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Abstract. We study the complexity of reachability problems on branch-
ing extensions of vector addition systems, which allows us to derive
new non-elementary complexity bounds for fragments and variants of
propositional linear logic. We show that provability in the multiplica-
tive exponential fragment is Tower-hard already in the affine case—and
hence non-elementary. We match this lower bound for the full propo-
sitional affine linear logic, proving its Tower-completeness. We also
show that provability in propositional contractive linear logic is Acker-
mann-complete.

Key Words. Linear logic, vector addition systems, fast-growing com-
plexity.

1. Introduction

The use of various classes of counter machines to provide computational
counterparts to propositional substructural logics has been highly fruitful,
allowing to prove for instance:

• the undecidability of provability in propositional linear logic (LL),
thanks to a reduction from the halting problem in Minsky machines
proved by Lincoln, Mitchell, Scedrov, and Shankar [17], who initiated
much of this line of work,
• the decidability of the !-Horn fragment of multiplicative exponential

linear logic, proved by Kanovich [13] by reduction to reachability in
vector addition systems,
• the decidability of provability in affine linear logic, first shown by

Kopylov using a notion of vector addition games [14],
• the Ackermann-completeness of provability in the conjunctive im-

plicative fragment of relevance logic, proved by Urquhart [28], using
reductions to and from expansive alternating vector addition sys-
tems, and
• the inter-reducibility between provability in multiplicative exponen-

tial linear logic and reachability in a model of branching vector ad-
dition systems, shown by de Groote, Guillaume, and Salvati [9].

1.1. Complexity in Fragments and Variants of Linear Logic. We
are interested in this paper in the complexity of provability in the following
fragments and variants of LL:
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1.1.1. Affine Linear Logic (LLW) was proved decidable by Kopylov [14]
in 1995 using vector addition games; a model-theoretic proof was later pre-
sented by Lafont [15].

Variants of LLW are popular in the literature on implicit complexity;
for instance, light affine linear logic [2] is known to type exactly the class
FP of polynomial time computable functions. In this paper we are however
interested in the complexity of the provability problem (for the propositional
fragment), rather than the complexity of normalization: in terms of typed
lambda calculi, our results pertain to the complexity of the type inhabitation
problem.

The best known complexity bounds for LLW are due to Urquhart [29]:
by a reduction from coverability in vector addition systems [18], he derives
an ExpSpace lower bound, very far from the Ackermann upper bound he
obtains from length function theorems for Dickson’s Lemma [see e.g. 12].

1.1.2. Contractive Linear Logic (LLC) was proved decidable by Okada and
Terui [21] by model-theoretic methods. It typically translates into typed
λI-calculi, where an abstracted variable x in λx.t must occur free in the
term t.

Urquhart [28] showed the Ackermann-completeness of provability in a
fragment of relevance logic, which is also a fragment of intuitionistic multi-
plicative additive LLC. To the best of our knowledge, there are no known
complexity upper bounds for provability in LLC.

1.1.3. Multiplicative Exponential Linear Logic. The main open question in
this area is whether the multiplicative exponential fragment (MELL) is de-
cidable. It is related to many decision problems, for instance in computa-
tional linguistics [23, 24], cryptographic protocol verification [30], the veri-
fication of parallel programs [4], and data logics [3, 11].

Thanks to the reductions to and from the reachability problem in branch-
ing vector addition systems with states (BVASS) [9] and to the bounds of
Lazić [16], we know that provability in MELL is 2-ExpSpace-hard.

1.2. Contributions. In this paper, we revisit the correspondences between
propositional linear logic and counter systems with a focus on computational
complexity. In Section 3, we define a model of alternating branching vector
addition systems with full zero tests. While this model can be seen as an
extension and repackaging of Kopylov’s vector games, its reachability prob-
lem enjoys very simple reductions to and from provability in LL, which are
suitable for complexity statements (see Section 4). We prove that:

• coverability in the top-down, root-to-leaves direction is Tower-
complete, i.e. complete for the class of problems that can be solved
with time or space resources bounded by a tower of exponentials
whose height depends elementarily in the input size (see Section 5
for the upper bound and Section 6 for the lower bound), and
• coverability in the bottom-up direction is Ackermann-complete, i.e.

for resources bounded by the Ackermann function of some primitive-
recursive function of the input (see Section 7).
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These bounds readily translate into the exact same bounds for provability
in fragments and variants of LL:

LLW: We improve both the lower bound and the upper bound of
Urquhart [29], and prove that LLW provability is complete for Tower.

LLC: We show that LLC provability is Ackermann-complete; the
lower bound already holds for the multiplicative additive fragment
MALLC.

MELL: Our Tower-hardness result for LLW already holds for affine
MELL and thus for MELL, which improves over the 2-ExpSpace
lower bound of Lazić [16].

ILL: All of our complexity bounds also hold for provability in the
intuitionistic versions of our calculi. See § 4.1.2 for details.

2. Propositional Linear Logic

2.1. Classical Linear Logic. For convenience, we present here a sequent
calculus for classical propositional linear logic that works with formulæ in
negation normal form and considers one-sided sequents.

2.1.1. Syntax. Propositional linear logic formulæ are defined by the abstract
syntax

A,B ::= a | a⊥ (atomic)

| A`B | A⊗B | ⊥ | 1 (multiplicative)

| A&B | A⊕B | > | 0 (additive)

| !A | ?A (exponential)

where a ranges over atomic formulæ. We write “A⊥” for the negation normal
form of A, where negations are pushed to the atoms using the dualities
A⊥⊥ = A, (A`B)⊥ = A⊥ ⊗B⊥, ⊥⊥ = 1, (A&B)⊥ = A⊥ ⊕B⊥, >⊥ = 0,
and (?A)⊥ = !A⊥. We write “A( B” for the linear implication A⊥ `B.

2.1.2. Sequent Calculus. The rules of the sequent calculus manipulate mul-
tisets of formulæ, denoted by Γ, ∆, . . . , so that the exchange rule is im-
plicit; “?Γ” then denotes a multiset of formulæ all guarded by why-nots:
?Γ = ?A1, . . . , ?An.

` A,A⊥
init

` Γ, A ` ∆, A⊥

` Γ,∆
cut

` Γ, A,B

` Γ, A`B
` ` Γ, A ` ∆, B

` Γ,∆, A⊗B
⊗

` Γ

` Γ,⊥
⊥
` 1

1

` Γ, A ` Γ, B

` Γ, A&B
&

` Γ, A

` Γ, A⊕B
` Γ, B

` Γ, A⊕B
⊕
` Γ,>

>

` Γ, A

` Γ, ?A
?D

` Γ

` Γ, ?A
?W

` Γ, ?A, ?A

` Γ, ?A
?C

` ?Γ, A

` ?Γ, !A
?P

The last four rules for exponential formulæ are called dereliction (?D), logical
weakening (?W), logical contraction (?C), and promotion (?P).
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The cut rule can be eliminated in this calculus, which then enjoys the
subformula property : in any rule except cut, the formulæ appearing in the
premises are subformulæ of the formulæ appearing in the conclusion.

2.2. Fragments and Variants. Lincoln et al. [17] established most of the
results on the decidability and complexity of provability in propositional
linear logic. In particular, the full propositional linear logic (LL) is unde-
cidable, while its multiplicative additive fragment (MALL, which excludes
the exponential connectives and rules) is decidable in PSpace. As men-
tioned in the introduction, the main open question in this area is whether
the multiplicative exponential fragment (MELL, which excludes the additive
connectives and rules) is decidable.

Regarding related logics, allowing respectively structural weakening (W)
and structural contraction (C)

` Γ

` Γ, A
W

` Γ, A,A

` Γ, A
C

instead of logical weakening and logical contraction gives rise to two decid-
able variants, called respectively affine linear logic (LLW) and contractive
linear logic (LLC). The sequent calculi for LLW and LLC also enjoy cut
elimination and the subformula property for cut-free proofs.

2.2.1. Intuitionistic Linear Logic. Intuitionistic linear logic is essentially ob-
tained from classical linear logic by restricting its two-sided sequent calculus
to consequents (the right sides of sequents) with at most one formula. We
present here a variant of intuitionistic linear logic with bottom [27, Sec-
tion 2.5], which we will refer to as ILZ:

A ` A
init

Γ ` A ∆, A ` B
Γ,∆ ` B

cut

Γ ` A ∆, B ` C
Γ,∆, A( B ` C

L(
Γ, A ` B

Γ ` A( B
R(

Γ, A,B ` C
Γ, A⊗B ` C

L⊗
Γ ` A ∆ ` B
Γ,∆ ` A⊗B

R⊗

⊥ `
L⊥

Γ `
Γ ` ⊥

R⊥

Γ ` A
Γ,1 ` A

L1 ` 1
R1

Γ, A ` C Γ, B ` C
Γ, A⊕B ` C

L⊕
Γ ` A

Γ ` A⊕B
Γ ` B

Γ ` A⊕B
R⊕
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Γ, A ` C
Γ, A&B ` C

Γ, B ` C
Γ, A&B ` C

L&

Γ ` A Γ ` B
Γ ` A&B

R&

Γ ` >
R>

Γ, A ` B
Γ, !A ` B

!D
Γ ` B

Γ, !A ` B
!W

Γ, !A, !A ` B
Γ, !A ` B

!C
!Γ ` A
!Γ ` !A

!P

The fragment without ⊥ is better known as ILL.

2.2.2. Affine and Contractive Variants. The intuitionistic versions with bot-
tom ILZW and ILZC and without bottom ILLW and ILLC of LLW and LLC
are respectively obtained by adding structural weakening and structural con-
traction:

Γ ` B
Γ, A ` B

W
Γ, A,A ` B

Γ, A ` B
C

As with the sequent calculi for LL, LLW, and LLC, the intuitionistic calculi
for ILZ, ILZW, and ILZC enjoy cut elimination and the subformula property
for cut-free proofs.

2.2.3. Relevance Logic. The sequent calculus LR+ considered by Urquhart
[28] for a fragment of relevance logic is IMALLC without >, i.e. ILZC re-
stricted to {(,⊗,1,⊕,&}.

3. Alternating Branching VASS

We define a “tree” extension of vector addition systems with states (VASS)
that combines two kinds of branching behaviors: those of alternating VASS
(§ 3.3.1) and those of branching VASS (§ 3.3.2). With this combination, we
obtain a reformulation of Kopylov’s vector addition games [14], for which
he showed that

(1) the game is inter-reductible with LL provability
(2) the “lossy” version of the game is inter-reducible with LLW prov-

ability.

We further add full zero tests to this model, as they make the reduction from
LL provability straightforward (see Section 4) and can be easily removed (see
§ 3.3.3).

3.1. Definitions.

3.1.1. Syntax. An alternating branching vector addition system with states
and full zero tests (ABVASS0̄) is syntactically a tupleA = 〈Q, d, Tu, Tf , Ts, Tz〉
where Q is a finite set of states, d is a dimension in N, and Tu ⊆ Q×Zd×Q,
Tf ⊆ Q3, Ts ⊆ Q3 and Tz ⊆ Q2 are respectively finite sets of unary, fork,
split and full zero test rules. We denote unary rules (q, ū, q1) in Tu with ū

in Zd by “q
ū−→ q1”, fork rules (q, q1, q2) in Tf by “q → q1 ∧ q2”, split rules

(q, q1, q2) in Ts by “q → q1 + q2”, and full zero test rules (q, q1) in Tz by

“q
?
=0̄−−→ q1”.
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q0 q1 q2 + q3

q4

++d

--d; ++d′; ++d′ --d′; ++d
--c; --d; --d

Figure 1. An example BVASS.

3.1.2. Deduction Semantics. Given an ABVASS0̄, its semantics is defined
by a deduction system over configurations (q, v̄) in Q× Nd:

q, v̄

q1, v̄ + ū
unary

where “+” denotes component-wise addition in +Nd, if q
ū−→ q1 is a rule

(and implicitly v̄ + ū has no negative component, i.e. is in Nd), and

q, v̄

q1, v̄ q2, v̄
fork

q, v̄1 + v̄2

q1, v̄1 q2, v̄2
split

q, 0̄

q1, 0̄
full-zero

if q → q1∧q2, q → q1 +q2, and q
?
=0̄−−→ q1 are rules of the system, respectively,

and “0̄” denotes the d-vector 〈0, . . . , 0〉 with zeroes on every coordinate. Such
a deduction system can be employed either top-down or bottom-up depend-
ing on the decision problem at hand (as with tree automata); the top-down
direction will correspond in a natural way to proof search in propositional
linear logic, i.e. will correspond to the consequence to premises direction in
the sequent calculus of § 2.1.2.

3.1.3. Example. Let A be an ABVASS0̄ with five states (q0, q1, q2, q3, q4), of
dimension 3, with six unary rules:

q0
〈0,1,0〉−−−−→ q1 q1

〈0,−1,2〉−−−−−→ q1 q1
〈0,0,0〉−−−−→ q2

q2
〈0,1,−1〉−−−−−→ q2 q3

〈0,0,0〉−−−−→ q0 q3
〈−1,−2,0〉−−−−−−→ q4,

and with one split rule q2 → q3 + q3. There are no fork rules and no full
zero test rules in A, and so it is a BVASS (see § 3.3.2). A depiction of A
is in Figure 1, where we write c, d, d′ for vector indices 1, 2, 3 (respectively),
and specify unary rules in terms of increments and decrements.

From state q0 and with c, d, d′ initialised to 4, 0, 0 (i.e., from a root node
labelled by (q0, 〈4, 0, 0〉)), A can reach q2 with d, d′ having values 2, 0, per-
form the split rule by dividing c and d equally (i.e., branch to two nodes
labelled by (q3, 〈2, 1, 0〉)), then in both threads reach q2 again with d, d′ hav-
ing values 4, 0, perform the split rule as before, and finally in all four threads
reach q4 with c, d, d′ having values 0, 0, 0 (i.e., have four leaf nodes, which
are all labelled by (q4, 0̄)).

Further reasoning can show that A has a deduction tree whose root is
labelled by (q0, 〈m, 0, 0〉) and with the state label at every leaf being q4 if
and only if m ≥ 4. In fact, A is a slightly simplified version of the BVASS
B2 in Section 6.
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3.2. Decision Problems.

3.2.1. Reachability. Given an ABVASS0̄ A and a finite set of states Q`, we
denote by “A, Q` � q, v̄” the fact that there exists a deduction tree D in A
with root label (q, v̄) and leaf labels in Q` × {0̄}. We call D a reachability
witness for (q, v̄). Given furthermore a state qr, the reachability problem
asks whether A, Q` � qr, 0̄; we call a reachability witness for (qr, 0̄) more
simply a reachability witness.

We will see in Section 4 that this reachability problem is equivalent to
provability in LL; the problem is also related to games played over vectors
of natural numbers, see Section 3.5. It is however undecidable:

Theorem 1. Reachability in ABVASS0̄ is undecidable.

Proof. Reachability is already undecidable on the more restricted model of
AVASS, see Fact 2 below. �

3.2.2. Lossy Reachability. In order to obtain decidability, we must weaken
the ABVASS0̄ model or the decision problem. For the former, let us denote
by ēi the unit vector in Nd with one on coordinate i and zero everywhere else.

Then a lossy ABVASS0̄ can be understood as featuring a rule q
−ēi−−→ q for

every q in Q and 0 < i ≤ d. We rather define it by extending its deduction
system with

q, v̄

q, v̄ − ēi
loss

for every q in Q and 0 < i ≤ d. In terms of proof search in linear logic,
losses will correspond to structural weakening, which is the distinguishing
feature of affine linear logic.
Top-Down Coverability. An alternative way to see the reachability problem
in lossy ABVASS0̄ is to weaken the problem. Let us define a variant of
ABVASS0̄ that feature full resets instead of full zero tests: we denote in this

case rules (q, q1) in Tz by q
:=0̄−−→ q1 and associate a different semantics:

q, v̄

q1, 0̄
full-reset

We call the resulting model ABVASSr. Given an ABVASSr A, a state qr,
and a finite set of states Q`, the top-down coverability or leaf coverability
problem asks whether there exists a deduction tree D with root label (qr, 0̄)
and such that, for each leaf, there exists some q` in Q` and some v̄ in Nd

such that the leaf label is (q`, v̄); we then call D a coverability witness.
The reachability problem for lossy ABVASS0̄ is then equivalent to top-

down coverability for ABVASSr. Observe indeed that the unary, fork, and
split rules are monotone: if v̄ ≤ w̄ for the product ordering, i.e. if v̄(i) ≤ w̄(i)
for all 0 < i ≤ d, and a configuration (q, v̄) allows to apply a rule and result
in some configurations (q1, v̄1) and (possibly) (q2, v̄2), then (q, w̄) allows to
apply the same rule and to obtain some (q1, w̄1) and (q2, w̄2) with v̄1 ≤ w̄1

and v̄2 ≤ w̄2. This means that losses in an ABVASS0̄ can be applied as
late as possible, either right before a full zero test or at the leaves—which
corresponds exactly to top-down coverability for ABVASSr.



8 R. LAZIĆ AND S. SCHMITZ

3.2.3. Expansive Reachability. In order to model structural contractions dur-
ing proof search, it is natural to consider another variant of ABVASS0̄ called
expansive ABVASS0̄ and equipped with the deduction rules

q, v̄ + ēi
q, v̄ + 2ēi

expansion

for every q in Q and 0 < i ≤ d. This is a restriction over ABVASS0̄

since expansions can be emulated through two unary rules q
−ēi−−→ q′

2ēi−−→ q.
Expansive reachability is not quite dual to lossy rechability—we deal with
increasing reachability in Section 7.

3.3. Restrictions. Note that ABVASS0̄ generalize vector addition systems
with states (VASS), which are ABVASS0̄ with only unary rules. They also
generalize two “branching” extensions of VASS, which have been defined
in relation with propositional linear logic. Since these restrictions do not
feature full zero tests, their lossy reachability problem is equivalent to their
top-down coverability problem.

3.3.1. Alternating VASS: originally called “and-branching” counter machines
by Lincoln et al. [17], they were introduced to prove the undecidability of
propositional linear logic. Formally, an AVASS is an ABVASS0̄ which only
features unary and fork rules, i.e. with Ts = Tz = ∅.

Fact 2 (Lincoln et al. [17]). Reachability in AVASS is undecidable.

Proof Idea. By a reduction from the halting problem in Minsky machines:

note that a zero test q
c
?
=0−−→ q′ on a counter c can be emulated through a fork

q → q′ ∧ qc, where unary rules qc
−ēc′−−−→ qc for all c′ 6= c allow to empty the

counters different from c, and a last unary rule qc
0̄−→ q` to the single target

state allows to check that c was indeed equal to zero. �

Alternating VASS do not allow to model LL proof search in full; Kanovich
[13] identified the matching LL fragment, called the (!,⊕)-Horn fragment.

The complexity of the other basic reachability problems on AVASS is
known:

• motivated by the complexity of fragments of relevance logic, Urquhart
[28] proved that expansive reachability is complete for Ackermannian
time, and
• motivated by the complexity of vector addition games (see Sec-

tion 3.5), Courtois and Schmitz [8] showed that lossy reachability
is 2-ExpTime-complete.

3.3.2. Branching VASS. Inspired by the correspondences between the !-Horn
fragment of linear logic and VASS unearthed by Kanovich [13], de Groote
et al. [9] defined BVASS—which they originally dubbed “vector addition
tree automata”—as a model of counter machines that matches MELL. For-
mally, a BVASS is an ABVASS0̄ with only unary and split rules, i.e. with
Tf = Tz = ∅. This model turned out to be equivalent to independently
defined models in linguistics [23] and protocol verification [30]; see [24] for
a survey.
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Whether BVASS reachability is decidable is an open problem, and is in-
terreducible with MELL provability. Lazić [16] proved the best known lower
bound to this day, which is 2-ExpSpace-hardness. Two related problems
were shown to be 2-ExpTime-complete by Demri et al. [10], namely increas-
ing rechability (see Section 7) and boundedness.

3.3.3. Alternating Branching VASS. Kopylov [14] defined a one-player vec-
tor game, which matches essentially the reachability problem in ABVASS,
i.e. in ABVASS0̄ with Tz = ∅. While allowing full zero tests is helpful in the
reduction from LL provability, they can be dispensed with at little expense.

Let us first introduce some notation. If node n is an ancestor of a node
n′ in a deduction tree D, and the labels of n and n′ are the same, we write
D[n← n′] for the shortening of D obtained by replacing the subtree of rule
applications rooted at n by the one rooted at n′. Observe that, if D is a
reachability witness (resp. a coverability witness), then D[n ← n′] is also a
reachability witness (resp. a coverability witness).

Lemma 3. There is a logarithmic-space reduction from (lossy, resp. expan-
sive) ABVASS0̄ reachability to (lossy, resp. expansive) ABVASS reachability,
and a polynomial time Turing reduction that preserves the system dimension.

Proof. Suppose A is an ABVASS0̄ with set of states Q and dimension d.
For a logarithmic-space reduction, the key observation is that, if there

exists a witness for an instance of (lossy, resp. expansive) reachability for
A, then by repeated shortenings, there must be one in which, along every
vertical path, the number of occurences of full zero tests is at most |Q| − 1.

It therefore suffices to decide the problem for an ABVASS A† whose set
of states is {1, . . . , |Q|}×Q, whose dimension is |Q| · d, and which simulates
A up to |Q|−1 full zero tests along any vertical path. In any state (i, q), A†
behaves like A in state q, but using the ith d-tuple of its vector components.

To simulate a full zero test q
?
=0̄−−→ q′ in A, A† changes state from (i, q) to

(i + 1, q), postponing the check that the ith d-tuple of vector components
are zero until the leaves of the deduction tree.

For a reduction that preserves d, we define the set of root states relative
to a subset X of Q by

RootA(X)
def
= {q ∈ Q | A, X � q, 0̄} (1)

as the set of states q such that there exists a deduction in A with root label
(q, 0̄) and leaf labels in X × {0̄}. The (lossy, resp. expansive) reachabil-
ity problem for 〈A, qr, Q`〉 then reduces to checking whether qr belongs to
RootA(Q`).

LetA = 〈Q, d, Tu, Tf , Ts, Tz〉. WritingA′ for the ABVASS 〈Q, d, Tu, Tf , Ts, ∅〉,
we can compute RootA′(X) using |Q| calls to an oracle for (lossy, resp. ex-
pansive) ABVASS reachability. Moreover, since RootA′(X) ⊇ X is mono-
tone, we can use a least fixed point computation that discovers root states
according to the number of full zero tests along the branches of their reach-
ability witnesses:

RootA(Q`) = µX.RootA′(Q`) ∪ RootA′(X ∪ T−1
z (X)) . (2)
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This computation converges after at most |Q| steps, and therefore works in
polynomial time relative to the same oracle. �

3.4. Computational Complexity.

3.4.1. Non-Elementary Complexity Classes. We will use in this paper two
complexity classes [see 25]:

Tower
def
=

⋃
e∈FElem

DTime
(
tower(e(n))

)
(3)

is the class of problems that can be solved with a deterministic Turing
machine in time tower of some elementary function e of the input, where

tower(0)
def
= 1 and tower(n + 1)

def
= 2tower(n) defines towers of exponentials.

Similarly,

Ackermann
def
=

⋃
p∈FPR

DTime
(
Ack(p(n))

)
(4)

is the class of problems solvable in time Ack of some primitive recursive
function p of the input size, where “Ack” denotes the Ackermann function—
any standard definition of Ack yields the same complexity class [25].

Completeness for Tower is understood relative to many-one elemen-
tary reductions, and completeness for Ackermann relative to many-one
primitive-recursive reductions.

3.4.2. ABVASS0̄ Complexity. For a set Tu of unary rules, we write max−(Tu)
(resp. max+(Tu)) for the largest absolute value of any negative (resp. posi-
tive) integer in a vector in Tu, and max(Tu) for their overall maximum. We
assume a binary encoding of the vectors in unary rules, thus max(Tu) might
be exponential in the size of the ABVASS0̄. We can however reduce to or-
dinary ABVASS0̄, i.e. ABVASS0̄ with ū = ēi or ū = −ēi for some 0 < i ≤ d
whenever q

ū−→ q1 is a unary rule:

Lemma 4. There is a logarithmic space reduction from reachability in (lossy,
resp. expansive) ABVASS0̄ to reachability to (lossy, resp. expansive) ordi-
nary ABVASS0̄.

Proof Idea. The idea is to encode each of the d coordinates of the original
ABVASS0̄ into blog(max(Tu)+1)c coordinates, and each unary rule to apply
a binary encoding of ū to those new coordinates; see for instance [24] where
this construction is detailed for BVASS. The expansive case requires to first
explicitly encode expansions as unary rules. �

Lossy Case. One of the main results of this paper is the following:

Theorem 5. Reachability in lossy BVASS and lossy ABVASS0̄ is Tower-
complete.

Proof. The upper bound is proved in Section 5. We present the hardness
proof in detail in Section 6. �

Note that Theorem 5 entails an improvement for BVASS reachability over
the 2-ExpSpace lower bound of Lazić [16].
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Expansive Case. Regarding expansive ABVASS0̄, we can adapt the proofs
of Urquhart [28] for expansive AVASS and the relevance calculus LR+ to
show:

Theorem 6. Reachability in expansive AVASS and expansive ABVASS0̄ is
Ackermann-complete.

Proof. The lower bound is due to Urquhart [28], who proved hardness of
expansive AVASS reachability by a direct reduction from the halting prob-
lem of Minsky machines with counter values bounded by the Ackermann
function. The upper bound can be proved following essentially the same
arguments as Urquhart’s for LR+, using length function theorems for Dick-
son’s Lemma [see e.g. 12]. See Section 7 for a proof. �

Theorem 6 allows to derive the same Ackermann bounds for provability
in MALLC and LLC, see Section 7.

3.5. ABVASS0̄ Games. Reachability problems in ABVASS0̄ can also be
understood in a game-theoretic setting. Let us fix a reachability instance
〈A, qr, Q`〉 and consider the following zero-sum two players game over the
infinite arena Q × Nd, where d is the dimension of A: its two players are
called Controller and Environment. The game starts in the configuration
(qr, 0̄). In a current configuration (q, v̄), Controller chooses a rule ofA, which
allows to apply one of the deduction rules of A, or loses if none applies. In
the case of a unary or full zero test rule, the current configuration changes
to (q1, v̄+ ū) and (q1, 0̄) respectively. In the case of a fork rule, Environment
chooses between a move to (q1, v̄) or (q2, v̄). In the case of a split rule,
Controller furthermore chooses two vectors v̄1, v̄2 in Nd with v̄1 + v̄2 = v̄ and
Environment chooses between a move to (q1, v̄1) or (q2, v̄2).

The objective of Controller is to reach a configuration (q`, 0̄) with q` in
Q`; the objective of Environment is to prevent it. It is easy to see that
Controller has a winning strategy if and only if the original reachability
instance was positive.

Increasing, expanding, or lossy reachability are straightforward to handle
in this game setting. Interestingly, in the case of lossy reachability, we can
take the full-reset semantics for Tz, and Controller’s objective can then be
restated as reaching (q`, v̄) for some q` in Q` and some vector v̄ in Nd, i.e. as a
state reachability objective. This game view is related to multi-dimensional
energy games [5, 7, 1], which are played on AVASS (defined in § 3.3.1).

4. Relationships Between LL and ABVASS0̄

4.1. From LL to ABVASS0̄. We proceed in two steps to show a reduction
from LL provability to ABVASS0̄ reachability: first, in § 4.1.1, we recall a
well-known reduction from LL provability to ILZ provability, and second, in
§ 4.1.2, we exhibit a reduction from ILZ provability to ABVASS0̄ reachabil-
ity. The outcome will thus be:

Proposition 7. There are polynomial space reductions:

(1) from (affine, resp. contractive) LL provability to (lossy, resp. expan-
sive) ABVASS0̄ reachability,



12 R. LAZIĆ AND S. SCHMITZ

(2) from (affine, resp. contractive) MELL provability to (lossy, resp. ex-
pansive) BVASS0̄ reachability.

4.1.1. From LL to ILZ. The Kolmogorov translation of classical logic into
intuitionistic logic by double negation can be adapted to linear logic:

Fact 8. There is a polynomial time reduction from (affine, resp. contractive)
LL provability to (affine, resp. contractive) ILZ provability.

Proof Idea. A translation of classical linear formulæ A into intuitionistic
ones Ak is provided by Troelstra [27, Section 5.12], which satisfies

Γ L̀L A iff Γk
ÌLZ A

k . (5)

The proof of this fact uses in particular that

ÌLZ ((Ak ( ⊥)( ⊥) ˛ Ak (6)

for all Ak.
We merely need to check that the result also holds in presence of structural

weakenings or structural contractions. Because the sequent calculi for ILZW
and ILZC are restrictions of those for LLW and LLC, we only need to exhibit
a translation of the structural rules of the two-sided sequent calculus for LLW
and LLC into ILZW and ILZC proofs.

For structural weakenings, the two-sided sequent calculus for LLW has

Γ ` ∆

Γ, A ` ∆
LW

Γ ` ∆

Γ ` A,∆
RW

In order to prove the affine version of (5), for (LW ) we need to restrict our-
selves to ∆ = B a single formula, and see that this is exactly the structural
weakening of ILZW. For (RW ) we need to restrict ourselves to an empty ∆:
then Γ L̀LW if and only if Γ L̀LW ⊥ and

Γk
ÌLZW ⊥

Γk, Ak ( ⊥ ÌLZW ⊥
Γk

ÌLZW (Ak ( ⊥)( ⊥

and ÌLZW ((Ak ( ⊥) ( ⊥) ˛ Ak for all Ak by (6) together allow to
conclude.

For structural contractions, the two-sided sequent calculus for LLC has

Γ, A,A ` ∆

Γ, A ` ∆
LC

Γ ` A,A,∆
Γ ` A,∆

RC

Again, for (LC) we have ∆ = B a single formula and it turns out to be exactly
the structural contraction of ILZC. For (RC), necessarily ∆ is empty. Then
Γ L̀LC A,A if and only if Γ, A( ⊥ L̀LC A and

Γk, Ak ( ⊥ ÌLZC A
k ⊥ ÌLZC

Γk, Ak ( ⊥, Ak ( ⊥ ÌLZC

Γk, Ak ( ⊥, Ak ( ⊥ ÌLZC ⊥
Γk, Ak ( ⊥ ÌLZC ⊥

Γk
ÌLZC (Ak ( ⊥)( ⊥
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and ÌLZC ((Ak ( ⊥) ( ⊥) ˛ Ak for all Ak by (6) together allow to
conclude. �

4.1.2. From ILZ to ABVASS0̄. The key property of the sequent calculi for
ILZ, ILZW, and ILZC we exploit in our reduction to ABVASS0̄ is the sub-
formula property of cut-free proofs.

Let us consider an instance of the provability problem for ILZ, i.e. some
formula F . The subformula property allows us to view a sequent !Ψ,∆ ` A
appearing in a cut-free proof of ` F as a triple consisting of a multiset !Ψ
of !-guarded subformulæ a multiset ∆ of subformulæ, and a subformula A,
all of the target formula F . Thanks to logical weakening (!W) and logical
contraction (!C), we will even be able to treat !Ψ as a set.

Let us write S for the set of subformulæ of F and S! ⊆ S for its !-
guarded subformulæ. We define from F an ABVASS0̄ AI

F of dimension
|S| that includes 2S! × (S ] {.}) in its state space, where “.” is a fresh
symbol. A configuration of AI

F in 2S! × S × NS encodes a sequent !Ψ,∆ `
A as (σ(!Ψ), A,∆), where σ associates to a multiset its support, i.e. its
set without duplicates—note that we completely identify multisets in NS

with vectors in N|S|. A configuration in (2S! × {.} × NS) encodes a sequent
!Ψ,∆ ` as (σ(!Ψ), .,∆). We also include a distinguished leaf state q` in
the state space of AI

F . The rules of AI
F implement the rules of ILZ on the

encoded configurations in a straightforward manner—they rely on additional
intermediate states for this—and are depicted in Figure 2. An additional
store rule allows to move an “of-course” !A formula from counters to state
storage; we could compile it into the other rules at the expense of a larger
number of cases.

For A empty or a formula in S, we write A†
def
= . if A is empty and A†

def
= A

otherwise. The following claim relates ILZ proofs with deductions in AI
F :

Claim 9.1 (AI
F is Sound and Complete). For all !Ψ in NS! , ∆ in NS\S! and

A† in S ] {.},

AI
F , {q`} � σ(!Ψ), A†,∆ iff !Ψ,∆ ÌLZ A .

Completeness Proof. Let us prove by induction on the height of a proof
tree for !Ψ,∆ ÌLZ A that AI

F , {q`} � σ(!Ψ), A†,∆. This boils down to a
verification that the rules in Figure 2 implement the sequent calculus for
ILZ. We will not detail all the cases, but here are three instances for (init),
(L(), and (!P)—the remaining cases being similar.

For (init), we know that AI
F , {q`} � q`, 0̄ vacuously. We then distinguish

two cases: either A is not in S!, and the first (init) unary rule applies and
allows to deduce AI

F , {q`} � ∅, A, ēA as desired, or A is in S!, and the second
(init) unary rule applies and allows to deduceAI

F , {q`} � {A}, A, 0̄ as desired.
For (L(), let us write !Φ,Γ ÌLZ A and !Ψ,∆, B ÌLZ C for the premises

with !Φ and !Ψ in NS! , Γ and ∆ in NS\S! , and A,B,C in S. By induction
hypothesis, AI

F , {q`} � σ(!Φ), A,Γ. If B is in S!, then by induction hypoth-
esis AI

F , {q`} � σ(!Ψ) ∪ B,C,∆ and we can apply the store rule to show
AI

F , {q`} � σ(!Φ), C,∆ + ēB. Otherwise, i.e. if B is in S \ S!, the induction
hypothesis provides us with the same sequent. Applying the rules for (L(),
we see that AI

F , {q`} � σ(!Φ) ] σ(!Ψ), C,Γ + ∆ + ēA(B as desired.
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∅, Ainit:

A 6∈ S!

q` {!A}, !A q`
−ēA 0̄

q,Bstore:

B ∈ S ] {.}

q ∪ {!A}, B
−ē!A

q ] q′, CL(: +

q,A

q′, C

−ēA(B

ēB

q,A( BR(: q,B
ēA

q, CL⊗: q, C
−ēA⊗B ēA + ēB

q ] q′, A⊗BR⊗: +

q, A

q′, B

q, .L⊥: q`
ē⊥

q,⊥R⊥: q, .
0̄

q, AL1: q,A
ē1 ∅,1R1: q`

0̄

q, CL⊕: ∧ q, C
−ēA⊕B

ēA

ēB

q, A⊕BR⊕:

q, A

q,B

0̄

0̄

q, CL&:

q, C

q, C

−ēA&B

ēA

ēB

q, A&BR&: ∧

q, A

q,B

q,>R>:

∀A ∈ S \ S!

q`
0̄

−ēA
0̄

q ∪ {!A}, B!D: q,B
ēA

q ∪ {!A}, B!W: q,B
0̄

q, !A!P: q, A
?
= 0̄

Figure 2. The rules of AI
F ; q, q′ are subsets of S!, all the

formulæ must be in S.

For (!P), by induction hypothesis AI
F , {q`} � σ(!Γ), A, 0̄ and we can apply

the corresponding full zero test to show AI
F , {q`} � σ(!Γ), !A, 0̄ as desired.

�

Soundness Proof. As a preliminary observation, note that the store rule of
AI

F is the only rule that can decrement the counter of a formula from S!.
By induction over the height of deduction trees for AI

F , we can normalize
deductions so that store rules are applied either immediately after a rule
that added ē!A to the current configuration, or immediately at the root of
the deduction (if F itself is in S!).
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Let us prove by induction on the height of a deduction tree for AI
F , {q`} �

σ(!Ψ), A†,∆ that !Ψ,∆ ÌLZ A. Again, we only cover a few cases, depending
on which group of rules of AI

F was applied last:
For (init), either the first variant for A in S \ S! was used to obtain

AI
F , {q`} � ∅, A, ēA, and we have A ÌLZ A as desired, or the second variant

for !A in S! was used to obtain AI
F , {q`} � !A, !A, 0̄, and we have !A ÌLZ !A

as desired.
For (L(), we know that AI

F , {q`} � q, A,Γ and AI
F , {q`} � q′, C,∆+ēB for

some disjoint q and q′ included in S!, some Γ and ∆ in NS\S! , and some A, B,
and C in S. By induction hypothesis, there exists !Φ in NS! with q = σ(!Φ)
such that !Φ,Γ ÌLZ A. If B is in S!—and is therefore the result of a store
rule applied right after—, then AI

F , {q`} � q′ ∪ {B}, C,∆ and by induction
hypothesis there exists !Ψ in NS! with σ(!Ψ) = q′ such that !Ψ, B,∆ ÌLZ C.
Otherwise, i.e. if B is in S \ S!, we obtain the sequent directly by induction
hypothesis. Then !Ψ, !Φ, B,∆,Γ, A( B ÌLZ C as desired.

For (!P), we know that AI
F , {q`} � q, A, 0̄, thus by induction hypothesis

there exists !Ψ in NS! with q = σ(!Ψ) and !Ψ ÌLZ A, hence !Ψ ÌLZ !A as
desired. �

Claim 9.2 (Affine Case). When allowing losses in AI
F , for all !Ψ in NS! , ∆

in NS\S! and A† in S ] {.},
AI

F , {q`} � σ(!Ψ), A†,∆ iff !Ψ,∆ ÌLZW A .

Proof. As a preliminary observation, note that, by monotonicity, losses oc-
curring inside a group of rules depicted in Figure 2 can be delayed until after
the execution of the group is completed. By Claim 9.1, it therefore suffices
to check the case of the loss and structural weakening rules.

For completeness, if (W) is the last applied rule in a proof of !Ψ, B,∆ ÌLZW

A, then, by induction hypothesis AI
F , {q`} � σ(!Ψ), A,∆, and an application

of the loss rule yields AI
F , {q`} � σ(!Ψ), A,∆ + ēB as desired.

For soundness, if a loss of some B is the last applied rule in a deduction
showing AI

F , {q`} � q, A,∆ + ēB, then AI
F , {q`} � q, A,∆. By induction

hypothesis there exists !Ψ with q = σ(!Ψ) such that !Ψ∆ ÌLZW A, from
which (W) yields !Ψ, B,∆ ÌLZW A as desired. �

Claim 9.3 (Contractive Case). When allowing expansions in AI
F , for all !Ψ

in NS! , ∆ in NS\S! and A† in S ] {.},
AI

F , {q`} � σ(!Ψ), A†,∆ iff !Ψ,∆ ÌLZC A .

Proof. As a preliminary observation, note that, by monotonicity, expansions
occurring inside a group of rules depicted in Figure 2 can be applied before
the execution of the group is started. By Claim 9.1, it therefore suffices to
check the case of the expansion and structural contraction rules.

For completeness, if (C) is the last applied rule in a proof of !Ψ, B,∆ ÌLZC

A, then we can assume that the contracted formula was some B in S \S! as
otherwise logical weakening would have sufficed, thus !Ψ, B,B,∆ ÌLZW A.
By induction hypothesis, AI

F , {q`} � σ(!Ψ), A,∆ + 2ēB, and an application
of the expansion deduction rule yields AI

F , {q`} � σ(!Ψ), A,∆ as desired.
For soundness, assume that an expansion is the rule applied at the root of

a deduction tree for AI
F , {q`} � q, A,∆+ ēB, hence that AI

F , {q`} � q, A,∆+



16 R. LAZIĆ AND S. SCHMITZ

2ēB. Because we assume store rules to occur as early as possible, B cannot
be in S!. Thus, by induction hypothesis there exists !Ψ with q = σ(!Ψ) and
!Ψ, B,B,∆ ÌLZC A, and applying (C) yields !Ψ, B,∆ ÌLZC A as desired. �

Proposition 9. There are polynomial space reductions:

(1) from (affine, resp. contractive) ILZ provability to (lossy, resp. ex-
pansive) ABVASS0̄ reachability,

(2) from (affine, resp. contractive) IMELZ provability to (lossy, resp.
expansive) BVASS0̄ reachability.

Proof. For 1, we reduce the provability of ` F to the reachability of (∅, F ) in
AI

F , which is correct thanks to the subformula property and claims 9.1–9.3.
For 2, simply observe that (L⊕) and (R&) are the only rules of ILZ that

make use of fork rules in AI
F . �

Our reductions incur an exponential blow-up in the number of states—
however, as we will see with our complexity upper bounds, this is not an
issue, because the main source of complexity in ABVASS0̄ is, by far, the
dimension of the system, which is here linear in |F |.

4.2. From ABVASS0̄ to LL. In order to exhibit a reduction from ABVASS0̄

reachability to LL provability, we extend a similar reduction proved by Lin-
coln, Mitchell, Scedrov, and Shankar [17] in the case of AVASS (also em-
ployed by Urquhart [28]). The general idea is to encode ABVASS0̄ configu-
rations as sequents and ABVASS0̄ deductions as proofs in LL extended with
a theory, where encoded ABVASS0̄ rules are provided as an additional set
of non-logical axioms.

4.2.1. Linear Logic with a Theory. In the framework of Lincoln et al., a
theory T is a finite set of axioms C, p⊥1 , . . . , p

⊥
m where C is a MALL formula

and each pi is an atomic proposition. Proofs in LL+T can employ two new
rules

` C, p⊥1 , . . . , p⊥m
T
` C, p⊥1 , . . . , p⊥m ` C⊥,∆

` p⊥1 , . . . , p⊥m,∆
directed cut

where C, p⊥1 , . . . , p
⊥
m belongs to T .

A proof in LL+T is directed if all its cuts are directed cuts. By adapting
the LL cut-elimination proof, Lincoln et al. show:
Fact 10 ([17]). If there is a proof of ` Γ in LL+T , then there is a directed
proof of ` Γ in LL+T .

The axioms of a theory T can be translated in pure LL by

dC, p⊥1 , . . . , p⊥me
def
= C⊥ ⊗ p1 ⊗ · · · ⊗ pm . (7)

Fact 11 ([17]). For any finite set of axioms T , ` Γ is provable in LL+T if
and only if ` ?dT e,Γ is provable in LL.
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4.2.2. Encoding ABVASS0̄. Given an ABVASS A = 〈Q, d, Tu, Tf , Ts, ∅〉, a

configuration (q, v̄) in Q× Nd is encoded as the sequent

θ(q, v̄)
def
= ` q⊥, (e⊥1 )v̄(1), . . . , (e⊥d )v̄(d) (8)

where Q ] {ei | i = 1, . . . , d} is included in the set of atomic propositions
and An stands for the formula A repeated n times.

By Lemma 4 we assume A to be in ordinary form. We construct from
the rules of A a theory T consisting of sequents of form ` q⊥, c⊥1 , . . . , c⊥m, C
with q in Q the originating state, cj in {ei | 0 < i ≤ d}, and C a MALL
formula containing the destination state(s) positively. Here are the axioms
corresponding to each type of rule:

q
ēi−→ q1 q⊥, q1 ⊗ ei

q
−ēi−−→ q1 q⊥, e⊥i , q1

q → q1 ∧ q2 q⊥, q1 ⊕ q2

q → q1 + q2 q⊥, q1 ` q2

By Lemma 3, we do not need to consider the case of full zero tests. Here is
nevertheless how they could be encoded, provided we slightly extended the
reduction of LL+T to LL in Fact 11 to allow exponentials in T :

q
?
=0̄−−→ q1 q⊥, !q1

Claim 12.1. For all (q, v̄) in Q×Nd, A, Q` � q, v̄ if and only if ` θ(q, v̄), ?Q`

in LL+T .

Proof. The AVASS case is proved by Lincoln et al. [17, Lemmata 3.5 and 3.6]
by induction on the height of deduction trees inA and the number of directed
cuts in a directed proof in LL+T (with minor adaptations for ?Q`). Thus,
we only need to prove that split rules preserve this statement.

Assume for the direct implication that A, Q` � q, v̄ as the result of a split
rule q → q1 + q2, thus v̄ = v̄1 + v̄2 and A, Q` � q1, v̄1 and A, Q` � q2, v̄2.
By induction hypothesis, ` θ(q1, v̄1), ?Q` and ` θ(q2, v̄2), ?Q`, and we can

prove ` q⊥1 ⊗ q⊥2 , (c⊥1 )v̄1(1)+v̄2(1), . . . , (c⊥d )v̄1(d)+v̄2(d), ?Q`, ?Q` using (⊗), and

after |Q`| logical contractions and a directed cut with ` q⊥, q1`q2, we obtain
` θ(q, v̄), ?Q` as desired.

Conversely, assume that the last applied directed cut has ` q⊥, q1 ` q2

and ` q⊥1 ⊗ q⊥2 , (c⊥1 )v̄(1), . . . , (c⊥d )v̄(d), ?Q` as premises. The only rules that
allow to prove the latter sequent are (?D), (?C) or (?W) applied to some
q` in Q`, and (⊗). Logical contractions are irrelevant, and wlog. we can
apply derelictions above (⊗), thus we know that ` θ(q1, v̄1), ?Q1 and `
θ(q2, v̄2), ?Q2 with v̄ = v̄1 + v̄2 and Q` = Q1 ∪Q2. By induction hypothesis,
A, Q1 � q1, v̄1 and A, Q2 � q2, v̄2. Because Q1 ⊆ Q` and Q2 ⊆ Q` this
entails A, Q` � q1, v̄1 and A, Q` � q2, v̄2, from which a split allows to derive
A, Q` � q, v̄ as desired. �

Proposition 12. There are logarithmic space reductions

(1) from ABVASS0̄ reachability to LL provability and
(2) from BVASS0̄ reachability to MELL provability.
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Proof. By Lemma 3 we can eliminate full zero tests. For 1, by Claim 12.1
and Fact 11, A, Q` � qr, 0̄ if and only if ` q⊥r , ?Q`, ?dT e. Regarding 2,
simply observe that additive connectives are only used for the encoding of
fork rules. �

4.2.3. Affine Case. Adapting the proof of Proposition 12 to the affine case is
relatively straightforward. For starters, Fact 10 also holds for LLW+T using
the cut elimination procedure for LLW, and allowing structural weakenings
does not influence the proof of Fact 11 in [17, Lemmata 3.2 and 3.3]. We
show:

Proposition 13. There are logarithmic space reductions

(1) from ABVASS0̄ lossy reachability to LLW provability and
(2) from BVASS0̄ lossy reachability to MELLW provability.

This relies on an extension of Claim 12.1:

Claim 13.1. For all (q, v̄) in Q×Nd, A, Q` � q, v̄ with lossy semantics if and
only if ` θ(q, v̄), ?Q` in LLW+T .

Proof. We proceed as before by induction on the height of a deduction tree
in A and on the number of directed cuts in a proof in LLW+T . The only new
cases to consider in addition to those of Claim 12.1 are those of losses and
structural weakenings. In case of a loss allowing to derive A, Q` � q, v̄ + ēi,
by induction hypothesis ` θ(q, v̄), ?Q` and a structural weakening yields
` θ(q, v̄ + ēi), ?Q` as desired. Conversely, in case of a structural weakening
allowing to derive ` θ(q, v̄), ?Q`, either the weakened formula is some ?q`
guarded by ? and by induction hypothesis A, Q`\{q`} � q, v̄ thus A, Q` � q, v̄
as desired, or the weakened formula is some c⊥i and by induction hypothesis
A, Q` � (q, v̄ − ēi) and a loss allows to derive A, Q` � q, v̄ as desired. �

4.2.4. Contractive Case. Again, Fact 10 is straightforward to adapt to LLC+T
using cut elimination. Fact 11 can be strengthened to avoid exponentials in
the contractive case:

Lemma 14. For a finite set of axioms T , ` Γ is provable in LLC+T if and
only if ` > ⊕

⊕
t∈T dte,Γ is provable in LLC.

Proof. For the direct implication, we consider a directed proof of L̀LC+T Γ.
By induction on the number of directed cuts, we build an LLC proof of L̀LC

>⊕
⊕

t∈T dte,Γ. For the base case, an LLC+T proof without directed cuts is
also an LLC proof, thus L̀LC+T >,Γ using the (>) rule, and ` >⊕

⊕
t∈T dte,Γ

by |T | applications of (⊕). For the induction step, consider a directed cut
of an axiom t = C, p⊥1 , . . . , p

⊥
m in T with L̀LC+T C

⊥,∆. We have L̀LC C,C
⊥

and L̀LC pi, p
⊥
i for all 0 < i ≤ m by the (init) rule, and m+1 applications of

(⊗) yield L̀LC t, dte. By induction hypothesis L̀LC >⊕
⊕

t∈T dte, C⊥,∆, thus

a (normal) cut yields L̀LC >⊕
⊕

t∈T dte, dte, p⊥1 , . . . , p⊥m,∆. Using |T | appli-

cations of (⊕) allows to prove L̀LC >⊕
⊕

t∈T dte,>⊕
⊕

t∈T dte, p⊥1 , . . . , p⊥m,∆
and a structural contraction yields the desired LLC proof.

For the converse implication, if L̀LC > ⊕
⊕

t∈T dte,Γ, then L̀LC+T > ⊕⊕
t∈T dte,Γ. Then L̀LC+T 1, and for each axiom t = C, p⊥1 , . . . , p

⊥
m in T , we

can prove L̀LC+T C ` p⊥1 ` · · ·` p⊥m by m applications of (`) from L̀LC+T t,
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i.e. L̀LC+T dte⊥. Thus |T | applications of (&) yield L̀LC+T 1 &
˘

t∈T dte⊥,
and a (normal) cut shows L̀LC+T Γ. �

Without loss of generality, we can assume that Q` = {q`} for a state q`
with no applicable rule in A. We extend Claim 12.1 and Proposition 12 to
the contractive case:

Claim 15.1. For all (q, v̄) in Q×Nd, A, {q`} � q, v̄ using expansive semantics
if and only if ` θ(q, v̄), qs` in LLC+T for some s > 0.

Proof. By Claim 12.1, it suffices to consider the case of expansions and
structural contractions in a proof by induction over deduction tree height
and number of directed cuts. In case of an expansion allowing to derive
A, {q`} � q, v̄+ēi, by induction hypothesis, ` θ(q, v̄+2ēi), q

s
` and a structural

contraction allows to prove ` θ(q, v̄ + ēi), q
s
` as desired. Conversely, in case

of a structural contraction proving ` θ(q, v̄), qs` , several cases are possible.
If the contracted formula is q`, then by induction hypothesis A, {q`} � q, v̄
as desired. If the contracted formula is some e⊥i with 0 < i ≤ d, then by
induction hypothesis A, {q`} � q, v̄ + 2ēi and an expansion allows to deduce
A, {q`} � q, v̄ + ēi as desired. Last of all, the contracted formula cannot be
q⊥: assume for the sake of contradiction that ` q⊥1 , . . . , q⊥n , θ(q, v̄), q` were
provable in LLC+T for some n > 0 negated atomic state propositions (in
addition to q⊥), and attempt to perform directed proof search. The only
applicable rules are

• structural contraction, which cannot decrease n, and
• directed cuts using T , which also preserve n.

In the absence of any axiom allowing n > 0, this sequent is not provable.
�

Proposition 15. There is a logarithmic space reduction from ABVASS0̄

expansive reachability to MALLC provability.

Proof. As usual, we start by eliminating full zero tests using Lemma 3.
Let 〈A, qr, {q`}〉 be an expansive reachability instance. By Claim 15.1 and
Lemma 14 A, {q`} � qr, 0̄ if and only if ` > ⊕

⊕
t∈T dte, q⊥r , qs` for some

s > 0, which by structural contractions on q` happens if and only if `
> ⊕

⊕
t∈T dte, q⊥r , q`. �

5. Tower Upper Bounds

To show that the reachability problem for lossy ABVASS0̄ is in Tower,
we establish by induction over the dimension d a bound on the height of min-
imal reachability witnesses, following in this the reasoning used by Rackoff
[22] to show that the coverability problem for VASS is in ExpSpace. The
main new idea here is that, where there is freedom to choose how values
of vector components are distributed when performing split rules top-down
(see Section 3.1), splitting them equally (or with the difference of 1) allows
sufficient lower bounds to be established along vertical paths in deduction
trees for the inductive argument to go through. Since the bounds we obtain
on the heights of smallest witnessing deduction trees are exponentiated at
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every inductive step (rather than multiplied as in Rackoff’s proof), the re-
sulting complexity upper bound involves a tower of exponentials, but will
be shown broadly optimal in Section 6.

The following lemma in fact addresses the equivalent top-down coverabil-
ity problem (see § 3.2.2), and considers systems without full resets thanks
to Lemma 3. We first define some terminology. We say that a deduction
tree is:

• (qr, v̄0)-rooted iff that is the label of its root;
• Q`-leaf-covering iff, for its every leaf label (q, v̄), we have q ∈ Q`;
• of height h iff that is the maximum number of edges, i.e. the maxi-

mum number of rule applications, along any path from the root to
a leaf.

For integers d,m ≥ 0 and s ≥ 1, we define a natural number H(d, s,m)
recursively:

H(0, s,m)
def
= s , (9)

H(d+ 1, s,m)
def
= s(m · 2H(d,s,m))d+1 +H(d, s,m) . (10)

Lemma 16. If an ABVASS A = 〈Q, d, Tu, Tf , Ts, ∅〉 has a (qr, v̄0)-rooted
Q`-leaf-covering deduction tree, then it has such a deduction tree of height
at most H(d, |Q|,max−(Tu)).

Proof. We use induction on the dimension d.
If A is 0-dimensional, then the labels in its deduction trees are states only.

Starting with a deduction tree whose root label is qr and whose every leaf
label is in Q`, we obtain by repeated shortenings a deduction tree in which
labels along every branch are mutually distinct, with height at most |Q|−1.

Suppose that A = 〈Q, d+ 1, Tu, Tf , Ts, ∅〉, and D is a (qr, v̄0)-rooted Q`-
leaf-covering deduction tree. Let

B
def
= 2H(d,|Q|,max−(Tu)) ·max−(Tu) , (11)

and let {n1, . . . , nk} be the set of all nodes of D such that, for all i:

• all vector components in labels of ancestors of ni are smaller than
B;
• for some 0 < ji ≤ d+ 1, we have v̄i(ji) ≥ B, where the label of ni is

(qi, v̄i).

By repeated shortenings, we can assume that the length (i.e., the number
of edges) of every path in D, which is from the root either to some ni or
to a leaf with no ni ancestor, is at most |Q| · Bd+1, the number of possible
labels with all vector components smaller than B.

In the remainder of the argument, we apply the induction hypothesis
below each of the nodes ni. More precisely, let Ai denote the d-dimensional
ABVASS obtained from A by projecting onto vector indices {1, . . . , d+ 1} \
{ji}. (The only change is in the set of unary rules.) From the subtree of
D rooted at ni, we know that Ai has a (qi, v̄i(−ji))-rooted Q`-leaf-covering
deduction tree. (Here w̄(−j) is the projection of w̄ to all indices except j.)
Let Di be such a deduction tree of height at most H(d, |Q|,max−(Tu)).

Now, to turn Di into a (qi, v̄i)-rooted deduction tree D†i of A, we have to
do two things:
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(1) For every application of a unary rule q
ū−→ q′ in Di, decide which

unary rule q
ū′−→ q′ of A such that ū = ū′(−ji) to apply: we do that

arbitrarily.
(2) For every application of a split rule q → q′+ q′′ in Di, decide how to

split the vector component x with index ji: we do that by balancing,
i.e. picking the corresponding components x1 and x2 of the two child
vectors so that |x1 − x2| ≤ 1.

We claim that D†i thus obtained is indeed a (qi, v̄i)-rooted Q`-leaf-covering

deduction tree of A. Since the node labels in D†i differ from those in Di

only by the extra jith components, it suffices to show that all the latter are

non-negative. In fact, at the root of D†i , we have v̄i(ji) ≥ B, and it follows

by a straightforward induction that, for every node n in D†i whose distance
from the root is h (which is at most H(d, |Q|,max−(Tu))), its vector label
w̄ satisfies

w̄(ji) ≥ 2H(d,|Q|,max−(Tu))−h ·max−(Tu) . (12)

It remains to observe that, by replacing for each 0 < i ≤ k, the subtree of

D rooted at ni by D†i , the height of the resulting deduction tree is at most

|Q| ·Bd+1 +H(d, |Q|,max−(Tu)) = H(d+ 1, |Q|,max−(Tu)),

thereby establishing the lemma. �

The following auxiliary function and proposition will be useful for deriving
the complexity upper bounds. Let

H ′(d, s,m)
def
= 4(d+ 1)(s+m+ 1)H(d, s,m) . (13)

Proposition 17. For all d,m ≥ 0 and s ≥ 1, we have:

H ′(d+ 1, s,m) ≤ 2H
′(d,s,m).

Proof. We first observe the following inequality involving the H function:

H(d+ 1, s,m) = s(m · 2H(d,s,m))d+1 +H(d, s,m)

≤ s((m+ 1) · 2H(d,s,m))d+1

≤ 2(d+1)(s+m+H(d,s,m))

≤ 2(d+1)(s+m+1)H(d,s,m) ,

and then use it to conclude that:

H ′(d+ 1, s,m) = 4(d+ 2)(s+m+ 1)H(d+ 1, s,m)

≤ 4(d+ 2)(s+m+ 1)2(d+1)(s+m+1)H(d,s,m)

≤ 2d+2 · 2s+m+1 · 2(d+1)(s+m+1)H(d,s,m)

≤ 22(d+1)(s+m+1) · 2(d+1)(s+m+1)H(d,s,m)

≤ 24(d+1)(s+m+1)H(d,s,m)

= 2H
′(d,s,m) . �
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We are now in a position to establish the membership of Tower. More
precisely, since the height of the tower of exponentials in the bounds we
obtained is equal to the system dimension, the problem with the dimension
d fixed will be in d-ExpTime.

Theorem 18. Reachability for lossy ABVASS0̄ is in Tower. For every
fixed dimension d, it is in PTime if d = 0, and in d-ExpTime if d ≥ 1.

Proof. By Lemma 3, it suffices to consider an ABVASS. We argue in terms
of the top-down coverability problem (see § 3.2.2): given an ABVASS A =
〈Q, d, Tu, Tf , Ts, ∅〉, a state qr and a set of states Q`, to decide whether A
has a (qr, 0̄)-rooted Q`-leaf-covering deduction tree.

By Lemma 16, if A has such a deduction tree, then it has one of height
at most H(d, |Q|,max−(Tu)). Observing that, in such a deduction tree, all
vector components are bounded by (max+(Tu) + 1) · H(d, |Q|,max−(Tu)),
we conclude that it can be guessed and checked in

O((d+ 1) · log((max+(Tu) + 1) ·H ′(d, |Q|,max−(Tu))))

space by an alternating algorithm which manipulates at most three config-
urations of A at a time.

The memberships in the statement (for ABVASS) follow from the fact that
H ′(0, |Q|,max−(Tu)) is polynomial, by Proposition 17, and since ALogSpace =
PTime, APSpace = ExpTime, and (d − 1)-AExpSpace = d-ExpTime
(see Chandra et al. [6]). �

By Proposition 7, this shows:

Corollary 19. LLW provability is in Tower.

6. Tower Lower Bounds

The rough pattern of our hardness proof resembles those by e.g. Urquhart
[28], Schnoebelen [26], where a fast-growing function is computed weakly,
then its result is used to allocate space for simulating a universal machine,
and finally the inverse of the function is computed weakly for checking pur-
poses. Indeed, we simulate Minsky machines whose counters are tower-
bounded, but the novelty here is in the inverse computations. Specifically,
for each Minsky counter c, we maintain its dual ĉ and simulate each zero test
on c by a split rule that launches a thread to check that ĉ has the maximum
value. Recalling that such rules split all values non-deterministically, we
must construct the simulating system carefully so that such non-determinism
cannot result in erroneous behaviours.

The auxiliary threads check that a counter is at least tower(k) by seeking
to apply split rules at least tower(k − 1) times along every branch. The
difficulty here is, similarly, how to count up to tower(k − 1) or more in a
manner which is robust with respect to the non-determinism of the split
rules.

A hierarchy of BVASS for the latter purpose is given in Figure 3— recall

the depicting conventions in § 3.1.3. Thus, after the unary rule from qloop
k

that decrements dk, we have that Bk behaves like Bk−1 from state qinit
k−1.
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qinitk q1k q2k + qloopk

Bk−1
qinitk−1

++dk−1

--dk−1

++d′k−1

++d′k−1

--d′k−1

++dk−1

--dk

qinit1 qleaf
--d1; --d1

Figure 3. Defining Bk for k > 1 (above), and B1 (below).

Lemma 20. For every k ≥ 1 and vector of naturals v̄0 such that v̄0(di) =
v̄0(d′i) = 0 for all i < k, we have that Bk has a (qinit

k , v̄0)-rooted {qleaf}-leaf-
covering deduction tree if and only if v̄0(dk) ≥ tower(k).

Proof. We proceed by induction on k, where the base case k = 1 is imme-
diate, so let us consider k > 1 and v̄0 such that v̄0(di) = v̄0(d′i) = 0 for all
i < k.

If v̄0(dk) ≥ tower(k), we observe that Bk can proceed from (qinit
k , v̄0) as

follows:

• each loop at q1
k empties dk−1, i.e. doubles dk−1 and transfers it to

d′k−1;

• each loop at q2
k empties d′k−1, i.e. transfers d′k−1 to dk−1;

• each split from q2
k divides dk−1 into two equal values, and divides dk

into two values that differ by at most 1.

In any deduction tree thus obtained, at every node which is the hth node

with state label qloop
k from the root, and whose vector label is w̄, we have:

w̄(dk−1) = h w̄(d′k−1) = 0 w̄(dk) ≥ 2tower(k−1)−h (14)

Hence, by returning control to qinitk as long as the value of dk is at least 2, Bk
can reach along every vertical path a node with state label qloop

k at which the
values of dk−1 and dk are equal to tower(k−1) and at least 1 (respectively).
To complete the deduction tree to be {qleaf}-leaf-covering, from every such
node we let Bk decrement dk and apply the induction hypothesis.

The interesting direction remains, so suppose D is a (qinit
k , v̄0)-rooted

{qleaf}-leaf-covering deduction tree of Bk. Since at every qloop
k -labelled node

in D, the value of dk must be at least 1, it suffices to establish the following
claim and apply it for the maximum h:

Claim 20.1. For each 0 < h ≤ tower(k − 1), D contains 2h incomparable

nodes (i.e., none is a descendant of another) whose state label is qloop
k and

at which dk−1 + d′k−1 has value at most h.

In turn, by induction on h, that claim is a straightforward consequence
of the next one, which can be used for both the base case and the inductive
step:

Claim 20.2. For each node n in D whose state label is qinit
k and at which

dk−1+d′k−1 has some value h < tower(k−1), there must be two incomparable
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descendants n1 and n2 whose state labels are qloop
k and at which the values

of dk−1 + d′k−1 are at most h+ 1.

Consider a node n as in the latter claim. After the increment of dk−1 and
the loops at q1

k and q2
k, the value of dk−1 + d′k−1 will be at most 2(h + 1).

If the first split divides dk−1 + d′k−1 equally, we are done. Otherwise, we

have a qloop
k -labelled descendant n′ of n at which dk−1 + d′k−1 has value at

most h. In particular, dk−1 is less than tower(k − 1) at n′, so recalling the
induction hypothesis, the child n′′ of n′ must be qinit

k -labelled. Also, the
value of dk−1 + d′k−1 at n′′ is the same as at n′, so at most h. We can
therefore repeat the argument with n′′ instead of n, but since D is finite,
two incomparable descendants as required eventually exist. �

Relying on the properties of the BVASS Bk, we now establish the hardness
of lossy reachability, matching the membership of Tower in Theorem 18
already for BVASS. Although we do not match the upper bounds when the
system dimension is fixed, we remark that our simulation uses a number
of counters which is linear in the height of the tower of exponentials with
coefficient 2.

Theorem 21. Reachability for lossy BVASS is Tower-hard.

Proof. For a notion of Minsky machines that is similar to how ABVASS0̄

were defined in Section 3.1, let such a machine be given by a finite set
of states Q, a finite set of counters C, and finite sets of increment rules

“q
++c−−−→ q1,” decrement rules “q

--c−→ q1” and zero-test rules “q
c
?
=0−−→ q1.”

By simulating a tape using two stacks, and simulating a stack using two
counters, it is straightforward to verify that the following problem [called
F3-MM in 25] is Tower-hard:

Given a Minsky machine M and two states q0, qH , does M
have a computation that starts in q0 with all counters having
value 0, ends in qH , and is such that all counter values are
at most tower(|M|)?

We establish the theorem by working with the equivalent top-down cov-
erability problem (see § 3.2.2). We show that, given a Minsky machine M
of size K and two states q0, qH , then a BVASS A(M), a state qr and a finite

set Q`
def
= {qH , qleaf} are computable in logarithmic space, such that M has

a 0-initialised tower(K)-bounded computation from q0 to qH if and only if
A(M) has a (qr, 0̄)-rooted Q`-leaf-covering deduction tree.

For each counter c ofM, there are three counters in A(M) denoted c, ĉ, c′.
The initial part of A(M) employs a “weak Petri net computer” [20] for the
tower function, namely a constant VASS with a designated start state, input
counter, finish state and output counter, which given a natural number m,
can compute tower(m) but non-deterministically may also compute a smaller
value. (It is standard to construct such a VASS from weak routines for 2m
and 2m.) By means of the latter VASS, each counter ĉ in A(M) is initialised
to have value tower(K) (or possibly smaller). Recalling that the auxiliary
VASS is constant, a simple pattern for incorporating it into A(M) is to use
fresh states and counters for each ĉ.
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c
?
= 0:

BK
qinitK

--ĉ; ++dK ; ++c′ --c′; ++ĉ

+

++c:
++c; --ĉ

--c:
--c; ++ĉ

Figure 4. Simulating the Minsky operations.

The main part of A(M) consists of simulating M from q0, using the
translations of increments, decrements and zero tests in Figure 4. For the
increments and decrements, A(M) also performs the opposite operation
on the hatted counter, thereby keeping the sums c + ĉ constant. For the
zero tests, A(M) attempts by two loops and using the primed counter, to
copy the hatted counter to dK and then employ BK (see Figure 3) to verify
that the latter is maximal (i.e., has value tower(K)). Thus, A(M) also has
counters di for 0 < i ≤ K and d′i for 0 < i < K, and more precisely a variant
of BK is employed that has the same dimension as A(M) (and does not use
the extra counters).

For each 0-initialised tower(K)-bounded computation of M from q0 to
qH , it is straightforward to check that A(M) can simulate it as follows:

• each counter ĉ is initialised to tower(K);

• in every simulation of a zero test c
?
= 0, the values of c, ĉ, c′, dK are

0, tower(K), 0, 0 (respectively) before the two loops, and 0, tower(K), 0, tower(K)
(respectively) before the split;
• at every start of BK , the value of dK is tower(K) and all other

counters have value 0.

By Lemma 20, we obtain a (qr, 0̄)-rooted Q`-leaf-covering deduction tree of
A(M).

The other direction is more involved: we show that, if A(M) has a
(qr, 0̄)-rooted Q`-leaf-covering deduction tree D, then M has a 0-initialised
tower(K)-bounded computation from q0 to qH . By construction, D consists
of a path π from which there are branchings to deduction trees of BK . The
main part of π consists of the simulations of increments, decrements and zero
tests as in Figure 4. From it, we obtain a 0-initialised tower(K)-bounded
computation of M from q0 to qH , after observing the following for every
counter c of M:

• After ĉ is initialised in D, the value of c + ĉ + c′ is always at most
tower(K).
• For each simulation of a zero test of c, we have by Lemma 20 that the

value of dK is tower(K) before the split and is 0 after the split on the
path π, and consequently that the values of c, ĉ, c′ are 0, tower(K), 0
(respectively) before the two loops.
• The value of c may erroneously decrease due to the branchings, but

since that makes the value of c+ ĉ+ c′ smaller than tower(K), such
losses may occur only after the last simulation of a zero test of c,
and so cannot result in an erroneous such simulation.
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• Similarly, only the last transfer of c′ to ĉ may be incomplete (i.e., it
does not empty c′).

We conclude that A(M) has the required properties. �

Since lossy reachability reduces to reachability and by Proposition 12 and
Proposition 13, this entails:

Corollary 22. Provability in MELL, MELLW, and LLW is Tower-hard.

7. Ackermann Upper Bounds

We investigate in this section the complexity of reachability in increasing
or expansive ABVASS0̄. The latter is related to provability in contractive
linear logic, and as shown by Urquhart [28], to provability in the conjunctive-
implicative fragment of relevance logic, and we delay it until Section 7.3.

7.1. Increasing Reachability. Expansive ABVASS0̄ are not quite dual to
lossy ABVASS0̄: the natural model for this is that of increasing ABVASS0̄,
which feature additional deduction rules

q, v̄

q, v̄ + ēi
increase

for all q in Q and 0 < i ≤ d.

7.1.1. Bottom-Up Coverability. As with lossy reachability, increasing reach-
ability corresponds to a coverability problem in a variant of ABVASS0̄. Let
us define a variant of ABVASS0̄ that provides different semantics

• for rules in Tf as meets “q → q1 u q2” instead of forks, and

• for rules in Tz as zero-jumps “q
ω̄−→ q1” instead of full zero tests.

Their semantics are now defined by the deduction rules

q, v̄1 u v̄2

q1, v̄1 q2, v̄2
meet

q, 0̄

q1, v̄
zero-jump

where the meet v̄1u v̄2 of two vectors in Nd is the component-wise minimum
of v̄1 and v̄2: for all 0 < i ≤ d,

(v̄1 u v̄2)(i)
def
= min(v̄1(i), v̄2(i)) . (15)

Let us call the resulting model ABVASSi. Given an ABVASSi A, a state
qr, and a finite set of states Q`, the bottom-up coverability or root coverability
problem asks for the existence of a deduction tree D with root label (qr, v̄)
for some v̄ in Nd where d is the dimension of A, and with every leaf labeled
by some element of Q` × {0̄}.

By a reasoning similar to the one employed for top-down coverability in
ABVASSr, bottom-up coverability in ABVASSi corresponds to increasing
reachability in ABVASS0̄: by monotonicity we can always increase as soon
as possible in the latter, either at the root, or right after a full zero test, or
right after an “imbalanced” fork—where increases differ on the two branches.
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7.1.2. Pseudo-Increasing ABVASS0̄. Let us consider yet another variant of
increasing ABVASS0̄, which will be used in the complexity analysis, and
which combines increasing steps with unary steps. Given a vector ū in Zd,
let us denote by ū+ and ū− the vectors in Nd defined for all 0 < i ≤ d by

ū+(i)
def
=

{
ū(i) if ū(i) > 0

0 otherwise,
ū−(i)

def
=

{
−ū(i) if ū(i) < 0

0 otherwise.
(16)

Then, for a vector v̄ in Nd, the join v̄ t ū− defined for all 0 < i ≤ d by

(v̄ t ū−)(i)
def
= max(v̄(i), ū−(i)) (17)

is the minimal vector greater or equal to v̄ that allows to fire a unary rule
with vector ū.

A pseudo-increasing ABVASS0̄ does not have the increasing rule, but uses

instead a different semantics for its unary rules q
ū−→ q′ in Tu, which can be

used for any v̄ in Nd:

q, v̄

q′, (v̄ t ū−) + ū+
pseudo-unary

The idea of the pseudo-unary rule is that it implicitly applies the minimal
amount of increase necessary to use a given unary rule.

Reachability (from (qr, 0̄) to Q`×{0̄}) in an increasing ABVASS0̄ is then
equivalent to reachability in the same ABVASS0̄ with pseudo-increasing se-
mantics. We can indeed delay increases occurring right before another rule:
an increase right before a fork or a split can be performed after it, no in-
crease can occur right before a full zero test, and superfluous increases right

before a unary rule q
ū−→ q′ can be performed after it, i.e. an increase from

(q, v̄) to (q, v̄ + ēi) with v̄ ≥ ū− can rather be performed from (q′, v̄ + ū) to
(q′, v̄+ ēi+ ū). The remaining increases right before unary rules become part
of pseudo-unary rules.

7.2. Complexity of Increasing Reachability. In the more restricted
case of BVASS, which do not feature forks nor full zero tests, bottom-up
coverability coincides with increasing reachability, and this problem was
called more simply “coverability” by Verma and Goubault-Larrecq [30]:

Fact 23 (Demri et al. [10]). Reachability in increasing BVASS is 2-ExpTime-
complete.

Since increasing ABVASS0̄ are not too different from expanding ABVASS0̄,
the fact that their complexity is the same is not too surprising:

Theorem 24. Reachability in increasing AVASS and increasing ABVASS0̄

is Ackermann-complete.

Proof. For the lower bound, a reduction from the reachability problem in
increasing Minsky machines [26] is straightforward, since it uses the same
encoding of zero tests as the proof sketch for Fact 2.

For the upper bound, by Lemma 3, we can restrict ourselves to ABVASS
without loss of generality. Define the partial order ≤ over configurations in
Q×Nd by (q, v̄) ≤ (q′, v̄′) if q = q′ and v̄ ≤ v̄′; this is the product ordering over
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Q×Nd, where Q is ordered using equality. By Dickson’s Lemma, (Q×Nd,≤)
is a well quasi order. The proof for the upper bound thus follows the typical
steps of an application of the length function theorem for Dickson’s Lemma
found in [12].

Let us consider an increasing reachability witness D and the sequence of
labels (qr, 0̄) = (q0, v̄0), (q1, v̄1), . . . , (qm, v̄m) ∈ Q` × {0̄} along some branch
n0, n1, . . . , nm of D. By ignoring the intermediate increase steps, we extract
a pseudo-subsequence (qi0 , v̄i0), (qi1 , v̄i1), . . . , (qip , v̄ip) with (qi0 , v̄i0) ≥ (qr, 0̄)
and, for each 0 < j ≤ p, (qij , v̄ij ) ≥ (qij−1+1, v̄ij−1+1).

Assume now that D, among all the increasing reachability witnesses,
has pseudo-subsequences of minimal length (noted p+ 1 above) along each
branch. Then, along any branch, for all 0 ≤ j < k ≤ p, (qij , v̄ij ) 6≤ (qik , v̄ik),
or a sequence of increases would allow to go from nij−1 to nik directly with
a strictly shorter pseudo-subsequence. In terms of the wqo, this means that,
along any branch, the pseudo-subsequence is a bad sequence. Let us further-
more apply the strategy in § 7.1.2 and delay increases as much as possible—
note that this might provide further opportunities for reducing the length of
pseudo-sequences along the branches of D. The resulting increasing reach-
ability witness, where the remaining increases occur necessarily just before
unary rules, can then be seen as a pseudo-increasing reachability witness,
where every sequence of labels along every branch is a bad sequence for the
wqo (Q× Nd,≤).

Define the norm ‖q, v̄‖ of a configuration (q, v̄) in Q × Nd as the infinite
norm max0<i≤d v̄(i) of v̄. Observe that, along any branch of a pseudo-
increasing reachability witness, if (qj , v̄j) and (qj+1, v̄j+1) are two successive
labels, then

‖qj+1, v̄j+1‖ ≤ ‖qj , v̄j‖+ max−(Tu) + max+(Tu) . (18)

Define accordingly g(x)
def
= x+max−(Tu)+max+(Tu), then for the jth label

along a branch, ‖qj , v̄j‖ ≤ gj(0) the jth iterate of g. This shows that the
sequence of labels along every branch of our pseudo-increasing reachability
witness is a bad sequence controlled by (g, 0).

A length function theorem for a wqo is a combinatorial statement bound-
ing the length of bad controlled sequences. In our case, for the wqo (Q× Nd,≤)
and the control (g, 0), the theorem in [12] yields an

Fd+1

(
p(max−(Tu) + max+(Tu), |Q|)

)
≤ Ack(p′(|A|)) (19)

upper bound on the length of branches for some polynomial functions p
and p′, where (Fd:N → N)d is a hierarchy of fast-growing functions [19]

with Ack(n)
def
= Fn+1(n). A non-deterministic combinatorial algorithm can

thus compute the bound in (19) and attempt to find a pseudo-increasing
witness of such bounded height (note that the branching degree of witnesses
is also bounded) in Ackermannian time. As with lossy reachability, the
main parameter in this complexity upper bound is the dimension d of the
ABVASS0̄. �

7.3. Complexity of Expansive Reachability. Turning to expansive reach-
ability, we present now the missing proof of Theorem 6:
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Table 1. The complexity of reachability problems in ABVASS0̄.

AVASS BVASS ABVASS0̄

Reachability Σ0
1-c. [17] Tower-hard, Σ0

1-easy Σ0
1-c.

Lossy reach. 2Exp-c. [8] Tower-c. Tower-c.
Incr. reach. Ack-c. [28] 2Exp-c. [10] Ack-c.

Theorem 6. Reachability in expansive AVASS and expansive ABVASS0̄ is
Ackermann-complete.

Proof. The lower bound is proved by Urquhart [28]. The upper bound is also
similar to that of Urquhart for provability in LR+, and follows essentially
the same scheme as in the increasing case in the proof of Theorem 24. By
Lemma 3 we restrict ourselves to ABVASS. Define the partial order v over
configurations in Q×Nd by (q, v̄) v (q′, v̄′) if q = q′, v̄ ≤ v̄′, and σ(v̄) = σ(v̄′),

where σ(v̄)
def
= {0 < i ≤ d | v̄(i) > 0} denotes the support of v̄. The quasi-

order (Q×Nd,v) is isomorphic to the sub-order of the product ordering over
Q × Nd × 2d induced by the restriction to triples (q, v̄, s) where σ(v̄) = s,
and is therefore a wqo by Dickson’s Lemma.

Substituting v for ≤, we show as in the proof of Theorem 24 that, if
there is an expansive reachability witness D, then there is one where pseudo
sequences are bad sequences for (Q× Nd,v) along each branch, and where
expansions are applied as late as possible. Thus D can be seen as a pseudo-
expansive reachability witness, using the semantics of pseudo-unary rules for
unary rules in Tu, with the additional restriction that such a rule can only
be applied if σ(ū−) ⊆ σ(v̄). This restriction reflects the fact that expansions
cannot increase a zero coordinate in v̄. The remaining steps are the same as
in the proof of Theorem 24: the sequences of labels along the branches of D
are bad (g, 0)-controlled sequences for (Q×Nd,v), and we obtain similarly
an

Fd+1

(
p(max−(Tu) + max+(Tu), |Q| · 2d)

)
≤ Ack(p′(|A|)) (20)

upper bound on the height of our witness, for some polynomial functions
p and p′. Again, the main complexity parameter is the dimension d of the
ABVASS0̄. �

Corollary 25. MALLC and LLC provability are Ackermann-complete.

Proof. By Theorem 6 and the reductions from LLC provability to ABVASS0̄

expansive reachability in Proposition 7 and from AVASS expansive reacha-
bility to MALLC provability in Proposition 15. �

8. Concluding Remarks

Although connections between propositional linear logic and families of
counter machines have long been known, they have rarely been exploited for
complexity-theoretic results. Using a model of alternating branching VASS,
we have unified several of these connections, and derived complexity bounds
for provability in substructural logics from the (old and new) bounds on
ABVASS0̄ reachability summarized in Table 1.
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Our main results in this regard are the Tower-completeness of prov-
ability in LLW and the new Tower lower bound for MELL: the latter has
consequences on numerous problems mentioned in Section 3, and entails
for instance that the satisfiability problem for FO2 on data trees is non-
elementary [3, 11]. The Ackermann-completeness of MALLC and LLC is
perhaps less surprising in the light of Urquhart’s results, but we take it as
a testimony of the versatility of the ABVASS0̄ model.

The main open question remains whether BVASS reachability, or equiv-
alently MELL provability, is decidable.
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