρ(s · (n − 1))

belongs to the language L(X∀
chϕ,ρ(s), λ(s)) = Q ∗

ϕ . Hence ϕ ∈ ρ(s · i), for each i such that s · i ∈ D . This proves condition
(3b) for ρ in s.

• If ϕUchϕ
′ ∈ ρ(s), again by definition of δ, the sequence ρ(s ·0), . . . , ρ(s ·(n−1)) belongs to the language L(ϕUchϕ

′,ρ(s)),
which is then not empty. Therefore, by definition of L(ϕUchϕ

′,ρ(s), λ(s)), one of the following holds:
– either ϕ′ ∈ ρ(s) or
– ϕ ∈ ρ(s) and ρ(s · 0), . . . , ρ(s · (n − 1)) ∈ Q ∗ Q ϕUchϕ′ Q ∗ . Hence ϕUchϕ

′ ∈ ρ(s · i), for some i.
This proves that ρ satisfies condition (3e) in s.

• Similarly, if ϕRchϕ
′ ∈ ρ(s), then ρ(s · 0), . . . , ρ(s · (n − 1)) belongs to the language L(ϕRchϕ

′,ρ(s), λ(s)), which is there-
fore not empty. This implies that:
– ϕ′ ∈ ρ(s) and
– either ϕ ∈ ρ(s) or ρ(s · 0), . . . , ρ(s · (n − 1)) ∈ Q ∗

ϕRchϕ′ . In this last case ϕRchϕ
′ ∈ ρ(s · i), for all i.

Thus ρ satisfies condition (3g) in s.

On the whole, this shows that conditions (3a), (3b), (3e) and (3g) hold for all nodes. Moreover, since ρ is an accepting run,
we also know that for each node s, the sequence of states ρ(s · 0), . . . , ρ(s · (n − 1)) belongs to the language L−(ρ(s)). So
for each i such that s · i ∈ D , the state ρ(s · i) is in Q −(ρ(s)). By definition of Q − , this implies conditions (3c), (3d), (3f)
and (3h) on s · i. On the other hand, conditions (3c), (3d), (3f) and (3h) on the root ε are directly implied by the fact that
ρ(ε) is a final state of QAϕ0 . This proves that ρ satisfies all conditions (3) on all nodes of T .

We now prove that ρ satisfies conditions (4). Conditions (4) in the root are again implied by the fact that ρ(ε) is a
final state of QAϕ0 . For all non-root nodes, ρ satisfies (4), thanks to the constraints enforced by the accepting runs of
Ans. In particular, for each node of the form s · i, let s · 0, . . . , s · (n − 1) be the sequence of children of s. We know that
ρ(s · 0), . . . , ρ(s · (n − 1)) is accepted by Ans, therefore:

• δns(q0,ρ(s · 0)) = ρ(s · 0). By definition of δns, this implies that ρ satisfies conditions (4c), (4d), (4f) and (4h) on the
node s · 0.

• δns(ρ(s · i),ρ(s · i + 1)) = ρ(s · i + 1), for all i = 0, . . . ,n − 2. This implies, by definition of δns, that condition (4a), (4b),
(4e) and (4g) are satisfied on s · i, and conditions (4c), (4d), (4f) and (4h) are satisfied on s · i + 1.

• ρ(s · (n − 1)) is a final state of Ans. This directly implies that conditions (4a), (4b), (4e) and (4g) are satisfied by ρ on
the node s · (n − 1).

As a consequence, on the whole, all conditions (4a)–(4h) are satisfied in s · i for each i. Thus conditions (4) are satisfied also
on all non-root nodes.

We conclude that ρ satisfies all conditions (1)–(4) on all nodes. Therefore, by Lemma 1, ρ is a valid labeling. Now observe
that for each node s, the state ρ(s) is a maximally consistent subsets of cl(ϕ0). Therefore, for each formula ψ ∈ cl(ϕ0), and
for each node s, if ψ ∈ ρ(s), then (T , s) |� ψ ; on the contrary, if ψ /∈ ρ(s) then ¬ψ ∈ ρ(s), implying (T , s) |� ¬ψ . This proves
maximality of ρ and concludes the proof the lemma. �

Based on Lemma 2, it is straightforward to prove that QAϕ0 is the desired automaton:

Lemma 3. QAϕ0 is a single-run query automaton and it computes ϕ0 . That is QAϕ0(T ) = {s ∈ T | (T , s) |� ϕ0}, for each Σ-labeled
tree T .

Proof. By Lemma 2, there exists exactly one accepting run ρ of Q Aϕ0 on each tree T , corresponding to the maximal valid
labeling of T with ϕ0. Thus the single run conditions trivially hold. Moreover, by maximality of the labeling ρ , for each
node s we have that ϕ0 ∈ ρ(s) (that is ρ(s) ∈ Q ϕ0 ) iff (T , s) |� ϕ0. Since the selecting states of QAϕ0 are Q ϕ0 , this implies
that the accepting run ρ selects precisely the nodes where ϕ0 holds. That is Q Aϕ0(T ) = {s ∈ T | (T , s) |� ϕ0}. �

Size of the query automaton and complexity of the construction. We now show that, if m is the size of cl(ϕ0), then QAϕ0 has
size bounded by 2O (m) and can be constructed from input ϕ0 in time 2O (m) .

First notice that |cl(ϕ0)| is bounded by |ϕ0|, since the number of subformulae of ϕ0 is bounded by the number of
nodes in its parse tree. Since different nodes of a parse tree can represent the same subformula, the number of distinct
subformulae of ϕ0 can be much smaller than its size. In particular we also have that |ϕ0| is bounded by 2O (m) .

Clearly the set of states of QAϕ0 has cardinality |Q | � 2m . They can be computed from the input formula ϕ0 by first
computing cl(ϕ0) and then checking, on each subset of the closure, the local conditions defining the states of QAϕ0 .
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The closure can be computed in time polynomial in |ϕ0| (therefore in time 2O (m)) by identifying distinct subtrees in the
parse trees of ϕ0 and ¬ϕ0. Moreover all subsets of the closure are computed in time 2O (m) .

Now conditions have to be checked on each subset of the closure in order to identify states, selecting states and final
states. Checking all the required local conditions on a subset of the closure can be always done in polynomial time in m.
This implies that states, selecting states and final states can be computed in time 2O (m) . Similarly one can compute states
Q ϕ for all ϕ ∈ cl(ϕ0) as well as states Q −(q), for all q ∈ Q , states Q ns and Q F , in time 2O (m) .

We now analyze the size and construction of the transition function. For each q ∈ Q and a ∈ Σ , the automaton δ(q,a)

can be obtained as the product of:

• Ans recognizing Lns;
• a DFA recognizing L(ψ,q,a), for all ψ ∈ q;
• a DFA recognizing L−(q).

There exist DFAs with at most two states that recognize L−(q) and L(ψ,q,a) (for all ψ , a and q). Computing an automa-
ton for L−(q), as well as for L(ψ,q,a), for a given q and ψ ∈ q, requires at most checking a local condition on the state q in
time linear in |q| � m, and then producing a transition function from a constant number of states and alphabet Q . This can
be clearly done in time 2O (m) . The construction of Ans, requires the computation of a transition function of size |Q |3. Each
of its elements is computed in time polynomial in m, therefore the time bound for computing Ans is still 2O (m) .

The product of all the automata for δ(q,a) has number of states bounded by 2|q| × Q ns (where Q ns is the number of
states of Ans). It can be computed in time polynomial in the number of states of δ(q,a) and in |Q |, that is still in time
2O (m) . Therefore the overall computation of QAϕ0 can be done in time 2O (m) .

The size ‖QAϕ0‖ by definition is |Q | + ∑
q∈Q ,a∈Σ ‖δ(q,a)‖. If Sq,a denotes the number of states of δ(q,a), we have

‖δ(q,a)‖ � |Sq,a| + |Sq,a|2 × |Q |. Since |Sq,a| and |Q | are bounded by 2O (m) , so are ‖δ(q,a)‖ and ‖QAϕ0‖.
Because m is bounded by |ϕ0|, this concludes the proof of the theorem. �
We now give an example of the automaton construction.

Example. Let ϕ = �Ucha be a TLtree formula over alphabet Σ = {a,b}. We now construct a query automaton QAϕ =
(Q , F , Q s, δ) equivalent to ϕ over Σ-labeled trees. The Fischer–Ladner closure of ϕ is

cl(ϕ) = {�,a,�Ucha,⊥,¬a,⊥Rch¬a}
and the set of states Q are all the maximally consistent subsets of cl(ϕ) which do not contain ⊥ (because no formula of
cl(ϕ) contains boolean connectives), that is:

Q = {q1,q2,q3,q4}
with

q1 = {�,a,�Ucha}
q2 = {�,¬a,�Ucha}
q3 = {�,a,⊥Rch¬a}
q4 = {�,¬a,⊥Rch¬a}.

All states are final (F = Q ) because no state contains formulae with past or horizontal temporal connectives. The select-
ing states are the ones containing ϕ , that is Q s = {q1,q2}.

We now compute the transition function δ. Note that, since cl(ϕ) contains no formulae with horizontal temporal connec-
tives, the language Lns (enforcing horizontal conditions on states associated to siblings in a run of QAϕ ) is Q ∗ . Similarly,
cl(ϕ) contains no formulae with past temporal connectives. Therefore the language L−(qi) (enforcing past conditions on
states associated to parent-child pairs in a run of QAϕ ) is also Q ∗ , for all qi . It follows that for each state qi ∈ Q and each
symbol s ∈ Σ , the transition function δ(qi, s) is a language obtained by intersecting the contribution (L(ψ,qi, s)) of each
formula ψ ∈ qi . Then δ is as follows:

• δ(q1,a) = Q ∗

because no formula in q1 needs to enforce constraints on the states associated to the children of a node (that is L(ψ,q1,a) =
Q ∗ for all ψ ∈ q1);
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• δ(q2,b) = Q ∗{q1,q2}Q ∗

because �Ucha ∈ q2 but a /∈ q1; then δ enforces that the formula �Ucha (contained only in q1 and q2) is propagated to at
least one child (that is L(�Ucha,q2,b) = Q ∗{q1,q2}Q ∗ and the contribution of all other formulae in q2 is Q ∗);

• δ(q4,b) = {q3,q4}∗

because ⊥Rch¬a ∈ q4 but ⊥ /∈ q4; therefore δ enforces that all children nodes are assigned a state containing ⊥Rch¬a (that
is L(⊥Rch¬a,q4,b) = {q3,q4}∗ , while the contribution of all other formulae in q4 is Q ∗);

• δ(q1,b) = ∅

because the formula a ∈ q1 cannot be satisfied in a node labeled b (that is L(a,q1,b) = ∅);

• δ(q2,a) = ∅

because the formula ¬a ∈ q2 cannot be satisfied in a node labeled a (that is L(¬a,q2,a) = ∅);

• δ(q3,a) = ∅

because q3 contains the formula ⊥Rch¬a but not ¬a (that is L(⊥Rch¬a,q3,a) = ∅);

• δ(q3,b) = ∅

because L(a,q3,b) = ∅;

• δ(q4,a) = ∅

because L(¬a,q4,a) = ∅.
Given δ, it is easy to verify that there is only one accepting run of QAϕ on a tree: this assigns state q1 to all nodes

labeled a, state q2 to all nodes labeled b which have an a-labeled descendant, and state q4 to all nodes labeled b having
no a-labeled descendant. Thus nodes assigned either q1 or q2 (that is one of the selecting states) are precisely nodes where
�Ucha is satisfied. This shows that QAϕ is equivalent to ϕ .

7. Applications

7.1. Reasoning about document navigation

As mentioned in Section 2, typical XML static analysis tasks include consistency of schema and navigational properties
(e.g., is a given XPath expression consistent with a given DTD?), or query optimization (e.g., is a given XPath expression e
contained in a another expression e′ for all trees that conform to a DTD d?). We now show two applications of our results
for such analyses of XML specifications.

As a starter, let us see how XPath containment in the presence of DTDs can be checked. Suppose we want to check
whether d |� e1 ⊆ e2. Translate e1 and e2 into TLtree formulae e′

1 and e′
2, and construct QAe′

1∧¬e′
2

– a query automaton
for the formula e′

1 ∧ ¬e′
2 which witnesses counterexamples to the containment. Let Ad be an automaton recognizing trees

that conform to d. Then Ad × QAe′
1∧¬e′

2
finds trees that conform to d and witness a counterexample to e1 ⊆ e2. Hence,

d |� e1 ⊆ e2 iff the language of Ad × QAe′
1∧¬e′

2
is empty. The size of the product QA is ‖d‖ · 2O (‖e1‖+‖e2‖) , i.e., this is

precisely the construction that was promised in Section 2. Moreover, the query automaton Ad × QAe′
1∧¬e′

2
describes exactly

the counterexamples to containment: it selects nodes s from trees T that conform to d such that s is selected by e1 but not
by e2.

Since we know how to construct query automata for arbitrary TLtree formulae, this simple idea works not only for
containment of two expressions but for more complex satisfiability and containment conditions. We give two examples
below.

7.1.1. Satisfiability algorithms for sets of XPath expressions
The exponential-time complexity for satisfiability of XPath expressions in the presence of a schema is already known [27,

7]. We now show how we can verify satisfiability of multiple sets of XPath expressions, in a uniform way, using translation
into query automata.

Given an arbitrary set E = {e1, . . . , en} of XPath (core or conditional) expressions and a subset E ′ ⊆ E , let Q(E ′) be a
unary query defining the intersection of queries given by all the e ∈ E ′ . That is, Q(E ′) selects nodes that satisfy every
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expression e ∈ E ′ . We can capture all (exponentially many) such queries Q(E ′)s by a single automaton, that is instantiated
into different QAs by different selecting states.

Proposition 1. One can construct, in time 2O (‖E‖) (that is, 2O (‖e1‖+···+‖en‖)), an unranked tree automaton A(E) = (Q , F , δ) and a
relation σ ⊆ E × Q such that, for every E ′ ⊆ E,

QA E ′ =
(

Q , F ,
⋂{

σ(e) | e ∈ E ′}, δ
)

is a single-run QA defining the unary query Q(E ′).

Proof. The construction of QA E ′ simply takes the product of all the QAe′
i
s, produced by Theorem 2, where e′

i is a TLtree

translation of ei , produced by Theorem 1. The relation σ relates tuples of states that include selecting states of QAe′
i

with

ei ∈ E . Then checking non-emptiness of QA E ′ , we see if all e ∈ E ′ are simultaneously satisfiable. �
The containment problem for XPath expressions that we looked at before is a special case of the problem we consider.

To check whether d |� e1 ⊆ e2, we construct QA{e1,¬e2} as in Proposition 1, and take the product of it with the automaton
for d.

7.1.2. Verifying complex containment statements under DTDs
We can now extend the previous example and check not a single containment, as is usually done [37], but arbitrary

Boolean combinations of XPath containment statements, without additional complexity. Assume that we are given a DTD
d (or any other schema specification presented by an automaton), a set {e1, . . . , en} of XPath expressions, and a Boolean
combination C of inclusions ei ⊆ e j . We now want to check whether d |� C , that is, whether C is true in every tree T that
conforms to d. We shall refer to size of C as ‖C‖; the definition is extended in the natural way from the definition of ‖e‖.

Theorem 3. In the above setting, one can construct an unranked tree automaton of size ‖d‖ · 2O (‖C‖) whose language is empty iff
d |� C .

This is achieved by replacing ei ⊆ e j in C with the formula ¬Fch(e′
i ∧¬e′

j) and ei � e j in C with the formula Fch(e′
i ∧¬e′

j),

where e′
i, e′

j are TLtree translations of ei and e j produced by Theorem 1. Thus we can view C as a TLtree formula αC . Now
construct a QA for ¬αC , by Theorem 2, and turn it into an automaton that checks whether the root gets selected. Now we
take the product of this automaton with the automaton for d. The result accepts counterexamples to C under d, and the
result follows. The construction of the automaton is polynomial-time in ‖d‖ and single-exponential time in ‖C‖.

7.2. Reasoning about views

Recall the problem outlined in Section 2. We have a view definition given by a query automaton QA V . For each source
tree T , it selects a set of nodes V = QA V (T ) which can also be viewed as a tree (we can assume, for example, that QA V
always selects the root). Source trees are required to satisfy a schema constraint (e.g., a DTD). Since all schema formalisms
for XML are various restrictions or reformulations of tree automata, we assume that the schema is given by an automaton A.

If we only have access to V , we would like to be sure that secret information about an unknown source T is not
revealed. This information, which we assume to be coded by a Boolean query Q, would be revealed by V if the answer to
Q were true in all source trees T that conform to the schema and generate V – that is, if certainA

Q A V
(Q; V ) were true.

Thus, we would like to construct a new automaton A∗ that accepts V iff certainA
Q AV

(Q; V ) is false, giving us some security
assurances about the view.

In general, such an automaton construction is impossible: if QA V generates the yield of a tree, views essentially code
context-free languages. Combining multiple CFLs with the help of DTDs, we get an undecidability result:

Proposition 2. The problem of checking, for source and view schemas (automata) As and Av , a view definition QAV , and a Boolean
first-order query Q, whether there exists a view V accepted by the automaton Av that satisfies certainAs

Q A V
(Q; V ) = true, is unde-

cidable.

Proof. Consider an arbitrary context-free grammar G over alphabet Σ . It can of course be viewed as a DTD dG , since DTDs
are extended CFGs. Create a new DTD d with a new root r and productions r → g|ng , where g is the root of dG , and ng is
a new symbol, as well as ng → Σ∗ . The view DTD is r → Σ∗ .

The view definition Q V selects the root and all the leaves labeled with symbols in Σ (i.e., skipping all the nodes labeled
with nonterminals of G and ng). The query Q is an existential FO query ∃xPng(x) – i.e., it asks whether there exists a node
labeled ng .
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If we now have a view V (which is essentially a string sV ∈ Σ∗ , written left-to-right, at children of the root), then
certainA

Q AV
(Q; V ) is true iff sV is not in the language of G (otherwise there would be a source tree having g as the child

of the root and thus no ng-labeled node). Hence decidability of certainA
Q AV

(Q; V ) being true would imply decidability of
(non)universality of G – but the latter is of course undecidable.

Note that we can even assume wlog that we deal with ranked source trees, by putting the grammar in the Chomsky
normal form. �

Schemas and queries required for this result are very simple, so to ensure the existence of the automaton A∗ , we need
to put restrictions on the class of views. We assume that they are upward-closed as in [8]: if a node is selected, then so is
the entire path to it from the root.

Note that the upward-closure QA↑ of a query automaton QA can be obtained in linear time by adding a bit to the state
indicating whether a selecting state has been seen and propagating it up. Thus, we shall assume without loss of generality
that QAs defining views are upward-closed: if s ∈ QA(T ) and s′ is an ancestor of s, then s′ ∈ QA(T ).

The key observation that we need is that for an upward-closed QA, satisfying the single-run condition, its image is
regular. Furthermore, it can be accepted by a small tree automaton:

Lemma 4. Let QA be an upward-closed query automaton that satisfies condition (1) of the definition of single-run QAs. Then one
can construct, in quadratic time, an unranked tree automaton A∗ that accepts trees V for which there exists a tree T satisfying
V = QA(T ). Moreover, the number of states of A∗ is at most the number of states of QA.

Proof. Since QA is upward-closed, for each tree T = (D, λ), the answer QA(T ) is a prefix-closed subset of D . In general, if
D ′ is an arbitrary prefix-closed subset of D , the restriction of T (viewed as a logical structure) to domain D ′ is isomorphic
to another tree structure which we denote by T |D ′ , throughout the proof. Therefore if V is a Σ-labeled tree, the equality
QA(T ) = V will stand for T |Q A(T ) = V .

The automaton A∗ is constructed so as to simulate accepting runs of QA which select V from some other tree “expand-
ing” V .

Let QA = (Q , F , Q s, δ), then A∗ = (Q s, F∗, δ∗) has set of states Q s , coinciding with the selecting states of QA, and set
of final states F∗ = F ∩ Q s .

We will now describe how the transition function δ∗ can be constructed from QA.
The transition function δ∗ can be constructed in several steps described below.

• First compute the set of states R ⊆ Q − Q s , which are reachable in runs of QA without going through a selecting state.
More precisely, we will call a run ρ of a query automaton on a tree T non-selecting if Sρ(T ) = ∅.
Then R is the set of all states q ∈ Q − Q s for which there exists a Σ-labeled tree T and a non-selecting run of QA on
T , such that ρ(ε) = q.
The set R can be computed in O (‖QA‖2), via a standard reachability analysis algorithm. It is constructed incrementally.
At the first step, R consists of all states q ∈ Q − Q s such that ε ∈ δ(q,a) for some a ∈ Σ . At step i > 0, we compute all
states q ∈ Q − Q s such that δ(q,a) ∩ R∗ �= ∅, for some a ∈ Σ . These states are then added to R . The computation ends
when no new states are produced.
At the first step, computing R requires only a linear time check on the states of each NFA δ(q,a), for all q ∈ Q and
a ∈ Σ . Thus the cost of the first step is linear in ‖QA‖.
At step i, the set R can be computed by checking non-emptiness of each NFA δ(q,a), for all q ∈ Q and a ∈ Σ . In
particular, first transitions over symbols outside R are removed from δ(q,a), and then non-emptiness is checked for
the resulting NFA. Both the cost of removing transitions and the cost of checking non-emptiness are linear in the size
‖δ(q,a)‖.
Thus the cost of each step is linear in ‖QA‖. Since there are at most O (|Q |) steps, the overall cost of computing R is
O (‖QA‖2).

• Then, for each state q ∈ Q s and for each a ∈ Σ , the NFA δ∗(q,a) is constructed as follows. Observe that δ(q,a) is an
automaton over alphabet Q ; let Sq,a its set of states and σq,a ⊆ S × Q × S its transition function (we will denote them
by S and σ when this does not arise confusion). We first construct an NFA Aε(q,a) over alphabet Q s with ε-transitions,
having set of states S , initial and final states as in δ(q,a), and transition function σε ⊆ S × (Q s ∪ ε) × S . Intuitively σε

is obtained from σ by discarding all transitions with symbols outside Q s ∪ R and then replacing by ε all symbols in R .
More formally σε is defined as follows:
– for all q ∈ Q s , and for all states s1, s2 ∈ S , the transition (s1,q, s2) is in σε if and only if (s1,q, s2) ∈ σ ;
– for all states s1, s2 ∈ S , the transition (s1, ε, s2) is in σε if and only if (s1,q, s2) ∈ σ , for some q ∈ R .
Finally δ∗(q,a) is obtained from Aε(q,a) by removing ε-transitions.
The cost of constructing δ∗(q,a) is dominated by the cost of removing ε-transitions, since the construction of Aε(q,a)

is linear in the size of σ . Removing ε-transitions can be done in time O (|S|(|S| + |σ |)) without increasing the number
of states. For that, we first do a reachability analysis on the ε-transition portion alone, producing, for each state s,
its ε-closure L(s). The ε-closure of a state s is the set of all states of S reachable using only ε-transitions; it can be
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computed in time O (|σ |). Thus all ε-closures are computed in time O (|S| · |σ |). Now we replace each state s ∈ S with
L(s) and add a new transition (L(s),q, L(s′)) iff there exists a state s′′ ∈ L(s) and a transition (s′′,q, s′) ∈ σε , with q ∈ Q s;
this is done in time O (|S|(|S| + |σ |)).
Thus the overall cost of computing the transition function of A∗ is O (

∑
q∈Q s,a∈Σ |Sq,a|(|Sq,a| + |σq,a|)) which is

O (‖QA‖2).

Summing up, the overall cost of constructing A∗ from QA is quadratic in the total size of QA.
As a direct consequence of the construction of δ∗ we have:

Claim 2. For all q ∈ Q s, all q1q2 · · ·qk ∈ Q ∗
s , and all a ∈ Σ , the word q1q2 · · ·qk belongs to δ∗(q,a) iff R∗q1 R∗q2 · · ·qk R∗ ∩δ(q,a) �= ∅.

Proof. The word q1q2 · · ·qk is accepted by δ∗(q,a) if and only if it is accepted by Aε(q,a). This is the case if and only if in
Aε(q,a) there exist states ←−si and −→si , for i = 1, . . . ,k, such that: (1) the transition function of Aε(q,a) contains transitions
(
←−si ,qi,

−→si ), for each i = 1, . . . ,k; (2) the state ←−−si+1 is reachable in Aε(q,a) from −→si via ε-transitions, for all i = 1, . . . ,k − 1;
(3) the state ←−s1 is reachable from an initial state of Aε(q,a) via ε-transitions; (4) some final state of Aε(q,a) is reachable
from −→sk via ε-transitions.

Directly by definition of Aε(q,a) this holds if and only if in δ(q,a) there exists a path from some initial state to some
final state with labels in R∗q1 R∗q2 · · ·qk R∗ . �

We are now ready to prove that A∗ is the desired automaton:

Claim 3. A∗ accepts a tree V iff there exists a tree T such that QA(T ) = V .

Proof. Assume A∗ accepts V and let ρ be an accepting run. We next prove by induction the following statement:

(*) for each node s of V , if we let V s the subtree of V rooted in s, then there exists a tree Ts and a run ρs of QA on Ts

such that:
1. ρs(ε) = ρ(s);
2. if we let Ds be Sρs (Ts), then Ds is prefix-closed and Ts|Ds = V s .

We prove (*) by induction on the depth of the node s. If s is a leaf with label a then, since ρ is an accepting run of
A∗ , we have that ε ∈ δ∗(ρ(s),a). Therefore by Claim 2, there exists a word r1 · · · rn ∈ R∗ ∩ δ(ρ(s),a). For each ri we know,
by definition of R , that there exists a tree Ti and a non-selecting run ρi of QA on Ti reaching state ri in the root. We
define Ts as the tree whose root, labeled a, has n children such that Ti is the subtree rooted at the i-th child. The run ρs

of QA on Ts is defined as ρi on each Ti , for i = 1, . . . ,n, and as ρ(s) on the root (ρ is a run of QA since r1 · · · rn are the
states reached at the children of the root and r1 · · · rn ∈ δ(ρ(s),a)). Clearly the root of Ts is the only node selected by ρs ,
in fact each run ρi is non-selecting, while the state ρ(s) in the root is in Q s . As a consequence Ds is clearly prefix-closed.
Moreover Ts|Ds is a tree of domain {ε} with label a, hence it coincides with V s , the subtree rooted in the leaf s of label a.
This concludes the proof of the base case.

Now assume that s is a node with m > 0 children and label a. Since ρ is an accepting run of A∗ , we have ρ(s · 0) · · ·ρ(s ·
(m − 1)) ∈ δ∗(ρ(s),a). Again by Claim 2, there exists a word w0ρ(s · 0)w1ρ(s · 1) · · ·ρ(s · (m − 1))wm ∈ δ(ρ(s),a), with
wi ∈ R∗ .

By the induction hypothesis, there exist trees Ts·i and runs ρs·i satisfying conditions (1) and (2) above. Moreover, exactly
as in the base case, for each word wi ∈ R∗ we construct a forest of trees T wi , and non-selecting runs of QA on trees of
T wi reaching the sequence of states wi at the roots.

Then Ts is obtained by connecting the forest T w0 Ts·0T w1 Ts·2 · · · Ts·(m−1)T wm to a new common root with label a.
The run ρs of QA on Ts is defined as:

• ρs·i on the trees Ts·i , for each i = 0, . . . ,m − 1;
• the non-selecting runs defined on trees of T wi , for each i = 0, . . . ,m;
• ρ(s) on the root.

This defines a run of QA since states w0ρ(s · 0)w1ρ(s · 1) · · ·ρ(s · (m − 1))wm are reached at the children of the root and
w0ρ(s · 0)w1ρ(s · 1) · · ·ρ(s · (m − 1))wm ∈ δ(ρ(s),a).

The set of nodes Ds selected by ρs on Ts is:

• empty, in trees T wi for each i = 0, . . . ,m (since the run is non-selecting on these trees);
• Ds·i in each subtree Ts·i , for i = 0, . . . ,m − 1 (since this is the set of nodes selected by ρs·i);
• the root ε (since ρ(s) ∈ Q s).
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By the induction hypothesis, the sets Ds·i are prefix closed, hence also Ds is prefix-closed. Finally, from the description of
Ds it follows that Ts|Ds is a tree whose root has label a and m children: for each i = 0, . . . ,m − 1, the subtree rooted in
child i is Ts·i |Ds·i . By the induction hypothesis, Ts·i |Ds·i = V s·i , for each i = 0, . . . ,m − 1; therefore Ts|Ds coincides with the
subtree V s rooted in s.

This proves (*). In particular (*) holds in the root of V , therefore there exists a tree Tε and a run ρε of QA on Tε such
that the set of selected nodes Dε is prefix-closed, Tε|Dε = V and ρε(ε) = ρ(ε). This implies that ρε is an accepting run of
QA on Tε . In fact, since ρ is an accepting run of A∗ on V , the state ρ(ε) is in F∗ , but F∗ ⊆ F , then ρ(ε) is also final states
of QA. Moreover, since QA satisfies condition (1) of the definition of QAs, we have Dε = QA(Tε). Hence Tε|Q A(Tε) = V .
This shows QA(Tε) = V and concludes the proof of one direction.

For the other direction, assume that there exists a tree T such that QA(T ) = V . Then, since V is non-empty, there exists
an accepting run ρ̂ of QA on T , and QA(T ) = Sρ̂ (T ). Moreover, the equality T |Q A(T ) = V implies that the restriction of
T to nodes QA(T ) is isomorphic to V (where T and V are viewed as structures). Let h be such isomorphism, viewed as a
one-to-one mapping from nodes of V to nodes QA(T ); then we can write QA(T ) = {h(s) | s is a node of V }.

We define a run ρ of A∗ on V such that ρ(s) = ρ̂(h(s)), for each node s of V . We need to verify that ρ is indeed a run
of A∗ , and that it is also accepting. In the following we prove that:

(a) ρ is a mapping from nodes of V to Q s;
(b) for each node s in V with label a and n � 0 children,

ρ(s · 0) · · ·ρ(
s · (n − 1)

) ∈ δ∗
(
ρ(s),a

);
(c) ρ(ε) ∈ F∗ .

Item (a) holds because, for each node s in V , we know that h(s) is in QA(T ), that is, in S ρ̂ (T ). Hence ρ̂(h(s)) ∈ Q s .
We now prove item (b). For each node s ∈ V , with label a and n � 0 children,

ρ(s · 0) · · ·ρ(
s · (n − 1)

) = ρ̂
(
h(s · 0)

) · · · ρ̂(
h
(
s · (n − 1)

))
.

Since h is a isomorphism, h(s) has label a and h(s · i) = h(s) · ji , for some ji and for each i = 0, . . . ,n − 1. Therefore

ρ(s · 0) · · ·ρ(
s · (n − 1)

) = ρ̂
(
h(s) · j0

) · · · ρ̂(
h(s) · jn−1

)
.

Now let m � jn−1 the number of children of h(s) in T ; since ρ̂ is an accepting run of QA on T , we have that ρ̂(h(s) ·
0) · · · ρ̂(h(s) · (m − 1)) ∈ δ(ρ̂(h(s)),a).

We next prove that for each j = 0, . . . ,m−1, with j /∈ { ji | i = 0, . . . ,n−1}, the state ρ̂(h(s) · j) is in R . Observe that since
h is an isomorphism, a descendant h(s) · w of h(s) (with w �= ε) is in QA(T ) iff h(s) · w is a descendant of h(s · i) for some i
in 0, . . . ,n −1. Thus, for each j = 0, . . . ,m −1, with j /∈ { ji | i = 0, . . . ,n −1}, neither the node h(s) · j nor its descendants are
in QA(T ). Therefore, if T j is the subtree of T rooted in h(s) · j, the run ρ̂ on T j is non-selecting, hence, ρ̂(h(s) · j) ∈ R . This
implies that the sequence of states ρ̂(h(s) · 0) · · · ρ̂(h(s) · (m − 1)) belongs also to R∗ρ̂(h(s) · j0)R∗ · · · ρ̂(h(s) · jn−1)R∗ , where
ρ̂(h(s) · ji) ∈ Q s for each i = 0, . . . ,n − 1. As a consequence, by Claim 2, the sequence of states ρ̂(h(s) · j0) · · · ρ̂(h(s) · jn−1)

belongs to δ∗(ρ̂(h(s)),a); or in other words, ρ(s · 0) · · ·ρ(s · (n − 1)) ∈ δ∗(ρ(s),a). This proves (b).
It remains to prove (c). Notice that ρ(ε) = ρ̂(h(ε)) and h(ε) = ε (since h is an isomorphism and ε ∈ QA(T )). Therefore

ρ(ε) is equal to ρ̂(ε) which belongs to F , the final states of QA(T ). Moreover ρ(ε) is in Q s , thus ρ(ε) ∈ F∗ , the final states
of A∗ .

This proves (c), shows that ρ is an accepting run of A∗ on V and concludes the proof of the claim. �
We have already shown that A∗ can be computed in time O (‖QA‖2), moreover the number of states of A∗ coin-

cides with the selecting states of QA, thus it is bounded by |Q |. This, together with Claim 3, concludes the proof of the
lemma. �

To apply Lemma 4 to the problem of finding certain answers certainA
Q A V

(Q; V ), we now take the product of QA V with
A and the automaton for ¬Q (the selecting states in the product will be determined by QA V ), and obtain:

Theorem 4. Let QAV be an upward-closed and single-run query automaton with states Q V , let A be an unranked tree automaton
with states Q A defining a schema, and let A¬Q be an automaton accepting trees for which Q is false, and having states Q ¬Q . Then
one can construct, in polynomial time, an unranked tree automaton A∗ such that

1. the number of states of A∗ is at most |Q V | · |Q A| · |Q ¬Q|;
2. A∗ accepts V ⇔ certainA

Q A V
(Q; V ) = false.

Proof. Observe that certainA
Q AV

(Q; V ) is false if and only if there exists a tree T accepted by both A and A¬Q , such that
QAV (T ) = V . This can be restated by defining the product query automaton

QA = QA V × A × A¬Q
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with selecting states consisting of all the triples whose first component is a selecting state of QA V . Clearly for each tree T ,
the query answer QA(T ) coincides with QA V (T ) if T is accepted by A and A¬Q , and is empty otherwise. This implies
that also QA is upward-closed and:

certainA
Q AV (Q; V ) is false iff there exists a tree T such that QA(T ) = V .

The query automaton QA is no longer single-run, because it does not accept all trees. But for each accepting run ρ of QA
on a tree T , we have Sρ(T ) = QAV (T ). Therefore QA satisfies condition 1 of the definition of QA.

Then, by Lemma 4, we can construct an automaton A∗ that accepts a tree V iff certainA
Q AV

(Q; V ) is false. The construc-
tion of A∗ requires first the computation of QA and then the construction of A∗ form QA.

Hence, the algorithm consists of two steps:

1. constructing the product QA QA V × A × A¬Q , and
2. applying the algorithm of Lemma 4 to this QA to obtain an automaton A∗ .

The product query automaton QA can be computed in time polynomial in ‖QA V ‖·‖A‖·‖A¬Q‖. Therefore, by Lemma 4,
A∗ can be computed in time polynomial in ‖QAV ‖ · ‖A‖ · ‖A¬Q‖, and has number of states at most |Q V | · |Q A| · |Q ¬Q|.

This concludes the proof of the theorem. �
Combining Theorem 4 with previous translations into single-run QAs and properties of the latter, we obtain algorithms

for verifying properties of views given by XPath expressions. Revisiting our motivating example from Section 2, we make
the following assumptions:

• the view definition is given by an XPath (conditional or core) expression eV ; the view V of a source tree T has all the
nodes selected by eV and their ancestors;

• the schema definition is given by a DTD d;
• the query Q is an arbitrary Boolean combination of containment statements e ⊆ e′ , where e, e′ come from a set E of

XPath expressions.

Then, for a given V , we want to check if certaind
eV

(Q; V ) is false: that is, the secret encoded by Q cannot be revealed
by V , since not all source trees T that conform to d and generate V satisfy Q. Then, using the algorithm from the proof of
Theorem 4, we have the following:

Corollary 3. In the above setting, one can construct in time polynomial in ‖d‖ and exponential in ‖E‖ + ‖eV ‖ an unranked tree
automaton A∗ with ‖d‖ · 2O (‖eV ‖+‖E‖) states that accepts a view V iff certaind

eV
(Q; V ) is false.

Note that again the exponent contains the size of typically small XPath expressions, and not the potentially large schema
definition d.

8. Conclusion

There are several extensions we would like to consider. One concerns relative specifications often used in the XML
context – these apply to subtrees. Results of [22,3] on model-checking of now and within operators on words and nested
words indicate that an exponential blowup is unavoidable, but there could well be relevant practical cases that do not
exhibit it. We would like to see how LTL-to-Büchi optimization techniques (e.g., in [13,19]) could be adapted in our setting,
to produce automata of smaller size. We also would like to see if automata can be used for reasoning about views without
imposing upward-closeness of [8], which does not account for some of the cases of secure XML views [15]. One could
look beyond first-order at logics having the power of MSO or ambient logics with known translations into automata, and
investigate their translations into QAs [10,20,16].
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